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B o r l a n d ' s

FORWORD

Windows 95 System Programming SECRETS is Matt
Pietrek's  third major work  on how to  truly  understand

Microsoft Windows.  Matt  has  been mucking about with this
Windows  stuff for quite  some time. His life as techno-guru
began when he graduated  in  1988 from the University of
Santa  Cruz with  a degree in physics but  only two computer
courses under  his  belt. After joining the tech support  depart-
ment at  Borland, he quickly distinguished himself by tying for
the lowest score in an evaluation  that  gauged  "employee sym-
pathy  for the customer."

Life was rosier in Borland's R&D division. There Matt wrote
TDUMP and WinSpector, and even admits to having worked on
the OS/2 Turbo Debugger. He was richly rewarded for his efforts
by being laid off during one of Borland's  many staff pogroms.
Matt  finally came into his own at NuMega,  where today he is
chief architect  for the Bounds-Checker family of products.

I first met Matt  at  the  spring Software Development con-
ference in  1991, an event where we Windows advocates  were
still  a minority.  Charles Petzold and I were panelists  for  a
Windows  versus OS/2 debate.  We were soundly trounced  by
the other panelists, and heckled by the audience for predicting
that the  dominant PC OS of the  very near  future  was going to
be Windows.
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xxviii

It seems as if Matt,  Charles and I were proven right --  in fact, Windows
has now transcended  the realm of technology and  become a part of pop cul-
ture.  During its opening weekend, Windows 95 grossed more than Jurassic
Park. Thankfully,  when you look beyond all the hype, there is plenty of steak
to go with the sizzle. An end-user migration  from Windows 3.x to Windows
95 finally rids us of the memory model agitation we've experienced  for years,
and enables us to  live out our lives entirely in 32 bits.

If Windows  is a big labyrinthian  cave, then this  book is for those  of us
who want  to  venture  farther  into the cave than  the Win32 APl will take  us.
Matt  is the foremost guide to  the innermost caverns  of Windows  95.  (In fact,
the working title  to this book was Spelunking Windows.) Many  of the other
"current"  Windows  95  developer  books  (including the  first edition  of the
"unauthorized"  one)  promise to  show you  all the  dark chambers,  but were
in fact written  a year or  more  ago.  In an  effort  to  be first, the  authors  of
some of those  books  jumped the gun,  exploring  Chicago no  further than its
May  1994  beta  1 release.  Some of those  works  are now riddled with  obsolete
information  and  misleading  supposition.

Matt,  on the  other  hand,  scrutinized  all the  iterations  of Chicago - -
including  the  retail  release  of Windows  95 --  to  bring you the  up-to-date
information  contained  here.  So strap on your  safety  helmet,  light that  lamp,
and  start  spelunking.

Eric J. Maffei
Editor-in-Chief
Microsoft  Systems Journal
New York, September 1995
ericm@microsoft.com



INTRODUCTION

O
f late, Microsoft has been asking,  "Where do you want to
go today?"  The company hasn't  been shy about promoting

Windows 95 as the means by which we'll reach our destination.
What we as programmers need to know is whether Windows 95
is the appropriate vehicle for getting there. Almost everybody
will agree that Windows NT is a Cadillac (or Mercedes Benz, if
you prefer)--it's  well built and loaded with options. The ques-
tion is: Is Windows 95 a Chevrolet or a go-cart? The only way to
find out is to pop the hood and look for yourself. That's the pur-
pose of the book you're now holding. Only by examining the
fundamentals of an operating system such as Windows 95 is it
possible to tell whether it's composed of tail fins and chrome, or
serious safety and comfort features.

You might be wondering why programmers  like me keep
taking  apart  the fundamental  pieces of operating  systems such
as Windows  95. Wouldn't  it be better to focus our efforts on
new technologies like OLE, MFC,  or the latest graphics or mul-
timedia APIs? Although some programmers  prefer to learn just
enough to get by, other programmers  have an insatiable need to
understand  all the layers of code down to the  bare metal.
Maybe we just don't want to trust  our code to  run atop the
unexamined  code of others. Whatever the reason,  Windows 95
System Programming SECRETS is a book for these program-
mers. Knowledge is power,  and the more knowledge you have
about a system like Windows  95, the more control  you have
over it.
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Windows 95 System Programming SECRETS is by no means an author-
itative look at all aspects of the Windows 95 architecture and implementation.
Rather,  I self-indulgently chose to concentrate  on the areas that  I'm partic-
ularly  interested in.  I hope that  somewhere within the contents of this tome,
you'll  find something of particular interest or  use to you in your own
Windows  95 programming.

ASSUMPTIONS ABOUT YOU, THE READER

To cover any significant ground in this book,  I needed to make certain
assumptions  about my reading audience. In a nutshell, my main assumption
is that the reader of this book is a competent Windows programmer who's
done at least some Windows 3.x programming.  This book isn't a  "How do I
write  a program for Windows  95 ?"  book. There are already plenty of books
available for programmers  who want to  learn the basics of Windows  95
programming.

Rather,  Windows 95 System Programming SECRETS assumes that
you  know how to  program  in Windows  3.1  or Windows  95,  and  that you
now want  to  go on to  the  next  step: understanding why Windows  95
works  as it  does.

By knowing what goes on inside the theoretical  black box of Windows
95, you'll  be able to make  sense of the  rituals  you perform to accomplish
tasks  in Windows  95--rituals  that  you might otherwise perform blindly.
Likewise, when  (heaven forbid)  you find a bug in your program, the debug-
ging process goes much faster  if you understand  how Windows  95 works.
How's  this?  If you grasp what Windows is doing  (or should  be doing), you
can usually identify where your program goes off-track  much earlier in the
debugging process.

The examples  in this  book  are written  in C, with a  bit of assembler
mixed in. The pseudocode I present for various Windows  95 functions is
also based on the  C language.  Therefore,  to get the maximum  benefit from
this  book,  you should know C/C++. You can probably squeak by if you
program in some other compiled language such as  Borland Pascal/Delphi.
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THE PSEUDOCODE
Since the goal of this book is first and foremost to show how Windows 95
works,  I provide  pseudocode  for various  functions  in the  system DLLs.  This
pseudocode  usually resembles  compilable  C code.  However,  when  it makes
sense to  break  the  rules  of strict C syntax  for the sake of clarity,  I do.  The
pseudocode is based on the debug version  of Windows  95, which provides
many helpful  diagnostics  strings and  other  tidbits that  make  it easier to  see
exactly what Windows  is doing.  If you're  not  running  the  debug version  of
Windows  95, you really should be. The  debugging DLLs for Windows  95
give very useful  information  when  something goes wrong.  If you  resist the
debug version  and  try  stepping through  the  retail  build,  be prepared  for
discrepancies  between  what  you  see in your  debugger  and the  pseudocode
from this  book.

THE SAMPLE PROGRAMS
Windows  95 System Programming SECRETS  includes  quite a  few programs
for exploring Windows  95 on your own.  All these programs  (both the  .EXEs
and the  source files) are included  on the  disk that  accompanies  this  book.  I
absolutely  despise  books  that  take  up  (pad)  30  pages at  a time with  source
code listings. For this reason,  almost none of the source code for these programs
appears  here.  The one exception  is the  APISPY32  program  in Chapter  10.
The focus  of Chapter  10  is building  a Win32  APl spy, and a close examina-
tion  of the  source code  is necessary  to  demonstrate  the concepts  involved.

If you read Microsoft Systems Journal or PC Magazine, you may have seen
some of the  programs  from this book  in their earlier incarnations.  In fact,
several  of the chapters  in this  book were excerpted in the  aforementioned
magazines.  However, if you've read these articles, don't  skip over the corre-
sponding  sections in this book. The programs have evolved since they originally
appeared in magazine form. And, there are reams of material that didn't make
it into the magazine articles for space reasons.

For example, the PEDUMP program from Chapter  8 has almost doubled
its amount of functionality  since it first appeared in Microsoft Systems Journal.
Likewise, the APISPY32 program that  appeared in Microsoft Systems Journal
worked with beta 2 of Windows  95, but broke in later builds. The APISPY32
program  from this book works with the shipping Windows  95, as well as with
.EXEs that  use the extensions introduced  in NT  3.51.



PUTTING
WINDOWS 95 IN
PERSPECTIVE

 A WIN32 OVERVIEW

A
s I write this, Microsoft is madly churning out copies of
Windows 95, in the wake of its August debut.
Windows  NT, on the other  hand,  has been available for

two years --  and in many people's minds has flopped.  The per-
ception is that  NT is slow and a resource hog.  (Windows NT
3.5 was a substantial  improvement  over the first NT release,
however, and many of the initial complaints  were dealt with.  I
quite enjoy developing in Windows NT now.) The Win32s
libraries, which run atop Windows  3.1  and which were
released at the same time as Windows NT 3.1,  are widely
regarded as being incredibly buggy and ultimately not worth
the effort  of working with.

Things just haven't looked too bright for the future of 32-bit
Windows programming until the release of Windows 95. Now,
like it or not,  you'll have to come face to face with Win32 pro-
gramming  if you want to stay in the Microsoft  camp and keep
up with the latest technologies.  Microsoft is putting all its eggs in
the Win32 basket. Even though  16-bit Windows 3.x applications
will continue to be supported in future Microsoft  operating sys-
tems, 16-bit programs won't  be able to take advantage of many
new features.  Given that Win32 is the future  (according to
Microsoft,  anyway),  the big question is "Where  should you be
focusing your programming efforts?"



While the primary focus of this book is on the architecture and implemen-
tation  of Windows 95, this operating system is the newcomer to the Win32
playing field. Even though Windows NT and Win32s have been shipping for
quite some time, many of you probably didn't pay much attention to Win32
programming until Windows 95 came along. Microsoft's master strategy for
the Win32 application programming interface (APl) and the scaleability of its
operating systems have been with us for three years now. It would be foolish
to pretend that Windows 95 is brand new, and without a history. In addition,
although Windows 95 is currently getting all the press, in the halls of Microsoft,
it's the NT team that's building Microsoft's operating system of the future.
Microsoft intends Windows NT and Windows 95 to merge in the future, and
the result will be based more on Windows NT technology than on Windows 95.
Therefore, before digging into the nitty-gritty technical details of Windows 95,
I'll  use this chapter to provide a sense of Microsoft's Win32 strategy over the
past several years and to show how Windows 95 fits into the picture. Believe
me, the remainder  of the  book will be chock-full of information  about
Windows 95 and how it's implemented. But this first chapter is important to
put Windows 95 into the larger context of Win32 programming and the
Win32 (APl).

No doubt Microsoft won't like some of what I'll say here, since its mantra
has long been "There's just one Win32 APl. Write one program and have it
run on all our systems." Although this sounds like a nice idea, it breaks down
in practice.

Probably the best way to start this discussion is to define the term  Win32.
Used properly, Win32 defines a set of operating-system  functions  (an APl)
that application  programs  can use to carry out their work. This set of func-
tions is called the  Win32 AP1. When Microsoft first introduced Windows
NT, many programmers  were confused about the difference between the
terms  "Win32"  and  "Windows  NT."  Windows NT is just one implementa-
tion  of the Win32 APl. However, since it was the first announced Win32
implementation,  some programmers  had a hard time differentiating  between
the operating system (Windows NT)  and its APl (Win32).

Since one of Microsoft's  major goals with respect to Win32 is to provide
easy porting to the Win32 APl, the Win32 APl functions are very similar to
the Windows  3.x APl in those areas covered by Windows  3.x  (for instance,
in window management and display output).

If Microsoft had limited the use of the Win32 APl to just Windows NT,
Windows  95 would have turned out very different than it did. However,
Microsoft  committed to implementing the Win32 APl on several operating
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systems. Each operating system is optimized for a specific situation and hard-
ware environment. For powerful high-end machines where robustness and
security are of primary importance, Windows NT is the implementation of
choice. For low-end 386 machines that are still running Windows 3.1  with
limited memory, the Win32s libraries were the optimal Win32 solution until
Windows  95 arrived  on the scene. The important  point  from Microsoft's
perspective is that  by writing your programs  using the Win32  APl, the
same executable  can presumably run on any Win32 implementation.

In theory, the Win32 APl implementation in each operating system should
gloss over any underlying differences in hardware or low-level operating sys-
tem design. This relates to Microsoft's  "Scaleable Architecture"  campaign,
promoted around the time of the first Win32 developer's conference in July of
1992. As the name Win32 implies, one of the key advantages of switching to
the Win32 APl from the Windows  3.x  APl is 32-bit code. In defining the
Win32 APl, Microsoft also outlined a new 32-bit executable file format. This
format is known as the PE (Portable Executable) format and is derived from
the UNIX System common object file format V (COFF). The Win32 APl and
the PE format are a matched set. All Win32 operating system implementations
(even on non-Intel platforms) use the PE format as their primary executable
format. By using the same executable format for all Win32 operating systems,
Microsoft hopes to guarantee that a properly written Win32 program will run
on all Win32 implementations. Of course, portability only goes so far. While
the executable format is portable, you still can't run a program compiled for
the DEC Alpha on a computer with an Intel CPU (at least, not without very
complex emulation software).

Shortly after Windows NT was put into the public arena,  Microsoft
announced  another implementation  of the Win32 APl called Win32s. The
idea behind Win32s is that  a collection of DLLs and virtual  device drivers
(VxDs) provided by Microsoft could be added to an existing Windows 3.1
machine to enable it to run Win32 programs.  Unfortunately,  some of the
desirable features that Windows NT brings to the party weren't achievable
under  the architecture  imposed by running atop Windows 3.1. Thus was
born the concept of the Win32s subset. The Win32s libraries provide some,
but not all, of the APl functions that Windows NT and Windows  95 have.
In fact, the s in Win32s stands for subset  (or, depending on your experience
with Win32s,  a variety of other  less flattering words).  The major  downfall
of Win32s is that  it doesn't support many features of modern operating  sys-
tems, such as threads and separate address spaces.  Threads  are a feature of
advanced operating  systems that allow more than one portion of a program
to execute at once (or at least appear to operate this way). A classic use of
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threads  is to use one thread to handle printing, while another thread contin-
ues to respond to user input. Win32s is also hamstrung by some of the limita-
tions of Windows 3.x. (More on this in "The Win32s implementation" section
later in the chapter.)

Like Win32s, Windows  95 provides only a subset of the full Win32 APl
as defined by Windows NT. Microsoft  originally dubbed this subset Win32c
(the c stands for Chicago, which was the original code name for Windows
95). The Win32c APl subset includes all the functions in Win32s, and adds
a significant number  from the full NT APl set. Hopes are high for the suc-
cess of Windows  95, because even though its APl is a subset of Windows
NT's, Windows 95 contains most of the features programmers  find desirable
in an advanced operating  system --  for example, threads  and separate
address spaces (both features that Win32s lacks). Programmers generally love
separate address spaces because this feature  prevents buggy programs from
overwriting another program's data or, more importantly, from overwriting
the operating  system itself. Windows  95 also requires less memory than
Windows NT, making it a more suitable choice for the average desktop PC.

Unlike the Windows NT team, the Windows  95 team didn't consider
portability to other processors to be a major goal. That's  because the Intel
market is large enough to enable Microsoft  to  have two mostly separate
Win32  development efforts.  The Windows NT group produces a portable
Win32  implementation,  but one that isn't optimal  for any given platform.
The Windows 95 group produces a Win32 implementation that is optimized
for the Intel 80386 class of CPUs. If Microsoft didn't have a version optimized
for the Intel platform, it would likely lose ground to operating systems that do,
such as OS/2 Warp. In fact, many people think OS/2 and Windows 95 are very
similar and that Windows 95 is an  "OS/2 killer."

A while ago,  Microsoft  ditched  the term  "Win32c"  because it seemed
to  highlight  the differences  between Windows NT and Windows  95 and
was confusing  programmers.  In place of the  term  "Win32c,"  Microsoft
started  claiming that  there  is just one Win32  APl,  and that  a program
written  for the Win32 APl will  run on all the Win32 implementations.
The reality, however, is that programmers still have to consider the functions
that Windows  95  implements  as a proper  subset  of the Windows NT
(Win32)  APl. Microsoft's  concern  seemed to  be that  programmers  might
be holding off on writing to  the Win32  APl since they didn't  know which
subset to  target.  Later  on,  Microsoft  tried  to  further  enforce  this  "Just
one Win32 APl"  mindset  by making support  for  both Windows  NT and
Windows 95 a requirement to use the Microsoft Win32 Logo on a product.
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Of course,  trying  to  feather  over  the  differences  among  API subsets  is
complete  nonsense.  There  are  differences  between the  subsets,  and  they do
matter.  For  example,  developers  discovered that  it was  difficult  for them  to
obtain  Microsoft's  Win32  Logo  program  because  the  differences  between
the  Windows  NT  and  Windows  95  Win32  implementations  made  it  next
to  impossible  to  meet  Microsoft's  requirement  that  its  products  support
both  implementations.  (Eventually,  enough whining  by developers caused
Microsoft  to  revise  its  logo  requirements.)  And,  as  a  second example,  it's
clear that  a program  that  relies on  multiple  threads  to  do  its job  can't  run
on Win32s  since Win32s  doesn't  support  multithreading.  The  result  of
these  differences is that,  in  order to  program  effectively,  programmers  will
have to  pay  attention  to  the Win32  subsets  and  understand  the  underlying
operating  system.

POSITIONING THE WIN32  OPERATING SYSTEMS

To clarify the underlying architecture of the current Win32 platforms,  I've
come  up with  an audio-system analogy  (see Figure  1-1) that  nicely illustrates
the relationships  between  the platforms.  For the  sake of this discussion,  pre-
tend that audio compact  disks don't exist  and that cassette  tapes are the  best
available  form of recorded music.

 Figure  1-1
This audio-system  analogy  clarifies  the  underlying  architecture  of  the current  Win32

 platforms  and  shows  how  they  are  related to each  other.
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In my analogy,  Win32  programs  are  like  cassette  tapes,  and  16-bit
Windows  3.x programs  are  like the  older,  clunkier  8-track  tapes.  Similarly,
a Win32  operating system is like a cassette  tape  player  that  can play and
record cassette  tapes,  and Windows  3.x  is like an  8-track  player  and is
limited  to  8-track  tapes.

Given this scenario, if you were an audiophile and wanted top-of-the-line
stereo components, you'd purchase a high-quality cassette deck with all the
bells and whistles --  that is, you'd purchase Windows NT. On the other hand,
if you're strapped for cash and wanted to play cassette tapes, but had only an
8-track player, what would you do? You might decide to get an adapter for
your  8-track player that will permit you to listen to cassettes. In Windows
programming, Win32s is the equivalent of this cassette-to-8-track adapter.
You plug Win32 programs into the Win32s adapter, which in turn plugs into
Windows 3.1  (the 8-track tape player). When using these tape adapters, you're
limited in what you can do. For instance, you can't use an 8-track adapter to
record onto  a cassette tape.  Also, the sound quality  isn't anywhere near as
good as playing the cassette on a cassette deck would be (since there's an extra
layer of electronics and tape heads between the 8-track tape and the cassette
deck tape head). Likewise, Win32s has limits on what it can do: The full
Win32 APl isn't supported, nor are features such as threads available.

Where does Windows 95 fit in? Windows 95 would  be the equivalent of
a basic-model cassette deck, with some of its components scrounged from an
8-track player (and a pretty new face plate). Windows 95 has a lot of new
32-bit code, but also borrows heavily from the Windows 3.1 code base for
features such as window management. For the most part, the Windows 95
cassette deck does everything that the Windows NT premium-quality cassette
deck does, but it lacks some high-end features --  for example, it doesn't sup-
port  security or double-byte character sets (a.k.a.  Unicode) like NT does. On
the positive side, however, the Windows 95 basic-model cassette deck doesn't
require anywhere near the amount of fancy, sophisticated electronics inside,
so it's cheaper to produce. In other words, Windows 95 won't have nearly as
much code as NT, so it will take up less room in memory and run faster.

With this rather  corny analogy safely tucked  away in the attic  of your
mind, let's zoom in and examine each of Microsoft's Win32 implementations
to see how they relate to one another.
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The Windows NT implementation
The primary goals of Windows NT are robustness  and portability to other
platforms.  Much of the code is written in portable  C or C++ rather than in
hand-optimized  assembler for the target platform.  The emphasis on stability
makes NT an ideal development platform,  even if you're targeting Windows
95, Win32s,  Windows  3.x,  or DOS.  On the other  hand,  portability  and
stability come at a cost. All the C/C++ code in NT adds up to a large footprint
in memory just to get the system booted. A minimum usable Windows NT
development machine is a 486 with  16MB of memory. Even with that hard-
ware, NT won't  be as fast as a system running OS/2 or Windows  95.  (In
defense of Windows NT, however, the  3.5 version was significantly  better
than NT  3.1, which is the version many programmers  based their first
impressions on.)

One of the primary reasons for NT's robustness is its protected subsystem
architecture.  In the protected subsystem, the operating-system code that imple-
ments the API functions runs in a different address space and process than that
of the calling program. The most important subsystem in Windows NT is the
Win32 subsystem. The Win32 subsystem is its own process, with most of the
USER and GDI code placed in a DLL called WINSERV. DLL. When your pro-
gram makes a call to an APl function such as TextOut, you're not making a
direct call to the real TextOut code. Instead, a stub in NT's GDI32.DLL copies
your parameters into a region of memory accessible by both your process and
the Win32 subsystem process. Your thread then signals the Win32 subsystem
process that there's a function request waiting for it and then goes to sleep.
When the Win32  subsystem process sees the  signal that  there's  work  to  do,
it processes  the  request  (doing things  such as putting  a text  string to  the
screen) and then informs the calling process's thread  that the function has
completed.  This subsystem client/server model also applies to other operating
system "flavors"  that NT supports,  such as OS/2 1.x and POSIX.

The  advantage of protected subsystems  is that  their  address  space is
better  protected  against memory  overwrites  and  other  bugs in application
program code.  In operating systems without  this  subsystem  model  (such
as Windows  3.x and Windows  95), the  operating-system  code and data  is
mapped  into the  address  spaces of all processes,  making it possible  for a
buggy program to overwrite  and crash the  operating system.  The disad-
vantage  to  the  subsystem  model is increased execution time.  Every call to
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an operating-system  function theoretically  causes a process switch and
memory context change. This is expensive, clock~cycle-wise, with estimates
of 2000-3000  clock cycles for the average call. For this reason,  the NT
developers  optimized  some heavily used routines  so that they wouldn't
require  a process switch.  In addition,  certain  GDI calls can be batched  so
there  doesn't  have to  be a process switch for each call.

All this improved robustness for Win32 applications is great, but what
about existing 16-bit applications that are run under NT? Sixteen-bit Windows
programs run under a cooperatively multitasking model, and expect to be able
to access memory belonging to other tasks. NT keeps 16-bit tasks at arm's
length by running them in a separate process known as WOW (Windows On
Windows).  By default, 16-bit Windows applications run in a single "WOW
box," which is essentially a multithreaded DOS box.

The WOW box is a Windows 3.l-like  "sandbox"  inside of which ! 6-bit
applications can do anything they want; their actions don't corrupt anything
outside the box.

The WOW subsystem communicates  with the Win32  subsystem code
to perform display output,  allowing  16- and 32-bit windows programs to
interact  on the same screen. Windows NT 3.5 introduced  the ability to run
each Win16 application  in its own WOW box, increasing stability among
several applications  running Win16 at the expense of additional  memory.

I'm introducing the WOW subsystem in this  section  because it's  an
important  architectural  difference between Windows NT and Windows  95.
(Windows 95 runs Win16  applications  in the same address space as the cur-
rent Win32 application.)  The only real downside to the WOW subsystem in
NT is that  16-bit Windows applications run slower than they would under
Windows  3.1  running on the same machine.

The Win32s implementation
In contrast  to Windows NT, Win32s  is yet another  layer on the already
shaky DOS and Windows house of cards. Win32s isn't an operating  system
in and of itself; rather,  it's  a set of extension  libraries  for Windows  3.1.
Likewise, Windows 3.x isn't a true operating system by itself, either. Instead, it
rests rather dicily on the unprotected real mode operations of DOS. The code
for implementing the Win32 API with Win32s adds another precariously bal-
anced layer because it relies on the VxDs and system DLLs from Windows 3.1.

With  few exceptions  (such as memory mapped files), if a particular
piece of functionality  isn't in Windows  3.1, the equivalent Win32 function
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isn't in the Win32s subset. A good chunk of the Win32s code is nothing more
than thunks to go from your 32-bit program down to the  16-bit Windows 3.1
code that does the actual work.  Thunks are the programming equivalent of
patching things together with chewing gum, string, and bailing wire. Thunks
in Win32s and Windows 95 are small chunks of code that handle the transitions
between 16- and 32-bit code.

The limitations  of Win32s are numerous.  First and foremost,  it doesn't
support  multithreading.  'Nuff said on that  point.  A second Win32s flaw is
its single address space for all Win16 and Win32 programs.  Since Windows
95 and NT have separate address spaces for Win32 programs, this relegates
Win32s to the  "abandon  as soon as you can"  category. Win32 programs
running  under Win32s can see the memory of other Win32 programs,  as
well as the memory of 16-bit programs,  making memory corruption a very
real possibility.

A third mark against Win32s is the lack of per-process DLL data.  In NT
and Windows  95, the data  area  of a DLL is instanced on a per-process basis
(by default).  In simpler terms, this means that you can safely use global vari-
ables in DLLs without worrying that  another process will call the DLL and
overwrite the variable with another value. Since DLLs under Win32s share
the same data area between all users of the DLL (just like under Windows 3.1),
you can run into nasty bugs. Typically, your program and its DLLs will work
fine under NT or Windows  95, but crash in Win32s/Windows  3.1. This is
yet another reason to forget that Win32s ever existed, now that Windows 95
is here.

Another group of Win32 problems that don't exist in Windows NT and
Windows  95 relates to  process scheduling and the messaging system. In
Windows  NT  and Windows  95, threads  are  switched pre-emptively.  In
addition,  Windows NT and Windows 95 give each thread its own message
queue, and a separate  input system thread assigns mouse and keyboard
events to the appropriate  queue. These two design factors allow one thread
to be as unresponsive and take as much time as it wants without affecting
other programs.  In contrast, Win32s is stuck with the hopelessly problem-
prone Windows 3.1 cooperative multitasking  model. In order  for one task
to run,  another task has to yield the  CPU by calling a function  such as
GetMessage or PeekMessage. If a task doesn't retrieve its messages and yield
the CPU in a timely manner, the user can't switch to or use other programs.

The bottom line? Win32s has a reputation of being cranky and prone to
crashes or other strange behavior. If you're getting the feeling that I don't think
Win32s isn't worth the trouble, you're right. Thank goodness Windows 95 is
finally here to take its place.
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The Windows 95 implementation
The  best way to  describe the Windows 95 Win32  implementation is to  say
that  it's Win32s done properly. Another way to think of Windows  95 is to
conceive of it as incorporating the best features of Windows NT implemented
in the Win32s style. Windows 95 contains just the right amount of advanced
operating-system features without going overboard in terms of code size and
speed. In fact,  the Window 95 memory footprint  is roughly the same as
Windows 3.1 with Win32s installed, making Windows 95 an ideal replacement
for Win32s.

Under the hood, Windows 95 has a stronger resemblance to Windows 3.1
and Win32s than it does to Windows NT. Like Windows  3.1, the lowest
layer of Windows 95 is ring 0 system code consisting of the Virtual Machine
Manager  (VMM) and assorted VxDs. The code running at CPU ring level 0
is theoretically the most stable and trusted code, so it has more access to the
hardware  and operating-system data than the application-level code running
at ring level 3 of the  CPU. Also,  as in Windows  3.1,  there  is one  virtual
machine  set up  for running  Windows programs  and  a separate  virtual
machine  for  each DOS  session you start.  In the  system virtual  machine
that's  used  by Windows  programs,  you'll  find the  familiar  ring  3 system
DLLs: USER, KERNEL,  and  GDI, along with their  32-bit  equivalents:
KERNEL32,  USER32,  and  GDI32.

Like Win32s,  Windows  95 implements a  big chunk of its code in the
16-bit system DLLs and uses thunks to transfer from 32-bit programs down
to the  16-bit code. Almost all of the windowing and messaging system code
resides in the 16-bit USER.EXE, just as in Windows 3.1. Trying to convert the
massively complex windowing system code in USER.EXE to 32 bits would
have led to a large size increase and incompatibilities with existing 16-bit pro-
grams. Neither of these problems was acceptable to Microsoft, since backward
compatibility with existing hardware and software was not up for debate.
Therefore, the windowing and messaging system in Windows 95 is essentially
an updated version of the Windows 3.1 code. The updates are primarily to
allow the 16-bit components to interface with the 32-bit components, as well
as to add whatever functionality was needed to implement the Win32 functions
that Windows 95 supports.

The implementation  of the  32-bit  GDI APl in Windows  95 is split
between existing code in the  16-bit GDI.EXE and new code in GDI32.DLL.
Wherever possible and reasonable, the Windows  95 GDI32 functions thunk
down to the existing  16-bit GDI code. With regard to the KERNEL APIs,
Microsoft's  statements  have indicated  that  the  32-bit KERNEL32.DLL
doesn't thunk down to the 16-bit KRNL386.EXE. However, Andrew Schulman
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proved  conclusively in Unauthorized Windows 95 that KERNEL32 does in
fact call down to KRNL386.EXE.  We'll also be scrutinizing Microsoft's
statements  on this topic later on in the book, especially in Chapter 3.

In the previous section I described some of the problems with Win32s: no
threading support, a single address space, the lack of per-process DLL data,
and cooperative multitasking. For the most part, Windows 95 corrects these
issues; that is, it works like NT. Windows 95 32-bit programs can have threads
(although  16-bit tasks cannot),  and data  in DLLs is per-process. However,
some corners have been cut. For example, each process in Windows 95 gets
its own address space, but all loaded system DLLs are visible to a Windows 95
process, not just the DLLs that the process has loaded itself. In addition, the
memory of all Win16 tasks and some of the DOS memory below 1MB is visible
to the currently running Win32 process. In other words, parts of DOS, Win16
programs,  and the current Win32 process all intermingle in the same address
space, unlike in Windows NT. As Chapter 5 shows, memory corruption is still a
possibility  in Windows  95,  but  the  likelihood  of a  32-bit  programming
bashing  memory  that  it  doesn't  own is much less than  under  Win32s.

One  of the  hot topics  about Windows  95 is its not-very-smooth  multi-
tasking behavior  in the presence of  16-bit programs.  Windows  95 really
does have preemptive  multitasking,  but  a badly behaved  16-bit program
can cause other threads  to jam up at the entrance to  16-bit DLLs such as
USER.EXE and GDI.EXE. The problem is that the  16-bit system DLLs are
nonreentrant.  That  is, they don't expect to  be switched away from while
they're  in the middle  of doing something.  Since many of the Win32 APl
functions thunk down to the system DLLs, some method to prevent a thread
switch at an inopportune moment is necessary. Many solutions were discussed
and hotly debated  during the early design period  of Windows  95.

The solution that was finally decided on as the most palatable of numerous
bad options  is known as the Win16Mutex.  The Win16Mutex  is essentially
a mutual exclusion semaphore  that needs to  be acquired  upon entry to the
16-bit system DLLs such as USER.EXE and GDI.EXE. The Win16Mutex
means that only one thread can be executing at a time through the  16-bit
system code. This in itself wouldn't be so bad, but to prevent other problems,
the Win16Mutex is "owned"  whenever a 16-bit application is executing. The
unfortunate  ramification is that a 16-bit program that doesn't yield properly
by calling GetMessage or PeekMessage can prevent the user interface threads
of 32-bit applications from executing.

The implications of the Win16Mutex are twofold.  First, the sooner you
move your  application to  32  bits, the  better. If a system isn't  running any
badly behaved  16-bit programs,  the Win16Mutex  will almost  never be a
source  of trouble.  (As pointed out  in  Unauthorized Windows 95, no
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Windows 95 system is completely  free of Winl6  tasks,  since the  system
itself  uses one or two  16-bit tasks.  However,  these  system tasks are good
about  yielding control  to  other  tasks,  and thereby are good about
releasing  the Winl6Mutex.)

The second implication of the Win 16Mutex involves threading.  If you're
doing time-critical work, you'll probably want to split your application  into
multiple threads  (for instance, a user interface thread and one or more worker
threads).  The Winl6Mutex  doesn't affect threads  that  aren't thunking down
to  16-bit code like USER or  GDI. These  threads  will continue to  be pre-
emptively  scheduled and executed,  even if the entire  user interface is tied
up with an ill-behaved  16-bit program that's  not yielding. The most likely
way to get hung up in your Win32  application while waiting for the
Winl6Mutex  is by calling USER and GDI functions. With advance planning,
you can avoid calls that might  block in your time-sensitive threads.

Win32 implementations outside Microsoft
The previous three sections have focused on the Win32 platforms  provided
by Microsoft.  However, the Win32 APl is sufficiently well defined and full
featured  enough to enable other companies to implement it. The example
most people are aware of is OS/2 Warp. With the advent of all these Win32
operating  systems from Microsoft,  IBM saw the writing on the wall. Even
though the Win32 APl competes directly with the native OS/2 APl, IBM's
more recent versions of OS/2 have support for a subset of the Win32 APl.
At the time of this writing,  the Win32 subset supported  by OS/2 is Win32s,
although  no doubt IBM is looking at supporting  the Windows  95 subset in
the future.

Nearer and dearer to my heart is Win32 for DOS. Even though I primarily
run either Windows 95 or Windows NT, I still boot DOS and Windows 3.1
frequently. When I do this, I hate not having all my programming utilities
available that I wrote using the Win32 APl. Luckily, I don't have to forego my
tools when operating in a nonnative Win32 supporting environment. Both
Phar Lap and Borland make DOS extenders that support enough of the Win32
APl to allow console mode programs to run under DOS or Windows 3.1. If
you use any graphics or windowing system functions, these DOS extenders
won't fill the bill, but often a console mode program (like my PEDUMP from
Chapter 8) is all you need.

Phar Lap's DOS extender  is called TNT; Borland's DOS extender comes
with  the  Borland  DOS Power  Pack. Using these extenders,  you can write
generic  C/C++ programs that  use functions  such as printf and fread with-
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out concern for whether your program will be running under Windows
NT, Windows  95,  or DOS.

Using the Phar  Lap or Borland DOS extenders  can be as simple as
changing a line or two in your linker options. You can continue to use your
existing Win32 compiler without any changes. The idea behind these DOS
extenders is that you use the special program supplied with the DOS extender
as the DOS stub program in your Win32 executable.  If you run the EXE
under Windows 95 or NT, the operating system ignores the stub program. If
you run the program from DOS, the stub program loads the DOS extender
and brings in the code that provides the Win32 API subset under DOS.

Interestingly,  Microsoft  itself used the TNT DOS extender  in its first
release of Visual C++ 32-bit edition.  Since there were programmers who
wanted  to  develop for Win32s  but didn't  have an NT machine,  Microsoft
couldn't make Windows NT a requirement for running the compiler (CL.EXE)
and linker (LINK.EXE). By using the TNT extender, the Microsoft tools run
as native Win32 console mode applications  for programmers  developing on
NT and as DOS extended applications  for Win32s developers. The majority
of Borland's command-line tools are also Win32 applications  and continue
to use the Borland Power Pack DOS extender to this day.

DEVELOPMENT CONSIDERATIONS

If you decide that your next great project is going to run on both Windows 95
and Windows NT (and heaven help us, maybe even Win32s}, the selection of
your primary development platform is critical. If you get your program to
work correctly on Windows 95, and don't use features specific to Windows 95,
there's a pretty good chance that the code will run unmodified on Windows
NT. On the other hand, Windows 95 isn't as robust as Windows NT. You
may spend quite a bit more time rebooting in Windows 95 than you do under
Windows NT (at least I do). This point lends credence to the argument that
NT is the ideal Win32 development platform.

The choice of whether to develop on Windows NT or Windows 95 seems
to be intensely personal. Some developers abhor the Windows 3.1-style shell of
NT 3.5 and would much rather work in Windows 95. It's likely that those
same people aren't doing the kind of development work that tends to put the
system in an unstable state. Others, like me, routinely put the system at risk by
doing things such as writing debuggers and poking around at the operating
system and therefore enjoy the incredible robustness of Windows NT. In all
my work, I've crashed Windows NT only once or twice over a period of two
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years, whereas I routinely crash Windows 95. (This isn't because Windows 95
is inherently unstable, it's just that the design of NT makes it more resistant to
hard system crashes.) But despite the robustness  of Windows NT, I still find
myself developing quite a bit on Windows 95 because there are tools such
as SoftIce/W available for it that aren't yet available for Windows NT. In
short, there is no good answer to this question. Both Windows NT and
Windows 95 have merits as your Win32 development platform or choice.

THE FUTURE OF WIN32

About the time this book was published, Microsoft was working on the next
major revision of NT, code-named Cairo.  Cairo will use the Win32 APl, and
is supposed  to  be extremely object  oriented,  even down to its file system.
Cairo should  also sport  Microsoft's  post-Windows 95 thoughts  on  user
interface design. Since Cairo will be a revision of the NT code base, its plat-
form independence may be achieved at the cost of increased code size and
slower performance.  Perhaps Microsoft is betting that the average machine's
performance  and available memory will have increased significantly by the
time Cairo arrives.

Although  Windows  95 is not the end of Microsoft's  32-bit Intel-specific
operating-system  line, the Windows  95 architecture  may only live on for a
few more years.  If hardware  prices and capabilities are conducive to run-
ning Cairo and its successors on average desktop  systems, Microsoft may
discontinue developing two Win32 operating  systems in parallel.  On the
other  hand, if the majority of user's hardware won't support running the
portable  Cairo code base, Microsoft will certainly continue to develop an
Intel-specific Win32 platform that allows them to keep their market share.

SUMMARY

This concludes my whirlwind rendition of how Windows 95 relates to other
Win32  implementations  and the Win32 story to  date. In Chapter  2, the
focus will be entirely on Windows 95. Specifically, it will provide an
overview of what's new in Windows  95 relative to Windows 3.1. The
remainder  of the book will then dig down into the dirty details of what is
sure to  be the most widely studied and supported Win32 platform ever.
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WHAT'S NEW
IN WINDOWS 95?

F or nearly two  years,  people  have  been speculating  about
what  Windows  95  is.  Some have described  Windows  95

as NT Lite - - but Windows  95 isn't just a  "light"  version  of
NT.  Others  have  described  Windows  95  as  Win32s  on
steroids--  and  although  there  are some striking similarities
between  the  two operating  systems,  that  description  isn't really
right  either.  Windows  95 is much  more than  a  bulked up
Win32s.

This chapter provides  an  overview of Windows  95 from a
programming  and architectural  point  of view. Since most users
will  be converting to  Windows  95 from  Windows  3.1,  I used
Windows  3.1  as the baseline for the various comparisons I make.

The portions  of the architecture  I describe are  those  that
almost every Windows application  deals with.  The majority of
the topics I discuss fall into the traditional  KERNEL, USER, and
GDI troika.  The view of Windows  95 given here is by no means
complete.  There are many topics - - such as OLE 2.0,  Plug and
Play, MAPI (Mail API), and TAPI (Telelphony APl) --  that are
beyond  the scope of what I can hope to describe in this  book.

Throughout this chapter,  I describe some Windows 95
features  and  architectural  concepts that  are technically  Win32
features  and  concepts  rather  than  Windows  95-specific.  These
features  have existed  in NT for quite some time.  However,
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Windows 95 will be the first real exposure  to Win32 programming  for many
programmers.  Since this  book  is first and  foremost about  Windows  95, I say
Windows 95 in many places where it would  be more technically correct to
say  "Win32"  or  "NT and Windows  95."

As I see it,  Windows  95  has  two  fundamental,  if sometimes  conflicting,
requirements:

*  Provide  an  implementation  of the Win32  API with  all the  goodies  of
Windows  NT (threads,  separate address spaces, virtual  memory, and so
on), without  the space-eating  features  such as security and support  for
the Unicode standard.

*  Run  existing  MS-DOS and  16-bit  Windows  applications  on  a 4MB
machine  as well  or  better  than  Windows  3.1  would  on the  same
machine.

The  first  requirement  represents  Microsoft's  admission  that  not  every
computer  has the processing power  or memory needed to  run Windows NT.
Although  NT  is a  great  "No  Compromises"  operating  system,  its  resource
requirements  exceed  that  of the  average 4MB  desktop  PC.  Windows  95
brings  a respectable  subset  of NT's  capabilities  to  users who  don't  have NT-
capable  hardware  but  also  don't  need  all  the  overhead  of a  bulletproof
operating  system  like  NT  or  UNIX.  Since there  are  tens  of millions  of
non-NT-capable  machines,  Microsoft  gave  up  NT's  portability  to  get  a
powerful  Win32  implementation  that  runs  on  the  average  desktop  PC.
While the Win32 API layers are very similar  between NT and Windows 95,
Windows  95's  implementation  ties it to  the  80386  class of Intel  CPUs. The
capability  to  bring Win32  to  a  vast number  of machines  made  it worth  the
expense  of maintaining  two  operating  systems.

The second requirement for Windows  95 needs to be specified very clearly.
Note  that  Microsoft  doesn't claim you can run a couple of large applications
smoothly on a 4MB Windows  95 machine.  Instead,  Windows  95's target is
this:  On machines  with 4MB or more, Windows  95 will run no worse than
Windows  3.1,  given equivalent  program  loads.  I think  applications  that run
better on a 4MB machine than on Windows 3.1 will be the rarity. However,
it's reasonable to expect that  applications will run as well on Windows  95 as
they did on Windows  3.1.  (Bear in mind that  almost everyone considers 8MB
to  be a usable minimum for Windows 3.1,  so running  "as well as"  isn't the
same thing  as  "running  well.")  Since Windows  95 can't  give up  Windows
3.1  features,  it's clear that the Win32 support needs to  be shoehorned into
space freed by tightening and tuning the Windows  3.1  code. This is where most
of the Windows 95 design compromises come into play.
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I've divided this chapter into four main sections:

*  How Windows  95 is the same as Windows 3.1
*  How Windows 95 has improved on already-existing Windows 3.1 features
*  New features introduced  in Windows  95
*  "Dirty little secrets"  about Windows 95

This chapter provides a high-level view of the changes and additions  to

Windows  95 and defers the in-depth discussion to subsequent chapters.
Where appropriate,  I'll give pointers to  other chapters  in the book where
you can find more information.

SIMILARITIES TO WINDOWS 3.1
Microsoft  has gone to great  lengths to  convince people that  Windows  95
is a brand new operating  system, built from the ground  up. However, you
shouldn't believe everything you're told.  If you make a few small changes
(which I'll  describe  next),  you can make  a  persuasive  argument that  a
Windows 95 system is actually running Windows 3.1. That's because under
the hood, Windows  95 is primarily an evolution of the DOS and Windows
3.1  code base.  Sure, there  are  many great  new features  in Windows  95;
I'll  be describing them here and throughout  the  book.  For the  purpose of
truly  understanding  what Windows 95 is, however, it's important to set
aside the hype and take an honest look at the foundations
of Windows 95.

I've just now asserted that Windows 95 has evolved from the combination
of DOS and Windows 3.1. It's time for me to put up or shut up. For our first
experiment,  let's take a look at what happens when you turn on the machine.
(I'm assuming you have Windows 95 installed already.) Before rebooting your
machine though, let's make a small change. In your boot drive's root directory
is a hidden system file called MSDOS.SYS. If you run the dir/AH command,
you'll see it:

C:\>  dir  /ah MSDOS.SYS

Volume  in  drive  C  is  MS  DOS  5
Volume  Serial  Number  is  1CDE  9CF5

Directory  of  C:\
MSDOS  SYS  1,641  07  17  95  9:40p  MSDOS.SYS

1 file(s)  1,641  bytes
0  dir(s)  71,696,384  bytes  free
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Now, this  file is no  big surprise  if you've  been using PCs for awhile.
However, in Windows 95, the file has changed quite a bit. In fact, it's now an
ASCII text file. Let's change the attributes to make it accessible to a text editor:

C:\>  ATTRIB  -r  -h  s MSDOS.SYS
RHSA_  > ___A_  C:\MSDOS.SYS

Bringing up MSDOS.SYS in an editor will show you something like this:

[Paths]
WinDir=C:\WINDOWS
WinBootDir:C:\WINDOWS

HostWinBootDrv=C
[Options]
BootMulti=1
BootGUI=1
Network=0

;The following  lines  are  required  for  compatibility  with  other  programs.

;Do  not  remove  them.  (MSDOS.SYS  needs  to  be  >1024  bytes.)
;XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXa
...  rest  of  f i l e  o m i t t e d . . .

Your file may differ slightly, but you get the point.  Now,  let's add a line
("Logo=O") to  the  [Options]  section:

[Options]
Logo=0
BootMulti=1

Next,  save the  file.  While  you're  at  it,  you  might  want  to  change  the
attributes  back  to  the  way they  were  before  (+r  +h  +s). Now reboot.
Assuming  you  still  have  a  CONFIG.SYS  or  AUTOEXEC.BAT  files after
installing Windows  95,  you  should  see  the  contents  of these  files being
processed  before the Windows 95 user interface comes up. What's missing
from the equation is the logo that Windows 95 usually displays during your
bootup sequence. It's pretty obvious that the logo is primarily an attempt to
hide those messy technical  details involved in booting up the computer --
the kind of details that  can confuse end users. What they don't  see can't
concern them,  right? With a  single line, we just dismissed a big part  of the
Windows  95  "user friendliness."

It certainly looks like DOS may still be involved here somewhere. To
check this  out,  I deleted my CONFIG.SYS and AUTOEXEC.BAT file and
rebooted.  Perhaps the DOS-like behavior we just saw is for backward com-
patibility.  After booting without  CONFIG.SYS or  AUTOEXEC.BAT, I ran
the MEM/DEBUG command  to  see what's  in memory  below  1MB. The
abbreviated  output  is as follows:
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Conventional  Memory  Detail:

Total  Name  TypeSegment

00000
00040

00050
00070

000C4  5,072

00201  11,584

1,152

2,848

688

544

400

1,488

256

512

448

3,072
004D5  80
004DA  192
004E6  3,312
005B5  32
005B7  16

005B8  1,152

00600  208

0060D  5,728

00773  1,312

007C5  240

007D4  90,400
O1DE6  532,896

1,024  (1K)

256  (OK)

512  (1K)
1,344  (1K)

(5K)

(11K)

(1K)

(3K)

(1K)

(1K)

(0K)

(1K)

(0K)

(1K)

(OK)

(3K)
(OK)

(OK)

(3K)

(0K)

(0K)

(1K)

(0K)

(6K)
(1K)

(0K)

(88K)
(520K)

IO

CON

AUX

PRN

CLOCKS

A:  - D:

COM1

LPT1

LPT2

LPT3

CONFIG$

COM2

COM3

COM4

MSDOS

IO

XMSXXXX0

IFS$HLP$
SETVERXX

MSDOS

WIN

WIN

vmm32
MSDOS

vmm32

COMMAND

COMMAND

COMMAND

MEM

MEM
MSDOS

System
System

System

System

System

System
System

System

System
System
System

System

System
System

System
Install

Install
Install

Interrupt  Vector

ROM Communication  Area
DOS Communication  Area
System  Data

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Device  Driver

Data

Data

ed  Device=HIMEM

ed  Device=IFSHLP

ed  Device=SETVER

Sector  buffer

Block  device  tables

FILES=30

FCB:S=4
BUFFERS-24

LASTDRIVE=E
STACKS-9,256

System  Program

Environment
Program

Data

- Free -

Program

Data

Program

Environment
Environment

Program
- Free -

F i g u r e  2-1
 The MEM/DEBUG command shows these fragments of DOS (even though DOS is
 supposedly gone in Windows 95).
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If Windows  95  really does away with  DOS,  we  shouldn't  be seeing any

vestiges  of DOS.  Yet two  lines  from the output in Figure 2-1  stick out:

000C4  5,072  (5K)  MSDOS  System  Data

00201  11,584  (llK)  IO  System  Data

H m m . . . There's a 5K area labeled as MSDOS,  and an  11K area with
the name IO.  Perhaps this is somehow  related to  the IO.SYS file from the
days  when  we  ran  DOS  and Windows  3.1  rather  than  the  integrated
Windows  95.  Let's check this out.  Another  dir/AH command in the root

directory  confirms  this:

C:\>  dir  /AH  IO.SYS

Volume  in  drive  C  is  MS  DOS_5

Volume  Serial  Number  is  1CDE  9CF5

Directory  of  C:\
IO  SYS  223,148  07-11  95  9:50a  IO.SYS

1 file(s)  223,148  bytes

0 dir(s)  71,688,192  bytes  free

Yes indeed, IO.SYS is a big file. Although it's close to 220K, when loaded
on my system it takes up only the  11K of DOS memory we saw earlier. While
11K isn't much memory these days, it's still pretty good proof that there's at

least some DOS-like code residing on every Windows  95  system.
Here  are a couple  of other  interesting lines  from the MEM/DEBUG

output  in Figure 2-1:

004DA  192  (OK)  WIN  Environment

004E6  3,312  (3K)  WIN  Program

These two lines sure make it look like a program called WIN was loaded
into memory. Hey, wait a minute! When I started Windows 3.1  from my DOS
prompt, didn't I type WIN, which invoked WIN.COM?  Let's go have a look

and see if WIN.COM is still hanging around in Windows  95:

C:\>dir  c:\windows\win.com

Volume  in  drive  C  is  MS  DOS_5

Volume  Serial  Number  is  1CDE  9CF5

Directory  of  C:\WINDOWS
WIN  COM  22,487  03-14-95  6:44p  WIN.COM

1 file(s)  22,487  bytes

 dir(s)  68,542,464  bytes  free



Sure enough. It looks like WIN.COM is still there in Windows 95. Seeing
as how the next thing in memory after the WIN program is something called
vmm32, it looks like WIN.COM plays the same role in Windows 95 that it
did in Windows 3.1. Namely, WIN.COM is what kicks off the whole process
that takes the machine from real (or Virtual 8086) mode into the protected
mode Windows environment.

Let's do one final experiment in this DOS area to confirm that theory.
In the  CONFIG.SYS file, let's change  the DOS command  processor
(COMMAND.COM)  to something else. I happen to prefer 4DOS, which is
a COMMAND.COM-compatible replacement from JP Software that offers
features above and beyond COMMAND.COM.  To switch to 4DOS (assum-
ing you have a copy), add the following line to your CONFIG.SYS file:

SHELL=C:\4DOS.COM

When I did this, I rebooted  and found myself sitting at a 4DOS prompt
rather  than in the nice, cozy Windows  95 Explorer  environment.  It seems
that  my version of 4DOS.COM didn't  know to invoke WIN.COM at the
end of its processing of the AUTOEXEC.BAT file. Yet the COMMAND.COM
that comes with Windows  95 does. Oops!  It looks like another  part of this
seamless  integration  just  fell away.  The  transparent  boot  straight  into
Windows  95 that  most end users experience turns out to  be nothing more
than the moral equivalent of putting the following as the last line of your
AUTOEXEC.BAT file:

WIN

Since we're at a 4DOS prompt  (which presumably  knows nothing about
Windows),  let's ask it what version of DOS we're running:

C:\>ver

4DOS  5.0  DOS  7.00

DOS 7, eh? I guess this shouldn't be a surprise. The previous version of
DOS was 6.x, right?  If you fire up the Windows  95 COMMAND.COM
and ask it the same question, you'll get the following response:

Microsoft(R)  Windows  95

(C)Copyright  Microsoft  Corp  1981 1995.

C:\>ver

Windows  95.  [Version  4.00.950]

21
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That's  strange,  there's  no  mention  of DOS anywhere.  Microsoft  really
doesn't  want  the nontechnical  end user to  know  that DOS  is mixed  in with

Windows  95.
I could  go  on  and present  other examples  and technical  demonstrations

that show the existence  of DOS-like  code in Windows  95.  However,
Unauthorized  Windows 95 covered  this  topic  in  much  greater  detail.  If
you  have  further interest  in this  particular  subject,  check  out  Unauthorized

Windows 95.
Now  let's look  at what happens after Windows  95  begins firing up. If you

were to  load Windows  95  under versions  of WINICE that were written for
Windows  3.1, you could pop into WINICE and see much that would lead you
to  believe you were looking at Windows  3.1.  For example, Windows  95  (like
Windows  3.x)  is still  based heavily on VxDs.  Many of the familiar VxDs are
still  there in Windows  95: VMM, VPICD, VTD,  VDMAD,  V86MMGR, and
so on.  (There are also many new VxDs,  but we'll  talk about those later.)  In
addition,  you can continue to load your own VxDs via the  [386enh]  section
of the SYSTEM.INI  files.  (However,  Microsoft  would prefer you to  add VxDs
through the registry, something I'll describe later.)

Doing  a MOD  command  in WINICE would  also take you  back to  the

days  of Windows  3.1:

:mod

hMod  PEHeader  Module  Name

0117 KERNEL

01C7  SYSTEM

01BF KEYBOARD

01CF  MOUSE

01E7  DISPLAY

036F  DIBENG

023F  SOUND

02EF  COMM

042F  GDI

17FF  FONTS

1807  FIXFONTS

17F7  OEMFONTS

17CF  USER

.EXE File  Name

C:\WINDOWS\SYSTEM\KRNL386.EXE

C:\WINDOWS\SYSTEM\system.drv

C:\WINDOWS\SYSTEM\keyboard.drv

C:\WINDOWS\SYSTEM\mouse.drv

C:\WINDOWS\SYSTEM\atim32.drv

C:\WINDOWS\SYSTEM\DIBENG.DLL

C:\WINDOWS\SYSTEM\mmsound.drv

C:\WINDOWS\SYSTEM\comm.drv

C:\WINDOWS\SYSTEM\gdi.exe

C:\WINDOWS\fonts\vgasys.fon

c:\WINDOWS\fonts\vgafix.fon

C:\WINDOWS\fonts\vgaoem.fon

C:\WINDOWS\SYSTEM\user.exe

All  these  DLLs were  present  in Windows  3.1  and continue  to  serve
active  roles  in Windows  95.  Likewise,  a WINICE  HEAP command would
show you  that the  16-bit  global  heap hasn't  changed either.  Again, I could
continue  with examples  in which I show that vast  portions  of Windows  95
look  and work  identically  to  the way things worked  in Windows  3.1.  The
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fact that Windows 95 has evolved from Windows 3.1  is indisputable.  Yes,
the evolution was dramatic  in some cases. The fact remains,  though,  that if
you understand  Windows  3.1, you've got a good head start on  understand-
ing Windows 95.  Chapter  7 describes in more detail how the Winl6 com-
ponents  of Windows 95 are similar but not identical to the Windows 3.1
components.

Let me clarify something I've said in this section. I think Microsoft
made the right choice in evolving Windows  95 rather than starting  from
scratch. Backward compatibility  was ail absolute requirement.  Although
Windows 95 won't be 100-percent compatible with Windows  3.1, it will be
significantly more compatible than Windows NT or OS/2 Warp can ever be.
Starting from a fresh code base for Windows 95 would have been a night-
mare for compatibility.  Likewise, a fresh code base would have bloated the
code, and a mass market operating system that  doesn't run on the average
PC doesn't  make sense. You have to give Microsoft  credit for facing the
harsh reality that most end-user systems are limited when compared to the
souped-up hardware most developers work on.

If you're an operating-system purist who turns your nose up at the com-
promises of Windows 95, do something about it. Run Windows NT, OS/2, or
UNIX. Just don't complain when some program that you really need to run
doesn't work on those platforms. To be honest, I'm guilty of doing my share
of complaining  about  the Windows  95 architecture.  However, I also run
Windows NT regularly as a matter of course. My point is, both Windows 95
and Windows NT are valid operating-system platforms. You have to decide
what's more important to you (memory consumption and compatibility or
robustness and security), and choose the appropriate  platform.

My philosophy  is that  both Windows 95 and Windows NT will be very
important  over the next several years. As such, I devote my efforts to  both
platforms.  So why is this  book about Windows  95? Because I feel that  the
programming  market for Windows 95 will be larger than that for Windows
NT in the near term.

IMPROVEMENTS OVER WINDOWS 3.1
Even if you don't care about the new features in Windows 95 (pre-emptive
multithreading,  protected process address spaces, and so on), it's worth
upgrading  from Windows  3.1  to Windows  95 just for the improvements it
offers.  In this section, I'll go over what these improvements  are in broad
strokes,  deferring more detailed descriptions to  subsequent chapters.
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DOS is dead (almost)
Although you might never notice  it, the  biggest improvement  in Windows  95
over the DOS/Windows  3.1  combination  might be the placement of what  we
used to call DOS into VxDs.  In Windows  3.x, the Virtual Machine  Manager
(VMM) acted as a DOS extender.  When a program called DOS to  do some-
thing,  such as read from a file, the INT 21h was first  bounced up to the ring
0 WIN386,  which then reflected the interrupt  down to the  16-bit DOS run-
ning underneath Windows. In Windows 95, once VMM32.VXD  is up and
running,  almost  all calls to DOS functions  are handled entirely  in VMM32
with  all new 32-bit  code.  (VMM32  is the  master  collection  of VxDs that
comprise  the  ring  0 component  of Windows  95.  VMM32  is equivalent  to
WIN386.EXE  in Windows  3.1.)

One  of the most marked benefits  of putting code formerly found in DOS
into  VxDs  is that  file I/O  can  be handled  entirely  in  32-bit  ring  0 code,
dramatically  improving  performance.  When  I say DOS,  I'm  not  limiting
the  scope of the  improvements  to  just DOS programs.  A Windows  program
that  calls _lread eventually ends  up in the  same VxD code for doing file I/O
that  a DOS program calling INT 21h would.

For  backward  compatibility  with  old  hardware  devices  and  drivers,
Windows  95 continues  to  reflect  certain critical  interrupts  to  the  small  bit  of
real  mode  (actually V86  mode)  DOS code that  sits underneath  Windows  95.
(This is the DOS code I described in the previous  section.) For example, when
VMM32  sees that a DOS device driver is expecting to be used, it can fall back
to  the  old behavior  of reflecting  interrupts  down to  a  16-bit  DOS virtual
machine  so that  the device driver can do its thing.  Other  interrupts,  such as
the  DOS Get Time  function  (INT 21h,  fn.  2Ch),  are always  reflected  to  the
real  mode  (V86 mode)  DOS code.  The important  thing to  remember  is that
the  majority  of DOS's  functionality  has  been moved to  32-bit code residing
in Windows  itself. With a little work,  Microsoft  could make Windows  95
entirely rid  itself of the  real  mode DOS code.  Although this might  appeal  to
some operating-system purists, it would come at the expense  of compatibility
with  existing  software.  If you want that,  run Windows NT.

The windowing system
For  some programmers,  the  biggest relief provided  by Windows  95  is the
introduction  of 32-bit  heaps  to  the  windowing  and  graphics  components.
In Windows  3.0  and earlier,  all windows  and related  data  structures  were
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crammed  into  the USER DGROUP, which was  limited to  a maximum of
64K.  In Windows  3.1,  some of the windowing system's data  was  moved
out  into  other  64K segments,  but this  alleviated  only certain limitations.  In
Windows  95,  the windowing code in USER knows  about  and uses two
separate  32-bit heaps to  store items like the HWND  data  structures.  As a
result,  you're no longer limited to a maximum of a couple hundred windows
or to  only  8160 entries  in a listbox.  (Having a listbox with eight thousand
entries  is usually not  an example  of good  program  design.  However,  if you
really  need  that  many  entries  for  some reason,  Windows  95 will  be an
improvement  over Windows  3.1.)

Although the  Windows  95 windowing  system uses  32-bit  data,  you
shouldn't  confuse  this with  32-bit  code.  All the windows  in Windows  95
(yes, even windows created  by 32-bit applications)  are managed by the  16-bit
USER.EXE that you've come to know and love. In contrast, the Windows NT
team  had the  opportunity  to  write their USER components  in brand  new
Win32 code.  (Compatibility  isn't  nearly as important as robustness  in NT.)
There's been quite a bit of debate  among programmers  about whether  the
Windows  95 team made a wise decision  in updating  with the  existing  16-bit
USER code. However,  there  are two important  factors  that  make this
approach  the only logical  choice.  I discussed  this issue in  Chapter  I  but the
following  paragraphs  recap my main points.

The  first  reason  for  keeping the  windowing  system code  in the  16-bit
USER.EXE  is the size issue.  Having two  copies of the windowing  system
code, one  16-bit and the other 32-bit, would add several hundred  kilobytes to
the memory footprint  of Windows 95. Given Microsoft's goal of running on a
4MB system, this was unacceptable.  Remember, Windows  95  isn't  intended
only  for  developers  with  moderate-  to  high-end  hardware.  Windows  95
needs to run on all those ancient 386s in companies that just recently took
the  plunge  and  upgraded  them to 4MB.  You might  be thinking,  so why
doesn't  Windows  95 put the windowing system code  in a  32-bit DLL and
call  up  into it?

That  leads me to  the second reason:  To put things  bluntly,  the  16-bit
USER.EXE is not tremendously  portable.  Important  sections  are written  in
optimized  assembly language. In addition,  USER.EXE is legacy code --  it's
been  modified,  tinkered with,  and otherwise tweaked  for close to  a decade.
It no doubt contains  peculiarities  that applications  have come to  rely on as
normal  behavior.  It's  unlikely that one person can keep  an entire working
model  of USER and all its assumptions  and quirks in his or her head.  If
USER's code was ported  to  completely 32-bit code, existing applications
would break.
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In addition  to  the  size constraints,  Windows  95  has  its hands  further
tied  by the  need  to  be  99.44  percent  backward  compatible.  The  windowing
system  in  NT  is 32  bit,  and  was written  to  be as  compatible  as  reasonably
possible with  its  16-bit predecessor.  Still, Microsoft doesn't claim  100 percent
backward  compatibility with  Win16.  Windows  95  is being  held  to  a higher
standard  of  backward  compatibility.  In this  light,  the  decision to  keep the
windowing  system  in  16-bit  code  makes  sense.

Having  dispensed with the high-level  philosophizing,  let's get down to the
details  of how the  windowing  system has  changed to  accommodate  32-bit
applications.  I've  already mentioned  that  USER uses two  different  32-bit
heaps,  but  that's  only part  of the  story. Windows  95's  USER actually  uses  a
combination  of  16- and  32-bit  heaps in a somewhat  unusual  memory layout.
As  in Windows  3.1,  the  16-bit  USER.EXE  continues  to  have  a  16-bit
DGROUP  segment  with  a local  heap within  it.  Stored  inside the local  heap
are  items  such  as atoms,  windows classes,  and  properties.  All the  normal
things  you'd  expect  in USER's  16-bit  DGROUP.  Conspicuously absent,
however,  are windows  (or  more  accurately,  WND  structures).  Where  the
heck  did  they go?  At  this  point,  32-bit  heaps  come  into  play.  A h h h . . .
USER must  have  created  a  special  32-bit  heap  for  holding  windows,  right?
Right.  But that's  not  the  end  of the  story.

If you  look closely at  the  selector  assigned  to  USER's  DGROUP,  you'll
find  that  its  limit  isn't even close to  64K in  length.  Its  limit  is much  greater
that  64K. In Windows  95, the USER DGROUP selector's limit  is  2MB+128K.
The  32-bit  window  heap  in  Windows  95  actually  encompasses  the  USER
DGROUP  segment  at  its  low  end.  Consider  the  ramifications of this.  All
the  various  data  structures  that  USER uses can  be  accessed with  one  selec-
tor.  The  USER code that  deals  with items  still in the  normal  DGROUP local
heap  can continue to  use  16-bit  offsets  as it  did  in Windows  3.1.  Only the
code  that manipulates  items in the  32-bit heap,  such as the WND  data  struc-
tures,  needs to  be changed  to  use  32-bit  offsets.  Remember,  though,  that
these  32-bit  offsets  as  relative  to  the  start  of USER's data  segment,  not  to
32-bit  linear  addresses.

In  addition  to  the new  32-bit  heap  used to  store windows,  Windows
95's  16-bit  USER has  another  32-bit  heap to  store  menus  and  their  strings.
Unlike  the 32-window  heap, there isn't a  16-bit local heap  sitting in the  bottom
64K  of the  menu  heap.  Incidentally,  the  idea  of breaking out  menu-related
items  into  a  separate  heap  isn't  new to Windows  95.  Windows  3.1  had  a
separate  menu  heap,  albeit  only  16  bits.  Chapter  4  describes  the  32-bit
heaps  in Windows  95  in more  detail.
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One immediate result  of Windows  95's  shift to  a  32-bit window heap
relates  to window handles  (HWNDs).  In Windows  3.x,  an  HWND  was a
local heap handle of a block in USER's DGROUP. Since the WND structures
were stored in LMEM_FIXED blocks, the local handle was nothing more
than an offset.  Therefore, by combining the selector of USER's DGROUP
with an HWND, a program could  get a  far pointer  to  a WND  structure
and peek and poke  at it directly.  In Windows  95, this no longer works.
Windows  95 HWNDs are small values  like 0x80,  0x84,  and  0x8C.  These
values aren't offsets. Instead, they're handles for blocks in the 32-bit window
heap. Internally, USER can convert from one of these handles to a 32-bit offset
and back again.  Chapter  4 describes  how HWNDs can be converted  from
their  16-bit HWND  form to a 32-bit  pointer,  and back again.

As part  of the move toward  each application  knowing  only about itself,
USER has  changed  the  way  it  maintains  the  list of window  classes.  In
Windows  3.1,  all  window  classes  were  stored  in  a  linked  list.  You could
walk  through the list  and obtain  the class names  and owning  module with
the  TOOLHELP  ClassFirst  and  ClassNext  functions.  In Windows  95,
ClassFirst  and ClassNext  still work,  but they return information only about
the standard system classes (such as buttons)  that USER registers at startup
time.  Classes that are registered  by applications  are kept in a private list. At
least part  of the  information  for each of these private classes is kept in
USER's  16-bit DGROUP,  but again, TOOLHELP. DLL knows nothing  of
them.  Chapter  4 covers  the changes  to window classes in Windows  95.

Changes to the messaging system
In Windows  95, Microsoft  has  finally stopped  the insanity  and provided
separate input message queues for each process.  Actually,  there are separate
message  queues for each thread,  but the important thing is that there's no
longer a single system input queue shared  by all tasks in the  system.  Why is
a single input queue so bad? The  short answer is that  forcing all tasks to get
their  user input  (for example, mouse and keyboard  messages)  from a single
source  leaves  them vulnerable  to  a badly written  task that  doesn't  yield.
When  a given task is active, it effectively has a lock on the user input system.
Until  it yields,  no other task can retrieve  input messages.

Windows  95  (like Windows NT) throws away this antiquated  model
and allows messages  to  be delivered  immediately to the input queue of the
appropriate  task. Unfortunately,  the controversial  Win16Mutex  (described
later in  "The Win16Mutex"  section)  causes Windows  95 to continue  to  act
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like Windows  3.1  if a  16-bit  task  doesn't  yield  by calling  GetMessage  or
PeekMessage  in  a timely manner.  Win32  processes  don't  have this  problem
and can dawdle  in their message processing without affecting other  processes.

Windows  95's  method  of delivering input messages  to  programs  is an
extension  to the Windows 3.1  model. The raw mouse and keyboard messages
are  delivered to  a single  system queue  by the  interrupt handler  code  in the
mouse  and  keyboard  drivers.  In Windows  3.x,  all programs  read their  input
from  this  single  queue,  and  one program  could  lock out  other  programs  from
reading  from the  queue.  In Windows  95,  a  dedicated thread, the  Raw Input
Thread  (RIT)  monitors  the  queue  and  as input  messages come in,  delivers
them  to  a separate  input queue  for the  appropriate  thread.  Thus,  even if one
program doesn't  yield, other  programs  can continue  to get input messages
intended  for  them.  Of  course,  there  still  remains  the  problem  of  the
Win16Mutex  and  16-bit  programs.  The  benefits  of  this  separate  input
system thread  are primarily for  32-bit  pre-emptively  scheduled programs.

Along with  separate  input queues  for each thread,  the Win32  philosophy
dictates that a process shouldn't  be able to change values or states that another
process is using.  In Windows  3.1, USER maintained  many windowing  system
states as systemwide values.  A prime example  of this is the focus window.  In
Windows  3.1, USER had a single global variable called HWndFocus.  Any task
could  call SetFocus whenever  it felt like it, thereby taking away the focus from
another  application  (and causing the  HWndFocus  variable  to  change}.  The
same was true for the window capture  and  other windowing  system states.
This  is unacceptable  in the Win32  model.  In Windows  95, every thread (not
just every process)  has  its own set of windowing  system state variables. When
you call an API function like SetFocus, you're  acting on the current  thread's
state, not  on a single global  state.  Beneath  the surface, USER takes care of the
onscreen representation  so that everything looks kosher.  The states that are
definitely  stored on a per-queue  basis are the capture  window,  the  focus win-
dow,  the  active window,  and the cursor.  Chapter 4 describes  the per-queue
windowing  system states in detail.

Besides just storing windowing  states  on a per-thread  basis, Windows 95's
USER generally doesn't  allow one thread to modify  the windowing  states of
other threads.  For instance,  if you call SetFocus,  passing it an  HWND  that's
owned  by a different thread/queue,  you'll  receive a warning message from the
debug  version of USER,  and the  operation won't  succeed.  From the HWND
passed to  SetFocus,  USER can  obtain  the  queue  that  owns  the window.  By
comparing the current  queue to the handle of the queue that owns the HWND
passed  to SetFocus, USER can tell if an  inter-thread  focus change  is being
attempted.  Judging  from  other  messages that  appear  in the  debug version  of
USER.EXE,  inter-queue window  activations  aren't  allowed  either.
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Speaking  of message  queues  and  such,  when  someone  posts  a message
to  a window  in Windows  95,  that  message  doesn't  immediately  appear  in
the  queue  associated  with  the  target  window.  Instead,  the  messaging  system
saves  up  a list of messages  and  distributes  them to the  appropriate  queues
only  when  their  presence  might  affect  a  decision  that  USER makes.  For
example,  whenever  a task  enters  the  16-bit  scheduler  (via  GetMessage,
PeekMessage, Yield, and so on), Windows  95  first distributes the  messages  in
the  saved-up  list to  the appropriate  thread's  message  queue.  If the  scheduler
didn't  do this,  the  scheduler  wouldn't  see that  the  task  had  a message,  so it
wouldn't  choose  it to  run  next.  Likewise,  calling  GetQueueStatus  forces
USER to  flush the  temporary  message  list since the  messages must  be in the
destination queue in order for GetQueueStatus to return an accurate set of
flags. From an application programming level, you don't have to worry
about  this  beneath  the  surface change  in messaging  behavior.  USER assumes
the  responsibility  of making sure  that things look consistent  and  act just as
they do in Windows  3.1.

The interaction  between  16-  and
32-blt  processes
An area  where the  windowing  system  implementation  of Windows  95  gets
interesting  is the  interaction  of windows  from  16-  and  32-bit applications.
Even though the window procedure for a  32-bit program's  window is written
in  32-bit  code,  existing  16-bit  applications  don't  know  or care  about  this.
These programs  expect  any window,  regardless  of its  bit size, to  act just as it
would  in Windows  3.x. Now, consider  something  like window subclassing.
Imagine  that  a  16-bit program gets hold  of an HWND  for a 32-bit program's
window.  The  16-bit program then  subclasses the  32-bit  program's  window
by saving  its  original  WNDPRC  address  and  dropping  in  a  new  16-bit
WNDPROC  address.  If Windows  95 had  originally  stored  a 32-bit linear
address  in the  32-bit windows  WND  structure,  things would go up in smoke
rather  quickly.  To prevent  problem scenarios  such as this,  Windows  95 goes
to great lengths to make  all windows behave  as if they were  16-bit windows.

Another  area where USER does extra  work  behind the  scenes is with  mes-
sage numbers.  In Win16,  the message numbers for private control  messages
start  at WM_USER  and go  up.  Additionally,  some of these  private message
numbers overlap with  message  numbers  for other controls.  For  instance,  in
Win16,  the  BM  GETSTATE message is defined as WM_USER+2,  which  is
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the  same as EM_SETRECT, LB_INSERTSTRING,  and CB_SETEDITSEL.  In
these cases,  a message number by itself is meaningless unless you know what
type  of control  it's  being used with. Perhaps in an attempt to make things more
consistent,  the Win32  implementors  reassigned the message numbers for cer-
tain  controls  so that they fall below WM_USER and don't  overlap  with  other
private  message numbers.  The remapped message groups are as follows:

Message  qroup  Use  Win32  startinq  messaqe

EM_  Edit  controls  0x00B0

SBM_  Scroll  bars  0x00E0

BM_  Buttons  0x00F0

CB_  Combo  boxes  0x0140

STM_  Static  controls  0x0170

LB_  List  boxes  0x0180

If the  same message  has  a different value  in Win16  and Win32 programs,
how are  16- and  32-bit  windows  able to  communicate? Inside the thunking
layer  between  16-  and  32-bit  code,  USER converts  these  messages  to  the
appropriate  value  for  the  target  window  of the  message.  Messages  sent
between  16-bit programs  don't  incur the  overhead of determining  whether
the  message  needs to  be remapped.

The complexity  involved in making  16- and  32-bit windows work together
seamlessly  doesn't stop at  simple message translation,  however.  Many mes-
sages use the WPARAM and LPARAM parameters  to convey additional infor-
mation.  Often the LPARAM of a Win16  message contains  a far pointer to
some data  or a buffer to  fill in. What happens  when a  16-bit program sends a
message to a 32- bit program and passes a far  16:16 pointer  in the LPARAM?
Again, the USER thunking  layer needs to  step in and make the message usable
by the code in the  32-bit window procedures.  In this example,  the thunk layers
convert  the  16:16  far pointer  into the equivalent 32-bit linear address that it
passes to the 32-bit window procedure.  In the opposite  case, where  a 32-bit
process sends a message to  a  16-bit  window,  a 32-bit  linear  address  must  be
converted  to  a  16:16  far pointer.  In this situation, USER keeps a selector
around for this very purpose;  it changes the base address of the selector  to
match the  32-bit linear  address. The limit of this  selector  is set to  0xFFFF
bytes.

Beyond  the  additional work  with  16-bit  far  pointers  versus  32-bit  linear
addresses,  Windows  95's  windowing  system  also needs  to  do  parameter
conversions  when messages  are exchanged  between  16- and  32-bit  applica-
tions.  Earlier  I mentioned  that  certain  messages  needed  to  be translated
between Win16  and Win32  programs.  The WPARAM parameter  in ames-
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sage also  needs  conversion.  In Win32,  the WPARAM  parameter  is 32  bits,
while  in Win16  it's  16  bits.  In the  general  case,  when  converting a  16-bit
message  to  be usable  by a 32-bit  window,  USER puts  a 0  in the  high word
of the  32-bit  WPARAM.  When  going  in  the  opposite  direction  (a  32-bit
message  converted for a  16-bit window),  USER throws away the top WORD
of the  32-bit WPARAM.  There are a few exceptions  to these  rules,  but we
don't  need to  go into them  in this overview chapter.

The Win 16Mutex
Although  the Windows  95  thread  scheduler  is pre-emptive,  scheduling in
Windows  95  is still  affected  by the  single  threaded,  one  at  a  time,  16-bit
code  in modules  like USER.EXE.  A Win32  process  can create  threads  that
don't  call GetMessage  or  otherwise  deal with  user input.  An example  would
be a thread  that  calculates  the  value  of pi  (3.14159265  .  .  .  ) to  50  places.
These  32-bit threads  that  don't  do  user-interface  activities  are governed  only
by the  32-bit thread  scheduler  in VMM32.  The  thread  scheduler  continues
to pre-emptively  switch  between  these  threads,  even  if things  are jammed  up
and  not  moving  because  of clogged  user-interface  threads.  Unfortunately,
16-bit  tasks  can't  spawn  additional  threads,  so  they can't  partake  in  the
pre-emptive  multitasking.

A second  ago,  I mentioned  jammed  up  user-interface  threads.  Just  what
was I talking  about?  Aren't  threads  pre-emptively switched?  The  answer  to
this question  leads  to  the  infamous  and  unpopular  Win16Mutex.  At this
point,  the  fact  that  Windows  95  is a mixture  of old  16-bit  and  new  32-bit
code  is probably  pounded  into  your  head.  The  problem  that  resulted  in the
Win16Mutex  solution  is that  the  16-bit  USER and  GDI code isn't  written
with  pre-emptive  multitasking in mind.  The  code assumes  that  it  won't  be
interrupted  for  any  reason,  and  that  switches  to  other  tasks  will  occur  at  a
few well-defined  places.  There  are also  numerous  global  variables  through-
out the USER and  GDI code.  If Windows  95 ignored the problem entirely,  a
thread could  be switched  away  from while  it's  in the  middle  of a  USER or
GDI call.  Since the old  16-bit  code  isn't  expecting  this,  the  system  would
crash  in very short  order.

The problem  of existing  16-bit  code  not  being ready  for  pre-emptive
multitasking  isn't  limited  to  the  code in Windows.  There  are thousands  of
third-party  DLLs  that  were also written  without  pre-emption  in mind.  Even
if Microsoft  came  up with  a magic  bullet  solution  for  the  USER and  GDI
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code,  those  other  DLLs  would  still  make  the  system  vulnerable  to  a thread
switch  at  an  inopportune  time.

One  solution  to  this  problem  of pre-emptive  switching  would  be to
identify  all the  vulnerable  areas  in USER and  GDI  and  protect  them with
synchronization  mechanisms  such as critical  sections.  Doing  this  in  some-
thing as  large  and  complex  as USER.EXE would  be  error  prone  and  time-
consuming.  More  importantly,  spreading  synchronization  code throughout
USER and  GDI  would  bloat  the  size of these  modules.  Code  size  ("4  megs
or  bust")  was  one  of the  mantras  of the  Windows  95  development  team,  so
adding critical  sections or mutexes throughout  the code wasn't  an acceptable
solution.  In NT, where resource requirements  aren't so tough, the windowing
and graphics systems are protected with critical  sections,  so they are re-entrant.

Microsoft's  solution  to  the  pre-emptive thread  problem  is known  as the
Win 16Mutex.  The Win16Mutex  is essentially  a mutual  exclusion  semaphore
that  covers  all  16-bit  areas  of the  system that  would  have trouble  if they were
executing  when  a thread  switch occurred.  The Win16Mutex covers  all  16-bit
code.  Since much  of the  32-bit windowing  and graphics  systems  are imple-
mented as calls to  their  16-bit counterparts,  even Win32  threads  are  affected
when  they perform  user-interface-related  actions  or  otherwise  thunk  down  to
16-bit code.  When  32-bit  programs  aren't  doing  any  user-interface-related
actions  or  thunking  to  16-bit  land,  they  don't  own  the  Winl6Mutex  and
they continue  to  be pre-emptively  scheduled.

Whenever  a thread  is executing  in  16-bit code,  it owns the Winl6Mutex.
The Winl6Mutex  prevents  other threads  from entering code  like the  16-bit
USER  and  GDI  code  until  the  lock has  been  released.  The  16-bit  thread
releases  the  Winl6Mutex  when  the thread yields to  another  thread  by call-
ing a yielding function  such as GetMessage.  The  thread that  was yielded to
then grabs the Winl6Mutex  and continues  execution.  The  important  thing
to  remember  is that  a  16-bit  thread  owns  the  Winl6Mutex  for  the  entire
time  that  it's  actively executing,  not just while  it has called into  the operating
system.

While  Win32  threads  own the Winl6Mutex  only when they call into cer-
tain  operating-system  functions,  all Win l 6 programs  own the Win16Mutex
the entire time they're running.  (Even if they're calculating  pi to  50 places.} As
a result,  a  16-bit task that  doesn't yield the Winl6Mutex will prevent  other
threads  from being able to  acquire the Winl6Mutex.  These other  threads,
regardless  of whether  they belong  to a  16- or  32-bit  process,  will effectively
be hung  until  the thread holding the Winl6Mutex  gives it up.  Thus,  a  16-bit
program  that  doesn't yield can lock out  other  programs,  both  16- and  32-bit,
from executing.
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The  basic  situation  of an  application that  doesn't  promptly  process  mes-
sages and  yield in a timely  manner  has  always  been a problem  in Windows.
What's  new  in Windows  95  is that  there  is finally pre-emptive  multitasking.
However,  the Win16Mutex  acts  as a bottleneck  for any code  that  has to  exe-
cute  through old  16-bit code  like USER.EXE.  The  fact that  a  badly written
16-bit  task can adversely  affect  32-bit  programs  has  made  the Win16Mutex
an incredibly unpopular  design decision among  those  users who  don't  have
to  implement Windows  95 themselves.

While  obnoxious,  nonyielding  16-bit  programs  can  bring  the  user  input
system  to  a halt,  the Win16Mutex  is almost  never  a problem  for  a  system
containing  only  32-bit programs.  (Granted,  Windows  95  always  has  one  or
two  16-bit  programs  running,  but  they're  background  processes  and  don't
grab  the Win16Mutex  and  hang onto  it.)  Threads  for  a  32-bit  program
will  need to  acquire  the  Win16Mutex,  but  only when  they  thunk  down  to
16-bit  code such as USER or  GDI to perform  user-interface actions.  The
USER and  GDI code will theoretically execute quickly and then  release the
Win16Mutex. In general, no  32-bit thread will ever hold  and hog the
Win16Mutex  for any significant period  of time  (of course,  you can always
concoct  perverse exceptions  to  this rule).  If you're  worried  about  the
Win16Mutex  affecting your Win32  program,  you  can create  additional
threads  that  don't  call  down  to  16-bit  code such as USER and GDI. These
threads  will continue to  be scheduled and run regardless  of whether  a  16-bit
thread is hogging the Win16Mutex.

The Win16Mutex's  effect on the  system is simple to  describe.  If there  are
16-bit  applications  running,  the multitasking  of application  user interfaces  in
Windows  95  will continue  to  be similar to  that  of Windows  3.1.  If there  are
no  (nonsystem)  16-bit programs  running,  the  user  interface  should  multitask
smoothly,  like NT. The moral  here  should  be obvious:  Write  all new programs
as Win32  programs  and port  existing  16-bit applications  to Win32  as soon as
possible.  Just  say No  to  16-bit code and Hello to  smooth multitasking.

The Windows 95 GDI
The Windows  95 graphics system (GDI) is a hybrid of the Windows  3.1  16-bit
GDI and new graphics  functions  implemented  in the  32-bit  GDI32.DLL.  In
general,  if a given  GDI function  existed in Windows  3.1,  it has remained  in
GDI.EXE in Windows  95.  New functions  like Beziers,  paths,  and  enhanced
metafile support were added to the existing  GDI.EXE.  Other new functions
like the TrueType font rasterizer and the printing subsystem are in GDI32.DLL.
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Like USER.EXE,  the Windows  95  GDI has  16-bit code that uses  a 32-bit
heap  immediately  above it.  The Windows  95  GDI uses the 32-bit heap to
store regions and fonts.  Also like USER.EXE, the 32-bit GDI heap contains the
16-bit  GDI DGROUP within its first 64K.  GDI objects other  than regions are
still held in the  16-bit GDI  DGROUP,  meaning  that  you  can't  go  hog  wild
and  create  tons  of  GDI  objects.

One  of the  most well-known  limitations  of Windows  3.x was  that  there
was  a limit  of five screen  device contexts  (DCs)  available  systemwide.  If a
buggy application grabbed  those  five DCs,  other  applications couldn't  do
their  painting,  and  the  system  often  became  unstable.  In Windows  95, the
limitation on  screen  DCs  appears to  have  been  lifted.

Since  a large  portion  of Windows  95's  GDI remains in  16-bit code,
Windows  95's  GDI coordinate  system is still limited to  16 bits.  Even though
the  Win32  APl  and  NT  specify  that  32-bit  coordinates  are  the  norm,  the
Windows  95  GDI pays attention to only the  bottom  16 bits of any coordinates
passed in to it.

Another  place  where the Windows  95  GDI  sticks to  its  16  bit  past is
with  device drivers.  When  it comes time for the  GDI to  display  something
on the  screen or  some other  device, the  GDI calls into  a  16-bit  device driver
DLL.  Although all  new portions  of Windows  95  expect  32-bit Portable
Executable  (PE) drivers,  the  GDI must remain  backward  compatible  with
existing  16-bit  display  and printer  drivers.  This  isn't  to  say that  all  16-bit
device drivers  confine  themselves  to  16  bits.  Many  high-performance  drivers
use  32-bit  instructions  even though  the  driver  remains  a  16-bit  New
Executable  (NE)  format  DLL.

System resource cleanup
Windows  95  implements  each  16-bit  task  as  a separate  process.  One  reason
for  this  is resource cleanup.  For whatever  odd  reason  (space considerations,
probably),  prior  versions  of Windows  didn't  tag their  USER objects  such as
icons with  an  owner.  When  a task  terminated,  USER didn't  have  any  idea
what  owned  the  resource,  so it couldn't  clean  up after  the  task.  Repeatedly
running  a program that  was  sloppy about  freeing its resources  could cause
the  system to  run  out  of room  in  its heaps;  the  result  was  that  subsequent
programs  were  unable  to  run.  This  problem  has  been  an  Achilles'  heel for
Windows  and is one of the main reasons Windows  hasn't gained acceptance
in  certain  areas  of the  market.  Windows  95  takes  a major  step  forward
(albeit  a long overdue  step)  and  associates each resource with  the process that



allocated  it. When a process terminates,  Windows 95 iterates through the
resources  and frees up those that the terminated process didn't release itself.

There's  one twist  to  this  improved  model  for resource  usage.  In
Windows  3.1, one task  could  allocate  a resource  and pass the resource
handle  to  another  task  to  use. Even if the allocating task exited, the  second
task  could  continue  to  use the resource.  The new Windows  95 method  of
freeing  up  resources  when the  allocating process  exits could  backfire in this
situation.  To retain  backward  compatibility, when Windows  95 is about  to
free a resource  that  belonged to  a terminated  process,  it checks  to  see what
kind  of process  it is. If the process was  a  16-bit task  and wasn't  marked as
being Windows 4.0-compatible,  Windows 95 doesn't delete the resource  until
there  are no more running  16-bit applications.  This eliminates the possibility
that Windows 95 will yank a resource out from under a 16-bit task that is
using the resource.

If Windows  95 is much  better  about cleaning up after sloppy programs,
how does this affect the  infamous Free System Resources?  In Windows  3.1,
the  magical System Resources  number  reported  in About  boxes was found
by looking at the  free space in four  heaps:  three  16-bit  USER heaps and the
16-bit  GDI heap.  Of these  four  heaps,  the heap with  the lowest percentage
free is what USER reports  as the free system resources.  Since Windows  95
has 32-bit heaps  (such as the heap used to store WNDs),  the calculation  needs
to change.  In most cases, the reported free system resources isn't changed  by
the presence of 32-bit heaps,  since these heaps almost invariably  have a higher
percentage  free  than  the  16-bit USER or  GDI DGROUPs.  However,  by
moving  certain  space-consuming  objects  out  of the  16-bit USER and  GDI
DGROUPs, Windows  95 makes the available  system resources  decrease  at a
slower rate.  Chapter  4 contains  a more complete  discussion  of exactly how
free  system resources  are computed  in Windows  95.

Decreased memory consumption below 1MB
Finally,  we come to  the  infamous  "insufficient  memory  to  load this  pro-
gram"  message.  The good news is that the Microsoft  coders have fixed the
"below  1MB"  problem!  In Windows 3.x,  FIXED  segments  in DLLs and
GlobalPageLock()'d  segments  ended up at the low end of the  heap.  Often
this meant that  they ended up below  1MB. These  segments  could  eat up all
the memory below 1MB, thus preventing Windows  from starting  additional
tasks  (each task  needs at  least 512 bytes below  1MB for its task  database).
See my Questions  & Answers column in the May  1995  Microsoft  Systems
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Journal for a more detailed  description  of the problem.  In Windows 95,
FIXED and GlobalPageLock'd  segments still come from the low end of
memory,  but they stop short of going below  1MB. While it's still possible
in perverse cases to create  a scenario where applications can't run  because
of insufficient memory below  1MB, I think this will rarely be the case in
normal use.

BRAND-NEW FEATURES

Up to this point,  I've been discussing the ways in which Windows 95 is
either the same as Windows 3.1  or improves on Windows 3.1  features.
Now it's time to examine the Windows 95 features that are completely new.
Of course, many of these areas are very similar to Windows NT. However,
for the majority  of programmers  and end users, Windows 95 is the first
exposure  to these topics.

The Windows 95 Win32 implementation
From a programming perspective, the biggest news about Windows 95 is the
addition of the Win32 APl. It's Microsoft's  hope that the Win32 APl will
enable  applications to  be written in a portable  manner. Theoretically,  an
application written to the Win32 APl can run unmodified on different oper-
ating systems (for example, Windows NT), as long as they also support the
Win32 APl and the underlying CPU is the same. A properly written Win32
application can also simply be recompiled and run on other CPUs --  again,
as long as they're running an operating system that supports the Win32 APl.
How effective the Win32 APl is in glossing over operating-system differences
will be the subject of discussion for years to come.

When I first heard of the Win32 support in Windows 95, the big question
in my mind was,"Is it implemented like NT or like Win32s?" After working
with it for over two years,  my conclusion  is that the best description  of
Windows  95 is "Win32s done properly."  Like Win32s, Windows  95 has
32-bit system DLLs that thunk down to the equivalent 16-bit DLLs. Most
calls to the Win32 windowing and messaging APl functions go through thunks
down to the 16-bit USER.EXE. Likewise, many calls to Win32 graphics func-
tions thunk down to the 16-bit GDI.EXE. In contrast, Windows NT has fully
32-bit USER and GDI modules. 16-bit applications run under NT and have
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their calls thunked up to the 32-bit USER32 and GDI32 by the Windows On
Windows  (WOW)layer.

While Windows 95 is closer to Win32s than to NT in its implementa-
tion,  Windows 95 is light years beyond Win32s. The implementors of
Win32s were constrained  by the necessity of building it atop the existing
Windows 3.1 code. The Win32s developers couldn't make changes to
Windows 3.1  since Windows 3.1 was already installed on millions of
machines. Upgrading them to a newer version of Windows just for Win32
support was not an option.  As such, Win32s is severely limited relative to
Windows  95 or Windows NT.

The Windows 95 developers, on the other hand, had the luxury of
being able to modify and adapt the underlying foundation in order to best
implement the Win32 APl on top of it.  Starting from the Windows 3.1 code
base, both the ring 0 components  (the Virtual Machine Manager  and VxDs
in VMM32.VXD)  and the ring 3 components  (such as KRNL386, USER,
and GDI) have been extensively modified to support the Win32  system
DLLs (for example,  KERNEL32.DLL,  USER32.DLL, and GDI32.DLL). In
essence, Windows 95 has most of NT's feature  set but uses an implementa-
tion much closer to Win32s.  For the average user, Windows 95 provides the
best tradeoffs between speed, memory usage, features,  and system stability.

Just because there are still 16-bit components  in Windows 95 doesn't
mean  that they're  unaware  of the new 32-bit additions.  For instance,
KRNL386.EXE makes many calls up into KERNEL32.DLL, primarily for
things like 32-bit heap and process management on behalf of the  16-bit
USER and GDI. Chapter  6 contains more information  about this.

The Windows 95 Win32 system DLLs
The Windows 95's Win32 API layer is implemented using a mixed collection
of 16- and 32-bit DLLs. Table 2-1 lists some common Win32 APl DLLs and
how they're implemented. In the table, the pattern that emerges is that, wher-
ever reasonable, Microsoft tried to reuse existing 16-bit code by thunking to it.

This approach has two benefits.  First, 16-bit code is smaller on average
than the 32-bit equivalent.  Second, the 16-bit Windows 3.x code has already
been shaken out and tested in the real world. A rewritten 32-bit version of a
system DLL like USER would need to undergo much more extensive bug fix-
ing and testing, possibly delaying the release of Windows 95. The windowing
system implemented in the 16-bit USER.EXE is mature and most of its quirks
are well understood. If Microsoft had recoded the windowing system in 32-bit
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code,  it would have had to reproduce  all the subtle  behaviors of the  16-bit
version,  including  bug fixes and workarounds.

The NT developers chose to write a 32-bit version of USER, sacrificing
some compatibility  with existing 16-bit applications.  The NT design criteria
allowed  this. Windows 95's doesn't.  Backward compatibility  is essential in
Windows 95.

Table  2-1
The  implementation  of  selected  Windows  95  32-bit  system  DLLs

Name of DLL  Purpose of DLL  How DLL is implemented

KERNEL32.DLL  Win32/Windows  95  Mostly Win32  code,  but makes many
kernel services  calls into VxDs, and  some calls down  to

KRNL386.EXE.

USER32.DLL  Window  Manager  Mostly thunks to  16-bit USER.EXE,  but
functions  some functions are  implemented in

USER32.DLL.

GDI32.DLL  Graphics  functions  Mostly thunks down  to  16-bit GDI.EXE.
However,  TrueType rasterizer- and
printing-related  code are  in GDI32.DLL.

ADVAPI32.DLL  Windows  registry  Mostly Win32  code,  but calls  into
VMM.VXD for registry functions.

OLE32.DLL  OLE 2.0  bBase DLL  All  32 bit code.

COMDLG32.DLL  Common  Windows  Mostly  32-bit  code,  but does same
dialogs  thunks.

SHELL32.DLL  Windows  95  shell  Mostly  32-bit code,  but does some
(32-bit)  Jibrary  thunks to  16-bit code.

LZ32.DLL  LZA file decompression  Thunks to  16-bit code.

VERSION.DLL  Version-stamping library  Thunks to  16-bit code.

WINMM.DLL  Multimedia  functions  Mix  of  16- and  32-bit  code.

The ring 0 components of Windows 95
Moving  down to the level below the system DLLs, we encounter the ring 0
components  of Windows 95. These are the Virtual Machine Manager and
virtual  device drivers (VxDs). In Windows  3.x, these components  were all
lumped into the WIN386.EXE file. In Windows 95, these components  are
still lumped together,  but the file is now called VMM32.VXD. Tables 2-2
and 2-3  show the changes  to the standard VxDs in VMM32.VXD  as
compared to WIN386.EXE.
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Table  2-2
New VxDs in Windows 95's VMM32.VXD  file

Name of VXD Purpose of VXD

CONFIGMG
DYNAPAGE
IFSMGR
lOS
PERF
SHELL
SPOOLER
VCACHE
VCDFSD
VCOMM
VCOND
VDD
VDEF
VFAT
VFBACKUP
VFLATD
VMM
VMOUSE
VPD
VSHARE
VTDAPI
VWIN32
VXDLDR

Configuration manager (Plug&Play)
Paging manager
Installable  File System Manager
I /O  Supervisor (replaces BLOCKDEV)
Configuration/status  info
Shell support
Local spooler
Disk cache
CD file system
COMM device driver
Console device
Display device
(Unknown)
File Allocation Table helper
For backup apps
Flat Memory device
Virtual Manager Manager
Mouse device
Printer device
File SHARE support
Virtual Timer Device APl
Win32  device
VxD loader

Table  2-3
VxDs removed from Windows 95's VMM32.VXD  file

Name of VXD  Purpose of VXD

BLOCKDEV
CDPSCSI
PAGEFILE
QEMMFIX
VDDVGA
VFD
VNETBIOS
WDCTRL
WIN386
WSHELL

Block device (replaced by lOS)
SCSI CD device
Pagefile  device (replaced by DYNAPAGE
Fix for QEMM
VGA display device
Floppy device
Netbios device
Western  Digital fastdisk
Replaced  by VMM
Old shell device
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The most interesting addition  to the VMM32 collection of VxDs  is the
VWIN32  device. Actually,  VWIN32 isn't really a device.  Instead,  it's ring 0
code that the  16-bit KRNL386.EXE and 32-bit KERNEL32.DLL use to
perform  certain  low-level primitives.  The closest  equivalent to VWIN32 in
Windows  NT  is NTDLL.DLL, which  isn't  documented,  but  obviously
contains  a lot of the low-level  operating-system goodies.

Both VWIN32.VXD and VMM.VXD  (along with  a few other  VxDs)
provide  ring-3-callable  functions  that are known as Win32  VxD services.
Much  of KERNEL32's  operations  rely heavily on Win32  VxD service calls
to VWIN32,  and to  a lesser extent,  to VMM. These calls  include  operating-
system  primitives  like thread  creation,  blocking on a synchronization  object,
creating  a new memory  context,  and so on.  I'll  be describing  VWIN32 and
Win32 VxD services in Chapter  6.

One way the Windows 95 developers helped keep memory consumption
down was through advances in the VxD architecture.  Windows 95 supports
dynamically loadable VxDs. In Windows 3.x, a VxD had to be loaded when
Windows  booted,  and  it remained  in the  system for  the entire  session.
Windows  95 programs  can  load  and  unload  VxDs  only when  they're
needed, much like existing programs  load printer drivers only when printing.
The  new VxD architecture  also supports pageable VxDs.  Portions of your
VxD that  aren't  used often can be made pageable  so that they're  only
loaded  into  memory  when they're  needed.

A porting  issue  for  those  of you  with  existing  Win16  code  concerns
interrupts  and  interrupt  handlers.  Win32  programs  under Windows  95
aren't  allowed to  install interrupt  handlers  in their code. Nor  can they use
interrupts  to communicate  with  other code, even if it's an  interrupt  handler
in a Win16  DLL. Most code that  uses interrupts  is for communicating  with
hardware  devices. Microsoft recommends  that you write a VxD to implement
the interrupt code.  Your program can communicate with the VxD through the
DeviceIoControl  function. If you need to call certain  interrupt functions (such
as INT 21h or INT 31h) the VWIN32 VxD provides  routines  for invoking
those interrupts.

Process managemenf
In Win16,  an executing program  is known  as a  task.  At any given point  in
time,  a task  is executing  at only one spot in its code.  (This may seem obvious
until you understand  the  notion  of threads,  which I'll describe next.)  The
Windows  16-bit KERNEL keeps  information  about each Win16 task  in a

40



segment  called a Task Database  (or TDB).  The  selector  of a task  database  is
known as an  HTASK and  can  be passed  as  an argument  to  APIs that  need
to know which task  you're referring  to.

How  does  all  this  change  for  32-bit  programs  in Windows  95 ? For
starters,  a running  program  is known as a process rather than a task.  Each
process  runs  in its  own  address  space,  which  can have  serious  implications
for  programmers  who  are  bringing  existing  Win16  code  to  the  Win32
environment.  I'll  describe  the  ramifications  of separate  address  spaces  in
"The  Windows  95  address  space"  section.  For  now,  it's  sufficient  to  think
of processes  as being  unaware  of the existence  of any  other  processes.  They
can see their  own  memory  and  operating-system resources,  but  they  can't
see other  processes  or the  memory of other  processes.  The  underlying  reason
for keeping  processes  apart  from each other is so that  a buggy  or malicious
process  can't  have an  adverse  effect on  other  processes.

This  separation  of processes is so complete  that,  in Win32  programs,  the
hPrevlnstance  parameter  to WinMain  is always  0, even if other copies of the
program  are running.  In general,  a process  can consider  itself to  be the only
running  program  in the system.  Of course,  if you really need to communicate
with  or manipulate another  process,  there are facilities  to do  so.  However,
you need to  specifically  plan  ahead when writing your code to do this.

Each Windows  95  process is associated with a unique value in the system;
this  value  is informally known  as a process  ID.  A program can  obtain  its
own  process  ID via the  GetCurrentProcessld  function.  The  process  ID is the
closest  thing to  a Winl6  HTASK.  In  NT,  process  IDs definitely  do  not map
to  system data  structures,  since typical  process  ID  values  are numbers  like
74,  77,  84,  and  so  on.  In Windows  95,  process  IDs have  much  higher  values
that  are  seemingly  random.  However,  as you'll  see in  Chapter  3, a  process
ID can  be  put  through  a  magical  transformation  to  get  a  pointer  to  the
actual  process  database  structure  that  KERNEL32.DLL  uses  to  keep track
of the  process.

When  working  with Windows  95  processes,  you  usually  don't  use a
process  ID.  Instead,  most  process-related  APl functions  expect a HANDLE
parameter,  informally  known as an hProcess.  An hProcess has no  direct cor-
relation  to  something  like a Winl6  task  database.  Unlike  process  IDs,  there
can  be multiple  distinct  hProcess  values,  each  of which  refers to  the  same
process.
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KERNEL32 object handles
Handles  permeate  the  Win32  APl.  A

handle  is  a  magic  value  that  you  obtain
from  the  operating  system  and  pass  back
to  APl  functions  when  you  need  something
done.  Theoretically,  a  HANDLE  value  is
meaningless  to  the  application  program.
Only  the  operating  system  knows  how  to
interpret  it.  (However,  as  you  Win16  pro-
grammers  probably  know,  almost  all  the
handle  values  in  Win16  programs  can  be
interpreted  as  selector  values  or  near
pointers.)

When  working  with  the  KERNEL32
APIs,  most  handles  you  work  with  belong
to  a  small  group  of  handles  that  l  call
KERNEL32  handles.  KERNEL32  handles
have  special  attributes,  such  as  being

able  to  be  passed  to  functions  like
WaitForSingleObject.  KERNEL32  object
handles  include  process  and  thread  han-
dles,  file  handles,  mutex  handles,  and
many  more.  Chapter  3  describes  the  vari-
ous  KERNEL32 handle  types.

A  KERNEL32  HANDLE  is  valid  only
within  the  process  that  owns  it.  Attempting
to  use  a  HANDLE  from  one  process  in
another  process  is  meaningless.  Although
handles  are  theoretically  opaque,  with
enough  underlying  knowledge  of  the
process-related  data  structures,  it's  possi-
ble  for  an  application  program  to  convert
a  handle  into  a  usable  object  pointer.
Chapter  3  shows  how  you  can  convert  a
KERNEL32  handle  into a  usable  pointer.

The most fundamental  process function  in Windows  95 is CreateProcess,
which  is  analogous  to  the  Winl6  WinExec  and  LoadModule  functions.
WinExec  and  LoadModule  still exist in Windows  95,  but under the surface
they're  a wrapper  around  a call  to  CreateProcess.  If you need to query or
manipulate  the spawned  process  later,  you'll want to  use CreateProcess
because  it returns  an hProcess  HANDLE to  you.

Since  WinExec  and  LoadModule  have  no  notion  of  an  hProcess
HANDLE,  they can't  return  an hProcess.  In fact,  after these two  functions
call  CreateProcess,  they immediately  close the hProcess that  CreateProcess
returned.  They do  this to  prevent system resources  allocated  for  that  process
from  being tied up  unnecessarily.  It's important  to  remember that  closing a
handle  doesn't  mean that you're terminating the process.  Rather,  you're giv-
ing up access to the process via that particular handle. The operating  system
takes care of cleaning up its process-related  resources when the process termi-
nates and all outstanding handles to the process have been closed.

Besides creating  a  process,  another way to  get an hProcess is to call
OpenProcess  with a valid process  ID. With  an hProcess  in hand  from either
method,  you can  do some  basic process  querying  and manipulation.  Under
the category of process control,  a  program can terminate another  process
with TerminateProcess  and  affect the execution  priority of other processes
with  SetPriorityClass.
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It's  interesting  to  learn that Windows  mirrors  certain  KERNEL objects
like tasks  and  modules  on  both  the  16-  and  32-bit  side  of the  fence.  In the
area  of processes  and  tasks,  each Win32  process  has  a  16-bit  task  database
(TDB)  that's  linked  into  the  TDB chain.  If you  walk  the  task  list  with
TOOLHELP,  you'll  see that  in  addition  to  the  16-bit  tasks,  there's  also a
TDB for each Win32  program that's  running.  You may  recall that  a TDB
has  8 bytes near the end that  stores the  module  name  of the  file that  created
the  task.

In  addition  to  TDBs  for  16-  or  32-bit  processes,  there's  also  a PSP for
all  TDBs in Windows  95,  including TDBs  for Win32  processes.  Unlike
Windows  3.x,  the PSP in a Windows  95  TDB does  not  necessarily  immedi-
ately  follow the TDB in  memory.  Between the  100h-byte-long  TDB and the
PSP is a region that  holds  the  current  directory.  This  area  is sufficiently
large  to  hold  a  directory  using the  long  filename  and  pathnames  that
Windows  95 supports.  In Windows  3.x, the current  directory was stored in an
area  only 65  bytes long inside the TDB. Chapter 7 describes  this in more  detail.

Thread management
Threads  are  an  exciting new  feature  that  Windows  95  brings  to  the  party.  A
thread  is an  instance  of execution through  program code.  In  simpler  terms,
threads  allow  a program  to  be executing  in more than  one place  in its  code
simultaneously.  It's  like having multiple  CPUs, each executing  a different
part  of the  program.  On  a single-processor  system  (Windows  95  supports
only  uniprocessor  systems),  threads  only appear  to  execute  simultaneously.
Under  the  hood,  the Windows  95  scheduler  switches  the  CPU  between  all
the  various threads  in the  system.  This is known  as  timeslicing,  since  the
hardware's  built-in  timer  notifies  the  operating  system  at  regular  intervals,
whereupon  the  operating  system may choose  to  schedule  a different  thread.
Incidentally,  although  16-bit programs  show  up  as a thread  in  the  list  of
system threads,  only Win32  applications  can  create  additional  threads  in
their  process.

A thread can be switched away from for two reasons.  The first reason  is
that  the thread might  do something that needs another thread to  execute first.
In this case the thread yields the  CPU to another thread.  (This happens  trans-
parently  clown inside  the system DLLs, so you don't  need to worry  about  it.)
The second reason  occurs when a thread  has  executed long enough and it's
time to give other threads  a chance. The Windows  95 thread  scheduler uses a
sophisticated  algorithm that  gives the most CPU time to the threads  that  need
it the most.  The CPU uses the hardware clock to interrupt  the operating  system
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at periodic intervals.  Inside the hardware timer interrupt handler, the scheduler
decides if another  thread  should  run;  if so,  it switches to  the  other  thread.  In
Windows  95,  the timeslice  is 20  milliseconds,  meaning  the scheduler code
could  theoretically  switch  between 50 threads  in one second.  This is close
enough to  simultaneous  for  most people.

Every thread  is associated  with  a process.  When the  operating  system
creates  a  new process,  it also sets up  an  initial thread  for  it.  Threads execute
in the  memory context  of the process  they're  associated  with.  All threads  in
a process  share the process's  resources.  For the remainder of this  discussion,
I'll  use the word  "resource"  to  mean  something  provided  by the  operating
system  rather  than  the  much  narrower  definition  of resource  as  a  dialog,  a
cursor,  and the like.  Process resources  include  a memory context,  file han-
dles,  and  a current  directory.

Processes  generally  don't  alter  or  use the resources of another  process.
However,  multiple  threads  within  a  process  can conflict in  their  use  of a
process  resource.  Thus,  resource  sharing  can  be a  mixed  blessing.  For
example,  your  program  may have  a code  sequence  that  modifies  several
global  variables.  If a  thread  is  switched  away  from in the  middle  of the
sequence,  the  next  thread  would  be using those  global  variables  while
they're in an inconsistent state. Doing multithreaded  programming  success-
fully requires you to  identify all the resources within  a process that could get
messed  up if a thread switch occurred  while in the middle of manipulating
them.  These resources  need to  be guarded  by synchronization  mechanisms
such as critical sections  to  make sure they aren't corrupted  by an ill-timed
thread  switch.  Critical  sections  and other thread  synchronization  mechanisms
are discussed  in the following section.

Although  threads  share process resources,  each thread  also has certain
resources  that  are private  to itself.  The most important  of these is a  stack.
No,  each thread doesn't  have its own SS register  and stack segment.  Instead,
each thread  has a dedicated region of address space within the address space
of the process that owns the thread.  By default,  each thread  is assigned  1MB
of address  space for  its  stack.  This size can be overridden either  in the  exe-
cutable file's .DEF file STACK line or by specifying a nonzero stack size when
the thread is created by a call to CreateThread.  I mentioned earlier that
Windows  95 doesn't  actually  use up a whole megabyte  of RAM for each
thread stack.  Instead,  Windows  95 uses a mechanism known  as a  "guard
page"  to know when to commit additional  memory in the stack's address
range.  Guard pages are an example of structured exception handling,  which is
discussed  later in this chapter  in the  "Structured  exception  handling"  section.



Another  vital  per-thread resource  is the  thread's  register  set.  Whenever
the  scheduler  switches  away  from a thread,  the  operating  system  saves a
copy of the  thread's  register  values  at  the  time of the  interruption.  The  use-
ful  but  little  known  GetThreadContext  APl  allows  you  to  retrieve  and
modify  a thread's  registers.  While  normal  programs  usually  don't  need  to
do this,  reading and  modifying registers  is the  lifeblood  of debuggers.

Inside the  operating  system, each thread has  a unique value known as a
thread  ID. As with  process IDs, Windows  95 thread  IDs have relatively high
values but definitely aren't  32-bit linear addresses.  However,  most thread  APl
functions don't work  with  thread  IDs. Instead,  these  functions  expect  a HAN-
DLE, commonly known as an hThread.  An hThread is meaningful  only within
the process that owns the thread.  There can be multiple hThread values,  each
of which refers to the same thread.  The same thread can be referred to  by mul-
tiple hThread handles;  some of these handles  are valid in that  thread's  process,
whereas  others  are valid in the context  of a different process.

If you're  starting to notice  a parallel  between threads  and processes, that's
good.  Remember:  Process  and thread  IDs are unique values within the system.
No  two threads  or processes can have the  same ID value.  Handles  are a differ-
ent  story.  Each process and thread can be referred to  by multiple  hProcess or
hThread handles.  The handles might  refer to  a different  process or  a thread
within  in a different  process.  Or,  the handle  might  be self-referential,  and
refer to  its own process or  thread.

Process and thread synchronization
One aspect  of Win32  programming  that  will  be new to  programmers  coming
from DOS  or Win16  programming  is process  and  thread  synchronization.
Synchronization  is the  means  by which  a program  prevents  problems  that
would  occur  if the  program  were  switched  away  from at  an  inopportune
time.  Although  Win16  had  multitasking,  there  were  no real synchronization
primitives  since the  multitasking was cooperative  multitasking.  A Win16
program  will  not  be switched  away  from  until  it gives up control  voluntarily.
It does this  by calling API functions  such as GetMessage  and PeekMessage.  If
a program calls  GetMessage  or  PeekMessage,  it's  implicitly saying,  "I'm  now
in an interruptable  state."

Win32  programs,  on the  other hand,  don't  have the  luxury  (or  the
curse,  depending  on  how you  look  at  it)  of cooperative  multitasking.  They
must  expect  and  prepare  for the  CPU to  be  switched  away  from  at  the worst
possible  moment.  In  a related  vein,  a proper  Win32  program  shouldn't  burn
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up  CPU time by spinning in a  polling loop, waiting  for  some expected  event
to happen.  The Win32  APl has four main  synchronization  objects that
allow  for  both of these needs to  be met:

*  Events
*  Semaphores
*  Mutexes
*  Critical  sections

With the exception  of critical sections, the synchronization  objects  are
system global  objects and will  work  with  threads  that  are in different
processes,  as well  as within  the  same process.  Thus,  these synchronization
mechanisms  can also be used to  synchronize  the  actions  of separate
processes,  in addition to  threads  within  the  same process.

Events

The first type  of synchronization  object  is an event.  Events,  as their name
implies,  are centered  around  some specific  action  occurring  in another
process  or thread.  You use an event when you want your  thread to  block
until  the  desired action occurs.  The term  block  means  to  suspend execution
of the thread  until  some specified condition  or conditions  are met.  Blocking
is efficient  because the  scheduler  doesn't  waste  any  CPU cycles  on threads
that  are  blocked.

A program  obtains  a handle  to  an event  object with  CreateEvent  or
OpenEvent.  The program then calls WaitForSingleObject,  passing it the
event  handle  and  an  optional  timeout period.  The thread  will  then  block
until  some other  thread  in the current process  or  another  process  signals
that  the event has occurred.  The other  thread  indicates that  the  desired
actions have occurred  by calling SetEvent or PulseEvent.  After the event has
been signaled,  the thread  that is blocked wakes up and continues  execution.

You might want  to  use an event,  for  example,  when one thread will  be
using the  results  of a  sort  being performed  by another  thread.  A bad way to
implement  this would  be to  have the  sorting thread  set a global  variable  flag
when  the  sort completes.  The  other thread  spins in a loop,  constantly check-
ing the  flag to  see if it's  been  set yet.  This wastes  a  lot  of  CPU cycles  in  the
polling thread.  Doing  the  same  thing  using  events  is simple.  The  sorting
thread  creates  an event  to  represent when  the  sort  is  finished.  The  other
thread  calls WaitForSingleObject,  passing  it the event  handle  created  earlier.
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This  causes the  thread  to  block  and not  waste  any  CPU cycles.  When  the
sorting  thread  completes the  sort,  it calls  SetEvent,  causing  the  other  thread
to wake  up and resume execution.  Not  only  has the  CPU been used efficiently,
we've  avoided concurrency  problems  by preventing  a thread from using data
that  may not be sorted yet.

This  example  used the  simplest cases of the  synchronization  APIs. Besides
WaitForSingleObject,  there's  also WaitForMultipleObjects,  which  allows  a
thread  to  block  until  a  list of event  handles  has  been  signaled.  In  calling
WaitForMultipleObjects,  a  thread  can  block  until  either  any  event  in the
list  has  been  signaled  or  all the  events  have  been  signaled.  Getting  even
more  elaborate,  a  thread  can  use  MsgWaitForMultipleObjects,  which
blocks  until  either  the  event  conditions  have  been  satisfied  or  there's  a
waiting window message.  Other  functions  block until the  blocking conditions
are  satisfied  or  a  file I/O operation has completed.  No  doubt  about  it, there's
a lot of flexibility  here.

Semaphores
The  second  type  of synchronization object  is the  semaphore.  Semaphores
are useful  when you want  to  restrict access to  a particular  resource  or  restrict
a  section  of code  to  a certain  number  of threads.  A good  analogy  for  a
semaphore  is the  hall  pass  that  most  of us  remember  from  school.  At  any
given  time  there  can  only  be  a few students  in  the  hall.  If you  want  to  go
somewhere  and  all the  hall passes are in  use,  you  have to wait  until  one of
the  outstanding hall passes comes  back.  Then you can  acquire  the  hall pass
and  leave.  In Win32  programming,  acquiring a  semaphore  is like taking
control  of one  of the  hall  passes.

To use a semaphore,  one thread calls CreateSemaphore  to get a HANDLE
to the semaphore.  The call to  CreateSemaphore  includes a count of how many
threads  can be using the resource or code simultaneously.  If the  semaphore will
be used within  only one process,  other  threads  can get  at  the  HANDLE via
a global  variable.  If the  other  threads  are  in  another  process,  they'll  call
OpenSemaphore  to get a HANDLE they can use. When a thread needs access
to the shared resource,  it passes the resource to WaitForSingleObject (or one of
its variations such as WaitForMultipleObject).  If the semaphore  hasn't been
claimed by the maximum  number of threads  already,  the wait function simply
bumps up the usage count of the  semaphore  and the thread continues. On the
other  hand,  if the  semaphore  is already maxed out, the thread  that called the
wait  function will block until  some other  thread releases its claim to the sema-
phore.  A thread indicates  that  it's done using a semaphore  by passing its handle
to ReleaseSemaphore.



Mutexes

The third type of synchronization  object is the  mutex.  The term  "mutex"  is
a  contraction  of the term  "mutual  exclusion."  A program  or  set  of pro-
grams  uses a mutex  when  it wants  only one thread  at  a time to  access a
resource  or  section  of code.  If one thread  is using the resource,  other  threads
are  excluded  from that  same resource.  One way to  view a mutex  is as a
semaphore  with a  usage count  of one.  Using a mutex  is very similar to  using
a semaphore.  Each  of the create,  open,  and release semaphore  functions  has
mutex  counterparts.  When a thread needs to  acquire  a  mutex,  it calls  one of
the functions  in the WaitForXXX  family.

Critical sections

The fourth  type of Win32 synchronization objects are critical sections.  Unlike
the other types of synchronization objects,  critical sections can be used only by
threads  within  the  same process.  Critical  sections are  for preventing  multi-
ple threads  from executing  through the  same section  of code simultaneously.
Relative  to  the other  synchronization  mechanisms,  critical  sections are rela-
tively cheap and easy to  use.  A critical section can  be thought  of as a light-
weight mutex  that's  only valid  within  a  single process.  To  use a  critical
section,  a  program  either  allocates  or  declares  a  global  variable  of type
CRITICAL_SECTION.  Before  a  critical  section  can  be  used  for  the  first
time,  its fields need to be initialized by calling InitializeCriticalSection.  After-
wards,  a thread enters the critical  section by calling EnterCriticalSection.  A call
to LeaveCriticalSection  tells the operating systems that it's okay for another
thread  to enter the critical section.

As I just mentioned,  critical  sections  are relatively cheap to  use.  In
Windows  95,  if a thread  calls  EnterCriticalSection  while  no other threads
are  in it,  EnterCriticalSection  only needs to  adjust  and  set some fields  in the
CRITICAL_SECTION  structure.  Only  if another  thread is already in the
critical  section will  EnterCriticalSection  call  up  into  the VWIN32 VxD to
cause the thread  to  block.

The WaitForXXX  Functions

Now that  I've covered the four primary methods  of thread  and process syn-
chronization,  I want to mention  a few other ways to  synchronize  threads.
Besides event,  semaphore,  and mutex handles,  the WaitForXXX  family of
functions will accept several other handles.  (These handles are the KERNEL32
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handles described  in the  "KERNEL32  object handles"  sidebar.)  Passing a
process HANDLE to  one of the WaitForXXX  functions  causes the thread  to
block  until the process specified by the HANDLE terminates.  If the process has
already terminated, the Wait function returns immediately.  Likewise, passing a
thread  HANDLE to a WaitForXXX function suspends the thread until the
HANDLE's thread terminates.

Another HANDLE that  the WaitForXXX  functions  can  block  on is the
file change  notification  HANDLE.  A file change  HANDLE can  be used to
determine  when a specified change is made to a given directory and, optionally,
in its subdirectories.  Yet another HANDLE that the WaitForXXX  functions
accept is a file HANDLE for the console input  device.  Once there is unread
input  in the console  input  buffer, the Wait function  returns  and the calling
thread  resumes execution.

Module management
After  processes  and  threads,  the  remaining  key KERNEL concept  that  I'll
mention  is the  module.  A module is the  in-memory  version  of the code,
data,  and resources  of an executable  file or  DLL.  Each process has  a module
for the EXE file.  Every DLL used by a  process  is also a  separate  module.  If
two  or  more  processes  use the same DLL, they share  the  same DLL module.
Likewise,  if two copies  of a process  are running,  both  copies  share the same
EXE module.

In Winl6,  each task  is created  from the code and data  in a New
Executable/NE) format executable file. Winl6 keeps a copy of the exe-
cutable's  header  in a segment known  as a module database.  The selector of
this  segment is called an HMODULE.  Each Winl6  DLL also has a module
database  because Winl6  executables  and  DLLs share the  same file format.
Winl6  programs  pass  HMODULEs to APl functions that need to know
which particular executable or DLL file you're referring to.

Windows  95 creates  32-bit processes  from a Portable  Executable  (PE)
file. The  PE format  is an  updated  version  of the  old UNIX Common  Object
File Format  (COFF)  format.  Chapter  8 goes  over the PE format  in exquisite
detail,  so I'll  skip a detailed  discussion here.

The closest equivalent to a Winl6  module  database  in Windows  95 is
the header portion  of a  program  or  DLL's PE file.  The  header  of each  EXE
or  DLL appears  in memory because Windows  95  uses memory mapped  files
to  load the program's  code and data.  I discuss memory mapped  files in the
"Memory  mapped  files"  section  later  in this  chapter.  For  now,  think  of a
memory  mapped  file as  a place  in memory where  the  operating  system has
read  in portions  of a file  (or possibly an entire  file).
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A Windows  95 HMODULE value is nothing more than the linear
memory  address  to where the loader memory mapped the file. Given an
HMODULE and a small amount  of calculation,  you can convert the
HMODULE  into a pointer to the PE header. With a pointer to the header
address,  a program can do some additional  lookups to find the address of
the code, data,  and resources for that module in memory.

Winl6  is somewhat sloppy about the difference between an HMODULE
and an HINSTANCE,  although  they really  are different.  A Winl6  HIN-
STANCE is the  selector  value of a task's  or DLL's DGROUP segment.
However,  in Winl6,  an HINSTANCE is also frequently  used to differentiate
between two different tasks. In 32-bit Windows 95 processes, an HMODULE
and an HINSTANCE are the same thing --  the base address of the module
in memory.

As with Win32 processes and Winl6 tasks, Windows 95 stores information
about a module on both sides of the 16- and 32-bit fence. Each 32-bit process
module has a corresponding 16-bit NE module database. However, the 16-bit
representation of these modules is minimal. Not all fields in these special 16-bit
HMODULE segment are filled in. I call these minimal HMODULEs "pseudo-
HMODULEs." Pseudo-HMODULEs don't appear in the normal linked list of
16-bit modules. If you walk the list of modules with TOOLHELP, the pseudo-
HMODULEs don't show up. The SHOW16.EXE program from Chapter 7
shows how to find the 16-bit module databases for Win32 EXEs and DLLs.

The Windows 95 address space
A major architectural  difference between Windows 95 and NT is that in
Windows 95,  16- and 32-bit applications play in the same virtual machine
and address space. To increase system stability, NT runs  16-bit Windows
applications in a separate virtual machine called Windows on Windows
(known  informally  as WOW). (NT 3.5 and later can also run each  16-bit
Windows program in its own distinct virtual machine if desired.) The down-
side to NT's implementation  is that it separates 32-bit processes from 16-bit
processes, address-space-wise.  This makes it harder to thunk between 32-
and 16-bit code. In an ideal world you wouldn't need to use thunks.
Unfortunately,  the reality is that a lot of useful 16-bit Windows DLLs won't
be immediately available in a 32-bit version.

From the perspective  of a  16-bit application,  the  address  space is
unchanged  from Windows 3.1. All 16-bit applications continue to use ring
3 16-bit selectors from a common local descriptor table (LDT). These pro-
grams can continue to access and share memory with other  16-bit applications
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through  selector  values.  This  works  because  all addresses  used by  16-bit
programs  are within  regions  of the address  space  shared  by all programs.
One  16-bit  task can  always  see the memory of another  16-bit task,  assuming it
has a valid selector that  points to the other  task's memory. A page of memory
might  be marked not present by the virtual  memory manager,  but touching that
memory will bring it back in transparently  to the task that touches it. Although
Microsoft  recommends  allocating  memory with  GMEM_SHARE when you
intend  to share it between tasks, Windows 3.x programs  habitually ignored this
advice;  16-bit programs  under Windows  95 can continue to do so.

The  address  space  story  for  32-bit  processes  is vastly  different.  As in
Windows  NT, the private  memory of each  32-bit  Windows  95  process  is in
the  CPU's page mapping  tables  only when that  process  is the  current process.
When the  scheduler  switches  to  another  32-bit  process,  the  private  memory
of the  first process  is no longer  accessible  to  any other  process.  Doing this
makes  it almost  impossible  for one task to scribble on another task's memory,
either accidentally or  intentionally.

Because Win16  tasks  allocate  their  code  and  data  in the  shared  memory
region,  at  any given time the current  32-bit  Windows  95  process  can  see all
the  memory  in use  by  16-bit  programs.  However,  a  32-bit  process  can't  see
the  memory of other  32-bit  processes.  There's  only one process memory con-
text mapped  in at one time.  Looking through  the opposite  end of the telescope,
16-bit code can see all of the shared system memory,  as well as the memory of
the current Win32  process.  (It would  be rather  difficult to thunk between  16-
and 32-bit code if this weren't the case.)

Protecting  processes  from  one other  is generally  a good  idea,  but  some-
times  you  really  do  need  shared memory.  The  primary  way to  share  memory
between  processes  is with  memory mapped  files.  The  name  memory mapped
files is  somewhat  of  a  misnomer  since you  can  use  them without  involving
any  disk  files.  An  interesting  architectural  difference  between  NT  and
Windows  95  involves  the  visibility  of  file  mappings.  In  NT,  a  memory
mapped  file  is accessible  only  to  processes  that  have called
CreateFileMapping and  MapViewOfFile  for that  particular  file.  In  addition,
the  file's  memory region  can  be  based  at  different  virtual  addresses  in  differ-
ent  processes.  In Windows  95,  once  a program creates  a memory  mapped
file,  that  memory region  is accessible  to  all programs.  Thus,  a Windows  95
memory  mapped  file is always at  the  same virtual  address  in all processes.
This  no  doubt  simplifies  the  virtual  memory management  code in Windows
95.  I'll  talk  more  about  memory  mapped  files  later,  in the  section  titled
(would  you  believe?)  "Memory  mapped  files."
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Native  Windows  95  applications  dispense with  the  use of selectors in
application  code.  Windows  95  initializes  all  32-bit  programs with  the  same
code  and data  selectors  at  startup.  The  application  itself never  needs to
change  the segment registers.  (The Windows  95  system DLLs change  the
segment  registers temporarily  during  thunks down to  16-bit code.)  For
instance,  when I run Win32  applications,  each program  uses a  ring 3 LDT
code selector with  a value of 0x013F.  This  selector  has a  base address  of 0
and  a limit  of 0xFFFFFFFF (4GB).  The data  selector that  all Windows  95
applications  have  in the DS, ES, and SS registers is somewhat unusual.  It's
an expand-down  selector with  a  limit  of less than  1 MB.

Until Windows  95, expand-down  selectors were rarely encountered,  so
a bit  of explanation  is in order.  The  limit of an expand-down  selector  (or
descriptor)  is the lowest  offset that  a  program can use with  that  selector.
The  highest usable offset  is the  end of memory  addressable  with that  selec-
tor.  In Windows  95,  the data  segment selector  is a  32-bit  LDT selector with
a base address  of 0.  This means  that  the  valid address range when  using that
selector  is between  a  value  less than  1 MB and  4GB.  Windows  95  makes the
lowest  addresses in 4K of a virtual  machine  inaccessible  because  it causes
programs with  NULL pointer  errors  to  GP fault  rather  than  silently over-
write  memory.

The  use of the  same  selectors  for  all  32-bit  processes  often confuses
programmers  coming from a  16-bit  background.  How can you use the same
code selector with two different  programs?  As I mentioned  previously,
Windows  95  uses the  CPU's page mapping  features  to  map physical  RAM
to  linear addresses.  Each process  has its  own  set of page mapping  tables.
Whenever  Windows  95  switches tasks,  it changes the  CPU's page mapping
tables  to  reflect the new process's  memory layout.  Thus,  even though  two
programs  have the same  selector, they will  have entirely  different  code at
the  same linear address.  That's  why an  address  by itself is useless without
knowing which  process  it refers to.

 Windows 95  memory management
In most  regards,  Windows  95's  32-bit  memory management architecture  is
very  similar to  NT's  on the  surface. Under  the hood,  KERNEL32  relies
heavily  on  services  provided by VMM32.VXD  to  implement  the Win32
memory management APIs. On the  16-bit side of the fence, KRNL386  now
also calls  directly  into  the VWIN32 VxD in VMM32  for  low-level services



such as allocating large memory regions and pagelocking. In Windows 3.1,
KRNL386 used DPMI functions from WIN386 for many (but not all) of the
same services.

At the level where  most programmers work  every day, the big news
in Win32 and Windows  95  is no more segments! By moving to  32-bit
programming,  you can finally forget all about near and far pointers. You can
also forget about GlobalLock,  LocalLock, and anything related to memory
models. Everything in a Windows  95 32-bit program is small model.  That
is, the 32-bit small model.  Of course,  if you want to perform tricks with the
memory manager,  the Win32 APl and Windows 95 have a whole new set of
functions to delight the low-level hacker.

In Windows 95, the lowest level of memory manipulation  is provided
by the VirtualXXX functions,  which are described in detail in Chapter  5.
VirtualAlloc lets you allocate large chunks of address space with 4K granu-
larity (the size of an  80386 page). Although there are important differences,
the closest equivalent to VirtualAlloc  in Windows  3.1  programming is
GlobalAlloc.  Both  functions  are intended for allocating  large blocks of
memory. Also, the granularity of both  functions  makes their  system over-
head relatively high. You probably wouldn't want to use either function in
place of malloc or new.

At the same time you allocate  address  space with VirtualAlloc,  you
can optionally  bind that  address  space to physical  RAM by using the
MEM  COMMIT  flag. Why wouldn't you want an address space allocation
to be backed up by memory immediately? Sparse memory is the main reason
you wouldn't want to do this. For example, your program might need a
great deal of memory for storage  (on the order of megabytes).  You don't
know how much memory you need beforehand.  In this situation,  you could
VirtualAlloc a chunk of address space large enough to be confident you
won't  need more memory. As your program uses up more and more of the
address range, you can commit memory as needed by making additional
calls to VirtualAlloc.  See the "Structured  exception handling"  section later
in this chapter  for more details on automating  this procedure.  Incidentally,
this commit-only-when-needed  algorithm is precisely how Windows 95
implements large program stacks while not wasting memory on pages that
are never touched.

Higher-level Windows 95 memory management comes in the form of
heap functions (which are described in Chapter 5). When Windows 95 creates
a new 32-bit process, it creates a heap default  for it within its address space.
The 32-bit heap is roughly equivalent to a  16-bit Windows local heap, since
every process has one. However, the 32-bit heap certainly isn't limited to
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64K!  Windows  95  supports  multiple  heaps,  so you  need to  pass a handle  to
the  heap  function when you want  to  allocate,  free,  or  otherwise  manipulate
a heap  memory  block.  A program retrieves  the  handle  to  its  default  process
heap with  the  GetProcessHeap  API.  This  heap  handle  is nothing  more  than
the  starting  address  of the  heap.

Unlike  the VirtualXXX  functions,  allocations  from  the  Win32  heap
functions  have  a much  smaller  granularity  (4  bytes  in the  retail  build  rather
than  4KB).  The  overhead  for  each  allocation  appears  to  be only 4  bytes  as
well.  This makes the HeapAlloc  function  a suitable replacement  for malloc  (or
a quick way to  implement  your own malloc). The 4-byte  overhead  comes
from a DWORD  immediately  preceding the  address  returned  by HeapAlloc().
Ignoring the  bottom 2  bits,  this  DWORD  holds  the  size of the  block  imme-
diately  following  it.

While  Win32  presses  forward,  there  are  still  issues  of backward  com-
patibility.  Thousands  of  16-bit  programs  use GlobalAlloc  and  LocalAlloc.
Can  they  be ported  easily? Yes! Microsoft  kept  most  of the  important  global
and  local  heap  functions  in  the Win32  API so that  calls  to  those  functions
wouldn't  need to  be changed  in the transition to  32  bits.  However,  the
meaning  of the  APIs and  their  underlying  implementation  has  changed.  First
and  foremost,  the  global  and  local  heap  functions  are essentially  identical.
You can  use  GlobalAlloc  to  allocate  a  block  of memory  and  use  LocalFree
to release  it.  Second,  the  global  and  local  heap  functions  are implemented
using the  32-bit process  heaps I mentioned  earlier.  Because  of this,  calling

HeapAlloc( GetProcessHeap(),  //  Heap  Handle
0,  //  Flags

0x100  );  //  bytes  requested

should  return  the  same  pointer  as if you  had  called

Loc>alAlloc(  LMEM_FIXED,  0x100  );

HeapAlloc  always returns  a usable pointer when successful,  so all blocks
allocated with HeapAlloc  are equivalent to  LMEM_FIXED.  Fixed heap blocks
can sometimes lead to  fragmentation.  As in Win16, you need to call LocalLock
with  a moveable  block handle to get a usable  pointer.  It's a little-known fact
that  in Win16,  moveable  block handles always have bit  1 set, so their handle
values always end in 2,  6, 0xA, or  0xE. Also, if you treat a moveable handle as
a pointer to  a pointer,  you can dereference it to  get the current  address  of the
block  associated  with  the  handle.  Microsoft's  commitment to  backward com-
patibility can be seen here  because these same rules apply to the  32-bit heaps.
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The  mappings  between  the  local  heap  functions  and  the  new Win32
HeapXXX  functions  are  very simple.  HeapAlloc  and  HeapFree  replace
LocalAlloc  and  LocalFree.  Likewise, HeapReAlloc  and  HeapSize  take  over
from LocalReAlloc  and LocalSize.  HeapCreate corresponds  roughly  to  using
GlobalAlloc to grab  a global  heap  block, followed  by a call  to LocalInit to
set up  a  heap  inside  that  block.  There  is no  direct  Win16  equivalent  to
HeapDestroy.  In Win16,  if you're  done with  a heap you created,  you'd  likely
just  get rid of the heap segment with GlobalFree.  Chapter  5 describes memory
management  in much more detail.

Memory mapped files
One of the coolest  features  in Win32  and Windows  95  is memory mapped
files.  There  is no Winl6  equivalent  to memory  mapped  files,  and  16-bit
tasks  under Windows  95  can't  use them.  Memory  mapped  files have  three
main  uses in Windows  95.  The first  and most obvious  use is to  enable you
to  use pointers  to  easily read and  write  data  from a disk  file.  The  file map-
ping assigns a  section  (or all)  of a  file on disk to  a  range  of memory in the
virtual  address  space.  When you read  or  write  to  a memory  address within
that  address space region, the operating  system reads or writes the equivalent
byte within the disk file.

The  second use of memory  mapped  files is as  a way to  share  memory
between  different Win32  processes.  A process can  set up  a  file mapping  for
a NULL file to  reserve  a  block  of address  space without  assigning  it to  a
particular  disk file.  Other  processes can then  open up their  own view of this
file mapping.  The physical memory that's  connected  to  the mapping's  range
of addresses can  be made  visible to  other  processes.  A process that  wants  to
share  memory with the  first process  merely needs to  request  a view into the
same file mapping.  No  disk files need be involved  for this  memory  sharing
to  occur.

The third use of memory mapped  files is for  module  loading. When the
Windows  95  32-bit  loader  needs to  load an executable  or  DLL, it uses mem-
ory mapped files to  map regions of the executable  into  the  process's  address
space.  Since memory mapped  files can  be made  visible in other  processes,  it's
relatively easy and efficient for Windows  95 to  share an EXE or  DLL's code,
data,  and resources  between two or  more  processes.  Working from values
stored  in the  PE file,  the  Windows  loader  maps  various  sections  of the
executable to specific starting addresses  in memory.  Chapter  8 describes this
in more detail.
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Structured exception  handling
One  of the most  useful  but misunderstood  components  of the Win32  and
Windows  95  architecture  is  structured  exception  handling.  Before
Windows  3.1,  there  was  no formal  mechanism  in  the Windows  APl  for a
program  to  handle  interrupts.  Windows  3.1  introduced  TOOLHELP. DLL,
which  was  a great  step forward,  but calling  it structured  is a  bit  of a  stretch.
TOOLHELP. DLL intercepts  a  small  but  useful set of interrupts  such  as the
breakpoint  interrupt  (INT 3)  and the  GP fault  (exception  13  (0dh)).  When
an exception occurs,  TOOLHELP's  internal handler gets control.  The handler
sets up  a consistent  stack  frame and  then calls handler  functions  installed  by
tasks  that  want an interrupt  callback.

While  TOOLHELP. DLL allows  a  lot  of flexibility,  it  also  leaves  a  lot
of  room  for  problems.  Each  task  with  an  interrupt  callback  can  see all  the
interrupts  and exceptions  that  come  through  TOOLHELP.  The  callback
function  can  indicate  to  TOOLHELP whether TOOLHELP  should  call  the
other  interrupt  callback  functions  that  come later  in the  list.  Thus,  one task
can prevent  another  task  from seeing  interrupts  that  it  might  be  depending
on.  In  addition,  if the  interrupt  callback  handler  is  buggy,  it  can  cause
nested  GP faults  and  other  system-crashing  behavior.  For  32-bit  processes,
Windows  95  replaces this  "every task  for  itself"  way of doing  things  with  a
much  more  well-defined  way  for  a  process  to  handle  exceptions.

Other  than  debuggers,  why would  a process want  to  handle  exceptions?
One example  is a  process  that  needs  to  do  an operation  that  might cause  a
GP fault  or  a  division  by zero.  If the  process knows  how  to  recover  from
that  situation,  it  shouldn't  be terminated  by the  operating  system.  Another
example  is a process using  sparse memory.  A program  might need  to  use a
large  amount  of memory,  but  not  know exactly  how much memory  before-
hand.  Using the  VirtualAlloc  function,  the  program  can  reserve  a  large
enough  range  of virtual  address  space.  When the process  accesses a  page of
memory  in that  range  that  isn't  backed  up  by physical  RAM,  the  CPU gen-
erates  a  page  fault.  Using structured  exception  handling,  a Win32  process
can  handle  the page  fault  by assigning RAM to  that  page  of memory,  and
then telling  the  operating  system  to  restart  the faulting  instruction.

Technically,  structured  exception  handling  is built  in to  the  operating
system and  is independent  of any particular  language.  However,  structured
exception  at  the  operating-system  level is very  messy and  complex.  In  fact,
at  the  time  of this  writing,  I'm not  aware  of any formal  documentation  on
this topic that's  generally available.  For these reasons,  most  programmers  let
their  compiler  and  its  runtime  libraries  put  a  pretty  face  over  structured
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exception  handling.  For  more  information  about  the  details  of  the
Windows  95  implementation  of structured  exception  handling  here,  see
Chapter  3.

When  a process  doesn't  handle  an  exception  in any  of its  handlers,  the
exception gets  passed  to  a default  operating-system handler.  This  handler's
action is to  terminate  the  program and  clean  up  unfreed  resources  and  open
handles.  In  a move  to  improve  robustness,  Windows  95  implements this
sequence  using a separate  thread.  The  idea  is that  when  a thread  has  unex-
pectedly  blown  up  (with  an  access violation,  for instance),  the  thread's  con-
text  might  be  in an  unstable  state.  By doing the cleanup  in a separate  thread
with  a known  good  context,  the  Windows  95  developers  hope  to  cut  down
on  the  number  of hard  system  crashes.

The registry
Before Windows  NT,  both  the  system  and  programs  stored their  persistent
information  in  a morass  of .INI  files.  (Remember  those  huge WIN.INI  files?
Remember  having  no  idea  how  most  of  those  entries  got  there?)  Windows
95  uses  a registry  to  take  a big step toward  moving  this  mass  of information
into  a central  location.

In Windows  95,  information  that  you  would  have put  into  an  .INI  file
in Windows  3.1  should  instead  be stored  in the  registry.  The  registry  is a
hierarchical  database  of information.  (The Windows  95  REGEDIT program,
in Figure  2-2,  shows the  registry  hierarchy.)  The  top  level  has  a small  set of
predefined  "key"  nodes;  each  key  node  has  named  subkeys  below it.  At  any
point  in the  hierarchy,  a  subkey can  have  one  or  more  values  (text  or  binary
data)  or  additional  subkeys.  There's  an  extensive  set of APIs  (for example,
RegCreateKeyEx,  RegQueryValue,  and  so on)  for adding,  deleting,  modifying,
and  searching  the  registry.

The  six predefined,  top-level  keys  in Windows  95  are  as  follows:

*  HKEY_CLASSES_ROOT
*  HKEY_CURRENT_USER
*  HKEY_LOCAL_MACHINE
*  HKEY_USERS
*  HKEY_CURRENT_CONFIG
*  HKEY_DYN_DATA
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 Figure  2-2
 The Windows  95  REGEDIT program shows the registry hierarchy.

Of particular interest  is the HKEY_DYN_DATA key (see Figure 2-2).
Chasing  this key down several nodes leads to quite a bit of useful information.
For example, the subkey HKEY_DYN_DATA\PerfStats\StartStat\  leads you to
a value with the name KERNEL\CPUUsage.  Another value under that same
key is VFAT\ReadsSec.

Note  that the registry is actually implemented in VMM.VXD.  By putting
the  registry code in the first VxD that's loaded  (VMM.VXD), the information
in the registry can be accessed and used by VxDs themselves.  You can see this
for yourself by looking in the VMM.H  file from the Windows  95 DDK.  In
the  file, you'll  find that the following VxD services are available  for use by
other  VxDs:

//  Registry  APIs  for VxDs

/*MACROS*/
VMM_Service  (_RegOpenKey)

VMM_Service  (_RegCloseKey)

VMM_Service  (_RegCreateKey)
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VMM_Service  (_RegDeleteKey)

VMM_Service  (_RegEnumKey)
VMM_Service  (_RegQueryValue)
VMM_Service  (_RegSetValue)
VMM_Service  (_RegDeleteValue)
VMM_Service  (_RegEnumValue)
VMM_Service  (_RegQueryValueEx)
VMM_Service  (_RegSetValueEx)

At the Win32 APl  level,  the  registry  functions  are  implemented  in
ADVAPI32.DLL.  In Windows  95, that  file  is relatively  small.  Digging
under  the covers to  find out why, you'll  see that  all the registry functions
are just wrappers  around calls to  the VMM registry functions.  Of course,
since ADVAPI32.DLL is in ring 3 code,  it can't call  the VMM  functions
directly.  Instead,  it uses the  same Win32 VxD services (described  earlier)
that KERNEL32  uses for other  purposes.  (These VxD services are described
in Chapter  6.)

Additions  to  USER
What's  new in the windowing  system in Windows  95?  For starters,  there are
now numerous  new extended window styles that give Windows  95 programs
that  sculpted, three-dimensional  look.  Some of the  new styles include

Style
WS_EX_MDICHILD
WS_EX_TOOLWINDOW
WS_EX_CLIENTEDGE
WS_EX_RIGHT
WS_EX_LEFTSCROLLBAR

Purpose
Creates an MDI child window.
For  toolbar  windows.
Window has a sunken edge.
Window text is aligned on the right.
The  scrollbar is on the  left.

Another  exciting new addition  for many developers  is a new set of con-
trois.  The new control  types are as follows:

Control  type
Animate
DragListBoxes
Header

Purpose
Displays  .AVI files
Drags  listbox items between lists
Header  bar



H o t K e y

60

Control  type
HotKey
ImageList
ListView
Progress
Property  Sheets
RichEdit
StatusWindow
TabControl
ToolBar
Tooltips
TrackBar
TreeView
UpDown

Purpose
HotKey  control
List of images
List view
Progress gauge
Edit  item properties
Rich  format text
Status  window
Tabbed  dialog
Customizable  bitmap-button  toolbar
Balloon-style  help
Customizable  column-width  tracking
Tree  view
Up and  Down arrow  increment/decrement

Unlike the standard controls  (that is, those that existed in Windows 3.1),
these  new controls  aren't  implemented  in  USER.EXE.  Instead,  they're
implemented  in  COMCTL32.DLL  and  COMMCTRL.DLL.  As  a  result,
these  new controls  are  available  only  to  32-bit  processes,  leaving  16-bit
programs  excluded  from the party.

System information and debugging
The Win32 debugging APl that Windows  95 implements  is much more formal
than  what's  available  for Win16.  A 16-bit  debugger  under Windows  3.1  or
Windows  95 will typically  use TOOLHELP to install interrupt  and notification
callbacks.  By watching the interrupt  and notification streams,  the debugger can
sense what  the debuggee is doing.  However, the debugger's callbacks need to
filter out events that were for other  processes or that  aren't  of interest  to a
debugger.  In  addition,  when  the debuggee  hits  a  breakpoint  or  causes  an
exception,  the debugger's  exception handler needs to spin in some sort of loop
until  the debugger wants the child to resume execution again.  In short,  16-bit
debuggers  are messy.

The Windows 95 debug APl is centered around the WaitForDebugEvent
function.  After  creating  or  attaching  to  a  process,  the  debugger  calls
WaitForDebugEvent,  passing in a pointer to  a  DEBUG_EVENT  structure.
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This  function  blocks until  something occurs  in the  debuggee  that  the  debug-
ger cares  about.  The  debug events  that  WaitForDebugEvent  can return  are
shown  in Table  2-4.

Table  2-4
Debug  events  that  WaitForDebugEvent  can  return

Debug event  Description

EXCEPTION_DEBUG_EVENT  Tells the debugger  of  breakpoints,  access
violations,  and  other  exceptions.

CREATE_THREAD_DEBUG_EVENT  Enable the debugger  to  keep  track of  the
and  EXIT_THREAD_DEBUG_EVENT  debuggee's  threads.

LOAD_DLL_DEBUG_EVENT  and
UNLOAD_DLL_DEBUG_EVENT

Keep the debugger  informed  of  which  DLLs
the child  is  using.  A  debugger can  use these
notifications  to  load  and  unload  symbol  tables
for  the  DLLs on  the fly.

OUTPUT_DEBUGSTRING_EVENT Enables  you  to see your  OutputDebugString
messages.  (In fact,  it's  the only way  to  see
these  messages.)

For more  details,  refer  to the discussion  of
OUTPUT_DEBUG_STRING_EVENT  and  the
WaitForDebugEvent  function  in this section.

CREATE_PROCESS_DEBUG_EVENT  Tells the debugger  that  the  program  being
and  EXIT_PROCESS_DEBUG_EVENT  debugged  has spawned  another  process,

or  has terminated.

RIPEVENT  This  message  doesn't  appear  to ever  be
generated.

Associated  with  each  debug event  is a  structure  containing detailed
information  about  the  event.  A debugger  can  use  these  notifications  to
do  things  such as load  and  unload symbol  tables  for the  DLLs  on  the  fly.
The  OUTPUT_DEBUG_STRING_EVENT  should  be of interest  to  more
than  just debugger  developers.  Under Win32,  this  is the  only  way to  see
your  OutputDebugString  messages.  Put  another  way, you must  be running
your  program  under  a debugger  (or  something similar)  that  uses  the
WaitForDebugEvent  function.  In Win16,  any  program could  see all the
OutputDebugString  messages  in the  system  by simply  tapping  in to  the
TOOLHELP  NotifyRegister  stream.  That's  all that  the Win16  DBWIN
program does.
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Whenever  WaitForDebugEvent returns to the debugger with an event,  all
activity in the child process is frozen. The debugger doesn't  need to worry
about  suspending all the child's  threads.  Instead,  it does whatever processing
it needs to with the event and eventually calls the ContinueDebugEvent  func-
tion,  which lets the debuggee  process resume execution.  The heart of a Win32
debugger is a loop that calls WaitForDebugEvent and ContinueDebugEvent  in
a loop  until the debugger receives  an EXIT_PROCESS_DEBUG_EVENT.

In addition  to knowing about  events in the  debuggee,  the debugger
also needs  a way to  poke  and prod  at the debuggee's  registers and memory.
The ReadProcessMemory  and WriteProcessMemory  functions  (see
Chapter  5)  fill the  bill  for  accessing the debuggee's  memory.  Likewise,
GetThreadContext  and SetThreadContext  (see Chapter  3)  let the debugger
read  or  write  the  register  set of a  particular  thread  in the  debuggee.

Besides providing  information about  interrupt  and system events,  the
Windows  3.1  TOOLHELP. DLL also provided a  convenient  way to  iterate
through  various  system data  structures,  such as modules,  tasks,  and heaps.
In Windows  95,  these  data  structures  have changed  significantly for  32-bit
programs.  To  its  credit,  Microsoft  implemented  a  32-bit  version  of
TOOLHELP.  These TOOLHELP32  functions are defined in TLHELP32.H,
and  are listed here:

CreateToolhelp32Snapshot
Heap32ListFirst
Heap32ListNext
Heap32First
Heap32Next
Toolhelp32ReadProcessMemory
Process32First
Process32Next
Thread32First
Thread32Next
Module32First
Module32Next

These  APl  functions  are  similar,  but  certainly  not  identical,  to  the
Win l6  TOOLHELP. DLL  functions.  Therefore,  if your  16-bit  code  uses
these  TOOLHELP  functions,  you'll  have  a  bit  of  porting  to  do.  Also,
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unlike  the Winl6  TOOLHELP. DLL,  which  is separate  from  KRNL386,
the TOOLHELP32  functions  are  implemented  in  KERNEL32.DLL,
which  is where  they  belong.

One problem with implementing  these system information  functions  in
Windows  95 is that Windows  95's pre-emptive multitasking will screw things
up unless special care is taken.  For example,  in the middle of walking through
the thread  list, the enumerating  thread  might get switched away  from.  Before
that  thread gets  back control, the thread list may have changed.  To prevent
this and similar  problems,  the TOOLHELP32  functions  have the concept  of
a snapshot. When you want to walk through a list  (such as the process list),
you first create a  snapshot  by calling  CreateToolhelp32Snapshot,  which  fills
in a buffer with  a completely consistent  set of information  about  the  system
state.  You then  pass the snapshot  handle to  the TOOLHELP32  enumeration
functions,  which extract  the relevant  information  from the buffer  filled by
CreateToolhelp32SnapShot.

Noticeably  missing from the TOOLHELP32  functions  (when compared
to the Winl6  TOOLHELP. DLL)  are  functions  for  walking  the window
classes,  obtaining  information  on  system  heap  usage,  and  performing  a
stack trace  for  another  process.  However,  there  are  other  ways  of  doing
these things  in  Windows  95.  My  article  on  the  new TOOLHELP32  func-
tions  in the  September  1995  Microsoft  Systems Journal  describes  the
TOOLHELP32  functions  in  more  detail  and  suggests  other  ways  of
accomplishing  things  that  the TOOLHELP32  functions  don't  provide.

"DIRTY LITTLE SECRETS" ABOUT WINDOWS 95

Before  finishing  this  chapter,  I thought  I'd  throw  in  a  list  of  bad  design
decisions  and  embarrassing  information  that  Microsoft  probably  won't
be publicizing  anytime  soon.

Many  issues that  I could talk  about  in this  section  have already  been
discussed  elsewhere  in  this  chapter  or  in  other  books  or  articles.  Into  this
category, I put  things  like the  following:

*

*

Remnants  of real  mode  DOS code  are  still  being used.
The  shared  memory  address  spaces  (below 4MB,  above  2GB)  are  almost
completely  unprotected.  Both Win1 6 and Win32  applications can scribble
all over sensitive system data  areas.

63
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*  The Winl6Mutex  in conjunction  with  badly  behaved  16-bit  tasks can
affect  the  overall  system  multitasking.

*  Despite  claims  to  the  contrary,  KERNEL32  does  call  KRNL386.
(However,  the  magnitude  of the  number  of  calls  down  to  KRNL386  is
worth  noting  and  is discussed  in  Chapter  6.)
Instead  of talking about  these  topics  again,  I'd  like to  focus  on  some

other  interesting  issues  in Windows  95 - - issues  that  until  now  have gone
largely  unnoticed.  The  following  list gives you  a  brief preview of each  topic
discussed  in this  section:

*  New anti-hacking  code tries to  prevent  you from accessing  undocumented
KERNEL32  functions.

*  The  lack  of cooperation  and  communication  between the Windows NT
and  Windows  95  teams  results  in fewer Win32  functions  in  both  NT
and  Windows  95.

*  The  free system  resources  calculation  changed  to  make it  look  like
Windows  95  has  dramatically  more  USER and  GDI heap  space,  even
though  it doesn't.

*  Additions  to  16-bit  code  were quietly  made  even  though  Microsoft
publicly  states  that  32-bit  code  is the  way  to  go.

Anti-hacking  code
Unauthorized Windows 95  made  extensive  use  of undocumented  functions
in  KERNEL32.DLL.  Although  there  obviously weren't  header  files  for these
functions,  the  functions  appeared  in the  import  library  for KERNEL32.DLL.
Calling  these  functions  was  as  simple  as  providing  a prototype  and  linking
with  KERNEL32.LIB.

In subsequent  builds of Windows  95--after  Unauthorized Windows 95
came  out--these  functions  disappeared  from  the  import  library  for
KERNEL32.DLL.  (Surprise!  Surprise!)  At the  same  time,  these  function
names  disappeared  from  the  exported  names  of KERNEL32.DLL.  These
undocumented  functions  were  still  exported,  however.  The  difference  is
that  they were  exported  by ordinal  only.

Now,  normally  this would  have  been  only  a  small  nuisance  to  work
around.  You should  be  able  to  simply  call  GetProcAddress  and  pass  in the
desired  function  ordinal  as  the  function  name  (0  in  the  HIWORD,  the
ordinal  in the  LOWORD)  and get back  the  address.  In a normal,  sane world,



this would  work.  However,  at  some point  during  the  beta,  Microsoft  added
code to  GetProcAddress  to  see if it's  being called with  the  ordinal  form of the
function.  If so, and if the  HMODULE passed  to  GetProcAddress  is that  of
KERNEL32.DLL,  GetProcAddress  fails the call.  In the  debugging version of
KERNEL32.DLL,  the code  emits  a  trace  diagnostic:  "GetProcAddress:
kernel32  by id not  supported."

Now,  let's  think  about  this.  Since the  undocumented  functions  aren't
exported  by name,  you can't  pass the  name  of a KERNEL32  function  to
GetProcAddress  to  get  its entry point.  And  GetProcAddress  specifically
refuses to  let you  pass it an  ordinal  value.  The Microsoft  coder responsible
for this  abomination  really didn't  want  people  calling these  undocumented
KERNEL32  functions.  Apparently,  the  only way you  can call these  functions
is if you  have  the magic  KERNEL32  import  library,  which  Microsoft isn't
supplying  with  the Win32  SDK.  (Instead  a stripped  version  of the  library  is
being included.)

Never  fear.  As you'll  see later  in the  book,  I make  extensive  use  of the
KERNEL32  undocumented  functions  (for good,  not  evil).  With  a  little  bit
of work,  I was  able  to  coerce  the Visual C++ tools  to  create  a KERNEL32
import  library that  contains  these  "documentation-challenged"  functions.
Appendix  A contains  information  about  these  functions  and  an  import
library for  them.

Another  instance  of anti-hacking  code put  into  Windows  95  is the
Obsfucator  flag.  In early versions of Windows  95,  GetCurrentProcessld  and
GetCurrentThreadld  returned  pointers  to  the  relevant  process  and  thread
database  structures,  which are described  in  Chapter  3.  Shortly  after
Unauthorized Windows 95 came out,  these  functions  started  returning  val-
ues that  most  definitely  weren't  pointers.  A bit  of investigative  work
revealed  that  the return  value  was the  original  pointer  value,  but  XOR'ed
with  a seemingly random  value.  Where  does  this  random  value  come from?
Each  time the  system boots  up,  it uses  the  system  clock  to  compute  a ran-
dom  value.  Interestingly,  in the  debug  build  of KERNEL32.DLL,  this  ran-
dom value  is named  "Obsfucator."  Seeing as  how  the  KERNEL32  coders
misspelled  "obfuscator"  as  "obsfucator,"  it's  doubtful  whether  the  KER-
NEL32  sources  were  subjected  to  a spell  check.

As with  the  GetProcAddress  code,  there's  no  reason  for this  XOR  trick
in  GetCurrentThreadld  and  GetCurrentProcessld,  other  than  to  attempt  to
prevent  people  from getting  at  system  data  structures.  While  Microsoft  is
certainly  allowed  to  try and  hide these things,  they shouldn't complain when
users who  really need this  information go  in and  dig it out anyway.  Chapter
3 describes  a technique  for calculating  the  Obsfucator  value at  runtime so
you  can access  the  thread  and process  database  structures.
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The Win32 APl farce
While Microsoft would like you to  believe that there's one big happy Win32
API, internally the NT and Windows 95 teams don't communicate too well.
One result of this lack of coordination  is that the number of Win32 functions
available  both in NT and Windows 95 suffered needlessly. The following
three  "exhibits"  serve to prove my point.

Exhibit  I  consists of the new Toolhelp32  functions.  I've heard from
many sources that the NT management team has vowed never to implement
them. Yet if you look closely at the TOOLHELP32 functions,  you'd  find
there's just a handful of functions.  Of primary interest are the process and
thread  enumeration  functions. This information  can be extracted  from the
Windows NT registry, as the PVIEW program from the Win32  SDK plainly
shows. The question in my mind is: Why didn't the Windows 95 team simply
implement  the same registry  keys that  NT provides  so that PVIEW could
work on  both?  Or,  why couldn't  the NT team write a layer on top  of the
registry  functions  and put the Toolhelp32  functions  on Windows NT? If
either side really wanted to, it could come up with a portable Win32 API way
to do system information  enumeration.  As I'm finishing this book,  I've
heard rumblings from a member of the NT team that the TOOLHELP32
functions might appear in a future version of Windows NT.

Exhibit  2 consists of the heap functions. There are several Win32 heap
functions that Windows 95 left unimplemented, although implementing them
probably wouldn't have been more than an hour's worth of work. The prime
example is the HeapWalk function from Windows NT. This function isn't
implemented in Windows 95. Yet, if you look in TLHELP32.H, you'll find
two functions that do exactly the same thing: Heap32First  and Heap32Next.
Rather than simply implementing an existing Win32 APl, the Windows 95
coders went off and implemented two entirely new functions. The NT team
will no doubt say that they're not going to support those functions. Lunacy!

Exhibit  3 consists of the HeapLock function.  In Windows NT, this
function simply acquires the mutex of a specified Win32 heap.  As you'll
see in Chapter  5, Windows  95 has a  function that  does  exactly that.
However,  the KERNEL32  development  team didn't export that function.
Thus,  the most likely reason  the HeapLock function isn't implemented in
Windows 95 is because somebody didn't feel like renaming the existing
function  to HeapLock and exporting  it from KERNEL32.DLL.

The point is, while Microsoft  is trying to convince everybody to write
to the standard Win32 APl, two teams at Microsoft are implementing only



what  they  feel like.  This  will  only hurt  Microsoft in the long run.  I've  filed
my share  of WINBUG  reports  and  sent numerous  e-mails.  It's  now up to  the
market  to  see what happens  to  the  supposedly  unified Win32  API.

Free system resource  fudging
If,  after  booting Windows  95,  you immediately  bring up the Windows  95
Explorer  and then  go to  the HelplAbout  Windows  95  dialog  box,  you'll  see
a free system resources  value that's  quite  high;  a typical  value is 95 percent.
This  is a  much higher value than  you'd  see under Windows  3.1.  Did
Windows  95  suddenly  gain a whole  bunch of free memory in the  16-bit
USER and  GDI heaps  from which the  free system resources  are calculated?
No!  In fact,  many new items were  added to  USER's DGROUP segment.  If
anything,  the free system resources  should  have gone  down or  stayed  about
the  same in Windows  95.

So what's  the  story?  As I describe in  Chapter 4,  during the Windows  95
startup sequence, the Explorer causes the desktop window to calculate  correct,
Windows  3.1-like  values  for  the  free  system resources.  All  future  calls  to
GetFreeSystemResources  are then biased  by these  initial  values.  Thus, when
the Explorer  says that  there's 95 percent  of the system resources  available,  it
means  95 percent of the resources  after  the Explorer  and  other  programs
have  started.  This change  in the way free system resources  are calculated  is
a  blatant  attempt  to make Windows  95  look  better  than Windows  3.1  in
the eyes of the nontechnical  user.

Win 16 isn't dead
Although  Microsoft  is strongly  pushing everybody to  move  to Win32,  much
of the  underlying  support  for the Win32  APIs is in  16-bit code.  That's  no
secret and  not worth  bringing  up again.  However,  Microsoft  isn't making
much noise  about  all the  new APl functions  that  were  added to  the  16-bit
DLLs.  In many cases,  these  functions  are  16-bit equivalents  to  documented
Win32  APIs.  I'm talking  about  useful  functions  like  CreateDirectory  and
GetPrivateProfileSection.  In some cases,  these functions  were  silently  added
to  the  16-bit WINDOWS.H  without  fanfare.  In other cases,  the  functions
are  exported  from the  16-bit  DLL,  but no prototype  is given in the  appro-
priate  .H file.  In these cases,  the Win32  documentation  and  some common
sense can  usually get you  through.
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If Microsoft  isn't publicizing  these  16-bit additions, just who's supposed to
be using them?  If everyone should be writing Win32 code, why is Microsoft
adding new Win16 APIs? It certainly looks like Microsoft  knows that Win16
will continue to have a fairly long life even after Windows  95  ships. Yet it's
telling developers that Win16  is a dead end and that Win32  is the only way to
go. Personally,  I agree that users should focus on Win32  programming if possi-
ble.  But trying to force them toward Win32 programming in this manner
seems  like a bad way to go.

SUMMARY

Windows  95 is most definitely  its own operating system. While a large part  of
Windows  95's code is derived  from the Windows  3.1  code base, Windows  95's
16-bit code has  been reworked  to remove many  16-bit restrictions as well as to
handle  the  demands  of Win32  multithreading.  Windows  95  is not  Win32s,
either.  Windows  95 has threads  and multiple address  spaces and is much more
architecturally  sound than Win32s.  Nor is Windows  95  an NT Lite. Windows
95's code is optimized for performance  and minimal memory consumption  on
the Intel X86  CPUs.  NT's focus is on portability  and robustness.  Although the
Windows  95  and  NT  architectures  differ  by quite  a  bit in  some key areas,
they're  both equally important in Microsoft's  operating  system strategy - - and
they'll  continue to be important  for several years to come.
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LES 

MODULES 

PROCESSES  AND

THREADS

M
ost people have a favorite color.  Call me sick, but I have a
favorite  data  structure.  Actually,  to  be more precise, I have

a favorite collection of three tightly connected data  structures that
make up the very core of ring 3 Windows  95. The structures I'm
referring to are the module, the process,  and the thread.  When
these structures are taken as a whole, it's hard to find any signifi-
cant Windows API function that doesn't come into contact with
them.  Don't believe me? Take the ShowScrollBar  function. The
first parameter  is the HWND of the window with the scrollbar.
Every HWND is associated  with a specific message queue. And,
as you'll see later, in Windows  95, every message queue is associ-
ated with a thread. Thus, at some point during the ShowScrollBar
code, the information in a thread data structure will be needed.

In this chapter,  we'll  be going over the core data  structures
of modules,  threads,  and processes.  As we look at these  struc-
tures,  we'll often encounter  auxiliary  data  structures  that  bear
further  investigation.  For example,  each process  contains a
pointer to  a handle table  (much like the handle table  in a DOS
Program  Segment Prefix  [PSP]). While  looking  at  handle tables,
we'll come across  the all-important KERNEL 32 object.  Likewise,
when looking at threads,  it's hard to ignore the presence of the
Thread Information  Block (TIB). The TIB turns  out to play a vital
part in structured exception handling.
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This chapter is just brimming with information:  Besides describing the
three  key data  structures,  I also throw in pseudocode  for various Win32
functions  that  directly relate to  the data  structures.  This will give you an
opportunity to  see these data  structures  in action,  as well as to  see how
KERNEL32  deals with issues like thread synchronization. As a final bonus,
I provide a discussion of the WIN32WLK program at the end of this chapter.
WIN32WLK, which is a program I wrote to help me study the key data
structures  in a live situation,  allows you to easily browse through all the
processes,  threads, and modules in the system and examine the individual
data fields. Plus, wherever reasonable,  WIN32WLK also lets you follow
references.  For instance, a thread database contains a pointer to its owning
process.  Double-clicking  on that field updates  the display to show the
fields of the owning process database.

If you're a Windows 3.x programmer,  you're probably already familiar
with the concepts  of modules and tasks.  In Win32,  the concept of a task
has been broken up into two components, the process and the thread. Other
than that, the concepts  of Win16 and Win32 modules and tasks/processes
seem very similar on the surface. Under the hood, though, they're quite dif-
ferent.  A Win32 module database  has no resemblance to a Win16 module
database,  and a Win16 task structure doesn't look anything like a Win32
thread or process data structure.

An interesting part of the Windows 95 architecture not found in Windows
NT is the "mirroring"  of information on both sides of the Win16/Win32 fence.
In Windows 95, every program that starts up (be it 16- or 32-bit) shows up as
both a Win16 task and a Win32 process. That's right, you can walk the task
list with the Win16 TOOLHELP. DLL and see Win32 programs in the list.
Likewise, you can walk the process list with the Win32 TOOLHLP32  func-
tions and see Win16 programs in the list. Besides the task/process mirroring,
Windows  95 also maintains Win16 module information for every EXE or
DLL loaded, regardless of whether it's 16- or 32-bit. Unfortunately, the Win16
TOOLHELP. DLL is unable to  "see"  the Win16  module  databases that
Windows 95 creates for Win32 modules.  However, the SHOW16.EXE pro-
gram in Chapter 7 is able to find them. While this chapter and WIN32WLK
concentrate on the Win32 side of things,  Chapter  7 and SHOW16.EXE give
the perspective from the Win16 side.

Before plunging into the details of modules,  processes, and threads, I'm
obligated  to point out that this information isn't sanctioned  by Microsoft.
Microsoft  would prefer that you not embed information about these data
structures  in your own code. Their solution for applications  that simply
must deal with modules,  threads,  and processes is the TOOLHELP32 API
defined  in TLHELP32.H.
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The TOOLHELP32 functions provide limited access to certain fields of
information within the module, thread,  and process data structures that
Microsoft  has deemed it "safe" for you to know. It's important to stress that
the access is read-only access. As is often the case, what Microsoft  deems to
be "safe" is sufficiently less than what system-level programmers like me
need to know. For example, TOOLHELP32  provides no way to enumerate
through a processes handle table. If you need that level of detail, you'll have
to go in and get the information directly, as the WIN32LWLK programs
does. Still, if it's at all possible for you to use TOOLHELP32 instead of
grabbing the data  directly,  do so.  Remember, partying on system data
structures  is something that should be left to trained chimpanzees  (urn.. .
I mean professionals!).

WIN32  MODULES

As in Win16, a Win32 module represents the code, data,  and resources for
an EXE or DLL that's  been loaded by the Win32 loader. Thus, every module
in memory directly correlates to a file somewhere on disk. An EXE or DLL
by itself isn't a module.  Rather, the loader reads the information from a file
into memory and creates the module from that information.  One of the nice
features of Win32 Portable Executable (PE) files is that loading them into
memory is relatively simple. The loader creates a module by using memory
mapped  files to map selected regions of the PE file into linear memory.
(Important  point:  Despite popular belief, the loader doesn't simply map the
entire PE file into memory in one big chunk.) The operating system keeps all
the top-level information about a loaded module in a structure that I call a
module database. Chapter  8 describes the PE header and the module data-
base in great detail.

When referring to loaded modules, applications use HMODULEs (handles
to modules). In Win16, an HMODULE is just the global heap handle of the
segment containing  a  16-bit module  database.  (Chapter  7 describes the
Win16 modules in detail.) In Win32, there are no segments (at least not that
the program knows about),  so some other way of referring to a loaded mod-
ule is needed. The scheme that Microsoft uses is to make an HMODULE one
and the same as the starting linear address in memory where the Win32 loader
memory mapped the PE file. For example, most EXE programs are loaded at
address  0x400000 (4MB) by the Win32 loader,  so their HMODULE is
0x400000.  Yes, this does mean that multiple EXEs can have the same
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HMODULE  when  running  at the  same time.  This  situation  isn't  a problem,
however,  because Windows  95 and NT maintain  separate address spaces for
each process.  A Win32 HMODULE is valid only in the process context in
which the module is loaded.  (Chapter 5 will discuss process contexts in detail.)

A module database falls very near the beginning of where the EXE or DLL
was loaded into memory, and contains information  such as where the code and
data  sections  in the file were  loaded into memory. The code and data  in a
module are more than just what  a compiler generates from your program
code.  Other data areas in the module are the imports table, the exports table,
and the resource directory.  The imports table  (usually the .idata section) tells
the loader  not only which DLLs the module needs to  load,  but also which
individual  functions should be imported.  The exports  table is the inverse of
the imports table,  and tells the operating system the addresses  (and possibly
the names)  of the functions that  the module  exports.  The resource section
contains  a directory-like  hierarchy that the system uses to quickly find where a
specific resource can be found in memory. The module database contains the
information  for finding these tables,  as well as the required version  of the
operating system, whether  it's  a console mode application,  and  so forth.

Putting on our eye shields and firing up the acetylene torches,  let's cut into
the module database and see what Microsoft is trying to hide from us. Surprise,
surprise!  The format of a module database  turns out to  be documented,  and
right  under our  nose.

In Win32, a module database  is nothing more than the PE header from an
EXE or DLL. Looking in WINNT. H, you'll  find the IMAGE_NT_HEADERS
structure, which  is composed  of a DWORD  and two  substructures.  The
information  in an IMAGE_NT_HEADERS  struct is exactly what Windows
95  uses  internally  to  find the code, data,  and resources  in a loaded EXE or
DLL file.

While I could spill out the details of every field in an IMAGE_NT_HEADERS
struct for  several  pages, I'm not going to.  Why not?  Because the details of
the IMAGE_NT_HEADERS struct and PE files are sufficiently important to
warrant  their own chapter.  (If you've already read the table of contents  and
decided to  skip over Chapter  8, the PE format chapter,  you might think again.
I didn't include that chapter simply because I like dissecting file formats.)

The Win32  philosophy dictates  that  each process  has  its  own list of
modules.  If a  process  hasn't  implicitly  linked to  DLL or  loaded  the  DLL
via  the  LoadLibrary,  then the process  is unable to  see the DLL module  in
memory,  even if another  process  has  loaded it.  This is quite  a difference
from Winl6,  where  a  loaded  module  is visible  to  all  tasks,  even if they
don't  have any references  to  the  DLL.  Although  the  idea  of each Win32
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process  having  its  own list  of modules  is good  in terms  of security  and
robustness,  it  isn't  practical  from the  standpoint  of attempting  to  save
space with  shared code and resources.  After all,  if you have three instances
of WINHELP  running,  the WINHELP  code  shouldn't  be loaded  three
times,  right?

KERNEL32  is faced with a tough choice.  From the application's  perspec-
tive, each process is supposed to have its own module list. From KERNEL32's
point of view, it's easier to share code and data  by maintaining a single global
list of modules  (like Win16  does). Whenever a new process starts up, or a new
DLL is requested to be loaded, KERNEL32 can quickly check the single global
list and see if the EXE or DLL has already been loaded. If so, KERNEL32 can
simply implement the module's reference count.  If not, KERNEL32 needs to
create a new module in memory.

Two data  structures provide the solution that KERNEL32 uses to maintain
a global list of modules while making it appear that each process has its own
module  list. The first data  structure,  the IMTE (Internal Module Table Entry),
is used by the KERNEL32 code that needs to treat the module list as a global
list. The other data structure,  the MODREF, is used by the KERNEL32 code
that  deals  with  each process  having  its  own  module  list.  MODREFs  are
discussed  in  "The MODREF structure"  section a bit later in the chapter.

IMTEs  (Internal  Module  Table  Entries  [?])
As shown  in Figure 3-1,  the global KERNEL32  module  list is really nothing
more than an array  of pointers  to IMTEs.  In the pseudocode  that comes later
in the chapter, I've given the name pModuleTableArray to this array of pointers
to  IMTEs.  The  block  of memory holding  the pointer  array  is allocated  from
the KERNEL32 heap,  which is a regular  HeapAlloc  style heap  (as I describe
in  Chapter  5).  As new modules  are  loaded  or  unloaded  from the  memory,
KERNEL32  dynamically  grows  or  shrinks  the  block of memory  holding
pModuleTableArray  via  the  HeapReAlloc  function.  When  KERNEL32
creates  a new IMTE,  it looks  for a  free element in pModuleTableArray.  If
KERNEL32 finds one, it sticks the pointer  to the IMTE into that free element.
The index of that array element becomes important later, when we look at
MODREFs.  The first element in pModuleTableArray  (array index 0) is for
the KERNEL32.DLL  module.
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 Figure  3-1
The  global  module  list  is  an  array  of  pointers  to  IMTEs.

To quickly recap,  each nonzero element in the pModuleTableArray  rep-
resents  a loaded EXE or DLL in the system. Each of these nonzero elements
is a pointer to an IMTE (or a PIMTE, as I'll use throughout  the pseudocode).
While  the format of an actual  module database  is documented  (it's just an
IMAGE_NT_HEADERS  struct),  the format of an IMTE isn't  (at least not
until now).

The IMTE structure
The MODULE32.H  file from the WIN32WLK sources contains a C-style
definition for an IMTE struct.  Each IMTE has the following fields:

00h  DWORD  un1
This  field appears to hold some sort  of flags.
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04h  PIMAGE_NT_HEADERS  pNTHdr
This pointer points to an IMAGE_NT_HEADERS structure in memory.
However, the structure it points to is simply a copy of the IMAGE_NT_
HEADERS structure that appears just above the module's base address in
memory. The memory for the structure pointed to  by this field is allocated
from the KERNEL32  heap,  so it's  always visible  in the contexts  of all
processes. In contrast,  the primary IMAGE_NT_HEADERS that's located
near the module's  base address  may be below 2GB, so it's accessible only
to processes  that  have loaded that module.  By making a copy of the
IMAGE_NT_HEADERS that's  accessible in all contexts,  KERNEL32 can
easily locate the information for any loaded module without calling up into
ring 0 to switch memory contexts.
08h    DWORD                     un2

The meaning of this WORD is unknown.  It appears to always be set to -1.
0Ch  PSTR  pszFileName
The pszFileName field contains a pointer to the complete filename for the EXE
or DLL the module was created from. For example, the string C:\WINDOWS\
SYSTEM\KERNEL32.DLL is  returned by the GetModuleFileName function.
The GetModuleHandle function compares this string to the search string
passed to it as a parameter.  The memory holding this filename string is
allocated  out of the KERNEL32 heap.
10h  PSTR  pszModName
This PSTR points to a string with the module's module name. In Win32, a
module name is just the name of the EXE or DLL with any path information
stripped off. For example, the module name for the C:\WINDOWS\CALC.EXE
program  when loaded into memory is CALC.EXE. The GetModuleHandle
function  also compares this string to its parameter  string. This pszModName
PSTR actually points inside the pszFileName string (see offset 0Ch). For
instance,  in the previous example,  it would point to the CALC.EXE after
the second \.
14h  WORD  cbFileName
This WORD is the number of characters in the pszFileName string from offset
0Ch. It's used inside GetModuleHandle to quickly see if the pszFileName
string could match the input search string.
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16h  WORD  cbModName
This WORD is the number of characters in the pszModName string from
offset  10h. It's also used inside GetModuleHandle to quickly see if the
pszFileName  string could match the input search string.

18h  DWORD  un3
The meaning of this DWORD is unknown.
1 Ch  DWORD  cSections
This field is the number of sections (.text, .idata, and so on) that this module
contains.  This value can also be extracted from the IMAGE_NT_HEADERS
structure pointed to by offset 04h (described previously in this list of fields).

20h  DWORD  un5
The meaning  of this  field is unknown.  It's  usually  0,  but in one instance
(COMCTL32.DLL),  it contains a pointer to a block in the KERNEL32 heap.
24h  DWORD  baseAddress/Module  Handle

The baseAddress  DWORD contains the base address where the module
was loaded.  In Win32, the base address for a module is the same as its
HMODULE and HINSTANCE, so this field can also be interpreted as the
module's HMODULE or HINSTANCE. For EXEs, the base address is
almost  always 0x400000.  For system DLLs, the base address is above 2GB,
in the shared memory region.  See Chapter  8 for a detailed  description  on
base addresses and locating the module database  from them.

28h  WORD  hModule16
This WORD contains  a selector whose linear address points to a Win16 NE
module  database.  (The format  of an NE module database  is described  in
Chapter  7.) The NE module  database for Win32  applications contains
important  information  about where the resources  can be found in the
Win32  module in memory.  This  is most likely necessary  because the
resource manipulation code is in the Win16 KRNL386  and USER.EXE.
It's important to note that the hModule16 selector was not allocated via
Win16  GlobalAlloc functions,  so this selector won't appear like a Win16
global  memory handle.  For this and other reasons, the Win16 TOOLHELP
is unable to see the NE modules created to mirror each Win32 module.
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The GetModuleUsage function is obsolete. It is provided to simplify porting
of 16-bit Windows-based applications. Each Win32-based application runs in
its own address space.

Which  are you gonna  believe? The documentation,  or what  KERNEL32
really does?
2Ch  DWORD  un7

The meaning of this DWORD  is unknown.  However,  it typically contains  a
valid  pointer  to a KERNEL32  heap  block.
30h  PSTR  pszFileName2

This PSTR (and the following  three fields)  are somewhat of a mystery.  They
appear to  serve the same function as do  offsets  0Ch through  16h.  This  field
(pszFileName2)  points  to a different copy of the complete  path  for the asso-
ciated  EXE or  DLL. The strings pointed to  by pszFileName  (offset  0Ch)  and
pszFileName2  appear to  always be the same.
34h  WORD  cbFileName2

This  field contains  the length  of the string pointed  to  by pszFileName2.  It
should  always have the same value as cbFileName  (offset  14h).
36h  DWORD  pszModName2

This field points to the module name (that  is, the  base filename)  portion  of
the pszFileName2  string.  This field is the equivalent  of the pszModName
field  (offset  10h).
3Ah  WORD  cbModName2

This  field contains  the length  of the string pointed  to  by pszModName2.  It
should always have the same value as cbModName  (offset  16h).

2Ah  WORD  cUsage

This field contains the reference for the module count. For instance, the
module database for CALC.EXE would contain the value 3 if there were
three copies running.

If there were a GetModuleUsage  function  in Win32,  it almost certainly
would  report  the value of this field.  However,  here's what  the Win32  SDK
documentation  has  to say about  this  topic:



M O D R E F

78

The fact that  an IMTE maintains two separate  pointers to the module's
filename  and module  name is strange.  I'm not sure what  purpose this serves.
Still, there is a bit of good news in the area of module names:  In Win16, an
EXE or DLL's module name is the first entry in the resident  names table,
and is set in the linker  .DEF file. Even here, though,  there's  a problem
because  the Win16 loader assumes that the module name is the same as the
base filename when  determining if a module is already loaded.  An EXE or
DLL whose module  name differs from its EXE or DLL filename can screw
up the Win16 loader and cause strange  problems such as module name
space collisions,  in which two or more completely unrelated DLLs have the
same module name.  For example, if you have two DLLs with the  same
name,  but  in different  directories,  the Win16 loader will load only one of
them.  An attempt to  load the other DLL causes the loader to merely  incre-
ment  the reference  count  of the  first module.  Bad move!!!  Since the Win l6
loader  can't  distinguish  between like-named DLLs in different  directories,
this situation can cause strange crashes --  most often on a poor, unsuspecting
end-user's  machine.

Luckily,  in Win32, the module name problem is mostly gone.  A Win16
module  name that  you would pass to GetModuleHandle  is one and the
same as the EXE or DLL's filename.  Thus, program A can load FOO.DLL
from the \BAR directory,  while program  B can load its FOO.DLL from the
\BAZ directory.

One situation Microsoft hasn't addressed, however, occurs when a program
attempts to use two different DLLs with the same name at the same time. For
example,  program A implicitly  links to  FOO.DLL, and the loader finds
FOO.DLL in the kBAR directory. Later, the program does a LoadLibrary on
C:\BAZ\FOO.DLL. Does C:\BAZ\FOO.DLL get loaded, or does the reference
count for C:\BAR\FOO.DLL go up? Microsoft's documentation doesn't say.
However,  in discussions I've had with the coder of the Windows 95 loader, he
claims that two distinct copies of FOO.DLL are loaded in memory. I've seen
this behavior myself while browsing the module list in SoftIce/W.

The MODREF structure
Now that  you've  seen how KERNEL32  maintains  a global  array of modules
(pointers  to IMTEs), we can bring the rest of the puzzle together.  Earlier,  I
described  how each process  has its own list of modules and is unaware  of
other  modules  loaded by other  processes. The glue that  connects the per-
process  module lists to the global  module table is the MODREF structure.
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The per-process module list is just a linked list of MODREF structures. The
MODREF list for each process (with the exception of the strange KERNEL32
process) contains  a MODREF for the process's EXE, as well as MODREFs
for each Win32 DLL used by the process. The memory for each MODREF
comes from the KERNEL32 heap, which is in the shared memory area above
2GB. Thus, even though MODREFs enforce the notion that the module list
is per-process, the MODREF lists themselves are actually globally accessible.
The fact that the WIN32WLK program can walk the module list for each
process is proof of this.

The head of the MODREF list is kept in the process database  (which
we'll discuss later).  Each MODREF structure contains  an index into the
pModuleTableArray  table.  Figure 3-2 shows the relationship  between
MODREFs and IMTEs.

 Figure  3-2
 Per-process  MODREFs and  the global IMTE table.

The MODULE32.H file from the WIN32WLK source includes a C
structure  definition  for the known fields of a MODREF  structure.  The
following  fields are known:

00h  PMODREF  pNextModRef
This pointer points to the next MODREF structure in the current process's list
of MODREFs. The end of the list is indicated by a NULL pointer in this field.
Enumerating  the list of modules that a process knows about is as simple as
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getting the head MODREF node from the process database and then walking
through  the list. The WIN32WLK program on the disk that accompanies this
book shows an example of how to do this.
1 0h  WORD  mteIndex

This WORD is a zero-based index into the global array of pointers  to
IMTEs. (In the pseudocode in this chapter,  this array is referred to as
pModuleTableArray.)

18h  PVOID  ppdb
This pointer is a PPROCESS_DATABASE (a pointer to a PROCESS_
DATABASE struct). It provides a  "back link"  from a MODREF to the
process that owns the MODREE We'll look at PROCESS_DATABASEs
later  in the chapter.

Since Windows 95 has to make it look like each process has its own
unique module list, the module-related  APIs like GetModuleHandle  don't
immediately start with the global module table (pModuleTableArray). Instead,
they work only with those global module table entries that are referenced in
the process's MODREF list. For example, the GetProcAddress function looks
only at modules that are in the MODREF list of the current process. Even if
the module was already loaded by another process, GetProcAddress won't
attempt to locate the function in that module unless that module is also in the
MODREF list of the current process.

MODULE-RELATED APl  FUNCTIONS

Now that you've seen how KERNEL32 manages a global list of loaded
modules while still keeping a per-process module list, let's look at a few
Win32  functions that involve module databases.

GetProcAddress and IGetProcAddress
GetProcAddress  is a key function in Win32 programming because it's the
method by which you dynamically  hook up to DLLs loaded on the fly
(as opposed to DLLs linked-to implicitly).  Given a module identifier  (an
HMODULE)  and a function  identifier  (either its name or export ordinal),
GetProcAddress returns the entry point address for that function. To do this,



GetProcAddress  must first locate  the specified  module database in memory
and then walk through  the exported function table to  find the address.

The actual  GetProcAddress  code  is nothing more  than  a parameter  vali-
dation layer.  It verifies  that  the lpszProc parameter  is either a string  or  an
import  ordinal.  The code  distinguishes  between  the two  types of function
specifiers  by looking at the high WORD  of the lpszProc parameter.  If the
high word  is 0,  then  the low WORD  is the export  ordinal  and  no  further
validation  can  be done.  If the high WORD  is nonzero,  the lpszProc is
assumed  to  be a PSTR and  the code scans  the string,  looking for a NULL
terminator.  If the PSTR is bad,  an exception  occurs  during this  scanning,
and  a structured  exception  handler  catches the  exception  and  returns  0
(failure)  to  the caller.  (We'll  look  at structured exception handling later  in
this chapter,  in the discussion  of threads.)  If the execution  successfully
makes  it through  the tests,  control  jumps  to  the IGetProcAddress  routine,
which  is where  the real  meat  of the  GetProcAddress  code  resides.

Pseudocode for GetProcAddress

/ /  Parameters:

//  HMODULE  hModule

//  LPCSTR  lpszProc

Set  up  structured  exception  handling  frame.

if  (  lpszProc  >  0x10000  )  //  Values  <  0x10000  contain  ordinals  in  the

{  //  low  WORD,  so  they  aren't  valid  LPSTRs.

AL  :  0

EDI  =  lpszProc

REPNE  SCASB

//  Touch  all  the  bytes  in  the  lpszProc  routine

//  up  to  a  NULL.  If  it  faults,  the  exception

//  handler  will  catch  it  and  return  FALSE.

Remove  structured  exception  handling  frame.

goto  IGetProcAddress

IGetProcAddress  directs  the steps of finding  an exported  function at a
high level, leaving the grunge work  to  two  lower-level  functions I'll  describe
next.  IGetProcAddress  first does some thread  synchronization  to make sure
the current  thread  won't get interrupted  at an inopportune  moment.  Next,
the  routine  calls  MRFromHLib  to  get  back  a  pointer  to  a  MODREE
MRFromHLib  is  a  KERNEL32  internal  routine  that  scans  through  the

81
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process's  list of MODREFs, looking for a module with an HMODULE
matching what was passed to MRFromHLib.  IGetProcAddress then uses the
module table index in the MODREF structure to look up the IMTE of the
associated  module.

Phase two of IGetProcAddress  is where KERNEL32 looks up the
desired  function address.  Since IGetProcAddress can be passed either an
export ordinal  (in the low WORD) or a string pointer, it determines which
form was passed and calls the appropriate lower-level routine to look up
the  function.  If an export  ordinal  was passed,  IGetProcAddress calls
x_FindAddressFromExportOrdinal;  if a string pointer was passed, it calls
x_FindAddressFromExportName.  In either case, if the lower-level functions
don't find the specified function, IGetProcAddress spits out an error diagnostic
and returns  0.

Up until the beta 3 of Windows 95, IGetProcAddress didn't make any
special exceptions to looking up functions in a module.  In beta 3 (a.k.a. the
"Windows Preview Program" release), IGetProcAddress acquired a truly
distasteful  snippet of code. The new code can't be construed as anything
other than anti-hacking code.

Specifically, IGetProcAddress won't  allow you to obtain  a function's
address by its export ordinal if and only if you're looking for a KERNEL32.DLL
function. Why would Microsoft do such a ghastly thing? In KERNEL32.DLL
there are a good many undocumented functions that are exported by ordinal
only (see Appendix A for some of their names). Since these function names
aren't in KERNEL32.DLL, they won't be in the KERNEL32 import library.
Thus, applications can't call these supposedly Microsoft-reserved functions
directly. In  Unauthorized  Windows  95, Schulman wrote several programs
that called undocumented KERNEL32 functions --  in later builds of
Windows 95, those programs broke. Was this breakage intentional  on
Microsoft's  part? You decide for yourself.

Since beta 3, the direct approach to calling undocumented KERNEL32
functions  no longer works.  However,  there are lots of smart programmers
out there.  They know that you can get a function's  address with
GetProcAddress  and call it through the returned function pointer. If you
know the export ordinal of the undocumented function,  you're set, right?
Nope! The horrible section of code in IGetProcAddress  blocks attempts  to
use undocumented  KERNEL32 functions  by disallowing GetProcAddress
to be used with a KERNEL32.DLL export ordinal.  Thus, even if Schulman
were to try to  use GetProcAddress  to fix his broken programs,  he wouldn't
get far. The plot thickens...
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Personally,  I think this munged-up  IGetProcAddress  is childish.  Any
Windows  95  system programmers  worth  their salt could write  their own
version of GetProcAddress,  given the information on the PE module format
in Chapter  8. An alternative  approach I took was to  use a  .DEF file with  the
Visual  C++ LIB.EXE to create  a KERNEL32 import  library with the undocu-
mented  functions.  The WIN32WLK  program later in the chapter  uses this
import  library.  Appendix  A describes  my Windows  95  undocumented
KERNEL32  functions import  library.

Let's  return  to  a discussion  of the rational  code  in IGetProcAddress.
After successfully finding  the specified function  address,  you'd  think that
IGetProcAddress  would  be done.  Not  so fast.  For some odd reason,  when  a
process  is loaded for debugging  under Windows  95, calls to  system DLLs
(those DLLs loaded  above 2GB)  first go through  special code stubs that the
loader  builds  on the fly. The purpose  of these  stubs is to  prevent  application
debuggers  from stepping into ring 3 system DLLs.  For functions  that  are
implicitly  linked to, the loader handles everything behind the scenes. However,
a program that calls GetProcAddress and then calls through the pointer would
ordinarily  bypass these stubs.  Therefore,  GetProcAddress checks to see if the
program is being debugged; if the address that IGetProcAddress would ordi-
narily return is above 2GB, IGetProcAddress looks up the corresponding  stub
address and returns that address instead.

The  final  bit of IGetProcAddress  checks  to  see if the specified function
was  found.  If not,  it  sets  the  error  value  that  GetLastError  returns  to
ERROR_PROC_NOT_FOUND.  Finally, IGetProcAddress leaves the critical
section  that  it entered at the  beginning  of the function.

Pseudocode  for IGetProcAddress

//  Parameters:

//  HMODULE  hModule

//  LPCSTR  lpszProc

//  Locals:

//  PTHREAD  DATABASE

//  FARPROC

//  PMODREF

//  PIMTE

ptdb

pfnProc  //

pModRef

pimte

Return  value

pfnProc  =  O;  //  Initial  return  value

//  Synchronization  stuff

_EnterSysLevel(  ppCurrentProcessId  ->crst  ):
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//  Get  a  pointer  to  the  MODREF  that  represents  the  module

//  specified  by  the  hModule  param,  MRFromHLib()  just  scans

//  through  the  MODREF  list,  looking  for  a  MODULE  whose  HMODULE

//  matches  the  HMODULE  passed  in.

pModRef  =  MRFromHLib(  hModule  );

if  (  !pModRef  )  //  If  the  MODREF  wasn't  found,  bail  out.
{

InternalSetLastError(  ERROR_INVALID_HANDLE  );

_DebugOut(  SLE_MINORERROR,  "GetProcAddress:  %x  not  a Module  handle",

hModule  );

if  (  x_LoaderDiagnosticsLevel  >  2  )

dprintf("On  ..\peldr.c  Failure  Path  line  %d\n",  linenumber);

goto  done; }

//  Get  a  pointer  to  the  IMTE  fop the  specified  module  by  looking

//  it  up  in  the  pModuleTableArray.

pimte  =  pModuleTableArray[  pModRef->mteIndex  ];

if  (  lpszProc  <  0x10000  )  //  Looking  for  a  specified  export  ordinal.

if  (  hModule  ==  hModuleKERNEL32  )

{
InternalSetLastError(  ERROR_NOT_SUPPORTED ) ;

_DebugOut(  "GetProcAddress:  kernel32  by  id  not  supported",

SLE_MINORERROR  );

if  (  x_LoaderDiagnosticsLevel  >  2  )

dprintf(  "On  ..\peldr.c  Failure  Path  line  %d\n",  line  hum  );

goto  done;
}

//  Scan  through  the  module  database,  looking  for  the  function

//  with  the  specified  export  ordinal.

pfnProc  =  x_FindAddressFromExportOrdinal(  pimte->pNTHdr,  lpszProc  );

if  (  !pfnProc  )  //  Function  not  found?  Spit  out  an  error  message.

{
pModRef  =  MRFromHLib(  hModule,  lpszProc  )
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}

}

else
{

_DebugOut( SLE_MINORERROR,

"GetProcAddress(%s,  %d) not found"

pModuleTableArray[pModRef->mteIndex]->pszModName,

lpszProc );

//  Looking  for  a  specified  function  name.

//  Scan  through  the  module  database,  looking  for  the  function

//  with  the  specified  name.

pfnProc  =  x_FindAddressFromExportName(  pimt e->pNTHdr,  O,  lpszProc  );

if  (  !pfnProc  )  //  Function  not  found?  Spit  out  an  error  message.

{
pModRef  =  MRFromHLib(  hModule,  lpszProc  )

_DebugOut( SLE_MINORERROR,

"GetProcAddress(%s,  %s)  not  found"

pModuleTableArray[pModRef ->mteIndex] ->pszModName,

lpszProc  );

//  If  the  function  is  in  a  shared,  system  DLL  (i.e.,  it's  above  2GB),

//  *AND*  if  the  process  is  being  debugged,  change  the  returned

//  function  address  to  point  to  the  bizarre  pre  API  stubs  that

//  KERNEL32  sets  up.  These  stubs  sit  between  the  call  to  the

//  API  and  the  actual  API  code.

if  (  (pfnProc  >=  0x80000000)  &&  (pfnProc  !=  &DebugBreak)  )

if  (  ptdb  ->pProcess2  ->WaitEventList

&&  !ppCurrentTDBX  ->MustCompleteCount  )
{

pfnProc  =  DEBCreateDll(  ppCurrentTDBX  ->TopOfStack,  pfnProc  )

//  If  the  function  is  going  to  return  a  failure,  set  the  GetLastError  code.

if  (  pfnProc  ==  0  )

InternalSetLastError(  ERROR  PROC  NOT  FOUND  );

done:
// Undo the synchronization stuff.
LeaveSysLevel( ppCurrentProcessId ->crst );

return  ESI;
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x_FindAddressFromExportOrdinal
The x_FindAddressFromExportOrdinal  function  (my name, not Microsoft's)
is  one  of the  core  routines  of KERNEL32.  Not  only  is  it  called  from
GetProcAddress, but it's also called by the PE loader when fixing up calls to
functions in implicitly loaded DLLs. Simply put, this routine is the one-stop
shop for looking up exported  function addresses  in KERNEL32.DLL.

The  x_FindAddressFromExportOrdinal  function relies  heavily on infor-
mation  found  in the IMAGE_NT_HEADERs and  .edata  section  of the PE
file that  was mapped  into memory to  make the  module.  (Again, I'll stress
that  this is why  Chapter  8 on PE files is very important  reading,  even if you
don't  intend to  directly  work with PE files.)

Although  there's  a fair  amount of code in x_FindAddressFromExport-
Ordinal,  the function  is conceptually  pretty simple.  In the export  table  (the
.edata  section)  of a module,  you'll  find an  array  of RVAs (relative  virtual
addresses)  for  the exported  functions  in the module.  This  array is known  as
the  export address  table.  The first element  in the array contains  the RVA for
export  ordinal  1, the second  element contains the address  for export  ordinal
2,  and  so on.  The  only thing x_FindAddressFromExportOrdinal  should
have  to  do is index into  the array  to get an  RVA, then  add the module's  load
address  to  make  the RVA into a  usable linear  address.  There are two twists
to  the above  scenario,  however.

The first (and unobvious) twist is that  x_FindAddressFromExportOrdinal
needs  to  account  for the ordinal  base.  In PE files, the export  ordinal with
the  lowest  number  is used as a  base  value.  This  allows the export  address
table  to  be smaller than it would  ordinarily  be.  For example,  let's  say a DLL
exports  functions with  ordinal  100 through  109.  In a  simple implementa-
tion,  there would  be  110 entries  in the export  address  table,  but  only the
last  10 would  be used.  To save space in the above scenario,  the linker  sets
the ordinal  base to  100,  so it can create  an export  address  table with  only
10 elements.  When  looking up  an exported  function, x_FindAddressFrom-
ExportOrdinal  has to  remember  to  bias the export  ordinal  value  by the
ordinal  base to  get a true  array  index.

The  other  twist in x_FindAddressFromExportOrdinal  has  to  do with
forwarded  functions.  Forwarded  functions  are explained in more  detail  in
Chapter  8.  For now, it's  sufficient  to know that  a forwarded  function  is a
sort of alias for  an exported  function in another  DLL.  For example,  in
Windows NT,  the HeapAlloc function in KERNEL32.DLL  is forwarded  to
RtlAllocateHeap  in NTDLL.DLL.  The address  that  the export  address  table
contains  for a forwarded  function is always  inside the  .edata  section.  The
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address  isn't  that  of  the  exported  function.  Rather,  the  address  points  to  a
string  such as NTDLL.RTLAllocateHeap.  If x_FindAddressFromExportOrdinal
sees  this  happen,  it  breaks  the  string  into  its  module  name  and  function
name  components  and  calls  GetProcAddress  with  those  values.  In  case
you're  wondering,  yes,  this  does  make  GetProcAddress  recursive  if called

to  search  for  a  forwarded  function.

Pseudocode  for x_FindAddressFromExportOrdinal
/ /  Parameters:
//  PIMAGE_NT_HEADERS  pNTHdr

//  DWORD  ordinal

//  Locals:
/ /  char  szForwardedModule[  MAX  PATH  ]  //  0x260

//  PIMAGE  EXPORT  DIRECTORY  pExpDir;
//  PDWORD  pFunctionArray;

//  DWORD  imagebase;

//  DWORD  retAddr;

//  DWORD  exportDirSize

//  Get  the  size  of  the  export  table  out  of  the  NT  header.

exportDirSize  =
pNTHd r->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].Size

//  If  no  functions  are  exported,  bail  out  immediately.

if  (  exportDirSize  ==  0 ) {

InternalSetLastError(  ERROR_MOD_NOT_FOUND  );

if  (  x_LoaderDiagnosticsLevel  >  2  )

{
dprintf("On  ..\peldr.c  Failure  Path  line  %d\n" line  number  );

return 0;

//  Get  the  address  where  the  module  is  loaded  in  memory

imagebase  =  pNTHdr ->OptionalHeader. ImageBase;

//  Get  a  pointer  to  the  export  table.

pExpDir  =  pNTHdr ->OptionalHeader.
DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]

+  imagebase;

.VirtualAddress
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//  Get  a  pointer  to  the  array  of  exported  function  addresses.

pFunctionArray  =  imagebase  +  pExpDir->AddressOfFunctions

//  If  the  ordinal  requested  is  greater  than  the  number  of  exported

//  functions,  bail  out.  Make  sure  to  take  the  ordinal  base  into  account.

if  (  pExpDir  ->NumberOfFunctions  <=  (ordinal - pExpDir->Base)  )

return  0;

//  Read  RVA  of  the  exported  entry  out  of  the  array  (again,  taking

//  the  ordinal  base  into  account).

retAddr  =  pFunctionArray[  ordinal  pExpDir  ->base  ];

//  Bias  the  RVA  extracted  from  the  table  by  the  image  base  to  convert  the

//  RVA  into  a  usable  linear  address.

if  (  retAddr  )

retAddr  +=  imagebase;

//  See  if  the  found  address  is  within  the  export  directory.  If  so,

//  it's  a  forwarded  DLL,  and  the  address  is  a  pointer  to  the  name

//  of  the  function  that  it's  forwarded  to.

//

//  If  the  address  isn't  within  the  export  directory,  we're  done,  Return

//  the  found  address  to  the  caller.

if  (  (retAddr  <  pExpDir)  ||  (retAddr  >=  (pExpDir  +  exportDirSize)  )

{

PSTR  pszForwardedFunctionName

HMODULE  hForwardedMod;

Copy  the  DLL  name  pointed  at  by  retAddr  into  the  szForwardedModule

local  variable,  stopping  when  a '.' is  reached.  Point

pszForwardedFunctionName  at  the  character  after  the  '.'

hForwardedMod  =  IGetModuleHandleA(  szForwardedModule  )

if  (  !hForwardedMod  )

{

_DebugOut(  SLE_MINORERROR,  "Unable  to  find  forwarded  DLL  %s",

szForwardedModule  );

retAddr  =  O;

goto  done;

}

//  Call  GetProcAddress  to  get  the  real  address  of  the  forwarded

//  function  in  the  DLL  that  contains  it.  Yes,  this  does  make

//  GetProcAddress  recursive  if  it's  a  forwarded  function.

retAddr  =  IGetProcAddress(  hForwardedMod,  pszForwardedFunctionName  );
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if  (  !retAddr  )  //  Oops!  Didn't  find  the  forwarded  function.

_DebugOut(  SLE_MINORERROR,  "Unable  to  find  forwarded  export  %s.%s",

szForwardedModule,  pszForwardedFunctionNa•e);

}

} done:

return  retAddr;

x_FindAddressFromExportName
The  x_FindAddressFromExportName  function  is  a  companion  to  the
x_FindAddressFromExportOrdinal  function.  The  primary  difference
between  the two functions is that x_FindAddressFromExportName starts
with  a function  name rather  than  with  its  import  ordinal.  The  first  part
of the routine  is similar  to the x_FindAddressFromExportName  code
because  both  functions  need  to  set  up  the  same  pointers  to  various
locations  in memory.

The meat of the x_FindAddressFromExportName  code is where it searches
through the array of exported names, looking for a match with lpszProc para-
meter. If the function finds a matching string, the code uses the AddressOf-
NameOrdinals  array to convert the string array index to an export address
table index.  At this point, x_FindAddressFromExportName  could simply go
and look up the RVA of the exported  function and return it to the caller.
However,  doing this would cause it to skip over the special-case code in the
x_FindAddressFromExportOrdinal  function  (that is, the code that handles
the ordinal  base and the debugging stubs). Therefore,  the routine passes the
export  ordinal it found to the x_FindAddressFromExportOrdinal  function to
let it do its thing. Whatever x_FindAddressFromExportOrdinal  returns  is
what  x_FindAddressFromExportName  returns.

To put all this in simpler terms,  a function  address can be looked up either
by name or  by ordinal  value. However,  under the hood, the address always
ends up being located using the export ordinal.  When you pass a string name
to GetProcAddress,  or import a function  by name, KERNEL32 merely injects
an extra  step to convert the string name to its export ordinal.
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Pseudocode for x_FindAddressFromExportNarne

/ /  Parameters:

PIMAGE_NT_HEADERS  pNTHdr

DWORD  hintNameOrdinal

PSTR  lpszProc

//

//

//

//

//

//

//

Local

//

//

//

//

//

S:

PIMAGE  EXPORT  DIRECTORY  pExpDir;

DWORD  imagebase;

PDWORD  pNamesArray;

PWORD  pNameOrdinalsArray;

DWORD  cbProcName

DWORD  numNamesMinusl

DWORD  nameOrdinal

DWORD  curTestingNameOrdinal

if  (  hintNameOrdinal  !=  some  number  ) {  //  ???

CheckDll();

//  If  no  functions  are  exported,  bail  out  immediately.

if ( 0  ==  pNTHdr  ->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].Size  )

{

if (  x_LoaderDiagnosticsLevel  >  2  )

dprintf("On  ..\peldr.c  Failure  Path  line  %d\n",  line  number);

error_return:

InternalSetLastError(  ERROR_MOD_NOT_FOUND  );

if  (  x_LoaderDiagnostiesLevel  >  2  )

dprintf("On  ..\peldr.c  Failure  Path  line  %d\n",  line number);

}

return  0 ;
}

//  Get  the  address  where  the  module  is  loaded  in  memory.

imagebase  =  pNTHdr  ->OptionalHeader. ImageBase;

//  Get  a  pointer  to  the  export  table.

pExpDir  =  pNTHdr  ->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress

+  imagebase;
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//  Get  a  pointer  to  the  array  of  PSTRs  for  the  exported  function  names.

pNamesArray  =  imagebase  +  pExpDir  ->AddressOfNames;

//  Get  a  pointer  to  the  array  that  correlates  names  array  indices

//  to  indices  in  the  export  address  table.

pNameOrdinals  =  imagebase  +  pExpDir->AddressOfNameOrdinals;

//  If  no  names  were  exported,  bail  out.

if  (  pExpDir->NumberOfNames  ==  0  )

{

if  (  x  LoaderDiagnosticsLevel  >  2  )

{

dprintf("On  ..\peldr.c  Failure  Path  line  %d\n",  line  number):

/

return  0;
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//  Calculate  how  many  names  are  exported.

numNamesMinus1  =  pExpDir->NumberOfNames - 1;

curTestingNameOrdinal  =  0;

cbProcname  =  strlen(  lpszProc  )

//  It  appears  that  the  function  can  be  passed  a  "hint"  ordinal

//  that  may  or  may  not  be  the  ordinal  of  the  actual  function

//  we're  looking  for.  Check  to  see  if  the  name  of  the  function  that

//  corresponds  to  the  hint  ordinal  is  the  same  string  as  was  passed

//  in  the  lpszProc  parameter.  If  so,  we  know  the  ordinal,  and  we

//  can  skip  the  linear  search  through  all  the  function  names  that  comes

//  later.

if  (  numNamesMinusl  >=  hintNameOrdinal  )

{

//  Uses  CompareStringA()  with  SystemDefaultLangID  as  the  LCID  to

//  see  if  the  strings  match.

if  (!GlorifiedStringCompare(imageBase  +  pNamesArray[hintNameOrdinal])) {

ordinal  =  hintNameOrdinal;

goto  FoundOrdinal }

if (  numNamesMinusl  <  0  )

goto  error return:
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//  Scan  through  the  array  of  function  names  PSTRs,  looking  for  a

//  string  that  matches  the  passed-in  lpszProc  parameter.

A  nasty  little  piece  of  code  iterates  through  the  entries  in  the

"AddressOfNames"  array.  Each  entry  is  compared  (REP  CMPSB)  with  the

lpszProc  string.

if  a match  is  found

set  nameOrdinal  to  the  index  of  the  matching  string  in  the

AddressOfNames  array

goto  to  FoundOrdinal

if  a match  isn't  found

goto  error  return:

FoundOrdinal:

return  x  FindAddressFromExportOrdinal(

pNTHdr,  pNameOrdinalsArray[nameOrdinal]  +  pExpDir  ->Base

GetModuleFileName  and IGetModuleFileName
The GetModuleFileName function takes an HMODULE as input, and returns
the complete path to the EXE or DLL that the module was created from. The
GetModuleFileNameA  code itself is very small, and is just a parameter valida-
tion stub. After verifying that the lpszPath parameter  (where the file name will
be returned) is valid, GetModuleFileName jumps to IGetModuleFileName.

IGetModuleFileName  would  be simpler if it didn't have to concern
itself with ANSI versus OEM filenames. The SetFileApisToANSI and
SetFileApisToOEM functions in KERNEL32 let the caller specify whether
the filenames should use ANSI characters or OEM characters.  Internally,
Windows  95 stores  all the filenames  in their ANSI form,  and converts
them to and from the OEM character set as needed.  The meat of the
IGetModuleFileName  function is flanked by code that does this conversion.

Aside from the issue of filenames, the core of IGetModuleFileName is
fairly simple. All it needs to do is copy the complete filename from the cor-
rect IMTE into the output  buffer. However,  because each process thinks it
has its own module list, IGetModuleFileName can't simply go search the
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pModuleTableArray to find the module it's looking for.  Instead, IGetModule-
FileName uses the MRFromHLib function to find the MODREF for the
module.  (I briefly described  the MRFromHLib  function  earlier in the dis-
cussion  of GetProcAddress.)  With the MODREF  for the desired module,
IGetModuleFileName  uses the MODREF's  mteIndex field to  index into the
pModuleTableArray  and get the IMTE pointer.  Once  it has the IMTE
pointer,  all that remains is to copy the string pointed to  by the IMTE's
pszFileName field into the buffer passed  to  GetModuleFileName.

Pseudocode  for GetModuleFileNameA

/ /  Parameters:
//  HMODULE  hinstModule

//  LPTSTR  lpszPath

//  DWORD  cchPath

Set  up  structured  exception  handling  frame

*lpszPath  +=  0; //  Harmlessly  write  to  lpszPath.  If  a  fault  occurs,

//  the  exception  handler  will  catch  us  and  return

//  failure.

Remove  structured  exception  handling  frame

goto  IGetModuleFileNameA

Pseudocode  for IGetModuleFileNameA

//  Parameters:

//  HMODULE  hinstModule

//  LPTSTR  lpszPath

//  DWORD  cchPath

//  Locals:

/ /  DWORD  fOem

//  DWORD  retValue

//  PMODREF  pModRef

retValue  =  0;

EnterSysLevel(  ppCurrentProcessId  ->crst  );

//  Deal  with  OEM  stuff  (if  SetFileApisToOEM  is  somehow  involved).

f O e m =  x_AreFileApisOEM():
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if  (  fOem  )

{

//  Calls  k32CharToOemA  and  some  other  things.

SomeFunction(  lpszPath,  1  );

if  (  cchPath  )  //  Null  out  the  return  path  string.

*lpszPath  =  0;

if  (  hInstModule  ==  0  )  //  The  HMODULE  was  0.  We  want  the  EXE's  name.

{

pModRef  =  ppCurrentProcessId  ->pExeMODREF }

else  //  We  were  passed  a  specific  HMODULE  to  look  for.

//  Scan  through  the  process's  MODREF  list,  looking  for  a  module

//  with  an  HMODULE  that  matches  the  hInstModule  parameter.

pModRef  =  MRFromHLib(  hInstModule  ):

if  (  pModRef  ==  0  )  //  Oops!  Didn't  find  the  module.

{

InternalSetLastError(  ERROR  INVALID_PARAMETER  );

if  (  x_LoaderDiagnosticsLevel  >  2  )

dprintf("On  ..\peldr.c  Failure  Path  line  %d\n",  line  number); }

else {  //  We  found  the  module.

PIMTE  pimte;

//  Get  a  pointer  to  the  IMTE  by  looking  it  up  in  the  global  module

//  table  array.

pimte  =  pModuleTableArray[  pModRef->mteIndex  ];

if  (  echPath  )  //  Are  we  supposed  to  write  anything  out?

retValue  =  pimte->cbFi]eName;
if  (  retValue  >=  cchPath  )

retValue  =  cchPath  -  1;

//  Copy  the  path  name  to  the  output  buffer.

memmove(  lpszPath,  pimte->pszFileName,  retValue  )

lpszPath[  retValue  ]  =  0;  //  Null  terminate  it.
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if  (  fOem  )  //  If  fOEM'ing,  convert  the  output  buffer  to  OEM.

ppCurrentProcessId  ->flags  &=  ~fOKToSetThreadOem;  //  Turn  off  flag.

if  (  cchPath  )

//  Also  calls  k32CharToOemA  and  some  other  things.

SomeOtherFunction(  lpszPath,  1  )

LeaveSysLevel( ppCurrentProcessId->crst

return  retValue;

GetModuleHandle and IGetModuleHandle
The  GetModuleHandle  function  performs  the  inverse  operation  of the
GetModuleFileName function.  Given a module name, the function returns
the HMODULE (or base address, if you prefer)  of that module.  Unfortunately,
the Microsoft documentation  is somewhat vague about what the module name
consists of. However,  the pseudocode that follows will clear that problem all
up. In a nutshell,  the module name can be either a base filename or a complete
path name to the EXE or DLL file. Also, in either case, the name can option-
ally  omit  the extension it: the  file's  extension is .DLL. Thus, the following are
all valid module names for C:\WINDOWS\SYSTEM\USER32.DLL:

USER32
USER32.DLL
C:\WINDOWS\SYSTEM\USER32
C:\WINDOWS\SYSTEM\USER32.DLL

The  actual  GetModuleHandle  code is very short;  it just validates  the
lpszModule  parameter  to  make  sure  it's  a valid  string pointer.  If it is,
GetModuleHandle  jumps to IGetModuleHandle.  Like IGetModuleFileName,
the core of IGetModuleHandle is bracketed  by code that performs  the ANSI
to OEM string conversions  (if necessary). The core portion of the code first
uppercases  the module name that was passed to it so that the code can do
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faster case-sensitive compares later on. Next,  IGetModuleHandle  checks to
see if the filename has a file extension  (for example,  .EXE or .DLL). If not, the
code tacks on a .DLL extension.

The remaining core code consists of calls to two helper functions:
x_GetMODREFFromFilename  and x_GetHMODULEFromMODREE
First, x_GetMODREFFromFilename scans through the list of MODREFs
for this process  until  it finds one with a matching  file name,  and then
returns a pointer  to that MODREE  Next,  x_GetHMODULEFrom-
MODREF  takes the PMODREF and returns the associated HMODULE  for
it.  These helper functions  are described in the following two  sections.

Pseudocode for GetModuleHandleA

//  Parameters:

//  LPCTSTR  lpszModule;

Set  up  structured  exception  handling  frame

if  (  lpszModule  )

REPNE  SCASB  till  a  zero  is  found
//  Read  each  byte  of  the  name  to

//  make  sure  it's  valid.  The

//  exception  handler  will  catch

//  us  if  something's  wrong.

Remove  structured  exception  handling  frame

goto  IGetModuleHandleA

Pseudocode for IGetModuleHandleA

/ /  Parameters:
/ /  LPCTSTR  lpszModule;

/ /  Locals:
//  DWORD  myLocal

//  BOOL  fOem

//  DWORD  retValue

//  char  szBuffer[260]

//  PMODREF  pModRef

pszFileExtension  =  0;

fOem  =  x_AreFileApisOEM();

if  (  fOem  )
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//  Calls  k32OemToCharA  and  some  other  things.

lpszProc  =  SomeFunction(  lpszHodule,  0  );

if  (  lpszModule  ==  0  )  //  Asking  for  the  EXE.

retValue  =  x_GetHModuleFromMODREF(  ppCurrentProcessId  ->pExeMODREF  );

lse  //  Caller  specified  a  module  name.

strcpy(  szBuffer,  lpszModule  );

x_UppercasePathName(  szBuffer,  &pszFileExtension  ):

if  (  pszFileExtension  ==  0  )  //  If  no  extension  found,  tack

{  //  on  ".DLL".

strcat(  szBuffer,  ".DLL"  )

lse

if ( *pszFileExtension == 0 )
*(pszFileExtension 1) = 0;

//  Strip  off  a  trailing

//  present.

' '  if

pModRef  =  x_GetMOOREFFromFilename(  szBuffer  );

retValue  =  x_GetHMODULEFromMODREF(  pModRef  );

if  (  retValue  ==  0  )

InternalSetLastError(  ERROR_MOD_NOT_FOUND  );

( fOem  )

ppCurrentProcessId  ->flags  &=  ~fOKToSetThreadOem;

//  Also  calls  k32CharToOemA  and  some  other  things.

SomeOtherFunction(  lpszPath, 0 );

//  Turn  off  flag.

return  retValue
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x_OetMODREFFromFilename

The x_GetMODREFFromFilename  function  (my name)  scans through  the
linked  list of MODREFs  for a process, comparing the filename of each
module to the lpszModName parameter  passed to the function.  If a match
is found,  x_GetMODREFFromFilename  returns  a PMODREE  Otherwise,  it
returns  NULL.

It's  interesting to  discover that x_GetMODREFFromFilename  can do
not just one,  not just two,  but  up to four string comparisons  between the
input  string and the MODREF's filenames. In the first comparison,
x_GetMODREF-FromFilename  compares  the input string to just the base
filename for the MODREF  (for example, to KERNEL32.DLL).  If that  fails,
x_GetMODREF-FromFilename  compares  the input string to the complete
path  pointed  at  by the MODREE If that fails, the function  will do up to two
more comparisons:  the third to the secondary  copy of the base filename, and
the  fourth  to the secondary  copy of the complete  path  name stored in the
MODREE  If any of these comparisons  succeed,  the function  returns  a
pointer  to the matching MODREF.

To speed  up  the  comparisons,  x_GetMODREFFromFilename  first
calculates  the  length  of the  input  string.  Because  the  lengths  of the  strings
pointed  at  by the MODREF  struct  are  also  stored  in the MODREF,
x  GetMODREFFromFilename  first  compares  the  input  string  length  to
the  MODREF  string  length.  If they don't  match,  the  function  doesn't  have
to  bother  doing  a string  comparison  for  that  particular  MODREF  string.

Pseudocode for x_GetMODREFFromFilename

//  Parameters:

//  PSTR  lpszModName

//  PMODREF  pModRef:

//  PIMTE  pimte;

//  DWORD  nameLen;

nameLen  =  strlen(  lpszModName  );

pModRef  =  ppCurrentProcessId  ->MODREFlist;

if  (  !pModRef  )

return  0;

w h i l e  (  p M o d R e f  )
{

pimte  =  pModuleTableArray[  pModRef  ->mteIndex  ]
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if

{
nameLen  ==  pimte  ->cbModName  )

if  (  0  ==  strcmp(lpszModName,  pimte  ->pszModName)

break;  //  Found  itl!!

nameLen  ==  pimte  ->cbFileName  )

f  (  0  ==  strcmp(lpszMedName,  pimte  ->pszFileName)

break;  //  Found  it]I!

if  (  nameLen  ==  pimte  ->cbModName2  )
{

if  (  0  ==  strcmp(lpszModName,  pimte  ->pszModName2)  )

break;  //  Found  it!!!
}

if  (  nameLen  ==  pimte  ->cbFileName2  /
{

if  (  0  ==  strcmp(lpszModName,  pimte  ->pszFileName2)  )

break;  //  Found  it!!!

//  We  didn't  find  it  in  any  of  the  above  comparisons.  Try

//  the  next  module  in  the  list.

pModRef  =  pModRef  ->pNextModRef;

//  When  we  get  here,  we've  either  found  a  PMODREF  with  the  right  name,

//  or  pModRef  ==  0;

return  pModRef;

x_GetHModuleFromMODREF
The x_GetHModuleFromMODREF  function takes a PMODREF as an input
parameter, and returns the HMODULE (or base address) of the correspond-
ing module. The work required to do this is minimal.  From the MODREF
structure it was passed, the function extracts a pointer to the module data-
base (an IMAGE_NT_HEADERS struct). One of the fields in an IMAGE_NT_
HEADERS is the base load address of the module, which, as we now know,-
is the same as the HMODULE.
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Pseudocode for x_GetHModuleFromMODREF

//  Parameters:

//  PMODREF  pModRef

//  Locals:

//  PIMAGE_NT_HEADERS  pNTHdr

//  PIMTE  pimte;

if  (  pModRef  ==  0  )

return  0;

pimte  =  pModuleTableArray[  pModRef  ->mteIndex  ];

pNTHdrs  =  pimte  ->pNTHdr

return  pNTHdr  ->ImageBase; //  The  load  address  (image  base)  is

//  the  same  as  the  HMODULE.

KERNEL32 OBJECTS

At this point I'd like to jump headfirst into the discussion about processes and
threads, but I can't do that until I explain the concept of objects. I'm talking
about what I call KERNEL32 objects (or K32 objects for short). Although
just about anything for which KERNEL32 allocates memory from its heap
could be considered  "an object,"  I have a specific definition in mind here.

K32  objects are key system data structures that come from KERNEL32's
heap. There are numerous types of K32 objects, and they all start with a
common  header. One way to determine whether or not something is a K32
object  is to ask,  "Do applications  have handles to these objects?"  For
example,  applications  can have file handles or event handles,  so files and
events  are K32 objects.  On the other hand, I've seen no evidence that
application code ever has handles to things like MODREFs or IMTEs.
Thus, MODREFs and IMTEs aren't K32 objects.

Every K32 object  starts  out with a common header  that has  the
following  format:

00h
The type of the object. This value determines how subsequent  members of
the structure  should be interpreted.
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04h  DWORD

The reference count  of the object.  This value determines how many times
other code is referencing  an object.  For example,  when you call  GetFile-
InformationByHandle(),  the reference count  of the file object  that you're
asking about goes up by one upon entry to the function.  Before the function
returns,  it decrements  the file object's  reference count.

By now, you're  probably dying to know what type of K32 objects there
are. So, without  further adieu, here's  the list:

K32OBJ_SEMAPHORE  (0xl)
K32OBJ_EVENT  (0x2)
K32OBJ_MUTEX  (0x3)
K32OBJ_CRITICAL_SECTION  (0x4)
K32OBJ_PROCESS (0x5)
K32OBJ_THREAD  (0x6)
K32OBJ_FILE (0x7)
K32OBJ_CHANGE  (0x8; see FindFirstChangeNotification)
K32OBJ_CONSOLE  (0x9)
K32OBJ_SCREEN_BUFFER (0xA)
K32OBJ_MEM_MAPPED_FILE  (0xB; see CreateFileMapping()
K32OBJ_SERIAL (0xC)
K32OBJ_DEVICE_IOCTL  (0xD; see DeviceloControl)
K32OBJ_PIPE (0xE)
K32OBJ_MAILSLOT  (0xF)
K32OBJ_TOOLHELP_SNAPSHOT  (0xl0;  see
CreateToolhelp32Snapshot)
K32OBJ_SOCKET  (0x11)

For the remainder of this chapter,  our primary focus is on the process and
thread  objects  (IDs 5 and 6).  A process database is just a K32_PROCESS
object, and a thread database  is just a K32_THREAD object. As you'll see in
the  "What's  a Process Handle? What's a Process ID?"  section,  a process
handle  table is simply an array of pointers to various K32 objects of the types
shown above. Throughout KERNEL32 and VWIN32.VXD,  the code checks
the first DWORD of a supposed object to make sure that it's really dealing
with an object of the type it thinks it's dealing with.
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If you're  familiar  with  the Win16  kernel,  you  might  notice  that  unlike
Win16  tasks  and  modules,  the  8-byte  Win32  object  headers  don't  have  any
fields for  storing  linked  list pointers.  In Win16,  once you  find the first task
or module  in  the list,  you have everything  you need to  walk  the rest  of the
list.  In Windows  95,  KERNEL32  has its own  section  of code  (LSTMGR.C)
that  maintains  lists  of K32  objects.

WINDOWS 95  PROCESSES

At this  point in the book,  it's time to drag out the usual hackneyed  definition
of what a process  is, so let's get it over with.  A process  is a unit of ownership.
That  is, processes  own things.  A process  owns memory  (actually,  it owns a
memory context).  A process owns file handles that the application code can
use to  read and write files. Processes own threads  (which Itl  define fully in the
"Threads"  section later in this chapter).  Processes own a list of DLL modules
that have been loaded into the process's memory context.  I could go on,  but I
think  you get the idea.

Note  that  a process  does  not represent  execution  (threads  represent  the
execution  of code),  and  a process is not  an  EXE file.  Before it's  loaded,  an
EXE file on  disk  is just a  program.  Only  when  it's loaded  into memory  does
Windows  95  create  a process.  On  the other hand,  every process  is associated
with  a disk file (although  there  is the strange  case of the KERNEL32.DLL
process, which you'll  see in the WIN32WLK  section at the end of this chapter).

When  Windows  95  creates  a  new process,  it also  creates  a new memory
context  for  the process's threads  to  execute  in.  In  addition,  Windows  95
creates  an  initial  thread  of execution  for  the  process.  If needed,  the  process
can  create  additional  threads.  The  system also  creates  a  file handle  table  in
which the process can  keep a list  of open handles.  Finally,  and  most  impor-
tantly  for  the  discussion  in the  next  couple  of paragraphs,  Windows  95
creates  a  process  database  to  represent  the  process.

A process  database  is a K32  object that  contains  a vast  quantity  of
information  about the process.  (We'll look  at the fields  in  "The Windows  95
Process  Database  (PDB)"  section.)  The process  database  memory is allocated
out of KERNEL32's heap,  so all process  databases  are visible  to  all tasks
(assuming  they know where  to  look;  that's  the tricky part  that  I'll  show how
to do in the WIN32WLK source).

Process  database  highlights  include  a  list  of threads,  a list of loaded
modules,  the heap  handle  of the default process  heap,  a  pointer  to  the
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process handle table,  and  a pointer  to  the memory  context  that  the process
runs  in  (see  Chapter  5).  And  those  are just a  few of the  highlights;  there  are
many,  many  more.  In fact,  if you  buy now,  we'll  also  throw in  a  list of mem-
ory mapped  files,  a pointer  to the parent  process,  a  list of available  thread
local  storage  slots,  and  a pointer  to  the  environment  block.  Just  send  $49.95
to  KERNEL32.DLL  at  1 Microsoft  W a y . . .

WHAT'S A PROCESS HANDLE?

WHAT'S A PROCESS ID?

Before  I go one  step  further,  I want  to  clear  up  the widespread  confusion
regarding  process  handles  versus  process  IDs. Two similar  sounding Win32
routines --  GetCurrentProcess  and  GetCurrentProcessld  - - tend  to  confuse
a fair  number  of programmers.  The  difference  between  the two  functions  is
actually rather  simple,  once you  understand  what's  going  on.

A process handle  is essentially  the same thing as a file handle.  It's an
"opaque"  value with no  significance  as a pointer  to  anything.  Internally,  the
system uses K32 object handles  (such as process  or file handles)  as an index
into  the process  handle table.  The value returned  by indexing into the process
handle  table  array is an  actual  pointer  to a K32 object.  However,  since appli-
cations  aren't given direct access to their handle tables,  a process  handle is
useless,  except  as a magic cookie  to pass to certain routines  that expect it.

Remember that  since each application has its own handle table,  it's entirely
possible that different processes will have the same process handle within their
own process context.  For example, normally each process has a process handle
open  for  itself,  and  that  handle  value  is  1. The  implication  that  should  be
drawn is that a process handle is not a way to differentiate between different
processes.  Another  example:  If an  application  opens  another process handle
for its own process, it would then have two different handle values that both
identified  the same process.

Further  proof that  a process  handle  is not  suitable  for  identifying  which
process  you're working  with  can  be found  in the  GetCurrentProcess  code:

Pseudocode  for GetCurrentProcess

//  Normally  this  function  does  nothing.  It  appears  to  be  there

//  for  the  benefit  of  the  KERNEL32  developers.

x_LogSomeKernelFunction(  function  number  for  GetCurrentProcess  );

return  Ox7FFFFFFF;
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That's  it!  Ignoring the call to  the logging function,  GetCurrentProcess
does  nothing more  than  return  a fixed value  (0x7FFFFFFF).  No  matter
what  process  calls  GetCurrentProcess,  it'll  always  get back 0x7FFFFFFF.
The value 0x7FFFFFFF is a  "magic"  value that  KERNEL32  interprets  to
mean  "use the current  process."  In routines  where  KERNEL32  expects  a
process  handle,  it checks  for the value 0x7FFFFFFF  and  substitutes  what-
ever the current  process  is. Need  any more  proof that  process  handles  are
useless  except when  used within  their  own context?  I didn't  think so.

Let's now turn to the process IDs. As noted in  Unauthorized Windows 95,
early versions of Windows  95 up through  beta  1 used the address  of the
process  database  as a process ID. Since process  databases  are kept in shared
memory accessible  by all processes, the address  of a process  database  is guar-
anteed to  be a unique  value throughout  the system.  Unauthorized Windows
95 made extensive use of the GetCurrentProcessld  function to get a pointer
to the current  processes database,  from which it then extracted key fields.
Unfortunately,  the Microsoft KERNEL32 coders crashed that particular
party  as we can see in a more recent  version of GetCurrentProcessld:

Pseudocode  for GetCurrentProcessId

x_LogSomeKernelFunction( function number for GetcurrentProcessId );

return  PDBToPid(  ppCurrentProcess  );

Again,  ignoring  the logging function,  GetCurrentProcessld  boils  down
to passing a global  variable  (ppCurrentProcess)  to  the PDBToPID  function.
Let's stop  and examine this point closely,  since it's extremely important  for
understanding  the rest of the chapter.  The ppCurrentProcess global  variable
is a pointer  to  a pointer  to  the current  process  database.  Put in C notation,
this means that  **ppCurrentProcess  points  to  the current  process  database.

The  reason you have to  indirect  through  this pointer twice  is one of the
fascinating  things  you'll  find out in Chapter  6.  For now, just remember  that
the ppCurrentProcess  pointer  is a global variable  in KERNEL32.DLL  that
allows  KERNEL32  to  find the  process database  of the current  process.  (To
keep  things  simple, when I show the ppCurrentProcess variable  being used
in the pseudocode,  I pretend that it's just a pointer to  the process  database,
not  a pointer to  a pointer.)

So, if KERNEL32  has  a pointer  to  the current  process  database  handy,
why doesn't  GetCurrentProcessId just return  it?  For  an answer,  let's  look at
the PidToPDB function:
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Pseudocode  for PDBToPid

//  Parameters:

//  PROCESS  DATABASE  *  ppdb

( ObsfucatorDWORD  ==  FALSE

_DebugOut(

return  0;

"PDBToPid()  Called  too  early!  Obsfucator  not  yet"

"initialized!"  );

( ppdb  &  1  )

_DebugOut(  "PDBToPid:  This  PDB  looks  like  a  PID  (0%lxh)  Do  a"

" s t a c k  trace  BEFORE  reporting  as  bug,"  );

Here's  the  key!  XOR  the  obsfucator  DWORD  with  the  process  database

pointer  to  make  the  PID  value.

return  ppdb  ^  ObsfucatorDWORD;

Oh really? Yes. The term "Obsfucator"  comes straight from the Microsoft
binaries  (and yes,  "Obsfucator"  is misspelling; it should be "Obfuscator").
Other than checking to make sure that a valid process  database pointer was
passed,  the only essential thing PDBToPID  does  is  XOR  the  current  process
database  pointer  with  the  ObsfucatorDWORD.  This is an obvious attempt
on Microsoft's part to keep hackers from prying into the internals of system
data structures. However,  as H1 show in the WIN32WLK code at the end of
this chapter, this is only a small, temporary obstacle (hint: think about the
transitive properties of a binary XOR).

Incidentally,  if you're  wondering where  the ObsfucatorDWORD  value
comes from, you'll  be dismayed to  know that it's  calculated  at  runtime each
time the  system starts  up.  This prevents  a simple  attack  on the problem of
getting  a real  pointer  to  a process  database.  To compound matters,  not  only
are process  databases  "guarded"  by this obsfucator  DWORD,  but  so are
thread  databases.  I'll  show you later  how the  GetCurrentThreadld  function
is uncannily similar to  the GetCurrentThreadld  function.

To sum up,  a process  handle is like a file handle.  It's  opaque,  and mean-
ingless  outside  the process context in which it's defined.  A process  ID, on the
other  hand,  is a unique value across  all processes. It's essentially a pointer to
a  process  database  structure,  even  though  Microsoft  has  taken  steps to
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"obsfucate"  that fact (their choice of words, not mine}. The WIN32WLK
program at the end of the chapter shows the magic translation formula to
convert  a process ID into a usable pointer.

If you've seen the TOOLHELP32  Process32First and Process32Next
functions,  you may have noticed  the th32ProcessID  fields in the
PROCESSENTRY32 structure. Are these related in any way to the values
returned by GetCurrentProcessId? Fortunately, the answer is yes! The
WIN32WLK program takes advantage of this to let TOOLHELP32 handle
some of the dirty work of iterating through the system's processes and threads.

THE WINDOWS 95  PROCESS DATABASE (PDB)

In Windows 95, each process database is a block of memory allocated from
the KERNEL32 shared memory heap. KERNEL32 often uses the acronym
PDB instead of the longer term "process database."  Unfortunately, in Win16,
PDB is a synonym for the DOS PSP that all programs have. Is this confusing?
Yes! For the purposes of this chapter, I'll use PDB in the KERNEL32 sense of
the term. Each PDB is considered to be a KERNEL32 object as evidenced by
the value 5 (K32OBJ_PROCESS) in the first DWORD of the structure. The
PROCDB.H file from the WIN32WLK program gives a C-style view of the
PDB structure. Let's look at the fields in detail:

00h  DWORD  Type
This DWORD contains 5, the KERNEL32 object type for a process.

04h  DWORD  cReference
This DWORD is the reference count for the process. This is the number of
things  that are currently  using the process structure for something (for
example,  they have an open handle for the process).

08h  DWORD  un 1
The meaning of this DWORD is unknown. It may be a standard part of a
KERNEL32 object header. It appears to always be 0.
0Ch  DWORD  pSomeEvent
This DWORD is a pointer to an event object  (K32OBJ_EVENT). Event
objects are passed to functions like WaitForSingleObject.  It appears that this
event is what is actually waited on when you pass a process handle to one
of the WaitForSingleEvent family of functions.



1 0h  DWORD  TerminationStatus

This DWORD is the value that would be returned by calling
GetExitCodeProcess.  The process exit code is the value returned from the
main or WinMain functions.  Alternatively, it can be specified when a
process calls ExitProcess or TerminateProcess. While a process is still
actively running, its exit code is 0x103  (STILLACTIVE).

14h  DWORD  un2
The meaning of this DWORD is unknown. It appears to always be 0.

18h  DWORD  DefaultHeap
This DWORD contains  the address of the default process heap.
GetProcessHeap returns  this value for the current process.
1Cb  DWORD  MemoryContext
This DWORD is a pointer to the process's memory context.  A memory
context contains the page directory mappings necessary to provide a process
with its own private region in the 4GB address space. Chapter 5 describes
memory contexts  in more detail.

20h  DWORD  flags
These flags are described in the following table:
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Flag name and bit value  Description (when available)

fServiceProcess  For  example,  MSGSRV32.EXE.

0x00000100

fLoginScriptHack  Might  be  a  Novell  network  Iogin  process.

OxO0000800

fSendDLLNotifications

0xO0200000

fDebugEventPending  For  example,  stopped  in  a  debugger.

OxO0400000

fNearlyTerminating

OxO0800000

fFaulted

Ox08000000

fTerminating

Ox 10000000

fTerrninated

0x20000000

flnitError

0x40000000

fSignaled

Ox80000000

24h  DWORD  pPSP
This DWORD  holds the linear address of the DOS PSP created for this
process. This  field is set for both Win16 and Win32 processes.  The linear
addresses  in this  field are always below  1MB (the maximum  address that
real mode DOS code can reach).  See also field 28h.
28h  WORD  PSPSelector
This WORD  is a selector that points  to the DOS PSP for this process.  Both
Win16  and Win32  applications  have DOS PSPs. See also field 24h.
2Ah  WORD  MTEIndex
This WORD contains  an index into the global module table  (pModuleTable-
Array).  The IMTE referenced  by indexing into the module table is the IMTE
for this module.  IMTEs and the global module table were discussed earlier
in the chapter.
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2Ch  WORD  cThreads
This field is the number of threads  belonging to this process.

2Eh  WORD  cNotTermThreads
This field holds the number of threads for this process that haven't yet been
terminated.  In all instances seen to date, this WORD always has the same
value as field 2Ch.
30h  WORD  un3
The meaning of this WORD is unknown.  It appears to always be 0.

32h  WORD  cRing0Threads
This WORD holds the number of ring 0 threads as managed by VMM.VXD.
For normal applications, this value is the same field 2Ch (cThreads). However,
in the case of the special KERNEL32.DLL process, this field is one more than
the cThreads field.
34h  HANDLE  HeapHandle
This DWORD holds the handle of the HEAP that handle tables  (and possi-
bly other things)  belonging to this process should be allocated  from. This
field appears to always contain the KERNEL32 shared heap handle.

38h  HTASK  W16TDB
This DWORD holds the Win16 Task Database  (TDB) selector associated
with this process. Both Win16 and Win32 applications  have Task Database
selectors and maintain valid task databases.
3 Ch  DWORD  MemMapFiles
A pointer to the head node in the list of memory mapped files in use by this
process. Each memory mapped file is represented  by a node in the list. The
format of each node is:

DWORD

DWORD
Base address of the memory mapped region

Pointer  to next node, or 0

40h  PENVIRONMENT_DATABASE  pEDB
This DWORD is a pointer to the environment database. The environment
database contains the current directory, the environment, the process com-
mand line, the "standard"  handles  (for example,  stdin), and other items. I'll
describe the format of the environment in  "The Environment Database"
section later in this chapter.
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44h  PHANDLE_TABLE  pHandleTable
This  field is a pointer to  a process  handle table.  All handles  (be they file
handles,  event  handles,  process  handles,  or  so on)  go into  the handle table.
The  DOS/Winl6  equivalent  of a Win32  handle table  is the DOS  System File
Table  (SFT).  (See Schulman  et al.'s  Undocumented DOS,  2nd ed.)

However,  the DOS SFT applies to  the entire  system, whereas a Win32
process  handle table  applies only to  its owning process. The Win32  handle
table  layout  is described  in the  "Process  Handle  Tables"  section.
48h  PPROCESS_DATABASE  ParentPDB
This  DWORD  is a pointer to  the PROCESS_DATABASE for the process
that created this process.  Typically the parent  process  is EXPLORER for
applications  launched via the GUI.  MSGSRV32  is the parent  of the initial
"service"  processes  and  EXPLORER.EXE.
4Ch  PMODREF  MODREFIist
This  field points  to  the head of the process's module  list.  This  is the linked
list  of MODREFs  described  earlier  in  "The  MODREF structure"  section.

50h  DWORD  ThreadList
A pointer to the list of threads owned by this process. This list is a listmgr.c-style
list. (The exact format of this type of list is unknown to me.)
54h  DWORD  DebuggeeCB
This  DWORD  appears  to  be a debuggee context  block. When a process is
being debugged,  this field points to a  block of memory above 2GB. This
block  includes a pointer to the debuggee's process database.
58h  D W O R D  LocalHeapFreeHead
This  DWORD  points  to  the head of the free list in the default heap for the
process.  Chapter  5 describes  the format  of process  heaps  and the free list.

5Cb  DWORD  InitialRing0ID
The meaning of this DWORD  is unknown.  It  appears to  always be 0.

60h  CRITICAL_SECTION  crst
This  field is a  CRITICAL_SECTION  used  by various  API functions for syn-
chronizing  threads  within  the same process.  Much  of the pseudocode you'll
see later  on shows this critical  section in action.
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78h  DWORD  un4[3]
These  three DWORDS  appear  to always  be set to  0,  and  their meaning is
currently  unknown.
84h  DWORD  pConsole
If this process uses the console  (that is, if it's a text mode process), this DWORD
points to the console object (K32OBJ  CONSOLE) used for output.
88h  DWORD  tlsInUseBits1

These 32 bits represent the status of the lowest 32 TLS (Thread Local Storage)
indexes. If a bit is set, the TLS index is in use. Each successive TLS index is
represented  by successively greater  bit values;  for example:

TLSindex:0  = 0x00000001
TLSindex:l  = 0x00000002
TLSindex:2  = 0x00000004

Thread  local  storage  is discussed in detail  in the  "Thread  Local  Storage"
section  later in this chapter.
8Ch  DWORD  tlsInUseBits2
This  DWORD  represents  the status  of TLS indices  32 through  63.  See the
previous  field description  (88h)  for more  information.
90h  DWORD  ProcessDWORD
The  meaning  of this  field  is  currently  unknown,  although  there  is  an
undocumented  API  (GetProcessDword)  that  retrieves  its  value.
94b  PPROCESS_DATABASE  ProcessGroup
This field is either  0 or points  to the master process  in a process group.
Process  groups  are collections  of processes  that  belong together.  When the
group is destroyed,  all processes in that group  are destroyed.  Normally,  each
process is considered  to  be in its own group,  and this field points  to the
process's  own PDB (a circular  reference).  If a process is being debugged,  it
belongs to the debugger's process group.
98h  DWORD  pExeMODREF
This field points  to  EXE's MODREF  (module  list entry).  MODREFs  were
described  earlier.  Typically,  the EXE's MODREF is the head  MODREF  in
the  list,  so this field usually matches field 4Ch  unless the process  has  loaded
additional  DLLs via LoadLibrary or  LoadModule.
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9Ch  DWORD  TopExcFilter
This  DWORD  holds  the  "Top  Exception  Filter"  for the process.  This  is the
routine  that  will  be called  if no  other  exception  handlers  choose  to  handle
an  exception.  This  value  is set via the  SetUnhandledExceptionFilter  func-
tion.  Structured  exception  handling  is discussed  later  in the chapter.
AOh  DWORD
This  DWORD  holds  the scheduling  priority for  this  process.  Windows  95
supports  32 priority  levels,  grouped  into  four classes.  The  following priority
classes  are  supported  in Windows  95,  shown  with  the  normal  priority  level
for  that  class:

Idle  4
Normal  8
High  13
Realtime  18

Within  each class, the  priority can vary both  below and above the default
priority  level. Priority levels are described  in more detail later in this chapter.
A4h  DWORD  HeapOwnList
This  field points  to  the  head  of the  linked  list  of heaps  for the process.  By
default,  each  process has  a  single  heap;  the  handle  for  that  heap  is retrieved
by calling GetProcessHeap.  However,  a  process  can create  additional  heaps
by calling HeapCreate.  These  heaps  are  put  into the linked  list  of heaps for
the process  when  they're created.  Chapter  5 discusses  this  topic  in much
more  detail.
A8h  D W O R D  HeapHandleBlockList
Moveable  memory  blocks  in the process  heap  are  managed via  moveable
handle  tables  embedded  within  the heap.  This  field is a pointer  to  the  head
of the  moveable  handle  table  list within  the  default  process  heap.  Chapter  5
describes  moveable  handle  tables in detail.
ACh  DWORD  pSomeHeapPtr
The  exact  meaning  of this  field is unknown.  It's  normally  0,  but when  not,
it's a  pointer  to  a  moveable  handle  table  block  in  the  default process heap.
See also  field A8h.
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B0h  DWORD  pConsoleProvider
This field is either  0,  or a pointer  to a KERNEL32  console  object
(K32OBJ_CONSOLE).  It appears to always be 0 for console mode Win32
processes but is nonzero for the WINOLDAP process. WINOLDAP is the
Windows process for managing DOS programs within Windows.
B4h  WORD  EnvironSelector
This WORD holds a selector  that points to the process's  environment.
This selector's base address is the same value as the linear address in the
pszEnvironment  field in the Environment Database  (see field 40h).

B6h  WORD  ErrorMode
This field contains the value set by the SetErrorMode function. SetErrorMode
in KERNEL32 thunks down to KRNL386's  SetErrorMode,  so this field
merely reflects the Win16 error mode value for the process. The documented
error mode values are:

SEM_FAILCRITICALERRORS
SEM_NOALIGNMENTFAULTEXCEPT
SEM_NOGPFAULTERRORBOX
SEM_NOOPENFILEERRORBOX

B8h  DWORD  pevtLoadFinished
This DWORD points to a KERNEL32 Event object  (K32OBJ_EVENT). It
appears that this event is signaled when the process has finished loading.

BDh  WORD  UTState
The meaning of this field is unknown,  but based on the name, it probably
has something to do with Universal Thunks.  It's usually set to 0.

Of special note in all these process database  fields is the number of
DOS-related  fields. There's  both a PSP selector and a linear address for the
DOS PSP (which just happens to always be below 1MB). Given the number
of occasions that windows reflects INT 21hs down into Virtual  86 mode
DOS- style code, this isn't entirely surprising. (See Unauthorized Windows 95,
Chapter  8, for a thorough proof that dispatching INT 21hs to DOS isn't
entirely surprising.) It's unlikely that the Windows NT process database
equivalent  contains PSP information for all processes. It sure looks like DOS
just won't die, at least not on platforms evolved from Windows  1.x code.
Now that we've seen what a process database looks like, let's look at some
pseudocode for some process-related  functions.
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GetExitCodeProcess  and IGetExitCodeProcess
GetExitCodeProcess  retrieves  the  termination  status  of  the  process  specified
by the  hProcess  handle  passed  in.  The  main  function  is  just  a validation
layer  that  verifies  that  a  valid  pointer  was  passed  as  the  second  parameter.
The  real code  is  IGetExitCodeProcess.  After  some  standard  thread  synchro-
nization  and  logging  code  germane  to  many  process-related  functions,  the
code  takes  the  hProcess  parameter  and looks  up the  associated  pointer  to  a
PROCESSDATABASE.  Since  hProcess  is  a  handle,  this  means  indexing  into
the  process's  handle  table  and  retrieving  the  process  pointer,  x_Convert-
HandleToK32Object  handles  this  chore  along with  incrementing  the  usage
count  of  the  process  database.

With  a PPROCESS_DATABASE  pointer  in  hand,  the  function  extracts
the  value  of  the  TerminationStatus  field  and  stores  it to  the  caller-specified
buffer.  To  clean  up,  IGetExitCodeProcess  decrements  the  usage  count  of  the
process  object  and  leaves  the  "must  complete"  state  it  entered  previously.

Pseudocode  for GetExitCodeProcess

//  Parameters

//  HANDLE  hProcess;

//  LPDWORD  lpdwExitCode:

Set  up  structured  exception  handling  frame

if  (  lpdwExitCode  )  //  If  a  non  null  pointer  was  passed,  verify

EAX  =  *lpdwExitCode;  //  that  the  DWORD  it  points  to  can  be  written.

Remove  structured  exception  handling  frame

goto  IGetExitCodeProcess;

Pseudocode for IGetExitCodeProcess

//  Parameters

//  HANDLE  hProcess;

//  LPDWORD  lpdwExitCode;

//  Locals:

//  PPROCESS_DATABASE  ppdb;

//  BOOL  retValue;

retValue  =  TRUE; //  Assume  successful  return.

x_EnterMustComplete()  ;  //  Prevent  us  from  being  interrupted.

//  Increments  ptdbx  ->MustCompleteCount.



p p d b

x_LogSomeKernelFunction(  function  number  for  GetExitCodeProcess);

//  Get  a  pointer  to  the  PROCESS_DATABASE  struct

ppdb  =  x_ConvertHandleToK320bject(  hProcess,  0x80000010,  O  );

if  (  ppdb  )

{

//  Save  away  exit  status.

*lpdwExitCode  =  ppdb->TerminationStatus;

x_UnuseObjectWrapper(  ppdb  );  //  Decrement  usage  count.

else ....  //  Opps!  No  process  database.

retValue  =  FALSE;

//  Call  the  API  logging  function  again  (???).

x_LogSomeKernelFunction(  function  number  for  GetExitCodeProcess);

LeaveMustComplete();  //  Decrements  ptdbx  ->MustCompleteCount.

return  retValue;
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SetUnhandledExceptionFilter
SetUnhandledExceptionFilter  sets the address  of the function  that KERNEL32's
UnhandledExceptionFilter  function  calls  when  no  other  exception  filters
have  elected  to  handle  an  exception  (what  a  mouthful!).  The  function
stashes  away  the  current  value  of the  TopExcFilter  field  in  the  process  data-
base,  then  replaces  that  value  with  the  value  of  the  parameter  passed  in.  The
function  returns  the  previous  value  of  TopExcFilter.

Pseudocode  for SetUnbandledExceptionFilter
//  Parameters:

//  LPTOP_LEVEL_EXCEPTION_FILTER  lpTopLevelExceptionFilter

//  Locals:

//  LPTOP_LEVEL_EXCEPTION_FILTER  prevValue;

//  Save  old  value.

prevValue  =  ppCurrentProcess  ->TopExcFilter;

//  Stuff  in  new  value.

ppCurrentProcess  ->TopExcFilter  =  lpTopLevelExceptionFilter;

return  prevValue;  //  Return  old  value,
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OpenProcess
OpenProcess takes a process ID and returns a handle that refers to that process.
This  handle  can then  be passed to  functions  like ReadProcessMemory  and
VirtualQueryEx.  When  you  combine  this  function with TOOLHELP32's
ability  to  give you  a process  ID for any process  in the  system,  you  have a
potent  combination.  It's  somewhat  strange  that  Windows  95  allows you to
open  a process  handle  but  not a  thread  handle.  Perhaps  Microsoft  thought
that  the havoc that  could  be created  with  a thread  handle  was just too great
to  allow.

OpenProcess  first converts the process  ID parameter  to  a PPROCESS_
DATABASE.  Because the  algorithm  for  converting  a process ID to  a process
pointer  is identical to converting  a thread ID to  a thread pointer,  OpenProcess
checks to make sure it has a PPROCESS_DATABASE  pointer.  (Some knuckle-
head might otherwise  pass  in  a thread  ID and  screw things  up.)  The next
part  of OpenProcess  is where  the  flags parameter  is tweaked  to  ensure  that
it has only  legal  and/or  required  flags  set.  Finally,  OpenProcess  calls an
internal  function  that  allocates  a  slot in the current  process's  handle  table
and  places  the PPROCESS_DATABASE pointer  into that  slot.

Pseudocode  for OpenProcess

//  Parameters:

//  DWORD  fdwAccess;

//  BOOL  fInherit;

//  DWORD  IDProcess;

//  Locals:

//  PPROCESS_DATABASE  ppdb;

//  DWORD  flags;

x_LogSomeKernelFunction(  function  number  for  OpenProcess  );

//  Convert  the  process  ID  to  a  ?PROCESS_DATABASE.

ppdb  =  PidToPDB(  IDProcess  )

if  (  ! p p d b  )

return  0;

if  (  ppdb  ->Type  !=  K320BJ_PROCESS  ) { //  Make  sure  thread  ID  not  passed.

InternalSetLastError(  ERROR  INVALID  PARAMETER  );

return  0;
}
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flags  =  fdAccess  &  OxOO1FFFBF;

if  (  fInherit  )

flags  |=  0x80000000;

flags  |=  PROCESS_DUP_HANDLE;

//  Turn  off  all  non-allowed  flags.

//  Flags  like  PROCESS_QUERY_INFORMATION

//  and  PROCESS_VM_WRITE  are  allowed.

//  Always  pass.  PROCESS_DUP_HANDLE

//  Allocates  a  new  slot  in  the  handle  table  of  the  current  process.

//  The  slot  contains  the  ppdb  pointer.

return  x_OpenHandle(  ppCurrentProcess,  ppdb,  flags  );

SetFileApisToOEM
The SetFileApisToOEM function  changes the way the file-related  KERNEL32
functions  interpret  filenames.  By default,  KERNEL32  uses  ANSI  strings
for  the  filenames.  By calling  SetFileApisToOEM,  a  program can  change
this  to  use  OEM  character  strings.  For  an  example  of  this  in  action,  see
the  GetModuleFileName  and  GetModuleHandle  functions  earlier  in  this
chapter.

Internally,  the  function  couldn't be much  simpler. It grabs  a pointer  to the
process  database  for the current  process and turns  on the fFileApisAreOem
flag in the flags field.

Pseudocode  for SetFileApisToOEM
x_LogKernelFunction(  function  number for  SetFileApisToOEM  )

ppCurrentProcess->flags  |=  fFileApisAreOem;

THE ENVIRONMENT DATABASE

At offset 40h  in the  process  database  is a  pointer  to  a vital  data  structure
that  also contains process-related  information.  The  name  that  KERNEL32
uses  internally  for this  pointer  is pEDB, which  I interpret  to  mean  "pointer
to  Environment  Database."  As with the PROCESS_DATABASE structure,
I've given the layout of an ENVIRONMENT_DATABASE  in the PROCDB.H
file.  Let's  look  at  these  fields now:
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00h  PSTR  pszEnvironment

This field points to the process environment.  The environment is the standard
DOS-style  environment  (string=value, with semicolons  between multiple items,
as in string=value;string=value).  The process environment  is in a block of mem-
ory in the per-process  data  area, and usually resides just above where the EXE
module  loads.
04h  DWORD  un 1

The meaning  of this DWORD  is currently unknown.  It appears to  always
have  a value  of 0.
08b  PSTR  pszCmdLine
This field points  to  the command  line passed to  CreateProcess  to  start  this
process. In most cases,  the command  line is just the complete  filename  for the
process's EXE.  In several  cases, though, it's a pointer to an empty string  (\0).
0Ch  PSTR  pszCurrDirectory
This  field is a pointer  to  the current  directory of the process.
10h  LPSTARTUPINFOA  pStartuplnfo
This  pointer points  to  the process's  STARTUPINFOA  structure,  which
is defined  in WINBASE.H.  A STARTUPINFOA structure  is passed  to
CreateProcess  to  specify the process's window size, title,  standard  file
handles,  and  so forth.  This  field points  to  a copy of that  structure.
14h

This
used

HANDLE  hStdln

is the file handle  the process  uses for the  standard  input  device.  If not
(for  instance,  if this is a GUI application),  the handle value is -1.

18h

This
used

HANDLE  hStdOut

is the file handle the process  uses for the  standard  output  device.  If not
(for  instance,  if this is a  GUI application),  the handle value is -1.

1Ch
This
used

HANDLE  bStdErr

is the file handle the process  uses for the standard  error  device. If not
(for  instance,  if this  is a  GUI application),  the handle value is -1.

20h  DWORD  un2

The meaning of this field is unknown.  It seems to  always  be  1.
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24h  DWORD  InberitConsole
Presumably this  field indicates  whether  the process  is inheriting  the console
from  its parent  process  (as opposed to  getting its own console).  See the
CREATE_NEW_CONSOLE  flag to  the CreateProcess  function.  In  my
observations,  this  field was always  0.
28h  DWORD  BreakType
This  field most  likely indicates  how console  events  (CTRL+C,  and  so on.)
should be handled. In the programs I ran, it was usually 0, but it's occasionally
set to  0xA.
2Ch  DWORD  BreakSem
Normally  this field is 0, but if an application  calls SetConsoleCtrlHandler, this
DWORD points to a KERNEL32  semaphore object  (K32OBJ_SEMAPHORE).

30h  DWORD  BreakEvent
Normally  this  field is 0,  but if an  application  calls  SetConsoleCtrlHandler,
this DWORD  points  to  a KERNEL32  EVENT object  (K32OBJ_EVENT).

34b  DWORD  BreakThreadlD
Normally this field is 0. However, if an application calls
SetConsoleCtrlHandler, this DWORD  points  to  the thread  object
(K32OBJ_THREAD)  of the thread  that  installed  the handler.

38h  DWORD  BreakHandlers
Normally this field is 0. However,  if an application calls
SetConsoleCtrlHandler, this DWORD points to a data structure  allocated from
the KERNEL32 shared heap.  This  data  structure  is a list of the installed con-
sole  control  handlers.

Let's  now look at  some more  pseudocode  for a  few process  functions,
this time related to  the ENVIRONMENT_DATABASE  we've just looked at.

GetCommandLineA
There's  really not much to comment  on in the GetCommandLineA code.  The
function returns the command-line pointer that's  stored  in the environment
database.

Pseudocode for GetCommandLineA

return ppCurrentProcess  ->pEDB.pszCmdLine
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GetEnvironmentStrings
There's  not  much  to  say  about  GetEnvironmentStrings,  either.  Like
GetCommandLineA,  it just returns the relevant  pointer  from the environ-
ment  database.  However,  it's  interesting  to  note  that the  actual  implemen-
tation  and  the  SDK documentation  say two  different  things.  The  SDK
documentation  says:

When  GetEnvironmentStrings  is  called,  it  allocates  memory  for  a  block  of

environment  strings.  When  the  block  is  no  longer needed,  it  should  be  called

FreeEnvironmentStrings.

Although this  may be the case for Windows NT,  it's certainly  incorrect
for Windows  95.

Pseudocode for GetEnvironmentStrings

return  ppCurrentProcess->pEDB.pszEnvironment

FreeEnvironmentStringsA
The  FreeEnvironmentStringsA function  is  a  bit  more  interesting.  Since
GetEnvironmentStrings  doesn't really allocate  any memory,  there's nothing
that  FreeEnvironmentStringsA  has to  do.  However,  just for sport,  the func-
tion checks the input parameter  string to  see if it matches the pointer  to
the  environment  from the  environment  database.  If they  don't  match,
FreeEnvironmentStringsA  sets the LastError  value to  ERROR_INVALID_
PARAMETER.

Pseudocode for FreeEnvironmentStringsA

/ /  Parameters:
//  LPSTR  lpszEnvironmentBlock;

x_LogSomeKernelFunction(  function  number  for  FreeEnvironmentStringsA  );

if(
{

ppCurrentProcess->pEDB.pszEnvironment  != lpszEnvironmentBlock  )

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

return  FALSE;

return  TRUE;
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GetStdHandle
GetStdHandle  is  just as  straightforward  as you  probably  imagine  it to  be.
Given a device  ID to  look  for  (stdin,  stdout,  or stderr),  the  function  retrieves
the associated  file  handle  from the environment  database.  If a  bogus  device
ID was  passed,  the  function  fails  and  sets  the  last  error code.

Pseudocode  for GetStdHandle

//  Parameters:

//  DWORD  fdwDevice

//  Locals:

//  PENVIRONMENT_DATABASE  pEDB;

pEDB  =  ppCurrentProcess->pEDB;

if  (  fdwDevice  == STD_INPUT_HANDLE  )

return  pEDB->hStdIn;

else  if  (  fdwDevice  ==  STD_OUTPUT_HANDLE  )

return  pEDB->hStdOut;

else  if  (  fdwDevice  ==  STD_ERROR_HANDLE  )

return  pEDB->hStdErr;

InternalSetLastError(  ERROR_INVALID_FUNCTION  );

return  0xFFFFFFFF:

SetStdHandle
SetStdHandle  is just a tad more interesting than GetStdHandle. The code first
verifies that the handle is a valid KERNEL32 object handle. How  does it do this?
By calling x_ConvertHandleToK32Object,  which returns a pointer to the associ-
ated KERNEL32 object if the handle is a valid handle. SetStdHandle never uses
the K32 object pointer,  though - - a simple test for a NULL value is all that's
required.  After verifying the hHandle parameter, the remaining code stuffs the
hHandle  into the appropriate field in the environment database structure.
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Pseudocode for SetStdHandle

//  Parameters:

//  DWORD  IDStdHandle

//  HANDLE  hHandle

//  Locals:

//  PVOID  pK320bject;

//  PENVIRONMENT_DATABASE  pEDB;

if  (  hHandle  ==  STD_INPUT_HANDLE  )

{

pK32Object  =

x_ConvertHandleToK320bject(  hHandle,  0x00002140,  0x00000020  );

}

else  if  ((hHandle  ==  STD_OUTPUT_HANOLE)  ||  (hHandle  ==  STD_ERROR_HANDLE))

pK320bject  =

x_ConvertHandleToK320bject(  hHandle,  0x00002140,  0x00000110  );

else {

InternalSetLastError(  ERROR_INVALID_FUNCTION  );

return  FALSE; }

if  (  pK320bject )
{

pEDB  =  ppCurrentProcess->pEDB;

if  (  IDStdHandle  ==  STD_INPUT_HANDLE  )

pEDB->hStdIn  =  hHandle;

else  if  (  IDStdHandle  ==  STD_OUTPUT_HANDLE  )

pEDB->hStdOut  =  hHandle;

else

pEDB->hStdErr  =  hHandle;

} return  TRUE;

PROCESS HANDLE TABLES

At offset 44h  in a  PROCESS_DATABASE  is a pointer to  the handle  table  for
that  process.  In this  section,  I use the term  handle to  indicate  things that can
be referenced  via the process  handle  table.  Besides  file handles,  Windows  95
also creates  handles to  other system objects.  Processes,  threads,  events,  and
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mutexes are just a few examples.  In fact, there can be handles  for any of the
KERNEL32  objects listed  in the  "KERNEL32  Objects"  section earlier in
this chapter.

A handle value is theoretically  "opaque."  That is, the handle value can't
tell you anything about what  it's referring to.  For  instance,  given the handle
value 5, you can't tell whether it's a file handle or  a mutex  handle.  However,
once  you understand  process handle tables in Windows  95, you can easily
correlate  a handle value to what  it's referring to.

A handle table  for a Windows  95 process  is quite  simple. The  first
DWORD  of the table is the maximum number of handle table entries in the
current table. The default at process startup is 0x30  (48) handles. This doesn't
mean,  however, that a process is limited to 48 open handles. When a process
opens more handles than will fit in the current handle table, KERNEL32.DLL
reallocates the handle block of memory so the handle table can be grown.  The
increments appear to be in multiples of 0x10. For example, after outgrowing
the initial 0x30 handle entries,  the reallocated handle table has 0x40 entries.
There doesn't appear to be a significant upper limit on the number of handles.
I wrote a small program to open file handles in a loop, and it allocated well
over 255 handles  (the old DOS limit) before I stopped it.

Immediately  following  the first DWORD  of the handle table  is an array
of 8-byte structures.  Each structure consist of two DWORDS:

DWORD  flags
DWORD  pK32Object

The second field (pK32Object)  is a pointer  to one of the  17 possible types
of KERNEL32 objects that I described earlier in the  "KERNEL32  Objects"
section.  The first DWORD  is access control  flags for that object.  The meaning
of the flags depends  on what  type of object the entry points to.  For instance,
if the  entry  points  to  a  process  object  (K32OBJ_PROCESS),  the  flags  are
the  PROCESS_xxx  flags  from WINNT. H  (PROCESS_TERMNATE,
PROCESS_VM_READ,  and so forth).

At this point,  you might  be suspecting what  a handle value  represents.  If
you're  guessing that the value of a handle  is an index into the process handle
table,  you're right.  Once you know that,  you can easily match  up a handle
value with  the type of KERNEL32  object that  it refers  to.  An unused handle
table entry is filled with O's in both DWORDs.  When allocating a new handle,
KERNEL32  uses the  index  of the  first  empty  slot  in  the  table.  Although
browsing  through  a  process  handle  table  isn't  suggested programming
practice,  the WIN32WLK  program  provides  this  capability.  When  using
Win32Wlk,  note  the  number  and  type  of handles  used  by KERNEL32.
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THREADS

Now that  you've  seen modules and  processes, we can complete our  tour  of
fundamental  KERNEL32  data  structures  by looking at threads.  Although
processes  primarily represent  ownership  of things like file handles, an address
space,  and so on, threads  represent the execution  of code through modules.
You see how all the pieces are interrelated?  It's hard to isolate just one and not
drag in the others.  For example,  in the earlier description of processes,  I had
to have forward references to threads  and synchronization  objects.

At an abstract level, threads  are a convenient way to keep various portions
of your program running while other portions are waiting for some external
action to occur. By splitting up the various tasks that a process performs into
threads,  you can usually eliminate things like polling loops. Polling loops waste
much of the CPU's time executing the same code repeatedly while waiting for
some event (like a key press) to occur.

At any given time,  a thread  is in one of three  basic  states.  The first state
is when  the thread  is actually running.  The actual  CPU registers  are where
the thread's registers  are  kept.  When  a thread  is in the running  state,  all
other  threads  in the system are suspended.

The second state is the  "ready to run"  state.  In this state, there's no reason
why  the  thread  couldn't  be  running --  except  that  some  other  thread  is
currently  using the  CPU.  In  due  time,  the  ready-to-run  thread  will  get
control  of the  CPU.

The  third  state  is the blocked  state.  When  a thread  is blocked,  it's wait-
ing for something to  happen.  Until that  thing happens,  the scheduler  won't
allow the thread  to  execute.  The things  that a thread  blocks  on are called
synchronization  objects. The Windows  95 synchronization  objects  are critical
sections,  mutexes, events,  and  semaphores.

I described the basic  functionality  of the Windows  95  synchronization
objects in Chapter 2,  so I won't repeat  myself here.  In this book, I don't give
the same full treatment  to the inner workings of synchronization  objects that
I give to processes, threads,  and modules.  There are many good  books,  such
as Jeffrey Richter's  Advanced  Windows,  that  go over the details  of using
synchronization  objects;  consult  them if you'd like more information on this
topic.  In this  book,  however,  you'll just have to  assume that  synchronization
objects exist and that they work as described.

Initially,  every process  starts  out  with  one thread.  If the process  wants,  it
can create additional  threads  so that  the CPU can execute through  different
sections  of the process's  code at the same time.  The  standard  example that's
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wheeled  out  at this  point  is that  of a word  processor.  When  it comes time
for a word  processor  to  print,  the program spins  off another  thread  that
handles  all the printing  chores.  This  allows the primary  thread  to  continue
interacting  with the  user,  so  he  or  she can  continue  working  while  the
printing takes  place in the background.

Of course,  if you're  familiar  with  basic  CPU architecture, you know
that  a machine with  just one  CPU can't  really execute in more  than  one
location  at the same time.  The  illusion of multiple  threads  running  simulta-
neously  is provided  by the VMM  scheduler,  which uses  a hardware  timer
and a complex  set of rules to  very  quickly  switch  between  different  threads.

Microsoft claims that Windows  95 uses a timeslice of 20  milliseconds for
scheduling. That  is, in the absence of other  factors  (like thread  priorities),
each thread will run  for 20 milliseconds before the system suspends  it and
starts up a different  thread.  I'll talk a little bit more about  thread  scheduling
in the  "Thread  Priorities"  section.  However,  I'll  state up front that  this book
doesn't  provide  an in-depth  discussion of thread  scheduling and the VMM
scheduler.  As with  synchronization  objects,  this is a topic  for another  book
and another  time.

Like processes, every thread  is represented  internally  in KERNEL32.DLL
by a  block  of memory  allocated  from the  shared  KERNEL32  heap.  This
memory  block holds  all the information KERNEL32  needs to  maintain  for a
thread.  (Actually, the block contains  a few pointers to information  outside the
block,  but you get the idea.)  This memory  block is called a thread  database
(TDB) in this book.  (Note that,  at different times, Microsoft  has used TDB to
mean Task Database  and Thread  Database.)  As with  process databases,  a
thread  database  is a KERNEL32  object. Its first DWORD  contains  the value
6, branding the block as a K32OBJ_THREAD  object.

If you're  an advanced programmer  who's poked around  in the DDK or
used WDEB386 or  Softlce/W, you may have encountered  another  thread-
related  data  structure  called a THCB (Thread  Control  Block). THCBs are
the ring 0 representation  of threads.  In Windows  95, threads  are represented
by separate  ring 0 and ring 3 data  structures.  The ring 0 components,  such as
VMM.VXD,  work with threads  primarily  via thread control  blocks.  The ring
3 components,  such as KERNEL32.DLL,  primarily  use the thread database
that  I'll  discuss  in the upcoming section called  "The Thread  Database."  This
chapter describes  ring 3 thread  behavior  and mechanics,  and doesn't attempt
to cover the ring 0 side of threads.

Although  processes are the primary K32 object that  owns things, threads
also  own  (or are  associated  with)  certain items.  The  first thing that  springs
to mind when asked,  "What would  a thread own?"  is a register set.  As I
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mentioned earlier,  at  any given time a thread  is either  executing or  not exe-
cuting  (pretty obvious,  huh?). When a thread  is executing,  its register set is
stored  in the CPU's registers.  That is, the thread's EIP value is the value in the
EIP register.  When a thread isn't executing,  its registers need to  be stored off
into  memory  somewhere.  Therefore, each thread has a pointer  to  a memory
buffer  where the thread's  register values  are stored when  it's not executing.

Another  thing every thread is associated with  is a process. All the threads
in a process  share  access to  the things that  a process owns.  For instance,  a
process  owns a memory context  and has a private  address  space.  All the
threads  in the process run in the same address  space.  A process also has a
handle  table  for referring to  files, events, consoles,  memory mapped  files,
and  so on.  All threads in the process share the same handle  values.  For
example, if handle  value  3 refers  to  a memory mapped  file,  any thread in
the process  can  use handle value  3 to refer to  that  memory mapped  file.

Threads  also own many other things. Each thread has its own stack area,
its own window message queue, its own set of Thread Local Storage values,
and its own structured exception handling chain.  (In case you don't know
what the latter two items are, I'll be describing them shortly.) In addition, a
thread also acquires and releases ownership of the various synchronization
objects  that the thread uses during its execution. We'll go through all the things
a thread owns when we look at the layout of a thread database a bit later.

WHAT'S A THREAD HANDLE?

WHAT'S A THREAD ID?

Earlier in the chapter,  I described the difference between a process handle and
a process ID. It turns out that the description I gave could easily be repeated
for thread and handles and thread IDs. Just replace the word  "process"  with
the word  "thread"  and you're  all set. If you're  at all unsure  about the differ-
ence  between  a process  handle  and a process  ID, go back and reread the
"What's  a Process Handle?  What's  a Process ID?"  section, since I'm going to
give just the summarized version for threads  here.

The GetThreadHandle  function returns a constant value (a "pseudohandle"
in  Microsoft-speak)  that  can  be  used wherever  a true  thread  handle  can
be  used:
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Pseudocode  for GetCurrentTbread

x_LogSomeKernelFunction(  function  number  for  GetCurrentThread  );

return  OxFFFFFFFE;

Like GetCurrentProcessId,  the GetCurrentThreadId would  return a
pointer to the current thread database,  except  that the KERNEL32 coders
intentionally  obfuscate  (or obsfucate,  which  is the Microsoft  misspelling)
the return value:

Pseudocode  for GetCurrentTbreadld

return  TDBToTid(  ppCurrentThread  );

How  does KERNEL32  obfuscate  the thread return value?  Let's  look:

Pseudocode  for TDBTo Tid

//  Parameters:

//  THREAD  DATABASE  *  ptdb

if  (  ObsfucatorDWORD  ==  FALSE ) {

DebugOut("TDBToTid()  Called  too  early!  Obsfucator  not  yet"

"initialized!"  );

return  0; }

if  (  ptdb  &  1  )

{

_DebugOut(  "TDBToTid:  This  TDB  looks  like  a  TID  (0%]xh)  Do  a"

"stack  trace  BEFORE  reporting  as  bug,"  );
}

//  Here's  the  key!  XOR  the  obsfucator  DWORD  with  the  thread  database

//  pointer  to  make  the  TID  value.

return  ptdb  ^  ObsfucatorDWORD;

If this looks  amazingly similar to the PDBToPID function  earlier  in the
chapter,  you're  right.  KERNEL32  uses a single  ObsfucatorDWORD to
"convert"  process and thread  database  pointers  into  IDs.  Once you figure
out what  the ObsfucatorDWORD  value is (and keep in mind that Microsoft
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misspelled it),  you can  use it to  convert either  process  or thread  IDs into
useful  pointers.  Again,  this isn't  recommended  programming  practice,  but
for the purpose  of understanding  how the system works,  there's  not much
of an alternative.

THE THREAD DATABASE

The thread database  is a KERNEL32 object  (type K32OBJ_THREAD)  that's
allocated  from the KERNEL32  shared  heap.  Like process  databases,  the
thread  databases  aren't  directly linked together in a linked-list fashion.  The
THREADB.H file from the WIN32WLK  sources has  a C-style  structure  defi-
nition  for a thread database.  The  format of a thread database  is as follows:
00h  DWORD  Type
This  DWORD  contains  6,  the KERNEL32  object  type for a thread.

04h  DWORD  cReference
This  DWORD contains  the reference  count  for  the thread.  This is the num-
ber  of things  that  are currently  using the thread  structure  for something (for
example,  they have  an  open handle for the thread).
08h  PPROCESS_DATABASE  pProcess
This PROCESS_DATABASE is a pointer to the process this thread belongs to.

0Ch  DWORD  pSomeEvent
This  DWORD  is a pointer  to  an event  object  (K32OBJ_EVENT).  Event
objects  are passed to  functions like WaitForSingleObject.  It appears that this
event is what's actually waited on when you pass a thread handle to one of the
WaitForSingleEvent  family of functions.
1 0h  DWORD  twExcept
This DWORD  is a pointer to the head of the structured exception  handling
chain.  (Structured  exception  handling is a whole topic  unto itself,  so I'll  defer
a discussion of it until  later  in the chapter.) Note  that this field also marks
the beginning of a TIB (thread  information block)  structure  nested within  the
task  database.  The TIB structure  is also described later in this chapter.
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14h  DWORD  TopOfStack
This  DWORD  holds  the maximum  (topmost)  address  in the stack  area  allo-
cated for this thread.  The typical  amount  of address  space reserved  for each
thread's  stack is  1MB.
18h  DWORD  StackLow
This  DWORD  holds  the lowest  page aligned  address  in the  stack  area  that
this thread's  stack  is using.  In a sense,  this  field is a low water  mark --  by
subtracting  this field from the TopOfStack  field,  you can get a sense of how
much  stack the thread  uses.
1Ch  WORD  W16TDB
This WORD  holds the Win16  global memory handle  (essentially, a selector)
for the Win16  task database.  As Chapter  7 explains,  each process  (be it
Win16  or Win32)  has  both  a  16-bit  task  database  segment  and  a Win32
process  database.
1Eh  WORD  StackSelector16
Win32  code needs to  switch to  a  16-bit  stack  before  it can thunk down to
16-bit code.  This WORD  in the thread  database  holds  the selector  that
KERNEL32  sets up  as the  16-bit  stack  selector  when  thunking  down  to
16-bit  code.
20h  DWORD  SelmanList
A pointer to  the  SelmanList for  this thread.  (Selman is short  for  "Selector
Manager.")  The  Selman component  of KERNEL32  seems to  be responsible
for managing lists of selectors  that  threads  can  allocate  for various  uses  (for
instance,  thunking  between  16- and  32-bit  code).
24h  DWORD  UserPointer
The precise meaning of this DWORD is unclear. However,  the documentation
for the TIB structure says this field is available for use by application  programs.
Remember,  the TIB structure is nested within the thread database structure.

28h  PTIB  p TIB
This  field points  to  the thread  information  block  (TIB) for this thread.  In
Windows  95,  the  TIB is within  the  thread  database,  so this  pointer  points
to  another  field  in  this  thread  database  (the pvExcept  field at  offset  10h,
to  be exact).
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2Ch  WORD  TIBFlags
This WORD  contains  flags for this TIB. These flags  are known:

Flag  name and bit value  Description

TIBF_WIN32  This  thread  is from  a  Win32  application.

OxO001

TIBF_TRAP  Some  sort of  exception  handling.

OxO002

2Eh  WORD  Win 16MutexCount
This  field is somehow related to  the Win16Mutex  (which is also known as
the Win16Lock).  Normally, this  field is -1  for Win32 threads  and 0 for
Win16  threads.
30h  DWORD  DebugContext
If the process  associated  with this  thread  is being debugged,  this  field points
to  a debug context  structure.  The format  of this  structure  is unknown,  but it
appears  to  have register  values  for the debuggee  process  in it.  If the process
isn't  being debugged,  this DWORD  is 0.
34h  PDWORD  pCurrentPriority
This  field points  to  a DWORD that  contains the current  priority level  of the
thread.  The DWORD  that this field points  to is above address  0xC0000000,
which  places it  squarely  in VxD land.

38h  DWORD  MessageQueue
The  low WORD  of this  DWORD  holds  a Win16  global  heap handle for the
thread's  message queue.  Message  queues  are how window messages move
through  the  system; they are described  in Chapter  4.  This  field is closely
related to  the W16TDB field at offset  1Ch.
3Ch  PDWORD  p TLSArray
This  pointer points  to  the thread's TLS array.  The entries  in this  array are
used  by the TlsSetValue  family of functions.  TLS is described  later  in this
chapter.  The actual memory for the TLS array comes a  bit later in the
thread  database.
40h  PPROCESS_DATABASE  pProcess2
This DWORD  contains  a pointer to the process that this thread  is associated
with.  It seems to  always  be a duplicate  of the pointer at  offset 08h in the
thread  database.
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44h  DWORD  Flags
This DWORD  holds  various  flags for  the  thread.  The following values

are  known:

Flag name  and bit  value  Description

fCreateThreadEvent  Set  if  the  thread  is  being  debugged.

OxO0000001

fCancelExceptionAbort

0x00000002

fOnTempStack

0x00000004

fGrowaUeStack

0x00000008

fDelaySingleStep

0x00000010

fOpenExeAslmmovabJeFile

0x00000020

fCreateSuspended  CREATE_SUSPENDED  flag  to  CreateProcess.

0x00000040

fStackOverflow

0x00000080

fNestedCleanAPCs  APC  =  Asynchronous  Procedure  Call

0x00000100

fWasOemNowAnsi  A N S I / O E M  file functions

0x00000200

fOKToSetThreadOem  A N S I / O E M fiJe functions

0x00000400

48h  DWORD  TerminationStatus
This  is the  value  that  would  be returned  by calling GetExitCodeThread.  The
thread  exit  code is the  value  returned  from the  function where  thread  execu-
tion  begins.  Alternatively,  it can  be specified  when  a thread  calls ExitThread
or TerminateThread.  While  a thread  is still  actively  running,  its  exit  code is
0x103  (STILL_ACTIVE).
4Ch  WORD  TIBSelector
This WORD  is an  extremely  important  field.  It contains  a  selector that refer-
ences the current thread's  TIB (thread  information block).  The TIB contains
vital  information,  such as the head  of the exception  handler  chain  for the
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thread.  As Windows 95 switches between threads, it updates the FS register
to contain this value. By doing this, the current thread can always look up
information about itself by using the memory pointed at by the FS register.

4Eh  WORD  EmulatorSelector
This WORD might be a selector that points to a block of memory with
information about the current 80387 emulator state for the thread.  This
data area probably includes an FSAVE-style structure.  On machines using
a math coprocessor,  this field is always 0.
50h  DWORD  cHandles

The meaning of this DWORD is unknown.  It appears to always be 0.
54h  DWORD  WaitNodeList
If the thread  is waiting  for one or more events to  be signaled,  this field
points  to  a linked  list of event nodes stored up in VxD land.  Each node
holds  a pointer to  an event object and a pointer  to  the thread  that's
waiting  on the event.
58h  DWORD  un4
The meaning of this DWORD is unknown.  It's typically either 0 or 2.
5Ch  DWORD  Ring0Thread

This DWORD holds a pointer to the ring 0 Thread Control Block (THCB)
for this thread.
60h  PTDBX  pTDBX
This field points to a TDBX structure. The TDBX structure is VWIN32.VXD's
representation of a thread. The TDBX structure is described in more detail in
Chapter 6.
64h  DWORD  StackBase
For Win32 threads,  this DWORD holds the lowest possible address that the
thread's stack can use. By subtracting this value from the maximum stack
address  (offset 14h), you can calculate how much address space has been
reserved for the stack. For Win16 threads,  this field is 0.
68h  DWORD  TerminationStack

Based on its name, this field contains the ESP value that the thread's  termi-
nation should initially use. For Win32 threads,  this value is the same as the
TopOfStack value (offset 14h). For Win16 threads,  this field holds an
address just below the shared KERNEL32 heap.



C u r r e n t S S

6Ch  DWORD  EmulatorData
Presumably,  this field is a  32-bit  linear  address for the thread's  80387 emula-
tor  data.  If so, this field is related to the EmulatorSelector  field (offset 4Eh).

70h  DWORD  GetLastErrorCode
This  DWORD  holds  the  value  that  GetLastError  returns  for the  current
thread.  This  value  can  be set by calling  SetLastError.
74h  DWORD  DebuggerCB
If a thread  is  acting  as  a  debugger  thread  (that  is,  if it's  calling WaitFor-
DebugEvent),  this field contains  a pointer  to  a  block  of information  used by
the debugger.  The information in this  field includes pointers  to the debugger's
process  database,  thread  database,  and the debuggee's  thread  database.
78h  DWORD  DebuggerTbread
If this  thread  is  being debugged,  this  field contains  a  non-NULL value.  The
meaning  of the  value  isn't  known  because  it's  too  low to  be a valid pointer.
7Ch  PCONTEXT  TbreadContext
This pointer  points  to  an Intel CONTEXT  structure  as defined in WINNT. H.
This  structure  holds  the register values for the thread when the thread isn't
the currently  running thread.  This  structure  is read from and written to with
the  GetThreadContext  and  SetThreadContext  functions.  This  field is only
non-zero  when the process is being debugged.
80h  DWORD  Except16List
The  exact  meaning  of this  DWORD  is unknown,  although  from the  name,
it would  appear  to  have something to  do  with  exception handling.  In my
tests,  it was  always  0.
84h  DWORD  ThunkConnect
The exact meaning of this DWORD is also unknown.  From the name, you
might think it has something to  do with thunking.  In my tests, it was always 0.
88h  DWORD  NegStackBase
If you  add  the  value  of this  field to  the  StackBase  field  (offset  64h),  you'll
get  FFEF9000.  Don't  ask  me why.
8Ch  DWORD  CurrentSS
This  DWORD  holds  a  16-bit  stack  selector  for  thunking  from  32-bit  code
down to  16-bit  code.  This  field appears  to  be related to  the  very  similar
StackSelector16  field  (offset  1Eh).  The  difference  in  usage  between the two
fields  is currently  unknown.
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90h  DWORD  SSTable
This  field is a pointer to a memory block containing information about the
16-bit  stack to  be used when thunking down to  16-bit code.

94h  DWORD  ThunkSS16
This DWORD contains yet another selector value used for thunking. In some
threads, it matches the value in the StackSelectorl6  field (offset 1Eh), while
in other threads it has the same value as the CurrentSS field (offset 8Ch).
98h  DWORD  TLSArray[64]
The TLSArray field is an array of 64 DWORDs.  Each DWORD holds the
value  that TLSGetValue returns for a given TLS ID. For instance,  the first
DWORD in the array is returned  by TLSGetValue(0).  The second DWORD
is returned  by TLSGetValue(1),  and so on.  TLS is described  in a subsequent
section  of this chapter.
198h  DWORD  DeltaPriority
This DWORD holds the difference in priority  of this thread as compared to
the priority class of the owning process. Typical values for this field would be:

THREAD_PRIORITY_LOWEST  -2
THREAD_PRIORITY_BELOW_NORMAL  - 1
THREAD_PRIORITY_NORMAL  0
THREAD_PRIORITY_HIGHEST  1
THREAD_PRIORITY_ABOVE_NORMAL  2

19Ch  DWORD  un5[7]
This stretch of DWORDs appears to always be 0. The meanings are unknown.

1B8h  DWORD  pCreateData16
If nonzero,  this field points  to  a structure  with two 32-bit  pointers:

00h pProcesslnfo  --  a PPROCESS_INFORMATION
04h pStartuplnfo --  a PSTARTUPINFO

In all my testing,  however, the pCreateData16  pointer was always 0.
1BCh  DWORD  AHSuspendCount
This field is incremented each time SuspendThread  is called and decremented
each time ResumeThread  is invoked.
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1C0h  DWORD  un6
The meaning of this DWORD  field is unknown.
1C4h  DWORD  WOWChain
This  field  presumably  has  something  to  do  with  WOW  (Windows  On
Windows)  support  in Windows  95.  WOW  is the  method  by which
Windows  NT  runs  16-bit  applications  in their  own  protected  address
space,  which  keeps  them  from  potentially  crashing  32-bit  applications.
The  field was  always  0  during  testing.
1C8h  WORD  wSSBig
Based on the name, this  field contains  a flat 32-bit selector for use as a stack
segment.  However,  the field was  always  0 during testing.

1CAh  WORD  un7
The meaning of this WORD  is unknown.  It may be just filler to keep the
subsequent  fields  DWORD  aligned.
1CCh DWORD  Ip16SwitchRec
The meaning of this DWORD is unknown,  but based on the name, it probably
has some connection to Win16 thunking.
1D0h  DWORD  un8[5]
These  five DWORDS  appear to  always  be 0. Their  meaning is unknown.
1E4h  DWORD  pSorneCritSect1;
This field points to a critical section object (K32OBJ_CRITICAL_SECTION).
The critical section is different for each process.  The purpose of this particular
critical  section is unknown. This field seems to always have the same value as
pSomeCritSect2  (described below).
1E8h  DWORD  pWin16Mutex;
This  pointer points  to the Win16Mutex in KRNL386.EXE.
1ECh  DWORD  pWin32Mutex;
This  pointer points to the Krn32Mutex  in KERNEL32.DLL.
1F0h  DWORD  pSomeCritSect2;
This field points to a critical section object (K32OBJ_CRITICAL_SECTION).
The critical section is different for each process.  This field seems to always
have the same value as pSomeCritSectl  (described earlier in the structure).
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1F4h  DWORD  un9
This DWORD's  meaning  is currently  unknown.  It appears to always  be
set to  0.
1F8h  DWORD  ripString
From the name, you might think this field is a PSTR for a string that will be
used during a FatalAppExit RIP. However,  in almost all cases, this field is 0,
and when nonzero, it doesn't point to a character  string.
200h  DWORD  LastTlsSetValueEIP[64]
This array of 64 DWORDs is a parallel array to the primary TLS array at
offset 98h in the thread database.  Each DWORD in this array corresponds
to a TLS index value, and each contains the EIP where the corresponding
TLS indexed value was last set from. The EIP value is retrieved from the
stack frame set up by TlsSetValue.

A final note on the thread database: There's more than one way to get a
pointer to a thread database.  Besides the XOR'ing trick I alluded to earlier,
each Win16 task database  also contains a pointer to a thread database.  At
offset 54h in a Winl6 task database is the linear address of the thread database
for the task/process's first thread.

THE THREAD INFORMATION BLOCK (TIB)
Within the thread database,  certain fields are immensely useful to running
programs.  In fact, they're so useful that the Win32 architecture  makes them
immediately accessible without looking them up in the thread database
structure.  These fields are encompassed  in a structure called the Thread
Information  Block (or TIB, as KERNEL32 refers to it). The fields of a
Windows 95 TIB encompass offsets 10h through 3Ch in a thread database.

How does application  code access the TIB? If you've looked at much
assembly language output for compiled Win32 code, you've probably
noticed that the FS segment register is used quite a bit. Wait a minute!  Isn't
Win32 supposed to remove segments from the programming picture?
Although the answer is yes, under the hood the Win32 architecture
(Windows  NT, Windows  95,  and Windows  Win32s)  dedicates  the  FS
register  to pointing at the thread information block for the current thread.
As it turns out, Win32 wasn't the first operating system to do this. OS/2 2.0
did it long before Win32 arrived on the scene. As you might suspect, when
Windows 95 switches threads,  the scheduler has to update the FS register to
contain the selector that points  to the new thread's  TIB.
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The primary  use of the FS register and the TIB is to add entries  to the
structured  exception handling chain (which I'll  describe later in the chapter).
The  head of the structured exception handling chain is at  offset  0 in the TIB,
so when you see assembler  code using FS:[0], you know it's doing something
related to  structured exception handling.

Two other  fields in the Windows  95 TIB that  are used quite  extensively
are  the pvQueue and  pvTLSArray fields  (offsets 28h  and 2Ch,  respectively).
The pvQueue field contains the queue handle for the current thread's message
queue.  This  field is used frequently  by USER.EXE's windowing  system code,
because in Windows 95 things like the focus window are stored on a per-thread
basis.  The pvTLSArray field points  to the thread local  storage array  in the
thread databases.  The compiler  vendors  use it  in conjunction  with the  .tls
section in the executable file to provide transparent per-thread global variables.

Although  the layout  of the TIB structure  can be inferred from the thread
database  structure,  it  bears  a  brief  summarization  here.  A C  structure
definition  can  be found  in TIB.H  from the WIN32WLK  sources.  A formal
Microsoft  definition  for  the  first couple  of items  is in the NTDDK.H  file
from the Windows NT  3.5  DDK  (along with  a stern warning that  the  fields
must  be compatible  with  OS/2 2.0).  This  is apparently  a  remnant  from the
early  days of NT, when Microsoft  was  still trying to give the impression that
it cared about  OS/2.  (See Z.  Pascal Zachary's  book  Showstopper for some
interesting stories  on this  particular  topic.)

The TIB fields  in Windows  95  are  as follows:

00h  DWORD  pvExcept
04h  DWORD  TopOfStack
08h  DWORD  StackLow
0Ch  WORD  W16TDB
0Eh  WORD  StackSelector16
10h  DWORD  SelmanList
14h  DWORD  UserPointer
18 h  PTIB  pTIB
1Ch  WORD  TIBFlags
1Eh  WORD  Win16MutexCount
20h  DWORD  DebugContext
24h  PDWORD  pCurrentPriority
28h  DWORD  MessageQueue
2Ch  PDWORD  pTLSArray
30h  DWORD  pProcess  (process  database  pointer)
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For a description  of each of the fields,  add  10h to  the offset  and look up
that  offset  in  "The  Thread  Database"  section earlier  in the chapter.  Note
that  only some of these  fields  are common across  all Win32  platforms.

THREAD PRIORITIES

The  core scheduler  in the Windows  95 Virtual  Machine  Manager  (VMM)
has  no  real knowledge  of processes.  Instead,  it concentrates  on scheduling
the threads  with  the highest priority,  without  regard to  what  process  they're
in.  Put another  way, processes  don't  really  have  a priority.  Still, to  the end-
user  of these thread  scheduling  services  (that is, to  the application  program-
mer),  it's  a  useful  abstraction  to  think  of processes  as having  a priority.  The
SetPriorityClass  and  SetPriorityClass  functions  act as interpreters  between
the two views of process/thread  priorities.

At any given  time,  the  thread  with  the  highest priority  that  isn't  wait-
ing on  something  is the thread  that's  going to  be run.  To ensure  a  smoothly
running  system  and  prevent  many  problems,  the  system changes  the
priority  of threads  on  the  fly.  For  instance,  a  thread's  priority  may  be
temporarily  boosted  when  an  I/O operation  it's  waiting  for completes.
Going  into  thread  scheduling in  any more  detail  than  this  could  easily
require  a  large  chapter  of its  own.  Therefore,  I'm  going to  put  off a
detailed  discussion  of thread  priorities  for  another  book  (or perhaps  a
future  magazine  article).

Within  the Windows  95 VMM scheduler,  there are  32 distinct  priority
levels.  These  32 levels  are  broken  into  four groups,  known as priority
classes.  Each priority class  is associated with  a specific  priority level that  is
the default priority  for threads  of that  priority class.  Within the priority
class,  threads  can vary from two  below the default priority to  two  above.
(There  are  also  some special cases such as THREAD_PRIORITY_LEVEL,
where  a thread's  priority can  be bounced entirely  out of its priority class.)
Unless  specifically instructed  to  do otherwise,  when the operating system
creates  a process,  the new process  is given the
NORMAL_PRIORITY_CLASS.

The  four priority classes,  their default  priority values,  and their range of
priority  values  are  as follows:
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Priority  Default  value  Range  of priority  level

IDLE_PRIORITY_CLASS  4  2  -  6

NORMAL_PRIORITY_CLASS  9  or  7  6  -  10

(9  if  foreground  process;

7  otherwise)

HIGH_PRIORITY_CLASS  13  11  -  15

REALTIME_PRIORITY_CLASS  24  16  -  31

The  thread  priority  of  1 is  a special  case.  Threads  that  are  nominally
of the  IDLE_PRIORITY_CLASS,  NORMAL_PRIORITY_CLASS,  or
HIGH_PRIORITY_CLASS  can  be set  to  priority  level  I  via  the
SetPriorityClass  function.

As a  side  note  on  Windows  95  priority  levels,  the  32  levels  in  the
Windows  95 scheduler don't correspond  numerically to the values for the pri-
ority classes in WINBASE.H.  For example, NORMAL_PRIORITY_CLASS  is
0x20 in WINBASE.H.  Windows 95's KERNEL32.DLL maps these values to
the appropriate  Windows 95 thread scheduler priority value.

GetThreadPriority
GetThreadPriority  is a simple  function.  Given a thread  handle  (which can
be for any thread  in any process),  the code converts  the handle  into  a
pointer to  the process  database  for that  thread.  Assuming  the handle con-
version  went smoothly,  GetThreadPriority  returns  the value of the
DeltaPriority  field  (offset  198h) in the thread  database.  All this code is
wrapped  by an EnterSysLevel  and LeaveSysLevel  to  prevent problems  with
an inopportune  thread  switch.

Pseudocode  for GetTbreadPnonty

//  Parameters:

//  HANDLE  hThread:

//  Locals:

//  PTHREAD_DATABASE  ptdb;

//  DWORD  retValue;

x_LogSomeKernelFunction(  function  number  for  GetThreadPriority  );

_EnterSysLevel(  pKrn32Mutex  );
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retValue  =  Ox7FFFFFFF;

ptdb  =  x_ConvertHandleToK320bject(  hThread,  0x20.

if  (  ptdb  )

retValue  =  ptdb->DeltaPriority;

LeaveSysLevel(  pKrn32Mutex  );

0);

Set Th read Priority
The SetThreadPriority code is broken up into four parts.  First, the function
converts  the  thread  handle  into  a  thread  database  pointer.  Second,
SetThreadPriority  validates  the passed-in new priority to see if it's within the
allowable range. Third,  the code uses the internal CalculateNewPriority  func-
tion to  convert  the input priority parameter  into one  of the  32 thread  priori-
ties  used  by the Windows  95 scheduler. We'll look  at  CalculateNewPriority
in the next  section.

Finally,  SetThreadPriority  calls VWIN32.VXD to  inform the ring 0
components  of the new priority.  The  mechanism  by which  KERNEL32
calls into ring 0 is the VxDCall  functions  (for example,  VxDCall0).  Ring 3
components  invoke Win32 VxD services  by using VxDCall.  In this case,
VWIN32.VXD  provides  a ring  3 callable  service to  set a thread's  priority.
Win32  VxD services  are new in Windows  95  and play a key part  in the ring
0-ring  3 interactions.  In  fact,  the  new Windows  95 Win32  VxD services
are so important  that  much  of Chapter  6 is devoted to  describing them.
Because Win32  VxD services  will  be covered thoroughly  a bit  later  in the
book,  I won't  dwell  on  the actual  mechanics  of VxDCall  in this chapter.

Pseudocode for SetThreadPriority
//  Parameters:

//  HANDLE  hThread

//  int  nPriority;

//  Locals:

//  PTHREAB  DATABASE  ptdb;

//  DWDRD  retValue;

x_LogSomeKernelFunction(  function  number  for  SetThreadPriority  );

EnterSysLevel(  pKrn32Mutex  );
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ptdb =  x_ConvertHandleToK320bject(  hThread,  0x20,  0  );

if  (  ptdb  )

{

if  (  (nPriority  < THREAD_BASE_PRIORITY_MIN)

&&  (nPriority  >  THREAD_BASE_PRIORITY_MAX)  )

if(

{

(nPriority  != THREAD_BASE_PRIORITY_LOWRT)

&&  (nPriority  !=  THREAD_BASE_PRIORITY_IDLE)  )

InternalSetLastError(  ERROR_INVALID_PRIORITY  );

goto  error;

ptdb->DeltaPriority  =  nPriority;

if  (  ptdb->RingOThread  )

DWORD  newAbsPriority  =  CalculateNewPriority(ptdb,  ptdb->pProcess2);

//  Call  into  VWIN32  to  do  the  real  work.

//  Set_Thread_Win32_Pri  ==  OxOO2A0021

VxDCallO(Set  Thread_Win32_Pri,  ptdb->RingOThread,  newAbsPriority)

retValue  =  TRUE;

else
{

error:

retValue  =  FALSE;

_LeaveSysLevel(  pKrn32Mutex  ):

return  retValue;

CalculateNewPriority
The  CalculateNewPriority  function  encapsulates the rules for thread priorities
in the Windows  95  scheduler.  Given a process and a thread,  it calculates the
priority  level (within the range of  1 -  31) that the thread should  have. From
the process database,  the  function  extracts  the priority  class for the thread
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(normal,  idle,  high,  or  realtime).  To  this  base  priority,  it  adds  the  thread's
delta  priority.  The  delta  priority  is  typically  in  the  range  of  +-  2.  After  adding
the  priority  class  priority  to  the  thread's  delta  priority,  the  code  makes  sure  the
new  priority  is  within  the  expected  bounds.  It's  worth  noting  that  realtime  pri-
ority  threads  get  special  handling  here;  that's  because  the  range  of  realtime
priority  levels  is  greater  than  the  ranges  of  the  other  priority  classes.

Pseudocode  for CalculateNewPriority

//  Parameters:

//  PTHREAD_DATABASE  ptdb;

//  PPROCESS_DATABASE  ppdb;

//  Locals:

//  DWORD  baseProcPri

//  DWORD  sum

//  DWORD  upperLimit,  lowerLimit

baseProcPri  =  ppdb->BasePriority;

if baseProcPri  != 4)  &&

baseProcPri  != 8)  &&

baseProcPri  !=  13)  &&

baseProcPri  !=  24))

x_Assertion2("  ..\priority.c"  );

sum  =  ptdb->DeltaPriority  +  ppdb->BasePriority;

if  (  ppdb->BasePriority  ==  24  )  //  Real  time  class  thread?

{

upperLimit  =  31

lowerLimit  =  16

}

else  //  Other  priority  class.

{
upperLimit  =  15

lowerLimit  =  1

}

if  (  upperLimit  >=  sum  )

upperLimit  =  sum

if  (  lowerLimit  <=  upperLimit  )

return  upperLimit;

else

return  lowerLimit;
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SetPriorityClass
The  SetPriorityClass function  lets the caller change the priority class for all the
threads  of a process.  The function  starts  by converting  its hProcess parameter
into  a PPROCESS_DATABASE  pointer.  Using the pointer,  the function  deter-
mines  the process's  current  priority class.  If it's the  same as the new priority
class,  the  function  bails  out  because there's nothing to  be done.

If the new priority class is different  from the previous class, SetPriorityClass
plugs the default value  for the new priority  class into the  BasePriority  field of
the  process  database.  But wait,  there's  more!  Earlier,  I mentioned that  the
notion  of process  priority classes is just an  illusion,  since the VMM  scheduler
concerns  itself only with threads,  and  not with processes.  To bridge the two
views of priority  levels,  SetPriorityClass  loops through  each of the threads  in
the  process  and calls  into VWIN32.VXD  to  set the  new priority  for each
thread.

There's  one  slight twist  to  note  here.  Threads  can have priorities  that
differ  slightly from the default  class priority.  This  difference  is kept  in the
"DeltaPriority"  field of the thread  database  (we'll  look  at  this  field later).
SetPriorityClass  has  to  take  into account  each  thread's  priority  delta  when
calculating  the new priority value  for the thread.  The  CalculateNewPriority
function  (just  described)  does  this  calculation.

Pseudocode  for SetPriorityClass

//  Parameters:

//  HANDLE  hProcess

//  DWORD  fdwPriority

//  Locals:

//  BOOL  retValue

//  PPROCESS_DATABASE  ppdb;

//  PTHREAD_DATABASE  ptdb;

//  DWORD  newPriority

// PK320BJECTLISTENTRY  pKB20bject;

x_LogSomeKernelFunction(  function  number  for  SetPriorityClass  );

_EnterSysLevel(  pKrn32Mutex  );

ppdb  =  x_ConvertHandleToK320bject(  hProcess,  0x10,  0  );

if  (  ppdb  )

{

retValue  =  TRUE;
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if  (  fdwPriority  ==  NORMAL_PRIORITY_CLASS  )

goto  SetNormal;

if  (  fdwPriority  ==  IDLE_PRIORITY_CLASS  )

goto  SetIdle;

if  (  fdwPriority  ==  REALTIME_PRIORITY_CLASS  )

goto  SetHigh;

if  (  fdwPriority  ==  HIGH_PRIORITY_CLASS  )

goto  SetRealTime;

//  None  of  the  allowable  priorities  was  specified,  so  bomb  out.

retValue  =  FALSE;

InternalSetLastError(  ERROR_INVALID_PRIORITY  );

goto  done;

SetNormal:

if  (  ppdb_>BasePriority  ==  8  )

goto  done;

ppdb->BasePriority  =  8;

goto  SetIt;

//  No  change  from  previous  state?

SetIdle:

if  (  ppdb->BasePriority  ==  4  )

goto  done;

ppdb->BasePriority  =  4;

goto  SetIt;

//  No  change  from  previous  state?

SetHigh:

if  (  ppdb->BasePriority  ==  13  )  //  No  change  from  previous  state?

goto  done;

ppdb->BasePriority  =  13;

goto  SetIt;

SetRealTime:

if  (  ppdb->BasePriority  ==  24  )  //  No  change  from  previous  state?

goto  done;

ppdb->BasePriority  =  24;

SetIt:

//  Start  looping  through  all  the  threads  for  this  process.

pK320bject  =  x_GetNextObjectInList(  ppdb->ThreadList,  0  );

while  (  pK320bject  )

{
ptdb  =  pK320bject->pObject;
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if ( ptdb->Ring0Thread )

I

// Calculate the new priority , taking   into account the

// process's base priority and the thread's relative priority

newPriority = CalculateNewPriority ( ptdb , ppdb ) ;

//  Call  into  VWIN32  to  do  the  Dirty  Deed  (Done  Dirt  Cheap).

//  VxDCall  ID  ==  0x002A0021

VxDCall0(Set_Thread_Win32_Pri,  ptdb->RingSThread,  newPriority);

pK320bject  =  x_GetNextObjectInList(  ppdb->ThreadList,  1  );

}

I

else

{

retValue  =  FALSE;

}

done:

_LeaveSysLevel(  pKrn32Mutex  );

return  retValue;

GetPriorityClass
The  GetPriorityClass  function returns the priority class  for the specified
process.  After changing  the hProcess parameter into a PPROCESS_
DATABASE, the function  retrieves the priority class from the process
database.  This  priority  level  should  be in the range  of  1 -  31,  which  is
different  from the xxx_PRIORITY_CLASS  #define's  in WINBASE.H.
Therefore,  GetPriorityClass  converts  the VMM  scheduler priority  level
into  the corresponding xxx_PRIORITY_CLASS  flag.

Pseudocode  for GetPnontyClass

//  Parameters:

//  HANDLE  hProcess

//  Locals:

//  DWORD  retValue;

x_LogSomeKernelFunction(  function  number  for  GetPriorityClass  );



A P I s

146

retValue  =  0;

EnterSysLevel(  pKrn32Mutex  );

ppdb  =  x_ConvertHandleToK320bject(  hProcess,  0x10,  0  );

if  (  ppdb  )

{

if  (  ppdb_>BasePriority  ==  4  )

retValue  =  IDLE_PRIORITY_CLASS;

else  if  (  ppdb->BasePriority  ==  8  )

retValue  =  NORMAL_PRIORITY_CLASS;

else  if  (  ppdb->BasePriority  ==  13  )

retValue  =  HIGH_PRIORITY_CLASS;

else  if  (  ppdb->BasePriority  ==  24)

retValue  =  REALTIME_PRIORITY_CLASS;

_LeaveSysLevel(  pKrn32Mutex  );

return  retValue;

THREAD EXECUTION CONTROL

The  Win32  API provides  a small  set  of  APIs  for modifying  and  querying  the
execution  status  of  other threads.  At  a low  level,  one  thread  can  read and
write  the registers  of  another  thread  (assuming  the  first  thread  has  a valid
handle  for the  other thread).  On  a broader  level,  there  are Win32  functions
that  let  you  freeze  and  thaw  the  execution  of  other threads.  Let's look  at
these  thread  control  functions  now.

GetThreadContext and IGetThreadContext
GetThreadContext  enables  one  thread to  obtain  a copy  of  the  register  values
of another  thread.  At  any given  time,  a thread  is either executing  or is  sus-
pended.  While  a thread  is in  the  suspended  state,  its register  values  are kept
in  a data  structure  known  as  a  thread context.  The  GetThreadContext  func-
tion  lets  you  read the  values  in  a suspended  thread's  thread  context  structure.
As  input,  SetThreadContext  takes  a copy  of  a thread  context  structure  (a
CONTEXT  in WINNT. H).
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The actual GetThreadContext  is just a parameter  validation  layer. It verifies
that  the  pointer  passed  in  points  to  memory  of sufficient  size to  hold  a
CONTEXT structure. If so, the code jumps to the internal IGetThreadContext
routine.

IGetThreadContext  is a convoluted routine.  It starts  by converting  the
hThread  parameter  into  a  thread  database  pointer.  Then,  it  calls  the
x_ThreadContext_CopyRegs  to  copy the input  register  set into  the ring 3
CONTEXT  structure  for the thread.  (x_ThreadContext_CopyRegs  is
described  in the next section.)  In addition to copying the register in the ring
3 CONTEXT structures, IGetThreadContext  also calls into VWIN32.VXD
to get the ring 0 version of these register. The reasons why there are both ring 0
and ring 3 versions  of the registers isn't  entirely clear.

After filling in the input CONTEXT structure,  GetThreadContext verifies
that the CS and flags registers  contain valid values.  (In this case,  valid means
that the CS register is set to the selector used to execute ring 3 code.) The flags
register  test is a simple check to make sure the V86 mode flag isn't on.

Pseudocode for GetThreadContext

//  Parameters:

//  HANDLE  hThread

//  LPCONTEXT  lpContext

Set  up  structured  exception  handling  frame

Touch  the  first  and  last  bytes  that  lpContext  point  to.

If  a  fault  occurs,  it's  considered  a  bad  pointer,  and  the  exception

handler  returns  FALSE;

Remove  structured  exception  handling  frame

goto  IGetThreadContext;

Pseudocode  for IGetTbreadContext

//  Parameters:

//  HANDLE  hThread

//  LPCONTEXT  lpContext

//  Locals:

//  PTHREAD_DATABASE  ptdb;

//  BOOL  retValue

//  DWORD  errCode;
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retValue  =  TRUE;

x_CheckNotSysLevel_Win16_Krn32_mutexes();

x_LogSomeKernelFunction(  function  number  for  GetThreadContext  );

EnterSysLevel(  pKrn32Mutex  );

ptdb  =  x_ConvertHandleToK320bject(  hThread,  0x20,  O  );

if  (  !ptdb  )

{

retValue  =  FALSE;

}

else  //  Found  a  valid  process  database.

{
//  Is  there  a  valid  ThreadContext  field  in  the  thread  database?

if  (  ptdb->ThreadContext  )

x_ThreadContext_CopyRegs(  lpContext->ContextFlags,
pdtb->ThreadContext,  lpContext  );

else  //  ThreadContext  is  0  in  the  thread  database.

{
if  (  ptdb->DebugContext  &&  ptdb->DebugContext.  SomeField  )

//  Are  floating  point  or  debug  regs  specified?

if  (  lpContext->ContextFlags
&  (CONTEXT_FLOATING_POINT  |  CONTEXT_DEBUG_REGISTERS)  )

{

ptdb->DebugContext.ThreadContext.ContextFlags

=  (CONTEXT_FLOATING_POINT  |  CONTEXT_DEBUG_REGISTERS)

//  Call  VWIN32  to  do  the  copying.

//  _VWIN32_Get_Thread_Context  ==  0x002A0814

retValue  =  VxBCallO(  _VWIN32_Get_Thread_Context,

ptdb->Ring0Thread,

&ptdb->DebugContext.ThreadContext  )

if  (  retValue  ==  0  )

goto  error;

x_ThreadContext_CopyRegs(  lpContext->ContextFlags,
&ptdb->DebugContext.ThreadContext,

lpContext  );



USER AND GDI
SUBSYSTEMS     4

I
t's  a bit strange to  start  out a chapter with an  apology,  but
that's  exactly what  I'm about  to do.  As the chapter  title

implies, I'm going to dig into and describe various facets  of the
Windows  95 USER and  GDI components.  The USER module
contains  all the code responsible  for passing messages  around
the system and for managing windows.  GDI is the core of the
Windows graphics  system. Putting  a window on the screen
requires  an intense amount of cooperation  between USER and
GDI.  Therefore,  as you can probably  imagine,  describing just
the topmost  layer of the USER and  GDI modules could easily
encompass  two  books.  That's  why I'm going to beg off even
attempting to describe how USER and  GDI do much of their
magic.  Instead,  this chapter  focuses  on  how the Windows  95
USER and  GDI modules have evolved from their  16-bit
Windows  3.1  roots and  have drawn  from the Windows  NT
USER and  GDI components.

Windows  95 features  significant new USER and GDI-like
functionality  (such as the new common controls)  that  I can't
even hope to cover in this  book.  I even half-jokingly suggested
to my technical reviewer that  there's probably  a market  for a
book  titled something  like  WndProc Internals.  In that  (purely
hypothetical)  book,  there'd  be detailed pseudocode  listings  for
all the standard system window procedures  (for example,  the
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button window, the tooltips windows, and so on). The closest we'll come to
that topic in this chapter is the desktop window procedure,  for which I'll
show pseudocode a bit later on.

So, given that you now know what's  not  going to be covered, what
exactly is there to talk about? Lots, as it turns out. Just reimplementing the
basic code of the Windows 3.1 USER and GDI to accommodate the demands
of the Win32 APl put these modules through gut-wrenching changes. If you're
basically comfortable in your understanding of the way things worked under
Windows 3.1, this chapter should help you make a transition in your mental
model to the new way things work in Windows 95. I'm going to partition the
chapter into two major parts (yes, you guessed it: USER and GDI). The USER
portion of this chapter turned out to be much larger because USER's changes
were more dramatic. Plus, once you understand Windows 95's changes to
USER, it's not much harder to grasp how GDI has changed.

THE WINDOWS 95  USER MODULE

Throughout the writing of this book, I've struggled to categorize the changes
to USER into neat compartments. As it turns out,  the changes to the USER
subsystem can't easily be placed into one or two specific categories. The
Windows 95 USER component is neither fish nor fowl. The vast majority of
the code for the messaging system resides in the 16-bit USER.EXE file, yet there
is 32-bit code scattered throughout this  16-bit module. Some parts  of the
16-bit USER.EXE are virtually identical to Windows 3.1, while other pieces
have been radically reworked and bear no resemblance to the 3.1 USER.

The USER component  of Windows  95 also includes the  32-bit
USER32.DLL that Win32 EXEs and DLLs interface with.  You may have
heard that USER32.DLL is just a bunch of thunks down to the  16-bit
USER.EXE. Although the vast majority of functions in USER32 are just
thunks to  16-bit code, there are also nontrivial  functions implemented in
USER32.DLL with nary a thunk in sight. We'll see several examples of this
later on.

Trying to put neat boxes around the design and implementations of the
16-bit USER.EXE and 32-bit USER32.DLL just doesn't seem possible. The
best that I can say is that the Windows 95 coders did their best to  balance
the twin goals of backward compatibility and adherence to the Win32
specification  as set forth by Windows NT. In many cases, backward com-
patibility  and Win32 APl adherence are at odds with one another. This
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resulted  in the inevitable design compromises  and decisions that  nobody is
particularly  happy with.  ("Class,  can you say Win16Mutex?")  All things
considered,  though,  I think the Windows  95 USER team did an admirable
job of balancing the twin requirements  of compatibility  and the Win32 API.
I doubt many programmers would want to take on such a task for themselves,
nor would  they do as good a job.

To get a feel for the Windows  95 USER component,  it helps to look  at
USER in Windows  95's Win32  siblings.  The  Windows  NT USER is fully
32 bit,  and  its primary requirement  is to  properly  implement  the Win32
APl. Backward compatibility is nice but not absolutely  essential. The  16-bit
USER.EXE  component  in Windows NT  is implemented  by thunks  up  to
the real USER code  in NT's  USER32.DLL.

On the other side of Windows 95, the (mostly forgotten)  Win32s attempts
to provide as much of the Win32 API as possible while residing atop the relent-
lessly 16-bit Windows 3.1 USER.EXE. No changes to the  16-bit USER.EXE
are allowed for Win32s. The poor Win32s coders had to live with the majority
of their base code being frozen a year before the initial version of Win32s
shipped.  (Talk about requirements being cast in stone!)

So where does the Windows  95 USER system fall between these two
points?  While the Win32  purists  (myself included) would  have liked to have
seen Windows  95 go the Windows  NT route,  it wasn't an option. Windows
95 is intended as the mass-market  successor to Windows  3.1, and sacrificing
backward compatibility  simply wasn't  an option.  There  are just too  many
existing programs  out there  that rely on the idiosyncrasies and  quirks  of the
16-bit USER.EXE.  (A typical Microsoft comment  at  this point  would  be
"See, we told you not to  use undocumented  stuff!")

Besides introducing incompatibilities  with existing programs, Microsoft
makes another case for keeping the core of USER's functionality  in the  16-bit
USER.EXE.  Specifically, code size. In general,  32-bit code takes  up more
space  because of the increased size of the operands for many instructions.
(To be fair, this particular  issue has  been hotly debated,  and one can come
up with numerous  examples where  a particular  operation can be imple-
mented  in fewer bytes  by using 32-bit instructions.)  On the whole,  however,
the Microsoft  coders  felt that reimplementing  USER's functionality  in pure
32-bit code would  bloat the code size by something  like 40  percent.  Given
that  Windows  9.5 is supposed  to run  just  as  badly on  a 4MB machine  as
Windows  3.1  (oops,  the Microsoft  marketeers  would want  me to say  "just
as well"),  redoing USER as pure Win32 code  (as Windows NT did)  wasn't
an option  for Windows  95.
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So, given that a real Win32 USER subsystem was out,  the Windows 95
team did the next best thing. They started with the Windows 3.1 USER.EXE
code and,  unlike  the Win32s team, were allowed to modify  it.  Since
Windows 95's design necessitates at least an 80386, the Windows 95 USER
team went hog wild with USER.EXE. There are 32-bit instructions  all
throughout USER.EXE's 16-bit code segments. (That's why you find so many
size-override opcodes (66h) in the Windows 95 USER.EXE code segments.)

The fact that USER.EXE uses 32-bit data offsets throughout  much of its
16-bit code bears a closer look.  Much of USER's code is written in C, and,
as you probably know, C compilers for the PC use memory models when
generating  their code. A regular  16-bit C compiler  like Borland C++ emits
16-bit code instructions,  which use segments and access data with  16-bit
offsets. Even if the 16-bit compiler is allowed to generate 32-bit instructions,
the generated code still won't generate instructions  that index more than
64K into a segment.

In contrast,  32-bit compilers use the flat memory model. In the flat model,
PC C compilers forget that segments exists. The code they generate never
explicitly references the code selector, data  selector, or stack selectors (the
CS, DS, and SS registers). The code in Windows 95's USER.EXE looks like
a hybrid of the  16-bit and flat memory models. That is, USER.EXE's code
resides in  16-bit segments,  and the code explicitly uses segment registers. On
the other hand, the USER code also contains instructions that address more
than  64K into a segment.  Consider the following code snippet from
USER.EXE:

1ACA:  NOV  AX,SEG  0021:0000

1ACD:  NOV  ES,AX

1ACF:  NOV  EAX,ES:[062E]

1AD4:  CMP  WORD  PTR ES:[EAX+46],BX

1AD9:  JNE  1ADC

1ADB:  RET

The size of the instructions  (such as the 3-byte first instruction)  prove
that this is 16-bit code. The first two instructions  explicitly set up a segment
register to grab a global variable at offset 062Eh in USER's DGROUP. But
then the  fourth  instruction  uses the EAX register  as part  of an address
calculation.  In actual execution  of this code, EAX does in fact contain a
value greater than 128K. Never before have I seen a compiler that can generate
what is fundamentally 16-bit code at the same time it uses 32-bit offsets to
data.  It makes me wonder if the Windows 95 USER team used a special
compiler  developed  by the languages division of Microsoft.  (Update: An
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unnamed source told me after I had already written this chapter that such a
compiler actually exists at Microsoft.)

Although many changes to the  16-bit USER.EXE were made simply to
provide increased capacity  (since running out of heap space was a chronic
Windows 3.1 problem),  many of the changes in the  16-bit USER.EXE were
made solely to support the demands of the Win32 APl. (Put another way,
the Windows 95 team had to catch up to the NT team.)  For example, the
Win32 AttachThreadInput function, which associates the input state of one
thread with that of another thread,  has no Win16 counterpart.  There simply
wasn't anything even remotely like it in any prior  16-bit version of Windows.
Yet Windows 95's 16-bit USER.EXE dutifully contains code that implements
AttachThreadInput.  USER.EXE is a modest  DLL and doesn't export
AttachThreadInput, yet USER32.DLL does support it. If you look closely,
though, the AttachThreadInput code in USER32.DLL is little more than a
thunk down to USER.EXE. USER32.DLL gets all the glory for providing
its part  of the Win32 APl, while the Cinderella  16-bit USER.EXE does all
the work.

Yet another example of where the 16-bit USER.EXE acts on behalf of its
Win32 counterpart  is with resources. As you'll see in Chapter 8, the resources
stored in a Win32 Portable Executable (PE) file are organized in a completely
different  format than in the  16-bit New Executable  (NE) file layout. Yet, as
Chapter 7 shows, the  16-bit NE module database that Windows 95 creates
for 32-bit modules contains a pointer to the base of the resources within the
Win32 module in memory. Here's why: The  16-bit USER.EXE has taken on
the burden of supporting both the old 16-bit NE format resources as well as
the new Win32 PE format resources. The resources-related  functions in
USER32.DLL are relegated to the role of thunking down to USER.EXE.

USER32 thunking example
Since I'm on the subject of thunking, now is a good time to explain how
thunking works in Windows 95. Windows 95 relies heavily on thunks
between  16- and 32-bit code, so to really understand the Windows 95
architecture,  there's no avoiding thunks.  Let's look at an example of a
typical function that USER32 uses to thunk clown to the 16-bit USER.EXE.
The function I've chosen to show is SetFocus. SetFocus takes one parameter,
and this parameter (an HWND) doesn't require any translation of its value
to be used by the  16-bit code.  (In Windows NT, this is a different story
altogether,  but that's a subject for some future book.)
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The  SetFocus function

The SetFocus function in USER32 is similar to many other USER32 functions
that thunk down to USER.EXE.  In the debug version of USER32, the code
starts  out  by calling a logging function.  If a particular  flag is set somewhere
in USER32's  data  area,  this function emits  the string  "[F]  SetFocus'  to the
debug port.  The  important  part  of the USER32 SetFocus code is loading the
CL register with  an index into what  is essentially  a jump table  of  16:16
addresses.  In the case of SetFocus, the index value is 0x7E. That means that
the 0x7E'th  entry  in the table  is a  16:16  pointer  to  the  16-bit version  of
SetFocus.

After loading  CL with  0x7E,  SetFocus JMPs to  a small routine  that  I've
named  ThunkToUSER16_One_Param.  This  small code  is a common  entry
point  for  USER32  routines that take one parameter  and thunk  down to the
16-bit USER.EXE.  All that  ThunkToUSER16_One_Param does is push the
calling function's  parameters  and thunk  index onto  the stack  and then call
another  routine that  I've  named  CommonThunk  (and described  next).

Pseudocode  for SetFocus  ( 32  ->  16 )

LogWin16ThunkFunction1(  "[F]  SetFocus"  ):

CL  =  0x7E  //  Thunking  index  for  SetFocus.

goto  ThunkToUSER16_One_Param

Pseudocode for ThunkToUSER16_One_Param

//  Parameters:

//  DWORD  param1

//  DWORD  thunkIndex  //  Actually  in  GL  register.

return  CommonThunk( param1,  thunkIndex  );

The CommonThunk  code is so simple that  trying to  express  it in  C
pseudocode  would  actually obscure  its operation.  For  some unknown rea-
son,  the code  for this  routine resides in USER32's  data  area.  Perhaps  this
code  is  built on the fly during startup.  In any event,  the routine's  operation
is extremely simple.  First,  it takes  the thunk index  (for example,  0x7E for
the SetFocus function)  and  uses it as an  array index into a table  of  16:16
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pointers.  The routine  retrieves  the appropriate  16:16  address  out of the
array  and  places  that  into  the EDX register.  Finally,  CommonThunk JMPs
to  the  QT_Thunk  routine  in KERNEL32.DLL  (which  is described  next).

Code for CommonThunk

//  This  code  actually  resides  in  USER32's  data  area.

XOR  ECX,ECX

MOV  CL,[EBP - 04]

;;  0  out  ECX.

;;  Grab  the  thunk  index  (pushed  by

;;  ThunkToUSER16_One_Param).

MOV  EDX,[8014E264+4*ECX] ;:  Index  into  the  array  of  16:16  pointers

;;  into  the  16 - bit  DLLs.  Put  the  appropriate

:;  16:16  pointer  (e.g.,  SetFocus)  into  EDX.

MOV  EAX,offset  KERNEL32!QT_Thunk  ;;  Jump  to  the  QT_Thunk  routine

JMP  EAX  ;;  in  KERNEL32.DLL.

The QT_Thunk function

The QT_Thunk  function is exported from KERNEL32.DLL.  QT_Thunk is
a general-purpose  function that's  used  by Win32  code that  needs  to  thunk
down to Win16 code.  In other words,  its use isn't restricted  to just KERNEL32
or USER32.  In  fact,  if you  look  at the  assembler  output  from the Win32
SDK's  thunk  compiler  (THUNK.EXE),  you'll  see that  it references  and  uses
the  QT_Thunk  routine.

The  QT_Thunk  routine  is quite  obviously  coded  in  assembler  and  is
optimized  for  both  space and  speed. I briefly debated  showing  the raw
assembler  version  of the  function  in this  section.  However,  it quickly  became
obvious  that the code would be impenetrable except to a very small group of
assembler hackers.  Therefore,  what  you'll  see in the  following  pseudocode  is
a  mix of  C pseudocode  and  assembler.  I did my  best to  convey the  intent  of
a  fairly complex  routine.  If you  really want  to  see what  goes  on,  by all
means,  set  a  breakpoint  on  QT_Thunk  in  SoftIce/W  (or  some other  system
debugger)  and  step through  it.  I guarantee  that  you  won't  wait  long for the
breakpoint  to  be hit.

Looking  at  the  routine  from orbit  (as  a certain  Microsoft  employee
would  say),  the  job  of QT_Thunk  is simple:  Take  the  16:16  address passed
into  it in the  EDX register  and  transfer  control  to  that  address.  Of course,
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nothing is ever that  simple,  and  there  are  other  issues that  need  to  be taken
care  of.  For  starters,  saving away the address  that  execution  should  return
to  after the  16-bit  code  finishes would  be very helpful.  Likewise,  it's  a very
good  idea  to  switch  the  stack  from a  flat  32-bit  stack  selector  to  a  16-bit
selector.

Moving  in  a  bit closer  to  the  routine  (a  "helicopter  view,"  if you will),
QT_Thunk  is divided  into  five  distinct  phases.  First,  in the  debug version,
the  code calls  a  routine  that  logs  the call  (assuming  the right  logging flag is
set,  which  it usually  isn't).  This  section  of code  also  verifies that  the Thread
Information  Block (TIB) selector (see Chapter  3) is the  same as the FS register.
If not,  the  routine  complains  (in the  debug version,  that  is).

Phase 2 of QT_Thunk  pushes  the  16:16  address  that's  the  ultimate target
of the thunk  onto the stack.  (We'll come back to this in phase  5.) Phase 2 also
handles the preservation  of the return address and the 32-bit register variables.
The 32-bit return address that control returns to after the  16-bit code completes
is stored in an  area  of the stack  that won't  be touched.  The register variables
that  are  saved  away are  ESI, EDI,  and  EBX. These  are  the commonly  used
register  variables that Win32 compilers  expect will be preserved  (see Chapter 3).

Phase  3 of QT_Thunk  relates  to  acquiring  the Win16Mutex.  As almost
everybody  knows  by now,  whenever  32-bit  code  thunks  down  to  16-bit
code,  the  operating  system  needs  to  acquire  the  Win16Mutex.  The
Win16Mutex  is  just  a  run-of-the-mill  mutex  semaphore  that  happens  to
reside  in  KRNL386.EXE's  data  segment.  By forcing  all  Win32  code  that
thunks  down  to  16-bit  land  to  acquire  the Win16Mutex,  Windows  95  can
guarantee  that  only  one  thread  at  a  time  is executing  through  the  Win16
system  DLLs  (as well  as  other  16-bit  bit  DLLs).

This  is how Microsoft  got  around  the  problem  of the  16-bit  system
DLLs being written  without  multithreading  in mind.  The whole  subject  of
the  Win16Mutex  has  been  highly controversial,  and  I could  easily write  an
entire  chapter  on  just  this  topic.  I'll  talk  a  bit  more  about  this  in  the
"Messaging  System Changes"  section,  but here I'm simply going to  say that
the  QT_Thunk  routine  is one of the places where Windows  95 acquires the
Win16Mutex.

Phase  4 of QT_Thunk  is where  the routine  switches  from the  flat  32
stack  used  by the Win32  code  to  a  16:16  stack  for  use  by the Win16  code.
Since Win32  threads  typically  have  1MB stacks,  and  the  ESP at  the  time of
the  thunk  could  be anywhere  within  that  1MB, you can  see that  switching
to  a  16:16  stack could  be tricky.  It's  not  sufficient  to  just  allocate  a  16-bit
stack  selector  during  the thread's  startup  and  set  its  base address at  that
time.  Instead,  during the thunk  to  16  bits,  the  QT_Thunk  routine  may need
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to  adjust  the  base  address  of the  stack  selector  used  by  the  thread  when
executing  in  16-bit code.  The  base address  of the  16-bit  selector is set so that
it  points  to  the  same  general  linear  address  region  that  the  ESP register  was
using  prior  to  the  thunk.  After  fiddling  with  the  stack  selector  as  necessary,
QT_Thunk  figures  out  an  appropriate  16-bit  SS:SP combination  and  loads
those  values  into  the  SS and  SP registers.

Phase 5, the  final  phase of QT_Thunk,  is to transfer control  to the
intended  16:16 address that's the target  of the thunk.  As I showed in phase 2,
the  16:16 target  address was  stored  in EDX upon entry to  QT_Thunk  and
was  subsequently  pushed  on the stack.  QT  Thunk  jumps to  the  16:16 address
via the standard  RETF trick.  Before transferring control  to that  address,
though,  the  QT_Thunk  code zeros out all the  nonessential segment registers
(DS, ES, FS, and  GS). It wouldn't  do  to  hand  the target  16:16 function a DS
register  set up with  a nice, juicy flat 32  selector for the function  to  scribble
on.  It's  expected  that  the  16:16  function  will  set  up  the  segment  registers
however it needs to.

Pseudocode for QT_Thunk

//  On  entry,  EDX  contains  the  i6:i6  address  to  transfer  control  to.

//

//  Phase  1:  logging  and  sanity  checking
//

if  (  bit  0  not  set  in  FS:[TIBFlags]  )

goto  someplace  else;  //  Not  interested  in  that  here.

PUSHAD  //  Save  all  the  registers.

SomeTraceLoggingFunction(  "LS",  EDX,  0  );  //  EDX  is  16:16  target.

//  Make  sure  that  the  FS  register  agrees  with  the  TIB  register  stored
//  in  the  current  thread  database.

if (  (ppCurrentThread ->TIBSelector  !=  FS)

&&  (ppCurrentThread  !=  SomeKERNEL32Variable)  )

{   _DebugOut(  SLE_MINORERROR,

"32=>16  thunk:  thread=%lx,  fs=%x,  should  be  %x\n\r",

ppCurrentThreadId,  FS,  ppCurrentThread->TibSelector  ); }

POPAD  //  Restore  all  the  registers.
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//

//  Phase  2:  saving  away  the  return  address  and  register  variable  registers
//

POP  DWORD  PTR  [EBP-24]  //  Grab  return  address  off  the  stack

//  and  store  it  away  for  later  use.

PUSH  DWORD  PTR  [someVariable]  //  ???

PUSH  EDX  //  Push  16:16  address  on  the  stack.  The  RETF

//  at  the  end  will  effectively  JMP  to  it.

MOV  DWORD  PTR  [EBP-04],EBX  //  Save  away  the  common

MOV  DWORD  PTR  [EBP-08],ESI  //  compiler  register  variables.

MOV  DWORD  PTR  [EBP-0C],EDI

//

//  Phase  3:  Acquiring  the  Win16Mutex
//

PUSHAD,  PUSHFD  //  Save  all  registers.

_CheckSysLevel(  pWin16Mutex  )

POPFD,  POPAD  //  Restore  all  registers.

FS:[Winl6MutexCount]++;

if  (  FS:[Win16MutexCount]  ==  0  )

GrabMutex(  pWin16Mutex );

PUSHAD,  PUSHFD  //  Save  all  registers.

_CheckSysLevel(  pWinl6Mutex )

POPFD,  POPAD  //  Restore  all  registers.

//

//  Phase  4:  Saving  off  the  old  SS:ESP  and  switching  to  the  16:16  stack
//

Calculate  the  16:16  stack  ptr.  Set  EBX  for  the  SUB  EBP,EBX  instruction  below.

MOV  DX,WORD  PTR  [EDI->currentSS]  //  Load  DX  with  16  bit  SS.

MOV  DI,SS  //  Save  away  the  flat  SS  value  into  DI.

//  (The  callee  is  expected  to  preserve  it.)

MOV  SS,DX  //  Load  SS:(E)SP  with  the  16  bit  stack  ptr.

MOV  ESP,ESI

SUB  EBP,EBX  //  Adjust  EBP  for  the  thunk.

MOV  SI,FS  //  Save  away  FS  (TIB  ptr)  register  into  SI.

//  (The  callee  is  expected  to  preserve  it.)
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//

//  Phase  5:  Jumping  to  the  16:16  bit  code
//

GS  =  FS  =  ES  =  DS  =  0;  //  Zero  out  the  segment  registers.

RETF  //  Effectively  does  a  JMP  16:16  to  the  address

//  passed  in  the  EDX  register,

After the  16-bit code does its stuff,  it needs to return to the  32-bit code.
There's  a  whole  other  section  of code  that  goes  through  those  motions.
Although  I could  go  through  it  here,  it's  not  terribly  exciting.  It's  also
important  to note that  during this example of thunking  to  16-bit code,  there
weren't any flat 32 pointer  parameters  that would have needed  conversion
to  16:16 addresses. The thunking code for that  is understandably  more
complex,  and we won't  get into it here.

32-bit heaps
Perhaps  the  biggest  and most drastic change to the USER subsystem is the
addition of 32-bit heaps.  You're probably aware  that  any Win32 program
can access and  use 32-bit heap services provided via the Win32 HeapXXX
API  (for example,  HeapAlloc,  HeapFree,  and so on). What you may not
know is that  the  16-bit USER.EXE and  16-bit  GDI.EXE also use 32-bit
heaps  to store certain  items.  You heard  that right.  The  16-bit USER.EXE
and  GDI.EXE actually thunk up to  32-bit KERNEL32.DLL to allocate
memory  from special  32-bit heaps  set up especially  for the use of the  16-bit
USER and  GDI components.  Although these particular  heaps  are intended
solely  for USER's and  GDI's  use,  they share  the exact same format as a
Win32 program's  GetProcessHeap  heap.  For instance,  you can use the
WALKHEAP program from Chapter 5 to walk  the USER or  GDI 32-bit
heaps  (although  you would have to locate them first,  which I'll  show how
to do later).

Why go to all this trouble with 32-bit heaps? In versions of Windows prior
to Windows 95, all allocated memory used  by USER and  GDI came out of a
standard  LocalAlloc  style heap with a maximum  size of 64K. Needless to
say, this put quite  a crimp on how many windowing and graphics  system
objects could  be kept around at any given time.  By moving these large objects
to 32-bit heaps, Windows 95 significantly improves the capacity of the system.
Each of these specially  created heaps is 2MB, so capacity  shouldn't  be a
problem for awhile.



USER.EXE actually uses two separate 32-bit heaps.  One of these heaps
stores WND structures.  There's a WND structures for every window in the
system. (We'll look at WND structures a bit later in this chapter.) The other
USER 32-bit heap is for storing menus.  GDI.EXE has just one 32-bit heap,
which it uses to store fonts and regions. Like WNDs and MENUs on the
USER side, fonts and regions are relatively large, so moving them out of the
16-bit heaps makes sense.

If the addition of 32-bit heaps to the 16-bit components of Windows 95 is
big news, then the location  of those heaps is even more interesting.  You see,
when accessing data in the 32-bit heaps, USER and GDI don't use the flat
model linear addresses of the items. Instead, USER and GDI continue to use the
same DS selector that they use to access their regular 128K DGROUP. How do
they get away with that? By using a rather interesting arrangement, the 32-bit
WND heap and 32-bit GDI heaps start exactly 128K past the 16-bit DGROUP
area. If this sounds a bit weird, perhaps Figure 4-1 will make it clearer.

As I mentioned earlier, USER and GDI don't use 32-bit flat pointers to
items in their 32-bit heaps.  Rather, they store offsets relative to the base
address  of the USER or GDI DGROUP selector. These offsets are, of course,
32 bits. For example, USER's 16-bit (128K) DGROUP area has a maximum
size of 64K. The 32-bit WND heap starts  128K past the end of the  16-bit
DGROUP area. That means that the lowest possible WND structure offset
that you would find in Windows 95 is 0x20000.  In actual use (as you'll  see
in Chapter  5), the first couple of paragraphs  of a Win32 heap are used for
bookkeeping, so a more typical WND structure  offset would be something
like 0x20924. Since this offset isn't a flat linear address, the offset is meaning-
less unless the selector  (that is, USER or GDI's DGROUP) is also known. Of
course, if you know the linear address of USER's or GDI's DGROUP segment,
you can add that value to the offset of an object in a 32-bit heap and access
the data object with a flat linear address. The SHOWWND program introduced
later  in this chapter does just that.

Let's prove that the 32-bit WND heap really starts  128K above the reg-
ular DGROUP and that it's really a standard Win32-style heap. To do this,
we'll  use Softlce/W. To start out, we need to find the base address of USER's
DGROUP segment. And to find this information, we need to first find USER's
DGROUP handle/selector.  As Chapter 7 will show, the DGROUP for a module
can be extracted  from the  16-bit module database.

The Softlce/W MOD command applied to USER yields the following:

:mod user

hMod  PEHeader  Module  Name

17CF  USER

1857 0147:81537DB8  USER32

EXE  File  Name

C:\WINDOWS\SYSTEM\user.exe

C:\WINDOWS\SYSTEM\USER32.DLL
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 Figure  4-1
USER.EXE's  16  and 32 bit heap configuration.

We now know that USER's module handle is 17CE At offset 8 in a
module database  is a near pointer to the  10-byte segment record  for the
DGROUP segment, so let's dump that out:

:dw  17cf:8

 0180 10D9 C341 0021 157C 0808 1F42 081517CF:08080088  .... A.!.|...B...

Okay. At 17CF:180 is the 10-byte segment record for USER's DGROUP.
The last WORD of the segment record is the handle assigned to that segment.
Dumping that segment record gives us:



:dw  17cf:180

17CF:00000180  4042  0B02  0177  157C 16:C6 0005  800C  000F B2..w;  | . . . . . . . . .

So, now  we  know  that  USER's DGROUP  handle is  16C6  (and that the
corresponding  selector  is  16C7).  Let's get the  linear  address  of that  selector
with  the  SoftIce/W LDT command  (also,  note  that  the  limit of  the segment
is greater than  64K):

:ldt  16c6

16C7  Data16  Base:81D09000  Lim=0021FFFF  DPL=3  P  RW

Knowing that USER's DGROUP is at linear address 0x81D09000,  we can
add 0x20000  to it to obtain the starting address of the USER32 window heap.
Let's test this out by feeding the address to the Softlce/W  "Heap 32" command:

:heap 32  81d29000

Heap:  81D29000  Max  Size:  2048K  Committed:  16K  Segments:  1

Address  Size  EIP  TID  Owner

81D290E0  00000088  BFFA0A27  0001  hpWalk+082D

81D29178  00000058  BFF71AA6  0001  IGetLocalTime+0942

81D291E0  00000058  BFF71AA6  0001  IGetLocalTime+0942

81D29248  0000005C  BFF71AA6  0001  IGetLocalTime+0942

81O292B4  00000058  BFF71AA6  0004  IGetLocalTime+0942

81D2931C  00000058  BFF71AA6  0007  IGetLocalTime+0942

81D29384  00000060  BFF71AA6  000A  IGetLocalTime+0942

81D293F4  0000005C  BFF71AA6  000A  IGetLocalTime+0942

81D29460  00000058  BFF71AA6  000A  IGetLocalTime+0942

81D294C8  0000005C  BFF71AA6  000A  IGetLocalTime+0942

81D29534  0000005C  BFF71AA6  000A  IGetLocalTime+0942

81D295A0  0000005C  BFF71AA6  000A  IGetLocalTime+0942

81D2960C  0000005C  BFF71AA6  000A  IGetLocalTime+0942

81D29678  00000058  BFF71AA6  000A  IGetLocalTime+0942

...  rest  of  output  omitted...

As you can see,  SoftIce/W certainly  didn't  complain  about the address we
fed  it,  and,  in fact,  it printed  out results that  look  quite  reasonable.  In partic-
ular,  notice  how  all  the  blocks  are somewhere  in the neighborhood  of 0x58
bytes.  As we'll  see later, 0x58  is the minimum size  of a WND  structure.  The
blocks  that are slightly  bigger can  be explained  by their use of window extra
words  (see the cbWndExtra  field  in the WNDCLASS  structure,  which  is used
to register a class).  By all  accounts,  it looks  like  there really is  a Win32  heap
residing  128K above the  start of USER's DGROUP  segment.

At  this  point,  you're  probably wondering  why  the  32-bit  heaps  start
128K  past  the  end  of  the USER  or GDI  DGROUP  segments.  (You were
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wondering,  weren't you?) Why not start the heap right after the  16-bit
128K DGROUP area ends? Here's the answer in a nutshell:  Handles!
Although the WND structures themselves are accessed using 32-bit offsets
from USER's DGROUP, this pesky backward compatibility  thing means
that HWNDs must be 16 bits.

In Windows 3.x and earlier, an HWND was nothing more than an offset
into USER's DGROUP segment.  Clearly that won't work when the WND
structures  are at least  128K into USER's combined 16-/32-bit DGROUP. To
allow a 16-bit value (such as an HWND) to be mapped to a 32-bit offset,
USER and GDI use the 64K region between their  16-bit DGROUP and the
32-bit heaps as a handle table. Specifically, a handle value (like an HWND)
is just an offset into the handle table region.  As Figure 4-2 shows, at the
offset pointed to by a handle, you'll find the 32-bit offset (relative to the
appropriate DGROUP) of the actual data.

To prove this point about handle tables, let's again turn to SoftIce/W.
Let's pick the desktop HWND and look it up through the handle table. The
SoftIce/W WND command provides a hierarchical view of the window list,
with the desktop window at the top. In the following output, the desktop
window's HWND is 0x80:

:hwnd
Window  Handle  hQueue  SZ  QOwner  Class  Name  Window  Procedure

0080(0)  1437  32  MSGSRV32  #32769  17B7:571C

00B4(1)  1A4F  32  EXPLORER  Shell_TrayWnd  1457:0140

00B8(2)  1A4F  32  EXPLORER  Button  1457:01AE

00BC(2)  1A4F  32  EXPLORER  TrayNotifyWnd  1457:01C4

...  rest  of windows  omitted.,.

Now, if what I said earlier is true, we should  be able to add the HWND
value to 0x10000 and, at that offset in USER's DGROUP, find a DWORD
with the WND struct's address. 0x10000  + 0x0080  == 0x10080,  so let's
dump memory at  16C7:10080:

:dd  16c7:10080

16C7:00010080  0002:0178  0002:01E0  0002:0248  0002:02B4 x .......  .......

Ignoring the ":"  (colon) that SoftIce/W stuck in (it's trying to show the
value as a  16:16 pointer),  the offset of the WND struct appears to be at
0x20178.  Since USER's DGROUP is at linear address 0x81d09000, this
would place the WND struct at linear address  81D29178.  Looking back at
SoftIce/W's walk of the 32-bit user heap that I showed earlier, you can see
that 0x81D29178  is indeed the address of a block in the heap.  Once again,
it looks like everything checks out.
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Converting an HWND into a 32-bit
USER32 relative pointer

Offset 0x80

USER 32-bit
window heap

HWND handle table
(64K past start of
USER DGROUP)

 Figure 4-2
The  32  bit  offset  (relative  to  the appropriate  DGROUP)  of  the actual data  is  found at the

 offset  pointed  to  by  a  handle.

When it comes to GDI's 32-bit heap, this same handle table mechanism
is essentially the same for objects that GDI keeps in the 32-bit heap. For
instance,  regions are kept in a 32-bit heap and are referred to  by an HRGN
structure.  You could apply a similar set of steps to the HRGN to find the
actual linear address of the region structure.

If the handle table region is 64K and each handle is really a pointer to a
4-byte DWORD, that would make the maximum number of handles equal
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to  16384 (65,536/4 == 16,384). Microsoft claims that you can now have up
to 32,767 windows and 32,767 menus, so I don't know how they're coming
up with these numbers. Regardless, what's not mentioned is that other system
limitations  will most likely be hit before you manage to create  16 thousand
(or 32 thousand) windows.

Earlier,  I mentioned that USER also has a 32-bit menu heap. The menu
heap area and the handle table region are operationally identical to the USER
window  heap (although  at a different address,  obviously). The only thing
missing is a 64K 16-bit DGROUP sitting beneath the handle table. While
you might think it was nice of Microsoft to break menus out into their own
separate  32-bit heap, this isn't as big a change as you might imagine. In
Windows 3.1, menus were already broken out into their own  16-bit heap.
In Windows 95, the only change is that the size of the menu heap increased.
Incidentally,  the selector to the base of the menu heap can be found by one
of the UserSeeUserDo subfunctions that I'll describe later in this chapter.

If the 32-bit heaps used by USER and GDI are functionally the same as the
heaps of Win32 applications,  it makes sense that the KERNEL32 functions
for operating  on Win32 heaps would be used for the USER and GDI heaps
as well. Indeed, this turns out to be the case. When USER allocates memory
for a WND structure, the code that implements  the HeapAlloc  function in
KERNEL32.DLL is called via a thunk. However, USER and GDI don't thunk
up to KERNEL32 directly. Rather, KRNL386.EXE provides a set of undoc-
umented exported functions that take care of calling the KERNEL32 heap
code.  The KRNL386 functions are the following:

KRNL386.209  --
KRNL386.210  --
KRNL386.211  --
KRNL386.213  --

KRNL386.214  --

Local32Alloc
Local32ReAlloc
Local32Free
Local32Translate  (Translate a handle into a
16:16 address)
Local32FreeQuickly

Although the function names start with Local32, they really call into the
equivalent  HeapXXX function  (for instance, Loca132Alloc calls HeapAlloc).
Chapter  5 shows that the Win32 local heap functions are just a thin wrapper
around the Win32 HeapXXX functions. Of special note in the list of KRNL386
32-bit heap functions is function 214. This function appears to create the net
effect of marking a block as free, without actually thunking up to KERNEL32.
However, certain key things aren't done by this routine,  such as adding the
block to the free list.
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The mysterious
GetFreeSystemResources  issue
Having covered 32-bit heaps, we now have enough background information
to look at the mysteriously growing FreeSystemResources issue. I say myste-
rious, because the average FreeSystemResource  number seems to have jumped
in Windows 95, although under the hood there doesn't seem to be any reason
for it. We'll look at free system resources early on in this chapter, since to
most nonprogrammers, the "free system resources"  are the only notion they
have of USER and GDI. If the free system resources go up, it must be good,
right? Not so fast!

The free system resource number is really just a fancy term for the
amount  of memory left in various systems heaps, specified as a percentage.
In Windows 3.1, the free system resources was the smallest value of several
percentages.  The percentages in question were the amount of free space in
the USER DGROUP heap, the USER menu heap, the USER string heap
(which is apparently  gone or not important in Windows 95), and the GDI
DGROUP heap.  Out of those heaps, the heap with the smallest percentage
free became the free system resources.

In Windows 95, the calculation  for FreeSystemResources starts out on a
somewhat similar track,  but toward the end it takes an unexpected  turn. In
a nutshell,  the FreeSystemResources in Windows 95 starts out looking like
it's the lowest percentage  free among five separate heaps:

1)  The USER 16-bit DGROUP heap
2)  The 32-bit window heap
3)  The 32-bit menu heap
4)  The  16-bit GDI heap
5)  The 32-bit GDI heap

Since the three 32-bit heaps are all 2MB in size, their percentage free is
usually a ridiculously high value, like 99 percent. Therefore,  for all intents
and purposes, they don't count toward the free system resource calculation.
That leaves only the  16-bit USER and GDI DGROUP heaps. Whichever one
has the smaller percentage will dictate the free system resource percentage.
Since there's still quite a few items floating around in the USER and GDI
DGROUPs, they shouldn't have values anywhere near 96 percent free
(which is a typical  value you might see in the Explorer About  box after
you first start Windows 95).
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At this point,  I'd suggest you try a small experiment.  Boot up Windows 95
and immediately start up CALC, or Explorer,  or some standard application
that  comes with the system.  Choose Help|About  to  get the About  dialog
that  displays the  free system resource  value.  Typically,  under Windows  95
you'll  have a value like 96 percent.  If that  sounds a little  high, you're right.
As you'll see in the pseudocode for GetFreeSystemResources  later on, neither
USER nor  GDI have  anywhere  near  96 percent  free in their heaps.

So just what  exactly is going on here? To make  a long story short,
Windows  95 is  "cooking the  books."  Rather  than  simply report  the lowest
percentage  free among the heaps,  the Windows  95  free system resources  is a
relative number. You're no doubt asking,  "Relative to what?" The Windows 95
free system resources  value that  is reported  is a percentage  relative  to  how
much was free after the system booted.  Specifically,  after the  system has
booted  and Explorer has done its thing, Windows  95 takes a snapshot of what
the real percentage  free is.  Subsequently,  when you query the system for the
free  system resources,  it reports  the percentage  free,  relative  to  the original
snapshot value.

Let's look at an example.  Say that Windows  95 is up and running and the
true free system resource  value (à la Windows  3.1) is 75 percent.  Let's also say
that,  at some later point,  you've started  some applications,  and there's now
only  50 percent  free in one of the heaps.  Windows  95 will report the free sys-
tem resources as 66 percent  (50/75)  rather than as the true 50 percent.  If this
isn't an attempt to put a positive  spin on things,  I don't know what is. Perhaps
Microsoft  feels the need for its customers to  believe that Windows  95 really
has eliminated the free system resources problem.  Sure, Windows  95 improves
the situation with its 32-bit heaps,  but not  that much.

Lest I be accused of Microsoft-bashing,  here's an alternative  explanation
for why Microsoft  changed  the way that the free system resource value is cal-
culated: There's a well-defined maximum amount  of memory that's  available
for system resources.  The act of starting up and creating windows like the
desktop  and the tray window consumes some of this memory.  Since there's no
way to reclaim this memory, why report it to the unsuspecting end users? The
new free system resource  value can be viewed as being more accurate  from the
end users'  perspective.  If the end users have 50 percent  resources free, then
they've  used up about half of the available  capacity. The end users don't know
(and  probably  don't care)  that  the system itself takes  up  some of the free
system  resources.
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The GetFreeSystemResources  function

Now that we know basically  what's  up  (pun intended)  with the new free
system resource calculation,  let's look at the details of how Windows 95
comes  up with that  value.  The  GetFreeSystemResources is implemented in
the  16-bit USER.EXE  (when  necessary,  SHELL32.DLL thunks  down to  it
to get the value it displays in the system utility About  boxes).  The  function
itself is just a standard parameter-validation  layer stub  like I described in
Chapter  3. After checking that  a correct argument was  passed to it,
GetFreeSystemResources JMPs to the IGetFreeSystemResources code.

IGetFreeSystemResources  has three distinct  sections of code.  The first
section consists  of coming up with percentage-free values for the USER and
GDI components.  The USER percentage  free is the lowest percentage  free of
the USER 16-bit DGROUP,  the 32-bit window heap,  and the 32-bit menu
heap. The GDI percentage free is done by calling a  16-bit GDI.EXE function
called  GDIFreeResources.  At the end of this  section of code,  the function
has one free resource value for USER and another  for  GDI.

The second  section of IGetFreeSystemResources is where the function
does the adjustments  that take into account how much USER and GDI heap
space was taken up by system components at startup.  The key to this section
of code is two USER.EXE global variables;  I've named the variables
base_USER_FSR_percentage  and  base_GDI_FSR_percentage.  These two
values  initially start  out with a value of 0 in USER.EXE's  data  segment.  If
they're  0 when IGetFreeSystemResources is called,  the function  doesn't do
any adjustment to  the USER and  GDI percentage  free values it calculated
earlier. However,  if these two global variables  are nonzero,  they contain the
percentage  free in the USER and  GDI heaps after Windows 95  booted.  If
they're  nonzero,  IGetFreeSystemResources  divides the boot-up time version
of these values by the current USER and GDI percentage free values to get a
relative percentage.

When I first saw these global  variables,  my first question  was,  "Who  the
heck sets them?"  Would you believe the Explorer process?  (Even if you don't
see the Explorer  window on the screen,  Explorer  is still there  as a running
process.) Now mind you, Explorer doesn't reach down into USER's DGROUP
segment and  set the  base_USER_FSR_percentage  and  base_GDI_FSR_
percentage  values directly.  Rather, it lets USER.EXE do it itself.  How does it
do this? At some point when Explorer decides that it's sufficiently set up, it sends
a window message with  a MSG number of 0x400  (WM_USER) to the desk-
top window  procedure.  As you'll  see later,  the desktop WNDPROC  handler
for the WM_USER message sets these two global variables. The ramifications
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of this  are  mind  boggling.  If you  have  a process  or  a DLL that calls
GetFreeSystemResources  before  the  desktop  WM_USER  message  is  sent,
you'll  get  a  distinctly  different  value  than  after  the  message  is  sent.

The  third  section  of  IGetFreeSystemResources  is  where  the  function  uses
the  parameter  passed  in.  If you  specifically  request  the  USER  or  GDI  free
resources  (GFSR_USERRESOURCES  or  GFSR_GDIRESOURCES),  the
code  returns  the  appropriate  value  calculated  earlier.  If you  ask  for
GFSR_SYSTEMRESOURCES,  the  function  returns  the  smaller  of  the
USER  and  GDI  percentages.

Pseudocode  for GetFreeSystemResources

/ /  Parameters:

//  UINT  fuSysResource

/ /  Is  the  input  parameter  within  range?

if  (  (fuSysResource  <  0)  ||  (fuSysResource  >  2)

//  Calls  LogParamError.

HandleParamError(  ERR_BAD_VALUE  );

//  JMP  to  the  real  code.

return  IGetFreeSystemResources(  fuSysResource  );

Pseudocode  for IGetFreeSystemResources

/ /  Parameters:

//  UINT  fuSysResource

//  WORD  gdiResourcePercentage,  userResourcePercentage

//

//  Phase  1:  Getting  USER  and  GDI's  percentage  free
//

if  (  UserTraceFlags  &  Ox200  )

_DebugOutput(  DBF_USER,  "GetFreeSystemResources"  );

userResourcePercentage  =

GetPercentFree16BitHeap(hInstanceWin);  //  Get  16  bit  DGROUP  %  free.

//  Call  GDI  and  let  it  do  its  heap  free  calculations.

gdiResourcePercentage  =  GPIFreeResources(  0  );
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//  Take  the  lesser  of  the  USER's  DGROUP  and  the  32  bit  menu  heap.

//  (Gee,  I wonder  which  one  it will  be???)

if  (GetPercentFree32BitHeap(hMenuHeap)  <  userResourcePercentage  )

userResourcePercentage  =  GetPercentFree32BitHeap(hMenuHeap);

//  Now  take  the  lesser  value  of  the  previous  calculation  and  the

//  percentage  free  in  the  32-bit  window  heap.

if  (Get?ercentFree32BitHeap(hWindowHeap)  <  userResourcePercentage  )

userResourcePercentage  =  GetPercentFree32BitHeap(  hWindowHeap  );

//

/ /  Phase  2:  Cooking  the  books
//

//  Adjust  the  percentages  so  that  they're  relative  to  the  percent

//  free  after  booting.  This  might  be  an  attempt  to  make  Windows  95  look

//  like  it  has  more  free  system  resources  than  Windows  3.1.

if  ( base_USER_FSR_percentage )

{ userResourcePercentage  = MulDiv(  userResourcePercentage,  0x100,

base_USER_FSR_percentage  );

gdiResourcePercentage  =  MulDiv(  gdiResourcePercentage,  0x100,

base_GDI_FSR_percentage  ); }

if ( userResourcePercentage  > 99  )

userResourcePercentage  =  99;

if  (  gdiResourcePercentage  >  99  )

gdiResourcePercentage  =  99;

//

//  Phase  3
//

switch  (  fuSysResources ) {

case  GFSR_SYSTEMRESOURCES:
return  min(  userResourcePercentage,  gdiResourcePercentage  );

case  GFSR_GDIRESOURCES:

return  gdiResourcePercentage;

case  GFSR_USERRESOURCES:

return  userResourcePercentage;

default:  return  fuSysResources; }
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The GetPercentFree16BitHeap  and
GetPercentFree32BitHeap  functions

The  GetPercentFreel6BitHeap  and GetPercentFree32BitHeap  functions are
two helper routines used by IGetFreeSystemResources.  Both functions expect a
parameter  specifying the heap of interest.  The GetPercentFree16BitHeap  func-
tion  uses the undocumented  GetHeapSpaces  function  described  in Chapter  5
of Undocumented Windows (Schulman,  Maxey,  and Pietrek).  It considers the
ratio  of free space  (in K) to total  space (also in K) to  be the percentage free.

The GetPercentFree32BitHeap is a little more sophisticated.  It uses the same
basic code that  the Windows  95  16-bit TOOLHELP  function  exports  as the
Local32Info  function.  This code returns  dwMemCommitted,  dwTotalFree,
and dwMemReserved  fields  for the heap  in question.  The dwMemCommitted
and dwMemReserved  fields seem to  always  be the same,  and the dwTotalFree
value  is usually  right up  there  in value.  After  subtracting  the  dwTotalFree
field from the dwMemCommitted  field,  the  function  divides the  result  by the
dwMemReserved  field.  Since these values are  all nearly equal,  the  GetPercent-
Free32BitHeap  function  typically returns  values such as 98  or  99 percent.

Pseudocode  for GetPercentFree16BitHeap

/ /  Parameters:
//  HGLOBAL  hHeap

//  Locals:

//  DWORD  freeK,  totalK

//  DWORD  myDWORD

myDWORD  =  GetHeapSpaces(  hHeap  ) ;

freeK  =  LOWORD(myDWORD)  /  1024:

//  See  Undocumented  Windows,

//  Chapter  5.

totalK  =  HIWORD(myDWORD)  /  1024:

return  (freeK  *  100)  /  totalK

Pseudocode  for GetPercentFree32BitHeap

//  Parameters:

//  HGLOBAL  hHeap

//  Locals:

//  LOCAL32INFO  local32Info;

//  WORD  percentUsed;
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//  Call  the  same  function  that  TOOLHELP.DLL's  Local32Info  uses.

local32Info.dwSize  =  sizeof(  LOCAL32INFO  );

if  (  KRNL386_Local32Info(  &local32Info,  hHeap  )  ==  0  )

return  0;

if  (  local32Info.dwMemReserved  ==  0  )

return  0;

//  Some  problem  here  officer???

percentUsed  =

CalculatePercentage(

100  *  (local32Info.dwMemCommited  -  local32Info.dwTotalFree),

local32Info.dwMemReserved  );

//  percentUsed  is  typically  some  ridiculously  low  value,  like  1%.  Thus

//  this  function  usually  returns  99%  free  for  32  bit  heaps.

return  100  -  percentUsed;

Getting Free System Resources from 32-Bit Code:
Thunking  Without the Thunk Compiler

Believe  it  or  not,  Windows  95  doesn't  provide  a  way  for  32-bit  applications  to  get  the  Free
System  Resources  (FSR)  value  easily  from  a  32-bit  program.  Even  when  the  standard
Windows  95  utilities  display  the  FSR  in  their  About  box,  they're  getting  the  value  from  a  32-
to-16-bit  thunk  in  SHELL32.DLL.  If  you're  writing  a  32-bit  program  and  want  to  calf  an
existing  16-bit  system  bit  function  (such  as  GetFreeSystemResources),  you  could  spend  a
couple  of  hours  (or  days)learning  the  Windows  95  thunk  compiler,  and  then  write  a  pair  of
thunking  DLLs.  Ugh.  There's  got  to  be  a  better  way.

As  I  discuss  in  "The  SetFocus  function"  section,  USER32.DLL  thunks  dawn  to  USER.EXE
all  the  time,  yet  it  doesn't  have  separate  16-  and  32-bit  DLLs for  thunking.  Instead,  the  32-bit
SetFocus  code  uses  the  QT_Thunk  function,  which  I  described  earlier  in  "The  QT_Thunk
routine"  section.  You  can  use  this  very  same  routine  in  your  own  programs,  although  it's  a
bit  trickier  to  use  than  your  standard  Win32  APl  function.  It's  an  undocumented  function
(although  you'll  see  that  the  THUNK.EXE  thunk  compiler  emits  references  to  it),  and  it
requires  that  you  use  a  bit  of  assembler  to  call  it.

Calling  QT_Thunk  in  your  code  requires  you  to  do  two  things.  First,  you  have  to  put
the  16:16  address  to  call  into  the  EDX  register.  Second,  you  need  to  ensure  that  the  code
you're  calling  QT_Thunk  from  has  an  EBP  stack  frame  set  up  and  has  at  least  0x3C  bytes
of  b c d  storage  that  you're  not  relying  on.  This  second  requirement  is  because  QT_Thunk
builds  the  convoluted  slack  frame  for  calling  the  16-bit  code  in  the  region  below  where
your  EBP  register  points  at.
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To  show  calling  QT_Thunk  from  your  own  program,  I  wrote  the  FSR32  program,  which
uses  QT_Thunk  to  get  the  free  USER  and  GDI  system  resources.  The  code  for  FSR32  is  a
single  source  file,  FSR32.C,  and  is  short  enough  to  show  here.  To  compile  FSR32,  use  the
following  Visual  C++  command  line:

cl  fsr32.c  k32lib.lib  thunk32.lib

Alternatively,  you  can  use  the  BUILDFSR.BAT file  included  on  this  book's  source  disk.

//==============================

//  FSR32  Matt  Pietrek  1995

//  FILE:  FSR32.C
// =========================

#define  WIN32_LEAN  AND MEAN

#include  <windows.h>

#include  <stdio.h>

#pragma  hdrstop

typedef  int  (CALLBACK  *GFSR  PROC)(int);

//  Steal  some  #define's  from  the  16 bit  WINDOWS.H.

#define  GFSR_GDIRESOURCES  0x0001

#define  GFSR_USERRESOURCES  0x0002

//  Prototype  some  undocumented  KERNEL32  functions.

HINSTANCE  WINAPI  LoadLibrary16(  PSTR  );

void  WINAPI  FreeLibrary16(  HINSTANCE  );

FARPROC  WINAPI  GetProcAddress16(  HINSTANCE,  PSTR  );

void  __cdecl  QT_Thunk(void);

GFSR_PROC  pfnFreeSystemResources  =  0;

in

HINSTANCE  hInstUser16;

WORD  user_fsr,  gdi_fsr;

//  We  don't  want  these  as  locals

//  main(),  since  QT_THUNK  could

//  trash  them...

int main()
{

char  buffer[0x40]

buffer[0]  =  0;  //  Make  sure  to  use  the  local  variable  so  that  the

//  compiler  sets  up  an  EBP  frame.

Continued
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Continued from previous page

hinstUserl6  =  LoadLibrary16("USER.EXE");

if  (  hInstUser16  <  (HINSTANCE)32)
{

printf(  "LoadLibrary16(  failed!\n"  );

return  1;
}

FreeLibrary16(  hInstUser16 );  //  Decrement  the  reference  count.

pfnFreeSystemResources  =

(GFSR_PROC)  GetProcAddress16(hInstUser16,

"GetFreeSystemResources");

if  (  !pfnFreeSystemResomrces  )
{

printf("GetProcAddress16()  failed!\n"

return  1; }

__asm  {
push  GFSR_USERRESOURCES

mov  edx,  [pfnFreeSystemResources]

call  QT_Thunk

mov  [user_fsr],  ax

push  GFSR_GDIRESOURCES

mov  edx,  [pfnFreeSystemResources]

call  QT_Thunk

mov  [gdi_fsr],  ax

printf(  "USER_FSR:  %u%%  GDI  FSR:  %u%%\n",  user_fsr,  gdi_fsr  );

return  O;

The  output  from  FSR32.C  looks  like  this:

C:\NEWBOOK\USERGDI>FSR32.EXE

USER  FSR:  90%  GDI  FSR:  90%
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A  couple  of  things  in  the  FSR32.C  code  need  to  be  discussed.  First,  how  is  FSR32.C
getting  the  address  of  the  76-bit  GelFreeSystemResources  function  from  32  bit  code?
FSR32.C  uses  three  undocumented  KERNEL32  functions  (LoadLibrary16,  FreeLibrary16,  and
GetProcAddress16)  to  work  with  the  16-bit  system  DLLs.  Appendix  A  provides  a  fairly  corn
plete  list  of  the  undocumented  functions  in  KERNEL32.  In  order  far  FSR32  to  successfully  link
to  these  undocumented  functions,  it  needs  the  K32LIB.LIB  import  library  that  you  first  saw  in
Chapter  3.  (This  library  is  discussed  in  Appendix  A.)

To  ensure  that  there's  enough  space  on  the  stack  for  QT_Thunk  to  play  its  funny  games
with,  FSR32.C  declares  a  local  array  of  Ox40  characters  that  it  doesn't  use  for  anything.
The  QT_Thunk  code  can  bash  this  memory  with  impunity.  Any  variables  that  are  important
lo  FSR32.C  are  declared  as  globals,  and  so  can't  be  trashed  by  QT_Thunk.  (I  learned  this
lesson  the  hard  way!)

FSR32.C  makes  the  actual  call  to  QT_Thunk  using  inline  assembler  code.  The  reason
FSR32.C  doesn't  make  a  regular  C  call  to  QT_Thunk  is  because  EDX  needs  to  be  set  up  with
the  ) 6:16  addresses  to  call  beforehand.  You  could  theoretically  just  load  EDX  with  one  line
of  inline  assembler  before  calling  QT_Thunk  normally.  However,  you'd  be  relying  on  the
compiler  to  not  trash  the  EDX  register  before  the  CALL  instruction  executes.

As  a  final  note,  be  advised  that  this  code  doesn't  do  anything  tricky  tike  passing
pointers  to  16-bit  code.  The  Win32  APl  functions  that  thunk  down  lo  16  bit  code,  and  that
pass  pointers  to  16-bit  DLLs,  have  elaborate  code  for  setting  up  alias  selectors  and  so
forth.  The  main  point  here  is  that  if  you're  going  to  do  anything  at  all  tricky,  I  suggest  that
you  use  the  thunk  compiler,  which  really  is  the  proper  way  of  doing  things.  The  above
example  passes  only  one  parameter,  and  thai  parameter  doesn't  require  any  translation  lo
be  used  by  the  ]6-bi t  code.  Examples  of  parameters  that  would  need  to  be  translated
include  pointers  and  window  message  values.  In  short,  think  carefully  before  you  decide  to
bypass  the  thunk  compiler,  and  use  Windows  95  thunks  directly.

The mixed  16-/32-bit  nature  of the
windowing system
Earlier,  I said  that  WND  structs  are  stored  in  32-bit  heaps  and  that  their
offsets,  relative  to  USER's  DGROUP,  are  therefore  greater  than  64K.  I also
said  that  HWNDs  are limited  to  16-bit  values,  so  that  the  region  between
the  16-bit DGROUP and the window heap is used as a handle table to convert
HWNDs  to  usable  pointers  to  WND  structures.

At  this point,  it's  important  to  stress  the  bi-modality  of the windowing
system  with  regards  to  this  mixing  of  16- and  32-bit  code/data.  The  first
thing that  needs  to  be clarified  is that  the  16-bit  HWND  values  are  used
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throughout the  system.  It doesn't  matter whether  or not a Win16  or a
Win32 application  is running;  the HWNDs  being passed  around  are  l 6-bit
values  and  are offsets into the window  heap handle table.  Let me state this
again  to make  it perfectly  clear:  An HWND  is an HWND  is an HWND.  It
doesn't  matter  whether  you're  in Win16  or Win32 code:  HWNDs are  16-bit
values,  and they are not  simply offsets into USER's DGROUP as they were
in Windows  3.1.

Now that  you  know that  HWNDs  are truly  16-bit  handles  everywhere,
I can tell you that  internally,  USER.EXE often  converts  these  HWNDs  into
32-bit  pointers  and  passes those around.  These  32-bit  pointers  are pointers
relative  to the USER's DGROUP selector, not flat  32-bit pointers.  A perfect
example of where USER uses these special  32-bit  pointers  is in the WND
struct  itself. The first four fields of a WND structure  are the window's parent,
owner,  child,  and  sibling windows.  In these  four fields, USER stores  32-bit
pointers  (not  16-bit HWND  values) to  the appropriate  parent,  owner,  child,
and sibling windows.  This is most likely for performance  reasons,  since USER
would  need to convert the HWNDs to a pointer anyhow to traverse  through
the window hierarchy.  I'll  come back to the window  hierarchy later on.

Of course,  while USER may internally  use 32-bit  pointers  to WND
structures,  it still has to  use  16-bit HWNDs  when  interfacing  to the outside
world.  Therefore,  there  has to  be a quick and easy method  to  go from  a
16-bit  HWND to  a 32-bit  pointer,  and vice versa.  Indeed,  there is. You'll  see
this  a bit  later when  we look at  some pseudocode for selected windowing
functions  (both  16- and  32-bit).

A tough issue that  comes up when trying to  support  both Win16  and
Win32  applications  in the  same system is the differences  in the window
procedures.  A Win16  application has a window procedure that,  when  all
the typedef names have  been stripped  away,  looks  like this:

WndProc16( unsigned  short  hWnd,
unsigned  short  wMsg,
unsigned  short  wParam,
unsigned  long  lParam  );

A Win32 application  on the other  hand,  has a WNDPROC  that  looks
like this:

WndProc32( unsigned  long  hWnd,
unsigned  long  wMsg,
unsigned  Tong  wParam,
unsigned  long  lParam  );
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So the  $128,000  question  is:  What  happens  when  a  Win32  applica-
tion  does  a  SendMessage  to  a  window  in  a  16-bit  program?  Obviously,
there's  going  to  be  some  problem  unless  the  parameters  are  rearranged
and/or  truncated.  Likewise,  if a  16-bit  application  sends  a  message  to  a
Win32  application,  most  of the  parameters  pushed  on  the  stack  will
need  to  be widened  (the  hWnd,  wMsg,  and  wParam  parameters).  Since
applications  can't  be expected  to  handle  these  details,  the  job  falls  to
USER.EXE.

Another  related  problem is window  subclassing.  Windows programs
have long subclassed  the windows  of other  applications.  The basic idea of
subclassing  is that  a program  uses GetWindowLong(GWL_WNDPROC)  to
retrieve the current WNDPROC callback address for a window and store that
value  away.  Next,  the program  uses SetWindowLong(GWL_WNDPROC)
to change the window's  WNDPROC  address  to  the application's  subclass
procedure.  Now,  here's  the problem:  The WNDPROC  of a window created
by a 32-bit  application  is a 32-bit  linear  address.  If a  16-bit application
were to change the WNDPROC  address  of a 32-bit  window to a  16:16
address,  there's  obviously  going to  be a sticky situation.  The 32-bit code for
calling  the WNDPROC is expecting a flat  32 linear address,  and calling a
16:16  segmented address  as a flat  32  linear address is certainly  not going
to  work.

To prevent these obvious  problems,  USER.EXE creates  a small code
stub  for each window that's created with  a 32-bit  WNDPROC.  This stub is
16-bit code and contains  the  32-bit linear address  for the real WNDPROC
that  the Win32  application  uses as its WNDPROC.  For example,  here's the
stub  for Explorer's  tray window:

:u  1457:140

1457:00000140  PUSH  00401DFA

1457:00000146  PUSH  00030000

1457:0000014C  JMP  0127:7555

: A  32  bit  WNDPROC  address.

And a bit later on  in the segment:

:u  1457:156

1457:00000156  PUSH  0040180D

1457:0000015C  PUSH  00030000

1457:00000162  JMP  0127:7555

; A  32  bit  WNDPROC  address.

As you can imagine,  the address  0127:7555  is some sort of thunk rou-
tine  (in KRNL386.EXE)  that  converts  the parameters  for the Win16 WND-
PROC call into  parameters  of the form that  a Win32 WNDPROC  expects,
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and then calls the address specified in the thunk.  As for the segment that
these thunks reside in, the segment was allocated  from the global heap by
USER.EXE, and a code segment alias selector  (0x1457) was created for it.

So what does all this mean? If you look in the WND structure of any
window,  you'll always find a  16:16 address given for the WNDPROC.
However,  if you look at the memory contents at that  16:16 address,  you
can determine whether this is a regular Win16 WNDPROC or a thunk up
to a Win32 WNDPROC.  Of course, this has ramifications  for the
GetWindowLong(GWL_WNDPROC)  function: Depending on whether it's
called from a Win16 program or a Win32 program,  it has to respond with
the appropriate address.

Messaging system changes
One of the more dramatic  changes in the USER subsystem of Windows 95
(as compared to prior versions) is how window messages are passed around.
I call the code that posts, sends, and processes messages the messaging system.
The best news about the Windows 95 messaging system is that it eliminates
the synchronous  nature of messaging for Win32 applications.  In  16-bit
Windows,  only one task at a time can execute. That task  has to explicitly
give up control  by calling one of the messaging APIs. Typically, a task yields
by calling GetMessage or PeekMessage in its main loop, although SendMessage
can also cause a task to yield.

The problem with this model is that a task that doesn't regularly yield
(that  is, pump messages) prevents other tasks from executing.  This has the
effect of hanging the input system. As long as the Winl6  task isn't calling
GetMessage or PeekMessage, nobody else can execute. The task that takes a
krug time to finish some processing renders the rest of the system useless.

When Windows NT came along, the NT team reworked the USER com-
ponent  so that yielding and scheduling weren't affected by whether a task
calls GetMessage or PeekMessage. A Win32 program can take its sweet
time processing a message without adversely affecting other processes. After
Windows  NT had this functionality, there was no way that Windows  95
could go out the door without also having the same improved  behavior.

Of course, if 16-bit applications  are to continue to run correctly on
Windows 95, these messaging system changes couldn't  be made to apply to
Win16  applications.  Too many Win16 applications  rely on the cooperative
multitasking  model, where an application  doesn't yield until it's ready to.
Therefore,  only Win32 programs are allowed to process messages at their
own pace (or not process them at all) without affecting the rest of the system.
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One of the ways that Windows 95 creates this dual mode behavior (Win16
applications  cooperatively  multitask,  while Win32  applications  pre-eruptively
multitask)  is via the Win16Mutex  and  thread  scheduling.  At any given time,
the Windows  95 thread  scheduler  has  scheduled  the highest  priority thread
that  is ready to  run.  One  of the things  that  can  make  a thread  not  ready  to
run  is when  it's waiting to  acquire  a mutex  semaphore  (such as the
Win16Mutex).

Whenever  a Win16  task  is executing,  it owns the Win16Mutex  (actually,
to  be more  accurate,  when any  16-bit code is executing,  the Winl6Mutex  is
owned).  When  there's  a Win16  task  running,  all  the  old-style  rules  about
requiring  the task to call  GetMessage or  PeekMessage  still apply  in order  for
another  16-bit  task to  be able to  run.  However,  just because a Win16  task  is
holding  the Win16Mutex  doesn't  mean  that  the  thread  scheduler  won't
switch  away from it.  When  a Win32  thread  is executing through  regular
32-bit  code,  it doesn't need to  own the Win16Mutex.  Therefore,  even if a
Win16  task  isn't pumping messages  in a timely manner,  at  least 32-bit
threads  can continue to run.  Other  16-bit applications  are of course blocked.

Now, here's  the problem with  this  setup.  Since the messaging system
code is in the  16-bit USER.EXE,  a  32-bit  application  that's  using a message
processing  loop  needs to  acquire  the Win16Mutex  before  it can get down  to
the Win16  USER.EXE.  Therefore,  this  pre-emptive  multitasking  is only
partial.  If a thread  is doing calculations  or  other  work  that  doesn't  require
thunking  down to  16-bit  DLLs like  USER.EXE,  the thread  is pretty much
impervious  to  badly  behaved applications  that  don't  pump  messages.
However,  if a Win32  thread  needs to  call  down  into  USER,  GDI,  or  some
other  16-bit component,  it needs to  acquire  the Win16Mutex,  and  that
thread  is blocked  until  the Win16Mutex  becomes  available.  Thus,  a badly
behaved  16-bit application  can still  effectively  block  other  applications  from
executing  (assuming those  applications  are  using messaging system or
related  functions).

What  we have here in Windows  95  is a pre-emptive  multitasking  system
with a potential  army of Achilles'  heels.  That  heel  is Win 16 applications  that
don't  pump  messages in a timely manner.  Although you can't  get rid of the
Win16Mutex  altogether,  you can work  to  eliminate  as many Win16  tasks
from your  system as possible.  By minimizing the  time  spent  with  the
Win16Mutex  acquired,  you're  also  minimizing the  chance  that  a  badly
behaved  application  will  hang the input  system.

One  of the design improvements  that  Microsoft  claims to  have made  in
Windows 95 is the addition  of a  "Raw Input Thread"  (a.k.a.,  the RIT). In all
the Microsoft  diagrams  that  depict  messaging coming  into  the system, inter-
rupt  handlers  are  shown  depositing  messages into  a central  system queue.
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Then, a separate thread  (the RIT) continually  monitors that thread,  retrieves
messages,  and  distributes  the  message  to  the  appropriate  thread's  message
queue.  (I'll  get  to  the  details  of  message  queues  in  just  the  next  section.)

Although  the  RIT  sounds  nice in  theory  (and  is  supposedly  the  way
Windows NT  does  things),  I've  been  unable  to  conclusively  verify  its  exis-
tence  in Windows  95.  I  have  found  a  function  in  KERNEL32.DLL  called
DispatchRITInput.  However,  setting  a  breakpoint  on  this  routine  and
checking  the current  thread  when  the  breakpoint  is hit  reveals  that  it's  not
called  by  a  single  thread.  Rather,  a wide  variety  of  application  threads  are
the  current  thread  when  DispatchRITInput  is called.  Ultimately,
DispatchRITInput  thunks  down  to  the  DispatchInput  routine  in  the  16-bit
USER.EXE.  I tried  setting  a  breakpoint  there,  and  although  the  breakpoint
went  off nearly  constantly,  it was  still  called  in  a  variety  of  different  thread
contexts.  I tried  similar  experiments  on  other  internal  messaging  system
functions  in USER  and  was  unable  to  find  a  particular  routine  that  was
called  only  in  the  context  of  a  single  system  thread.  Eventually,  I  broke
down  and  asked  one  of the Windows  95  developers  about  the  RIT,  and  he
had  this  to  say:

There is  a  real RIT  but  if  we  can  process  common  stuff  on  some  random

thread,  we do  that  for speed/efficiency  instead of scheduling  the  RIT.  That's
why you see DispatchInput being called in a variety of contexts.  We only defer

things to the RIT as a last resort.

Unauthorized Windows 95 and the
Win 16Mutex Problem

On  page  552  of  U n a u t h o r i z e d
W i n d o w s  9 5 ,  Schulman  takes  some of  my
P C  M a g a z i n e  and  M i c r o s o f t  S y s t e m s
Journal  articles  to  task  for  being  somewhat
incorrect  about  the  Win16Mutex.  He
quotes  several  statements  I  made,  including
this  one  fram  PC  M a g a z i n e :

. . .  the sooner you move your applications to  32 bits,  the
better.  If a system doesn't have any  16-bit programs run-
ning,  the  Win16Mutex  can't be a source of trouble...

He  then  goes  on  to  say,  "a  Windows
95  system  (at  least  Windows  95  Beta-l)
always  has  two  running  Win16  tasks,
TIMER and  MSGSRV32."

From  M i c r o s o f t  S y s t e m s  J o u r n a l ,
Schulman  quotes  something  I  wrote  in
M i c r o s o f t  Systems  J o u r n a l :

The USER and GDI code will  execute quickly  and release
the  Win16Mutex.  No 32.bit thread  will ever hold and hog
the  Win16Mutex  far any significant  period of time.
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He  then  goes  on  to  show  a  small
Win32  program  (W16LOCK) that  in  fact
does  acquire  the  Win16Mutex  and  hold
on  to  it  for  as  long  as  desired.

These  are  both  valid  points,  and
deserve  a  response.  The  first  point  (where-
in  a  Windows  95  system  always  has  at
least  two  Win16  tasks)  has  changed
slightly.  In  more  recent  builds,  Windows
95  really  uses  only  one  16-bit  task,
MSGSRV32.  (You  may  have  a  16-bit
MMTASK  task  on  your  system,  but  it 's  not
required,  and  I  have  terminated  it  without
adverse  system  effects.)  The  one  important
Win16  task  (MSGSRV32) is  the  task  that
allows  you  to  start  programs  from  the  DOS
prompt.  To  see  if  MSGSRV32  could  really
be  a  problem,  I  used  Sof i lce/W  to  set  a
hardware  write  breakpoint  on  the  CurTDB
variable  in  KRNL386.EXE.  The  breakpoint
was  further  qualified  to  go  off  only  when
the  HTASK of  MSGSRV32  was  written  to  it.
By  doing  this,  whenever  MSGSRV32  (the
lone  16-bit  task  in  the  system)  became  the
active  task,  the  breakpoint  would  be  hit.  In
the  majority  of  cases,  the  only  way  I  was
able  to  get  MSGSRV32  to  consistently
become  the  current  task  was  by  starting
applications  from  a  command  prompt.
MSGSRV32  also  became  the  current  task
very  sporadically  at  other  times.

In  looking  at  the  code  for
MSGSRV32,  I  didn't  notice  anything  that
would  indicate  a  desire  for  MSGSRV32  to
hang  around  and  not  process  messages  in

a  timely  manner.  The  only  thing  even  close
to  this  that  i  saw  was  when  MSGSRV32
fired  up  another  program  via  WinExec.  The
Win16Mutex  is  held  the  entire  time  that  the
WinExec  call  executes.  The  point  here  is
thai,  yes,  it 's  true  that  you  can't  entirely
eliminate  16-bit  applications  from
Windows  95.  On  the  other  hand,
MSGSRV32  looks  like  it  can  be  trusted  to
not  acquire  the  Win16Mutex  and  hold  on
to  it  for  unduly  long  periods  of  time.

As  for  the  second  point  (the
W16LOCK  program  that  holds  and
acquires  the  Win16Mutex  from  a  Win32
program),  my  feeling  is  thai  W16LOCK  is
a  perverse  case.  Yes,  it  does  expose  a
hole  in  the  way  that  Windows  95  allows
access  to  system  functions  and  synchro-
nization  objects.  However,  W16LOCK
had  to  explicitly  work  to  grab  the
Win  l6Mutex  and  hold  onto  it  from  a
Win32  program.  This  scenario  isn't  some-
thing  that  Win32  applications  will  just
happen  to  inadvertently  do  if  they're  not
careful.  (If  they  thunk  down  to  16-bit  DLLs,
that's  another  story.)  I  concede  thai  the
Win16Mutex  can  be  a  source  of  trouble
and  of  system  hangs.  On  the  other  hand,  if
you  eliminate  nonsystem  Win  16  applica-
tions  and  don't  intentionally  try  to  hack  the
system,  you'll  probably  never  notice  the
effect  of  the  Win16Mutex.  In  other  words,
be  aware  of  the  Win16Mutex,  but  don't
lose  any  sleep  over  it.
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Per-thread  message queues
In Windows  95,  each  thread  can  have  its  own  message queue. In  a  nutshell,
a message queue is the data  structure that controls which messages a particular
thread's  calls  to  GetMessage  or  PeekMessage  will  retrieve.  In Windows  3.1
and earlier,  each Win16  task  had  its own  message  queue.  The  message  queue
was  created  shortly  after  program  startup.  In Windows  95,  each  thread  has
its own message queue, and the queues are created  only when  a thread actually
needs  one  for the first time.  Since each Win16  task  in Windows 95  has an  asso-
ciated thread,  each  Win16  task  continues  to  have  a single  message  queue.

Let's look  at  message queues  a  little more  closely,  since they're  one  of the
primary  data  structures  that  permeate  the  USER subsystem.  When  a thread
calls  GetMessage  or PeekMessage,  it's  looking  for  messages within  the  queue
of the current  thread.  The  notion  of the current thread  is implicit within  the
GetMessage  and  PeekMessage  code.  You  can't  ask  for  messages  from
another  thread's  queue.  Message  queues  are  also  used as part  of sending a
message  to another  program.  From USER's perspective,  the SendMessage call
is from one  message queue to  another  message  queue  (although  the  source
and destination  queues  may  be the  same).

I'm  not going to go into  all the details  of GetMessage,  PeekMessage,  or
SendMessage  here.  I covered those  topics  pretty  thoroughly  in  Windows
Internals. While there are some changes in Windows  95 from Windows  3.1,
I didn't  feel that  repeating  much  of the  same  information  here would  be
beneficial.  Instead,  I'm  going  to  focus  on  what  changed  in Windows  95
from Windows  3.1.

Message queue format
For  starters,  let's  look  at  what  the  format  of a  message  queue  looks  like.
Each  message  queue  is kept  in  a  segment  allocated  from the  16-bit  global
heap  by USER.EXE.  Each  thread  database  (Chapter  3)  and  task  database
(Chapter  7) contains the  selector  for the  associated  message  queue.  The
known  fields  of a  message  queue  are given  in the  MSGQUEUE.H  file
included  with  the  SHOWWND  program.  The  details  of these  fields  follow
(note  that  the three  items  at  the  beginning  of each  entry  are  the  offset,  the
type,  and  the  name):
00h  WORD  nextQueue
This  WORD  contains  the  next  queue in  the  list.  All the  message  queues  are
kept  in  a  linked  list,  with  the end  indicated  by a 0  in this  field.
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02h  WORD  hTask

This WORD  holds the HTASK that  this queue is associated  with.  As I show
in Chapter  7, even Win32 processes have a  16-bit task  database associated
with them.

04h  WORD  headMsg
This WORD  holds  a near pointer  (relative to USER's DGROUP)  to the head
of a linked list of QUEUEMSGs.  (QUEUEMSGs are described  in the next
section.)

06h  WORD  tailMsg

This WORD  holds  a near  pointer  (relative to USER's DGROUP)  to the end
of a linked list of QUEUEMSGs.

08h  WORD  lastMsg
This WORD  holds  a  near  pointer  (relative  to  USER's DGROUP)  to  a
QUEUEMSG that  has  been retrieved  by a call  to  GetMessage  or
PeekMessage.  Exactly  which  message  is  undetermined  at  this  time.
0Ah  WORD  cMsgs
This WORD is the number of messages in this queue waiting to  be processed.
(That  is, it's the number  of QUEUEMSG structures  in the  linked list pointed
to  by offset 04h.)

0Dh  BYTE  sig[3]

For queues  of Win32 application threads,  these three  bytes hold the ASCII
representation  for  "MJT"  (which perhaps stands  for Jon  Thomason,  a
Microsoft programmer).  For the queues  of most Win16 applications,  these
three  bytes are 0.

10h  WORD  npPerQueue
This WORD  is a near pointer  (relative to USER's DGROUP)  to  a
PERQUEUEDATA structure.  This structure  holds  the per-thread active,
focus,  and capture windows.  I'll  describe  these concepts  and this structure
in the  "Per-queue  system windows"  section.

16h  WORD  npProcess
This WORD  is a near pointer  (relative  to USER's DGROUP)  to a QUEUE-
PROCESSDATA  structure.  If a process  has multiple  threads  and queues,
this  field in all the queues will point to the same QUEUEPROCESSDATA
structure.  The QUEUEPROCESSDATA structure contains  information  such
as the process  ID associated  with this queue,  and will  be described  later.
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24h  DWORD  messageTime
This DWORD  holds the value that will  be retrieved  by a call to  GetMessage-
Time  (that  is, the time  that  the message was posted).  This  value is set by
copying  it  out  of the  QUEUEMSG  structure  as each message is retrieved  by
GetMessage/PeekMessage.
28h  DWORD  messagePos
This DWORD holds the value that will be retrieved  by a call to GetMessagePos
(that  is, the X,Y coordinates  of the cursor  at the time  of the  message).  This
value  is set by copying it out  of the QUEUEMSG  structure  as each message
is retrieved  by  GetMessage/PeekMessage.
2Eh  WORD  lastMsg2
This  field holds  a near  pointer  (relative  to USER's  DGROUP)  to  the last
retrieved  QUEUEMSG  structure.
30h  DWORD  extralnfo
This  DWORD  holds  the value that will  be retrieved  by a call to  GetMessage-
Extralnfo.  This value  is set by copying  it  out  of the  QUEUEMSG  structure
as each  message is retrieved  by GetMessage/PeekMessage.

3Ch  DWORD  threadld
This is thread ID of the thread that is associated with  this queue. The relation-
ship  between thread IDs and the thread database  is described in Chapter 3.

42h  WORD  exp WinVer
This is the version of Windows  this application  expects.  This is usually either
0x300,  0x30A, or 0x400 to represent Windows 3.0, 3.1, or 4.0. This value is
extracted  from the program's  executable  header at startup.  It's used by USER
in certain  cases to  determine  how messages should  be processed  or which
messages should  be sent.  In  other words,  it allows USER to  be compatible
with the behavior of multiple  versions  of Windows.
48h  WORD  ChangeBits
This value is comprised of various  QS_XXX flags representing the various types
of message events that have occurred since the last call to GetQueueStatus. The
following  QS_xxx flags are given in WINUSER.H:

QS_KEY  0x0001
QS_MOUSEMOVE  0x0002
QS_MOUSEBUTTON  0x0004
QS_POSTMESSAGE  0x0008
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QS_TIMER  0x0010
QS_PAINT  0x0020
QS_SENDMESSAGE  0x0040
QS_HOTKEY  0x0080

The  GetQueueStatus  returns  this  field in  the low-order  word  of its returned
DWORD.  Chapter  7 of Windows Internals contains  much  more information
about  the  QS_xxx  flags  and  their meaning.
4Ah  WORD  WakeBits

This  value is comprised of various  QS_XXX  flags  representing  the various
types  of messages that  are  in the queue.  The  QS_xxx  flags  are  listed  in the
previous  field's  description.  The  GetQueueStatus  returns  this field in the
high-order  word  of its  returned  DWORD.
4Ch  WORD  WakeMask

If a thread  is blocked,  waiting for a message inside  a call to  GetMessage  or
PeekMessage,  this WORD  hold the QS_XXX  flags  for the message types it's
waiting for. Typically,  applications  are  blocked  inside a call  to  GetMessage,
so this  field would  hold  QS_ALLINPUT,  which  is the combination  of all the
QS_XXX  flags.

50h  WORD  hQueueSend

If this thread  is processing  a message that  was sent to  it  by another  thread,
this WORD  holds  the queue handle of the sending thread.
56h  WORD  sig2

This WORD holds 0x5148, which is the ASCII representation  for HQ  (which
perhaps stands for Handle  Queue?).  Each message queue is associated  with a
particular  thread.  Each thread  in turn is associated  with a process. Therefore,
there can be a many-to-one  relationship  between  message queues and a process.
The messaging system information  that's common between all queues in a
process  is stored in a structure that I call a QUEUEPROCESSDATA structure.
The QUEUEPROCESSDATA structure  is kept in a block allocated from the
16-bit  USER heap. The pointer to the QUEUEPROCESSDATA structure is
kept at offset 0x16  in a message queue.  In the Windows  95  16-bit TOOL-
HELP.H file, this data  structure  is marked with the LT_USER_PROCESS
(0x1D)  identifier.  (Only the debug version of USER.EXE tags the blocks with
a type identifier.)

The  known fields  in the  QUEUEPROCESSDATA structure  can  be found
in the  MSGQUEUE.H file from the SHOWWND  program  written  for this
chapter.  The  details  of these  fields  follow  (note  that  the three items at the
beginning  of each entry  are the offset,  the type,  and  the name):
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00h  WORD  npNext
This  field is a near pointer  (relative to USER's DGROUP)  to the next
QUEUEPROCESSDATA  in the system.

02h  WORD  un2
What this field points to  is unknown.  However, in the debug version of
Windows,  its block is given the type of LT_USER_SUBSYSTEM.

04h  WORD  flags
Some sort of flags WORD.  The meanings  are unknown.

08h  DWORD  processld
This DWORD  holds the process ID associated  with this queue.

0Eh  WORD  hQueue
This WORD holds an  hQueue value.  Its exact significance  is not known,
although  it may be a back-pointer to the  queue created for the thread  in
the  process.

The QUEUEMSG structure

In Windows 3.1  and earlier, a message queue actually contained the messages
that  had been posted to it. A large area toward the end of the queue structure
was basically just  an array  of MSG structures.  Two WORD fields near the
beginning  of the queue structure acted as head and tail  pointers.  Because the
messages were stored in an array, there was a maximum number of messages
that could be stored at  any given time in a queue.  By default,  this value was
eight  messages, but  it could be upped by calling SetMessageQueue  with a
new message count.

Windows  95 totally changes  the way messages are stored for a queue.  In
a Windows  95 message queue, there's  a near pointer to the head of a linked
list of structures,  one structure per message.  I've dubbed these structures
with  the name QUEUEMSG. The QUEUEMSG structures  are allocated out
of the  16-bit USER DGROUP. This is rather  surprising,  since a lot of work
went into moving things  out of USER's DGROUP in Windows  95,  so
putting  message structures in there seems counterproductive.  Incidentally,
the Windows  95  16-bit TOOLHELP.H refers to these  structures  by the
name LT_USER_QMSG (0x1A).

In case you find it hard to  believe that  the messages for a queue are no
longer kept in an array  at the end of the queue, consider the  following code
for Windows  95's SetMessageQueue  function:
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SETMESSAGEQUEUE  proc

C0ED:  XOR  AX,AX

C0EF:  INC  AX

C0F0:  RETF  3702

For those of you who don't read assembler  (for shame!), the function
simply returns  1. That's because there's no longer an array of MSG structures
in a queue.  In contrast,  the Windows 3.1 SetMessageQueue calculated how
big the new queue would have to be (taking into account the number of
messages to be held) and allocated a new global heap block for the queue.

The layout of a QUEUEMSG structure is given in C-style format  in the
MSGQUEUE.H file from the SHOWWND program. The details of the known
QUEUEMSG fields follow (note that the three items at the beginning of each
entry are the offset, the type, and the name):
00h  WORD  I-IWND
This WORD is the window handle  (HWND)  that this message will be
delivered  to.
02h  WORD  msg
This WORD is the message number.  Only the bottom  16 bits of a message
number are stored. This isn't a problem in Win16, where messages are only
16 bits, but for a Win32 application,  a message is a DWORD value, so the
top WORD of a Win32 program's  message value is lost.

04h  WORD  wParamLow
For Win16 applications, this field holds the WPARAM value for the message.
For Win32 programs, this field holds the low WORD of the WPARAM value.

06h  DWORD  IParam
This field contains  the LPARAM of the message.
0Ah  DWORD  messageTime
This DWORD is the time that the message was deposited  into the queue.
According  to the SDK documentation, the message time is the number of
milliseconds  since the system started. This field's value is ultimately returned
by the GetMessageTime function.  As part of retrieving this message,
GetMessage  and/or PeekMessage copies this value into offset 24h of the
message queue, which is where GetMessageTime retrieves it from.
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0Eh  DWORD  messagePos
This  DWORD  contains the  X,Y coordinates  of the  cursor  at the  time the
message  was  generated.  This  field's  value  is ultimately  returned  by the
GetMessagePos  function.  As part  of retrieving this  message,  GetMessage
and/or  PeekMessage  copies  it  into  offset  28h  of the  message  queue,  which
is where  GetMessagePos  retrieves  it  from.
12h  WORD  wParamHigh
For Win32 applications, this WORD  holds the high WORD  of the WPARAM.
For Win16  programs,  this WORD  is ignored.
14h  DWORD  extralnfo
This DWORD  contains the extra  information that's  sometimes associated with
a message.  This field's value is ultimately returned by the GetMessageExtraInfo
function.  As part of retrieving this message,  GetMessage  and/or PeekMessage
copies it into offset 30h of the message queue, which is where GetMessage-
ExtraInfo  retrieves  it from.
18h  WORD  nextQueueMsg
This is a near pointer  (relative  to USER's DGROUP)  to the next  QUEUEMSG
structure  in the list.  The end  of the  list  is indicated  by a  0 in  this  field.

Per-queue system windows
One  of the design concepts  espoused  in Windows  NT  is that  one process
shouldn't  be able  to  adversely  affect the  behavior  of another  process  (at
least  not  without  the permission  of the other  process).  Windows  3.1  and
earlier  didn't  follow this  philosophy,  especially  when  it came to  the  state  of
the windowing  system.  At any given time  in Windows  3.1  and  earlier,  there
was  just  one  active window,  one  focus window,  and  one capture  window.
Any application could  steal  the  focus  away from  another  by calling
SetFocus.  Likewise,  a call  to  SetActiveWindow could  change  the  active
window  out from underneath  a task that thought  it was the active window.

Windows  NT  solved  this  problem  by giving each  application  its own
copy of the  active,  focus,  and capture  HWNDs.  (Actually,  this  is a  bit of a
simplification,  but  it will  suffice  for now.)  By making these  system-state
windows  per-application  in scope, Win32  programs  don't  have  to  worry
about  other  programs  (malicious  or  not)  affecting  their  behavior.  As with
the decoupled  messaging system,  the  idea of per-application  system  state
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windows was such a good idea that it was brought over to Windows 95 as
well.  (The fact that this behavior is prescribed  by the Win32 APl didn't hurt
matters  either.)

The per-queue information  is kept in (yet another)  structure allocated
from USER's DGROUP segment. (Hey! I thought Windows 95 was supposed
to move things out of USER's DGROUP, not add new items.)  The pointer
to the per-queue  data  area is found at offset 0x10 in a message queue.  I've
given the per-queue  information  structure  the name PERQUEUEDATA.
The Windows  95  16-bit TOOLHELP.H  refers to this  structure as an
LT_USER_VWININFO  (type ID = 0x1B).

Incidentally,  during the final Windows 95 beta  (M8), the March 27th
InfoWorld ran a story with the headline,  "Win95 beta lays an egg." Much of
the ensuing controversy  arising from that article ultimately ended up related
to the PERQUEUEDATA structure. At the time of the final Windows 95
beta, each PERQUEUEDATA was several hundred bytes in length. As a
result,  starting up a large number of threads would quickly fill up USER's
64K DGROUP. Subsequently, Microsoft restructured  the PERQUEUEDATA
structure to take up significantly less space, and the controversy died down.

A C-style structure definition  for PERQUEUEDATA is given in the
MSGQUEUE.H file from the SHOWWND sample program.  The details of
the known fields follow (note that the three items at the beginning of each
entry are the offset, the type, and the name):

00h  WORD  npNext
This field is a near pointer (relative to USER's DGROUP) to the next
PERQUEUEDATA structure  in the system. Apparently, the PERQUEUE-
DATA are kept in a linked list.

06h  WORD  npQMsg
This WORD is a near pointer (relative to USER's DGROUP) to a QUEUEMSG
structure.  (QUEUEMSGs is described in the preceding section.)

14h  WORD  somehQueue l
This WORD is a message queue handle.  Its exact significance is currently
unknown.

16h  WORD  somehQueue2
This WORD is a yet another message queue handle.  Its exact significance is
currently  unknown.
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18h  DWORD  hWndCapture
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current window with capture  for this queue.
1 Ch  DWORD  hWndFocus
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current focus window of this queue.
20h  DWORD  hWndActive
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current active window of this queue.

Changes to (H)WND structures in
Windows  95
The WND structure  is perhaps the most commonly used system data struc-
ture in Windows 95. For each window in the system (visible or not), there is
a corresponding WND structure. In Windows 3.1, an HWND was a near
pointer to a WND structure in USER's DGROUP. As I described earlier, a
Windows 95 HWND is an offset into an array of 32-bit USER32 relative
pointers to WND structures.

Because each WND structure contains  a pointer to its parent window,
its sibling window, and its first child window, you can easily see that windows
are kept in a tree hierarchy. Figure 4-3 shows the tree hierarchy and describes
a little about each "level."  At the root of the WND tree hierarchy is the
desktop window. The first level of windows immediately  below the desktop
window  have styles of WS_OVERLAPPED or WS_POPUP. These are what
what most developers think of as "top-level"  or "main"  windows. Windows
that are lower in the hierarchy have the WS_CHILD style. The prototypical
child window is a control window in a dialog box/for example,  a button).
Because of the window hierarchy, you can start at the desktop window and
enumerate through all the windows in the system, as the SHOWWND.C
program shows.  (See "The SHOWWND Program"  section later in this
chapter.)

Although this fact isn't commonly known, the Z-order of windows is
determined by their relative positions within the hierarchy. Within a given
group of sibling windows, the window that's first in the list is highest in the
Z-order.  The second window in the list is next in the Z-order, and so forth.
For example,  all top-level windows (WS_OVERLAPPED and WS_POPUP)
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are siblings of one another,  and are all children of the desktop window. The
desktop window's first child window (that is, the first WS_OVERLAPPED
or WS_POPUP window) holds the highest rank in the Z-order.

Top-Level Windows
(WS_POPUP and
WS_OVERLAPPED)

 Figure 4-3
The tree  hierarchy  of  W N D structures lets you  start at  the desktop  window  and  enumerate

 through  all  the  windows  in  the system.

WND structure details

Although there are definite changes to the WND structure  in Windows 95
(relative to Windows 3.1), they're not very dramatic.  For the most part, the
ordering of the fields didn't change  (although the sizes of certain  fields cer-
tainly  did). Also, the WND structure has a few new fields in Windows 95.
The primary new field is the WORD that holds the  16-bit HWND value for
that window. This WORD is what allows windows to be easily referred to
by either a  16-bit HWND or a 32-bit USER DGROUP relative pointer.
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The HWND32.H  file from the SHOWWND  sources has  a C-style  defi-
nition for a Windows  95 WND  structure.  The details of the WND  follow
(note that  the three  items at the beginning of each entry are the offset,  the
type,  and the name):
00h  struct _WND32 *  hWndNext

This  DWORD  holds  a 32-bit pointer  (relative  to USER's DGROUP)  to the
sibling of this window.  The sibling window  is the next window at this  level
of the hierarchy that  has the same parent window as this window.  You can
obtain the  16-bit HWND  of the sibling window by calling GetWindow with
the GW_HWNDNEXT parameter.
04b  struct _WND32 *  bWndCbild

This  DWORD  holds  a 32-bit pointer  (relative to USER's DGROUP)  to the
first child window of this window.  You can obtain the  16-bit HWND  of the
first  child window  by calling GetWindow with the GW_CHILD  parameter.
By calling GetWindow(GW_HWNDNEXT),  you can obtain child windows
for  each subsequent  child window.
08h  struct _WND32 *  hWndParent

This  DWORD holds  a 32-bit pointer  (relative  to USER's DGROUP)  to the
parent  window of this window.  You can obtain the  16-bit HWND  of the
parent window  by calling GetParent.  The  only window that  truly does not
have a parent window is the desktop window.
0Ch  struct _WND32 *  hWndOwner

This  DWORD  holds  a 32-bit pointer  (relative  to USER's DGROUP) to the
owner window  for this window.  The owner window is the window that
receives  notification  messages  (for example,  the BN_CLICKED  message).
For WS_OVERLAPPED  and WS_POPUP windows, the owning window
and the parent window don't  have to  be the same,  although they often are.
For WS_CHILD windows, the parent window always also acts  as the owner
window  (that  is, it receives all notification  messages).  By calling
GetWindow(GW_OWNER),  you can obtain the  16-bit HWND  of a
window's  owning window.
10h  RECTS  rectWindow

This  field is a  16-bit RECT structure  (four  short integers)  that define the
boundaries  of the window  (including the nonclient  area).
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18h  RECTS  rectClient
This field is a  16-bit RECT structure  (four short integers) that defines the
boundaries  of the client area of the window. The client area is the portion of
window  that the application  is allowed to draw in using a device context
obtained from BeginPaint or GetDC.
20h  WORD  hQueue
This field contains the  16-bit global heap handle for the queue that handles
messages for this particular window. The existence of this field proves that
in Win32, windows are bound to a single queue and, hence, to a single
thread.  Thus, there is a Win32 GetWindowThreadProcessId  function.

22b  WORD  brgnUpdate
If a portion of this window needs repainting,  this field holds an HRGN that
describes the region needing to be updated.  Regions are GDI data structures,
and are stored in a 32-bit heap in Windows 95.
24h  WORD  wndClass
This WORD holds a near pointer  (relative to USER's DGROUP) to a
USER_DGROUP_WNDCLASS structure. A USER_DGROUP_WNDCLASS
structure is just the minimum amount of window-class-related  information
that USER needs to access frequently. The less frequently accessed class
information is kept in another structure that's  kept in a 32-bit heap. We'll
look at the format of the USER_DGROUP_WNDCLASS  and this other
structure  in the  "Changes  to Windows 95 window classes"  section. To sum
up, this field in the WND structure gives the class type of the window.

26h  WORD  hlnstance
In most cases, this WORD contains the  16-bit hInstance  (DGROUP) for the
application  that created the window. However, for edit controls  that need to
contain very large buffers (up to 64K), this field holds the DS value that will
be used in the edit control's WNDPROC. Before calling a window procedure,
USER loads this field into the AX register. In some Win16 exported function
prologues,  the code expects that AX contains  the DS value to  be used by the
function.  Normally, the DS that a program will want to use is the DGROUP
segment,  but in the case of an edit control holding significant amounts of
text,  a separate segment can be used.

28h  WNDPROC  lpfnWndProc
This DWORD holds the window procedure address associated with the
window.  It appears to always be a far  16:16 address. If the window's
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declared  window procedure is in Win32 code, this field holds a pointer to a
16:16 thunk up to the Win32 window procedure.
2Ch  DWORD  dwFlags
This DWORD holds flags specific to the internal  state of the window. The
meanings  of individual  bits aren't documented.
30h  DWORD  dwStyleFlags
This DWORD holds the WS_XXX-style flags given in the 16-bit WINDOWS.H
and 32-bit WINUSER.H.
34b  DWORD  dwExStyleFlags
This DWORD holds the WS_EX_XXX extended-style flags given in the 16-bit
WINDOWS.H and 32-bit WINUSER.H. Windows 95 added several new
extended style flags, which I'll talk more about in the "Other windowing
system changes (or lack thereof)"  section.
38h  DWORD  moreFlags
This field appears to  be used as flags. The meanings are unknown.
3Ch  HANDLE  ctrllD (or hMenu)
For top-level  (WS_OVERLAPPED or WS_POPUP) windows, this field holds
the hMenu for the window.  Its value is retrieved by the GetMenu function.
For WS_CHILD windows, this field holds the control ID. You're probably
most familiar with control IDs in the context of the controls in a dialog
box. If this window is a WS_CHILD window, this field's value can be
retrieved  by GetDlgCtrlId.
40h  DWORD  some32BitHandle
This WORD is a 32-bit handle for the window's text.  The handle is similar
to an HWND, but applies a heap that is neither the window heap nor the
menu heap.
42h  WORD  scrollBar
This WORD holds information relating to the window's scrollbar attributes.
44h  WORD  properties
This WORD is the handle for the first window property in the linked list of
properties.  Properties are really just atoms,  and allow you to bind named
16-bit values to a window.  See the GetProp and SetProp functions in the
SDK documentation  for more information.
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46h  WORD  hWnd16
This WORD is one of the key fields in the WND  structure.  It contains the
16-bit HWND value for this window. When the USER code has a 32-bit
pointer  to  a WND structure,  it can grab the contents  of this field to return
to code that expects  a real  16-bit HWND.  This allows USER to  internally
pass around  32-bit  pointers to WND structures  without  also passing around
the corresponding  16-bit HWND. Whenever  it's needed, the HWND can be
looked  up in the WND  structure.

48h  struct _WND32 *  lastActive
This DWORD holds a 32-bit pointer  (relative to USER's DGROUP) to the last
active popup window associated with this window. The GetLastActivePopup
function grabs this value to get a pointer to  a WND  structure, and then
returns  the  16-bit HWND  stored at offset 46h  in the structure.

4Ch  HANDLE  hMenuSystem
This  field is a handle to the system menu associated  with this window.  See
the  GetSystemMenu  function in the SDK documentation  for details.

56h  WORD  classAtom
This WORD  holds the atom associated with the class name for this window.
It can either be a regular atom  (that  is,  > 0xC000),  or it can  be one of the
predefined window class types:

Ox8000  (PopupMenu)

0x8001  (Desktop)

0x8002  (Dialog)

0x8003  (WinSwitch)

0x8004  (IconTitle)

Ox802A  ???

// The ALT TAB window.

//  In Win  3.X, the  title  window  below  an  icon.

// The class  associated  with  MMTASK.TSK.

This  field  (offset 56h)  is usually  the same as the field at offset 2 in the  struc-
ture  pointed to  by the wndClass pointer  (offset field 24h of the WND class).

58h  DWORD  alternateHD
5Ch  DWORD  alternateTID
These  two fields don't  appear to  actually  contain  a process ID or a thread
ID. However, there  is a path through  the GetWindowThreadProcessId code
which  indicates  that  these fields could contain  a PID and a TID.

As a final note  on Windows and the WND  structure, it often  surprises
people  when I tell them that  creating a window takes  absolutely  no space
from USER's 64K DGROUP. If you're  creating a window from an existing
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class, the only data that needs to be allocated is the WND structure itself.
Since WND structures come from a 32-bit heap, there's absolutely no impact
on USER's 16-bit DGROUP from creating a window. To prove this to myself,
I've written programs that created several thousand windows and checked
the free space in USER's DGROUP at various points during the creation of
the windows. In all cases, no memory was allocated during USER's DGROUP
in the course of this process.

Other  windowing  system  changes  (or  lack  thereof)
For some users, one of the biggest disappointments in Windows 95 is that
the maximum of 64K of text in a standard window didn't go away. Given
Windows 95's design goals, this shouldn't  be surprising. The code that
manipulates  and displays the text for a window is resolutely  16 bit. A good
chunk of the  16-bit USER would have had to have been converted to 32-bit
code to  break the 64K limit.  Given the size and compatibility  risks involved,
it's understandable that the Windows 95 team didn't jump to do this.  On
the other hand, Windows NT, which has a fully 32-bit USER and GDI,
doesn't  have this limitation.  Thus, the limit of 64K of window text is one of
the major end-user discernible differences between NT and Windows 95.

On a positive note, Windows 95 defines numerous new window styles
to give Win32 applications  that cool Windows 95 look. The new styles in
WINUSER.H are:

#define  WS_EX_MDICHILD  0x00000040L

#define  WS_EX_TOOLWINDOW  0x00000080L
#define  WS_EX_WINDOWEDGE  0x00000100L

#define  WS_EX_CLIENTEDGE  0x00000200L

#define  WS_EX_CONTEXTHELP  0x00000400L

#define  WS_EX_RIGHT  0x00001000L

#define  WS_EX_LEFT  0x00000000L

#define  WS_EX_RTLREADING  0x00002000L

#define  WS_EX_LTRREADING  0x00000000L
#define  WS_EX_LEFTSCROLLBAR  0x00004000L
#define  WS_EX_RIGHTSCROLLBAR  0x00000000L

#define  WS_EX_CONTROLPARENT  0x00010000L

#define  WS_EX_STATICEDGE  0x00020000L

#define  WS_EX_APPWINDOW  0x00040000L

(The default  in Win  3.1)

(The default  in Win  3.1)

(The default  in Win  3.1)

I won't bore you by reciting the SDK documentation on what all these new
styles do. However, there's something quite interesting going on regarding
these new styles --  something that's not immediately  obvious.  If you dig
through the  16-bit WINDOWS.H for Windows 95, you won't find any of
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these new WS_EX_XXX styles listed. The new WS_EX_XXX styles appear
only in the 32-bit WINUSER.H file. Now, I've been stressing throughout
this chapter that almost all the USER subsystem functionality  (including the
windowing  system) is implemented in the  16-bit USER.EXE. Something
should be rattling around in the back of your mind here. If the  16-bit
USER.EXE is what implements the windowing system, the 16-bit USER.EXE
must implement these styles --  which are supposedly for 32-bit applications
only. Why the heck can't 16-bit applications use these same new WS_EX_ XXX
styles? As it turns out,  there isn't a good reason. In fact, in some informal
testing,  I turned up some 16-bit Windows 95 utilities that did in fact use
these new extended styles.

Changes to Windows 95  window classes
Before jumping into a discussion of the changes made to Windows 95 window-
class management, a brief review of window classes is in order. A window
class is a collection of attributes used when creating a window. These attributes
include  items such as the window procedure callback address, the window's
style bits, the number of extra data bytes the window needs for auxiliary
storage,  and so on. While USER could theoretically get by without  using
classes, it would  be a real pain to have to specify all those attributes each
time you wanted to create a window. This is especially true for windows
that programs create numerous instances of, such as buttons.

Window classes serve as templates  from which specific instances of win-
dows can be created.  After the window has been created,  some of the class
attributes that were copied to the WND structure can be modified. The prime
example of this is the window procedure  address. All windows created from
the same class initially have the same window procedure  address.  Later on,
a program can use SetWindowLong to change the window procedure  of a
specific window. This is exactly what subclassing is.

When Windows starts up, it creates a small collection of a dozen standard
classes:

Button  ListBox
ComboBox  MDIClient
ComboLBox  PopupMenu
Desktop  ScrollBar
Dialog  Static
Edit  WinSwitch
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Most  of these classes  will be heavily used  by various  applications,  so it
makes sense to  make them common  system classes.  Additional application-
specific  classes can be created by calling RegisterClass.  Regardless of whether
you use a standard  system class  or  your  own class that  you've  created,  you
must  pass a class identifier  (typically its name} to  the  CreateWindow or
CreateWindowEx  functions.

In Windows  3.1  and earlier, USER kept all the registered window classes
in the system in a linked  list. There  were  even TOOLHELP  functions
(ClassFirst  and  ClassNext)  for enumerating through  all the  registered
classes.  In Windows  95,  the linked list of all registered  classes  is no more.
Sure, there's  still  a small  set of classes  that  you can get information  on via
ClassFirst and  ClassNext.  However,  these classes  are only the  standard  set
of system classes  (for example,  buttons,  listboxes,  and so forth).  These are
the standard  system classes  registered  by USER during its  startup  phase  (see
Chapter  1 of  Windows Internals).

As in Windows  3.x and earlier,  the Windows  95 USER still allocates the
space for classes out  of its  16-bit  heap  (so, yes, each new class uses up a
small amount  of the available  system resources).  In the debug version of
USER, the memory  allocated  for a class structure  is preceded by an
LT_USER_CLASS (1) signature.

As part  of the move toward the Win32  philosophy of letting processes
know as little as possible about  other processes,  each Windows  95  32-bit
process  now has  its  own private  class list.  This private  class  list includes
classes  registered  by system DLLs such as COMCTL32.DLL.  Each time a
new process  uses  COMCTL32.DLL,  roughly  a dozen new classes  are regis-
tered.  These classes  are  application-private  copies of the classes  provided by
COMCTL32.DLL.  If you're  thinking that  all these application-private
classes  can quickly  suck up  space in USER's  64K heap, you're right!

Given that  there  are application-private  class lists,  it would  be nice to  be
able to enumerate them. Unfortunately, neither the  16- nor 32-bit TOOLHELP
APIs provide a method  for walking the private  class list  of a process.  To
date, the only way I've  been able to find the private  class  list is to  enumerate
through all the windows in the system and retrieve the class pointers  from the
WND  structures.  The class pointer  is at offset 24h in each WND  structure.
Using the SHOWWND program,  you can walk  a process's class  list by hand
(that is, you have to  find the head of the class  list and then double-click  on
the  "next"  field of each class in the list).

A C-style definition  for a Windows  95 window class  structure  is given
in the WNDCLASS.H  file from the SHOWWND  program  (see the follow-
ing section).  I've named this  structure  a USER_DGROUP_WNDCLASS.
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This  structure contains the minimal  set of fields that  the  16-bit USER needs
to access frequently.  The less frequently used fields of a window class have
moved off into  a separate  structure in a 32-bit  heap.  The known fields of a
USER_DGROUP_WNDCLASS  follow (note that  the three  items at the
beginning  of each entry are the offset, the type,  and the name):

00h  DWORD  lplntWndClass
This field is a far  (16:16) pointer into the window heap.  The pointer points
to an INTWNDCLASS  structure that  I'll describe  next.  Basically, the
INTWNDCLASS  contains the class information that USER doesn't  need
immediate  access to.
04h  WORD  hcNext
This WORD holds a near  pointer  (in USER's DGROUP)  to the next class.
The next class is either one of the  system registered classes or the next
application  private class.

06h  ATOM  classNameAtom
This WORD holds the atom that describes the class name.  It's either a regular
atom (for example, > 0xC000)  or a standard class atom  (0x8000,  0x8001,
and  so on).  The GetClassNameFromAtom function in the SHOWWND.C
source  file on the  accompanying disk shows how to  decode these atoms to
class names.

08h  DWORD  style
This  DWORD  holds the  CS_xxx styles (for example,  CS_VREDRAW) for
the class. This field is widened from Win 3.1,  where it was only a WORD.

Summing  up the fields in USER_DGROUP_WNDCLASS  structure,  you'll
find that  it takes up about  0x0C bytes in USER's DGROUP for each class.
In Windows  3.1,  all the information about the WNDCLASS was stored in
USER's DGROUP. In an attempt to free up additional USER DGROUP mem-
ory, Microsoft moved most of the fields in a window class out into a sepa-
rate  32-bit heap. The first field of the USER_DGROUP  WNDCLASS con-
tains  a far pointer  into this heap,  and what it  points  at is a structure that  I
call  an INTWNDCLASS  (INTernal WNDCLASS). The INTWNDCLASS  is
similar  to,  but not identical with,  the WNDCLASS structure that you pass
to the RegisterClass  function.  The format  of an INTWNDCLASS  is also
given in the WNDCLASS.H header  file; the details  are as follows:

00h  WORD
This field contains the number  of current windows  that  are of this class.
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04h  DWORD  lpfnWndProc
This WORD  holds  the window procedure  address  for windows  of this class.
The act of superclassing  involves using SetClassLong to  change this  field.

08h  WORD  cbClsExtra
This WORD holds the number of extra bytes that are allocated at the end of
this INTWNDCLASS structure.  Applications  can use these bytes to store appli-
cation-specific  data. These extra  bytes are accessed with SetClassWord/Long
and GetClassWord/Long.
0Ah  WORD  bModule
This WORD  holds  the  16-bit version of the HMODULE that  registered the
class.  Note that  this  differs  from the  SDK documentation,  which refers  to
this  as  an HINSTANCE.  USER gets away with  this  because  it  routinely
converts  HINSTANCE to  HMODULEs  using the  16-bit  GetExePtr  routine
described  in  Chapter  7.
0Ch  WORD  hlcon
This  is the icon associated  with  windows  of this class.

1Eh  WORD  hCursor
This  is the cursor  to  be used when the mouse  is over windows  of this class.

1Oh  WORD  hBrBackground
This  is the brush to  be used when refreshing  the window's  background.

12h  DWORD  lpszMenuName
This is the name  of the menu to  be used for windows  of this class.  This  field
is usually  0,  but  it occasionally  contains a valid  16:16  pointer.

16h  DWORD  hlconSm
The small icon associated with windows of this class.  If nonzero, this is the
icon used for such things  as representing the window  on the Explorer
taskbar.
18h  WORD  cb WndExtra
This WORD holds the number of extra  bytes that  are allocated at the end of
each window created from this class. Applications can use these bytes to store
per-window  data. These extra  bytes are accessed with SetWindowWord/Long
and GetWindowWord/Long.
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The SHOWWND program
To illuminate  most of the data structures I've been talking about up to this
point, I wrote the SHOWWND program.  (Of course, I used SHOWWND
myself when ferreting out certain details of the data structures I've described.)
The central  focus of SHOWWND is the window hierarchy. You can click
on each window in the system to show the details of that window's various
fields. If a field is a link to another important data structure, you can double-
click on that line to switch to a detailed  listing of that data structure.  In this
way, the SHOWWND program on the accompanying disk shows the fields of
WND structures, window classes, and message queues. Since all three of these
structures contain links (pointers) to other instances of their structure type,
you can easily follow linked lists of windows, classes, and message queues.

To demonstrate that the data structures really are as I've described them,
SHOWWND  uses as few USER functions as possible. Wherever possible, it
directly accesses the data structures. For example, SHOWWND could have
used the EnumWindows and EnumChildWindows  to display the window
hierarchy. But that strategy wouldn't have proved that the WND struct looks
the way I've described it. Of course, going into system data structures and
poking around yourself isn't good programming practice, and it should be
avoided  if possible. However, for the purpose of showing what's going on
under the hood in USER, it's the only way to prove that I'm not just hand-
waving here.

Like several of the other programs from this book, SHOWWND is a
dialog  box with two listboxes. As you can see in Figure 4-4, the listbox on
the left contains  a nested hierarchical view of the current windows in the
system. At any point, you can refresh the list by clicking the Refresh button.
The listbox on the right is a  "details pane" --  when you select a window in
the left pane, the right listbox updates  to show the contents of the selected
window's WND struct.

If you look closely within the righthand listbox, you'll see that several
of the lines are preceded  by a + (a plus sign). The +  indicates that the line
can be double-clicked  to cause the details pane to show the details of
whaever you've clicked on. From within a WND details pane, you can go to
another WND, to the window's class, or to the window's queue.  From the
class details pane, you can follow the hcNext pointer to the next class in the
list. The message queue pane works in a similar manner, and lets you walk
the list of message queues.
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 Figure 4-4
The SHOWWND  program  is a  dialog  box containing  two listboxes that show the

 hierarchical  structure of the current windows  and details about each window.

For the most part,  the SHOWWND.C code is pretty  straightforward,  so I
won't  bore you with descriptions of the code or a code listing here.  However,
there is one important detail in the code that bears mentioning.  SHOWWND
is a Win32 program.  And as you no doubt know by now, Win32 programs
can be pre-empted  by other threads. As a result,  SHOWWND could be in the
middle of its window hierarchy walk and another  thread could come along
and change the window hierarchy.  Although this would probably be a rare
occurrence, it could happen.

To prevent  this  from happening,  SHOWWND acquires  and holds  on to
the Win16Mutex  during its walk  of the window hierarchy.  SHOWWND.C
does this  by using three  undocumented  functions:  GetpWin16Lock,
EnterSysLevel,  and LeaveSysLevel.  The GetpWin16Lock  function fills in a
DWORD  with  the  address  of the Win16Mutex  (which  is actually  in
KRNL386.EXE).  By passing this  address  to EnterSysLevel,  a program can
acquire  the Win16Mutex  and  release the mutex with LeaveSysLevel.  This
technique  is somewhat similar to what  the W16LOCK program from
Unauthorized  Windows 95 does.  The key difference is that W16LOCK  is
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using these functions to prove that the system can be deadlocked from a
Win32  application,  while SHOWWND uses them to properly handle thread
synchronization  issues.

Pseudocode  for select  16-bit
USER.EXE functions
Now that we've looked at some of the key 16-bit USER data structures and
USER's use of the new Win32  heaps, let's  look at  some pseudocode  for
some functions  in USER.EXE. The  following  sections are practical  in
nature,  because I want to show you how these data structures and concepts
are actually put to use.

The IsWindow and  IsWindow16  functions  in USER. EXE

The IsWindow function takes a  16-bit HWND as a parameter and verifies
whether it's really a valid HWND.  The IsWindow code in the debug
USER.EXE is just logging code that emits the name of the function to the
debug port if a certain USER trace mode flag (not documented) is enabled.
The real verification  of the HWND happens after IsWindow falls through
into the IsWindowl6 code.

IsWindowl6 starts out by quickly throwing out HWND values that
can't possibly be valid. As I described earlier, HWNDs in Windows 95 are
always a multiple of four, so IsWindow16 returns FALSE for any value that
has either of its lowest two bits set. IsWindow16  also immediately throws
out values that are less than 0x80. Why 0x80? Because the first 0x80 bytes
of the handle table area  (at USER's DGROUP base address + 0x10000)  are
used for storing other information related to the 32-bit window heap.  The
first available window pointer slot in the handle table area is at offset 0x80,
and this slot appears to always be taken by the desktop window.  (This
makes  sense, because the desktop window is the first window created.)

IsWindow16  next throws out HWND values that are too high. At offset
0x70 in the handle table area is a DWORD that contains the maximum
handle table offset in use. If the HWND passed into IsWindow is bigger
than that value, it can't be a valid HWND, so IsWindow16  returns FALSE.

The final part of IsWindow16 is to use the  16-bit HWND value to look
up the 32-bit pointer to the WND structure.  (Remember, the 32-bit pointer
to the WND struct is relative to USER's DGROUP, and isn't a fiat 32
pointer.)  IsWindow16  does two checks with the pointer that the HWND
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value dereferences to.  First, the pointer must be greater than 0x10000.  (In
the USER32 version of IsWindow, the test is for 0x20000,  which is more
accurate.) Second, the pointer that the HWND  dereferences to must be
nonzero.  If both conditions  are met, IsWindow16  returns TRUE, indicating
that the  16-bit HWND  is valid.

Pseudocode  for IsWindow

//  In  16  bit  USER.EXE

//  Parameters:

//  HWND  hWnd  //  The  16  bit  version.

Push DS

Load  DS  with  USER's  DGROUP

Grab  UserTraceFlags  WORD  from  USER's  DGROUP

restore  USER's  DGROUP

if  (  UserTraceFlags  &  0x2000  )

_DebugOutput(  DBF_USER,  "IsWindow"  );

//  Execution  falls  through  to  IsWindow16...

IsWindow16  proc

//  Parameters:

//  HWND

//  Locals:

//  PWND32

//  PVOID

hWnd  //  The  16-bit  version.

pWnd32  //  32  bit  USER  DGROUP  relative  pointer  to  HWND32.

USER_dgroup_base  //  Base  address  of  USER's  DGROUP.

//  Pops  return  address  and  HWND  off  the  stack,  then  pushes  them

//  back  on.  Supposedly  saves  space  on  stack  frames.

if  (  hWnd  &  3  )

return  0;

//  HWND16s  must  be  a  multiple  of  4.

if  (  hWnd  <  0x80  )  //  HWND16s  are  always  >=  0x80.

return  0;
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//  At  offset  0x10070  in  the  USER  DGROUP  seg  is  a  DWORD  with  the

//  maximum  HWND  value.

if  (  hWnd  >  *(PDWORD)(USER_dgroup_base  +  0x10070)  )

return  0;

//  Use  the  HWND  as  an  offset  into  the  handle  table  area  at

//  offset  0x10000  in  USER's  DGROUP.  Grab  the  pointer  stored  there.

pWnd32  =  *(PDWORD)  (USER_dgroup_base  +  0x10000  +  hWnd);

if  (  pWnd32  <=  0x10000)

return  8;

//  All  HWND  structs  are  above  0x1000•.

//  Actually,  they're  above  8x20000,  Dut...

if  (  pWnd32  )  //  if  the  HWND  ptr  table  contains  a  nonzero

return  TRUE;  //  entry,  we'll  say  it's  a  valid  HWND.

The GetCapture,  GetFocus, and
GetActiveWindow functions

As I mentioned earlier, in Windows 95 the capture, focus, and active windows
are stored on a per-queue  basis. Thus,  unlike in Windows  3.x,  GetCapture,
GetFocus,  and GetActiveWindow can't merely scoop the relevant value out
of USER's DGROUP segment.  On the other hand, the three HWNDs (actu-
ally USER 32-bit pointers)  are stored side by side in the PERQUEUEDATA
structure  that I described earlier. This means that the code for retrieving the
three HWNDs can share common code.

The three functions each load a register (called perQueueOffset  in the
pseudocode)  with the offset of their desired window pointer within the
PERQUEUEDATA structure. The functions then all jump to a common spot
(called Get_XXX_common in the pseudocode). The common code first calls
into KRNL386 to get a pointer to the current thread's message queue. Within
the queue is a pointer to the PERQUEUEDATA structure. With the pointer
to the PERQUEUEDATA in hand, the code adds in the appropriate  offset
set earlier by the GetCapture,  GetFocus, or GetActiveWindow  functions. At
the calculated location is a 32-bit pointer (relative to USER's DGROUP) to
the desired window.  All that remains for the common code to do is go to
that WND struct and extract the  16-bit HWND value at offset 46h. This
work is represented  in the pseudocode  by the call to HWnd32ToHWnd16.
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Pseudocode for GetCapture,  GetFocus, GetActiveWindow

//  In  16  bit  USER.EXE

//  Locals:

//  PMSGQUEUE  pQueue;

//  WORD  perQueueOffset

//  BOOL  flag

//  PWND32  pWnd

GetCapture  proc
perQueueOffset  :  0x0018  //  Olfset  of  the  capture  WND  in  the  PERQUEUEDATA.

flag  =  FALSE

goto  Get_XXX_common

GetFocus  proc

perQueueOffset  =  0x001C  //  Offset  of  the  focus  WND  in  the  PERQUEUEDATA.

flag  =  FALSE

goto  Get_XXX_common

GetActiveWindow  proc

perQueueOffset  =  0x0020  //  Offset  of  the  active  WND  in  the  PERQUEUEDATA.

flag  =  TRUE

Get_XXX_common:

pQueue  =  GetCurrentThreadQueue();  //  KERNEL.625

if  (  !pQueue  )

INT  3;  //  Oops!  No  queue.  Break  into  the  debugger.

if  (  pQueue ->npPerQueue  ==  0  )

INT  3;  //  Oops!  No  per  queue  data.  Break  into  the  debugger.

//  Using  the  perQueueOffset  value  (in  the  BX  register),  index  into  the

//  per  queue  area  and  extract  a  USER  relative  pointer  to  the  desired  WND.

pWnd  =  *(PWND32  *)(pQueue->npPerQueue  +  perQueueOffset);

if  (  IpWnd  &&  flag  )
{

//  If  pWnd  is  0,  but  "flag"  is  set  (which

//  only  happens  for  GetActiveWindow)...

//  Try  a  second  approach  to  getting  the  active  window.  If

//  the  conditions  are  right,  try  calling  GetForegroundWindow.

//  npCurrentPerQueueData  is  a  USER.EXE  global  variable.

if  (  pQueue ->npPerQueue  ==  npCurrentPerQueueData  )

return  GetForegroundWindow();

//  Convert  from  the  32-bit  HWND  form  to  the  16  bit  form,  and  return  it.

return  HWnd32ToHWnd16(  pWnd  ):
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The GetWindowThreadProcessld and
IGetWindowThreadProcessld functions

The GetWindowThreadProcessld  function  is new to the Win32 API. (The
closest  equivalent  in  Windows  3.x  was  GetWindowTask.)  Although  the
GetWindowThreadProcessld  function  is exported by the 32-bit USER32.DLL,
it falls to the 16-bit USER.EXE to implement it.  (Will the indignity never end?)
The  GetWindowThreadProcessld  function  is essentially  just  a parameter
validation layer. The real work is in the IGetWindowThreadProcessld  function.
However,  before calling IGetWindowThreadProcessId,  the code first converts
the  16-bit HWND into a USER32-relative 32-bit pointer, and passes that along.

IGetWindowThreadProcessld  has to  extract  the process  ID and thread
ID from two  different places.  The thread  ID that a window is associated
with is stored in the thread's message queue. Since queues are per-thread (and
not per-process  as you might think), the process ID isn't stored in the message
queue. Instead, the process ID is stored in the QUEUEPROCESSDATA struc-
ture that I described  earlier.  IGetWindowThreadProcessId  uses the message
queue to get a pointer  to  the QUEUEPROCESSDATA data,  and extracts the
process  ID from that  structure.

The  IGetWindowThreadProcessId code does have a strange  bit  of code
that  I'm at a loss to explain.  Apparently,  if some flag is set in the QUEUE-
PROCESSDATA  structure,  the thread  ID and  processID  for the window are
actually stored at the end of the WND  structure  itself.  I was never able find
an example where this was the case.

Pseudocode for GetWindowThreadProcessld

/ /  In  USER.EXE  (believe  it  or  not)

//  Parameters:

//  HWND  hWnd  //  16  bit  version

//  LPDWORD  lpdwProcessId  //  Pointer  at  which  to  store  the  process  ID.

//  Locals:

//  PWND32  pWnd32;

pWnd32  =  HWnd16toHWnd32(  hWnd  ):  //  Convert  the  16-bit  HWND  value  into

//  the  32  bit  pointer  version.

//  Verify  that  a  valid  pointer  to  at  least  4  bytes  was  passed.

VerifyPtr(  lpdwProcessId,  sizeof(DWORD)  )

return  IGetWindowThreadProcessId(  pWnd32,  lpdwProcessId  );
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Pseudocode  for IGetWindowThreadProcessId

//  Parameters:

//  PWND32  pWnd;

//  LPDWORD  lpdwProcessId

//  Locals

//  LPMSGQUEUE  lpMsgQueue;

//  DWORD  threadId;

lpMsgQueue  =  MAKELP(  pWnd ->hQueue,  0  );  //  Get  a  pointer  to  the  window's

//  message  queue.

if  (  UserTraceFlags  &  0x00042000  )

_DebugOutput(  DBF_USER,  "GetWindowThreadProcessId"  );

if  (  lpMsgQueue  ->npProcess->flags  &  2  )  //  This  is  rarely  the  case.
{

processId  =  pWnd  ->alternatePID;  //  Grab  the  PID/TID  from  the  WND

threadId  =  pWnd  ->alternateTID;  //  struct.
}

else  //  Execution  most  often  comes  through  here.

{
processId  =  lpMsgQueue  ->npProcess  ->processid;

threadId  =  lpMsgQueue  ->threadId;
}

if  (SELECTOROF(lpdwProcessId)  )

*lpdwProcessId  =  processId;

return  threadId;

The DesktopWndProc function

When  deciding  what  functions were worth  looking  into for  this chapter,  I
quickly  gravitated  to  the DesktopWndProc  function.  There were two  reasons
for  this.  First,  this  function is relatively  simple,  and  I wanted  to  show a
working  system-provided  window procedure.  Second,  DesktopWndProc
contains the code  for enabling  the free system  resource  fudging  that  I talked
about  earlier  in the chapter.

The first thing to  notice  about DesktopWndProc  is that  it's a  semi-32-bit
WNDPROC.  That is, the hWnd and msg fields are  16 bits,  but the WPARAM
is 32  bits  (like  a WNDPROC  in a Win32  program would  be).  Another
important  thing to  notice  is that the  function  immediately  converts  the  16-bit
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HWND into a USER32 relative 32-bit pointer. It uses this 32-bit pointer for
all its accesses to the WND structure.  All the other standard  system
WNDPROCs  do the same thing in this regard  (that is, they use USER
DGROUP-relative  32-bit pointers).

The core of the DesktopWndProc  code is a switch statement  (no, the
Windows 95 team hasn't switched Windows over to use MFC yet). The
windows messages that DesktopWndProc handles are listed here:

*  The WM_USER message: The WM_USER message is the dark horse of
the messages handled by DesktopWndProc.  When the desktop receives
this message for the first time (and only for the first time), it calls
GetFreeSystemResources  to get the percentage free in both the USER
and GDI heaps.  Subsequent calls to GetFreeSystemResources make their
return value relative to the percentage-free values determined here. Who
sends the WM_USER message to the desktop? The Explorer process
itself, after it's done its initialization. The idea of this WM_USER message
is apparently  to establish a baseline system resource usage, from which
subsequent  calls to GetFreeSystemResources can be compared.  While
this sounds reasonable enough, it is a big change from Windows 3.1,
and it would be nice if Microsoft were to describe the change to its
users. As it stands now, the free system resources numbers for the typi-
cal system will look like they've jumped way up when the machine was
updated to Windows 95. Under the hood, though, the change isn't
really that dramatic.

*  The WM_ERASEBKGND message: This messages erases the back-
ground and validates the specified rectangle. Nothing exciting here.

*  The WM_CANCELMODE message: If there isn't a system modal window,
this handler falls through to the default handler.

*  The WM_NCCREATE message: This message handler seems to be used
primarily as a sanity check. The code checks to make sure that there are
no other windows of class desktop. It also verifies that the desktop window
doesn't have a parent window.

*  The WM_LBUTTONDBLCLK message: This message handler changes
the message being processed into a WM_SYSCOMMAND message with
SC_TASKLIST as the high WORD of the WPARAM. In Windows 3.1,
a double-click  on the desktop would  bring up the task manager.  In
Windows 95, when DefWindowProc receives the SC  TASKLIST command,
it calls into the shell, which in turn  brings up Explorer's  start menu.
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*  The WM_QUERYNEWPALETTE and WM_PALETTECHANGED
messages: These two  functions call some function in USER that  (you
guessed it)  probably has something to  do with the palette.  Any messages
that come through the DesktopWndProc and which aren't handled by the
above handlers fall through the switch statement, and call DefWindowProc.
(And the inner workings of DefWindowProc is probably a book unto itself.)

Pseudocode  for Desktop WndProc

//  In  16  bit  USER.EXE

//  Parameters:

//  HWND  hWnd

//  UINT  msg

//  WPARAM  wParam

//  LPARAM  lParam

//  Locals:

//  PWND32  pWnd32

//  32  bits,  not  16.

//  32  bit  pointer,  relative  to  USER  DGROUP.

pWnd32  =  HWnd16ToHWnd32(  hWnd  )

if  UserTraceFlags  & 0x4  )
_DebugOutput(  DBF_USER,  "DesktopWndProc"  );

switch  ( msg  )
{

case  WM_ERASEBKGND:

//  Erase  the  desktop.  The  function  calls:

//  FILLRECT,  GETCLIPBOX,  GETDCORG,  GETTEXTEXTENT,  LOADSTRING

//  LSTRCATN,  LSTRLEN,  OFFSETRECT,  SETBKMODE,  SETBRUSHORG.

//  SETTEXTCOLOR,  SEIVIEWPORTORG,  and  TEXTOUT.

SomeFunction(  wParam  );  //  wParam  :=  HDC  to  paint  with.

ValidateRect(  pWnd32  ->hWnd16,  0  );

return  1;

case  WM_CANCELMODE:

if  (  HWndSysModal  ==  SomeUserGlobalVar  )

return  0;

break;
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case  WM_NCCREATE:

//  This  is  the  first  message  through  the  WND  proc.

if  (  pWnd32  ->wndClass  ->cClsWnds  !=  1  )

{
_DebugOutput(  DBF_FATAL  |  DBF_USER,  "USER:  Assertion  failed"  );

pWnd32  ->elassAtom  =  DesktopClassAtom;  //  USER  global  variable.

if  (  0  ==  DefWindowProc32(  pWnd32  ->hWnd16,  msg,  wParam,  lParam  )  )

return  0;

//  The  desktop  window  better  not  have  a  parent!!!

if  (  0  ==  pWnd32  ->hWndParent  )

return  1;

_DebugOutput(  DBF_FATAL  |  DBF_USER,  "USER:  Assertion  failed"  );

return  1;

case  WM_LBUTTONDBLCLK:

msg  =  WM_SYSCOMMAND;

HIWORD(  wParam  )  =  SC_TASKLIST

break;

case  WM_QUERYNEWPALETTE:

case  WM_PALETTECHANGED:

if  (  wParam  ==  hWnd  )

SomeFunction();

return  0;

//  wParam  ==  HWND  that  changed  the  palette.

//  Same  basic  actions  as  3.1,  including

//  calling  RedrawWindow().

case  WM_USER:  //  0x0400  (sent  by  Explorer)

if  (  base_USER_FSR_percentage  ==  0 ) {

base_GDI-FSR_percentage
=  GetFreeSystemResources(  GSFR_GDIRESOURCES  );

base_USER_FSR_percentage
=  GetFreeSystemResources(  GSFR_USERRESOURCES  );

return  0;

return  DefWindowProc32(  bWnd32  ->hWnd16,  msg,  wParam,  lParam  );
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USER32  isn't just thunks  to  USER. EXE
Throughout  this chapter, I've emphasized that the real work of the Windows 95
USER subsystem is handled by the 16-bit USER.EXE. It is indeed true that
large portions of USER32 are just thunks down to USER.EXE. However, it
would  be wrong to think that USER32 consists of nothing but thunks.  In
looking at the USER32 listings, it's readily apparent that Microsoft  took
some time to determine which USER routines are heavily called and could
easily be implemented without thunking down to USER.EXE. In a few cases
(such as the ones I'll show next), the Windows 95 team decided that the
additional  speed gain from eliminating a thunk warranted using a little extra
code in USER32.DLL. The functions I'll describe in the following  sections
are by no means a complete list I  rather, they're a representative  sample of
the windowing system functions.

The  IsWindow function  in  USER32.DLL

The USER32 version of IsWindow is only slightly more complicated  than
the USER.EXE version.  Since USER32's IsWindow function could be called
by a Win32 thread that doesn't currently hold the Win16Mutex, the func-
tion uses two helper functions  (GrabWin16Mutex  and ReleaseWinMutex)
to bracket the call to the core of the routine.  The GetWndPtr32  function
(which is described next) is used throughout USER32.DLL. If GetWndPtr32
returns  0, IsWindow returns FALSE, indicating that the passed-in HWND
isn't valid.  Otherwise,  IsWindow returns TRUE on any nonzero return
value from GetWndPtr32.

Pseudocode  for IsWindow

// in USER32.DLL

//  Parameters:

//  HWND  hWnd

//  Locals:

//  BOOL  retValue;

//  The  16  bit  version.

GrabWin16Mutex();

retValue  =  GetWndPtr32(  hWnd  );  //  Pass  16  bit  HWND  version.

ReleaseWinl6Mutex():
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Pseudocode  for Grab Win16Mutex

EnterSysIevel(  pWin16Mutex  ); //  Call  KERNEL.97  to  acquire  the  Win16.

Pseudocode  for Grab Win 16Mutex

LeaveSysLevel(  pWinl6Mutex  ); //  Call  KERNEL,98  to  release  the  Win16

//  mutex  semaphore.

The GetWndPtr32 function in USER32

The  GetWndPtr32  function  is a general-purpose USER32  internal  routine.

Given  a  16-bit  HWND,  it returns  a USER32-relative  32-bit  pointer  to  the

WND  structure. In terms of how it verifies the  16-bit HWND  and looks  up the

WND  struct,  the  GetWndPtr32  function  is nearly  identical  to  the  IsWindow

function in the  16-bit  USER.EXE.  The only real difference  is at the end of the

function:  The  16-bit  IsWindow returns TRUE or FALSE, while  GetWndPtr32

returns  a USER32  DGROUP relative  pointer to  the WND.

Pseudocode  for GetWndPtr32

/ /  Parameters:
//  HWND  hWnd  //  The  16  bit  version.

//  Locals:

//  DWORD  retValue;

ConfirmSysLevel(  pWin16Mutex  ); //  Make  sure  we  already  have  acquired

//  the  Winl6Mutex.

if  (  !hWnd  )

return  0;

//  Filter  out  the  0  HWND  case.

if ( hWnd  & 3 )

return  0;

//  HWNDs  are  always  multiples  of  4.

if ( hWnd  < 0x80  )

return  0:

//  The  lowest  HWND  value  is  80.

//  At  offset  gx10070  in  the  USER  DGROUP  seg  is  a  DWORD  with  the

//  maximum  HWND  value.

if  (  hWnd  >  *(PDWORD)(USER_dgroup_base  +  0x00070)  )

return  0;
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//  Dereference  the  DWORD  at  0x10080  +  the  HWND  value  to  get  a  pointer.

retValue  =  *(PDWORD)  (USER_dgroup_base  +  0x10000  +  hWnd);

if ( retValue < 0x20000 )

return  0;

//  The  HWND(32)  heap  starts  0x20000  bytes

//  into  USER's  DGROUP.  Note  the  different

//  comparison  than  the  one  IsWindow16  uses.

//  Return  a  flat  PTR  to  the  WND32  structure.  The  value  in  the  HWND

//  table  is  a  USER  DGROUP  32  bit  relative  offset.

return  (PWND32)  (retPtr  +  UserDgroupBase);

The GetCapture,  GetFocus, and
GetActiveWindow  functions in  USER32.DLL

Earlier,  I presented  pseudocode  for  the  GetCapture,  GetFocus,  and
GetActiveWindow  functions  as  implemented  in  USER.EXE  (see  the
"Pseudocode  for  select  16-bit  USER.EXE functions"  section).  The  32-bit
versions  in USER32  are  essentially  identical  in  their  core  implementation.
Two  differences  bear mentioning,  though.  The  first  difference  is  that  the
USER32  versions  all  acquire  and  release  the Win16Mutex  around  their
access  to  the  USER data  structures.  The  16-bit  equivalents  don't  have  to  do
this,  since  they're  in  16-bit  code  and,  by  definition,  the  Win16Mutex  has
already  been  acquired.  The  second  difference  is  the  absence  of  error  check-
ing  in  the  USER32  versions.  The  16-bit  versions  of  these  functions  check  to
make  sure  there's  a  queue  present  before  they  start  rooting  around  in  the
PERQUEUEDATA  structure.

Pseudocode for GetCapture,  GetFocus, GetActiveWindow

//  Locals:

//  DWORD  perQueueOffset;

GetActiveWindow  proc

perQueueOffset  =  0x20;

goto  GetWndXXX_common

/ /  Offset  of  the  active  WND  in  the  PERQUEUEDATA.

GetCapture  proc

perQueueOffset  =  0x18;

goto  GetWndXXX_common

//  Offset  of  the  capture  WND  in  the  PERQUEUEDATA.

GetFocus  proc

perQueueOffset  =  0x1C

//  Fall  though...

//  Offset  of  the  focus  WND  in  the  PERQUEUEDATA.
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GetWndXXX_common:

//  Locals:

//  PMSGQUEUE  pQueue;

//  PWND32  pWnd:

pQueue  =  GetCurrentQueuePtr();

GrabWin16Mutex();

if  (  pQueue  ->npPerQueue  == 0)

goto  SuckHWND16_release_Win16Mutex:  //  Oops!  No  per-queue  data.

//  Extract  the  USER  DGROUP  relative  32  bit  PWND32  pointer  out  of  the

//  per  queue  data  structure.

pWnd  =  *(PWND32  *)  (UserDgroupBase  +  pQueue->npPerQueue  +  perQueueOffset  );

goto  SuckHWND160utOfUserDGROUP;

SuckHWND160utOfUserDGROUP:

//  Execution  arrives  here  with  a  pointer  to  actual  WND32  struct  (in  EAX).

if  (pWnd  )
{

pWnd  =  (WORD)(  UserDgroupBase  +  pWnd  ->hWnd16  );

//  pWnd  is  now  really  a  16  bit  HWND,  not  a  pointer.

}

SuckHWND16  release  Win16Mutex:

ReleaseWin16Mutex():

return  pWnd:  //  Either  0,  or  a  16  bit  HWND.

The GetMessagePos, GetMessageTime, and
GetMessageExtralnfo  functions in USER32.DLL
The GetMessagePos,  GetMessageTime, and GetMessageExtraInfo  functions
in USER32 are essentially identical to their 16-bit equivalents in USER.EXE.
Since the three functions  each just grab a single variable from the current
thread's message  queue,  they  all  start with  a small  stub that  loads  the
desired offset into a register before jumping to  a common location.  At the
common location,  the code gets a pointer to the current thread's queue and
extracts the relevant DWORD  from it.  Interestingly, these functions  don't
bother to acquire the Win16Mutex like the USER GetCapture, GetFocus,

and GetActiveWindow  functions  do.
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Pseudocode for GetMessagePos, GetMessageTime, GetMessageExtralnfo

//  In  USER32.DLL

//  Locals:

//  DWORD  infoOffset

GetMessagePos  proc

infoOffset  =  0x28;

goto  GetMsgXXX_common

GetMessageTime  proc

infoOffset  =  0x24;

goto  GetMsgXXX_common

GetMessageExtraInfo  proc

infoOffset  =  0x30;

//  Fall  through...

GetMsgXXX  common:

//  Locals:

//  PMSGQUEUE  pQueue;

// Note that this code doesn't grab the Win16Mutex like the GetWndXXX

//  functions  do.

pQueue  =  GetCurrentQueuePtr():

/ Add  the  infoOffset  to  the  base  address  of  the  queue,  and  return

/  the  DWORD  stored  therein.

return  *(PDWORD)(  pQueue  +  infoOffset  );

The SendMessage  function  in  USER32.DLL

You might be somewhat  surprised to discover that I've provided  pseudocode
for USER32's  SendMessage  routine.  After all,  SendMessage  is one of the
most complicated routines  in all of the USER subsystem, so it surely must
thunk down to the  16-bit USER.EXE, right? In many cases,  that assumption
is correct.  However,  $endMessage  is a heavily  used routine,  and if the right
conditions  are met,  it can do its work without ever thunking down to  16-bit
code.  We're talking major  performance  improvement here.

The USER32  SendMessage  starts out by acquiring the Win16Mutex.  The
code  then goes  through a long series of tests to  see whether  this particular
message can be sent safely without getting the real SendMessage (in USER.EXE)
involved.  Among the conditions  that can disqualify  the attempt  and force a
thunk down to USER.EXE are the following:
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*  The  HWND  is  0.

*  The  queue  of  the destination  window  is different from the current

thread's  queue.

*  Certain  variables  in USER.EXE's  DGROUP  are nonzero.

If the particular  message  being  sent makes it through  the gauntlet  of tests
that  would  force it to  thunk  down,  SendMessage  begins  setting things  up for
the call  to the destination WNDPROC.  In particular,  SendMessage  needs the
address  of the WNDPROC  it'll  be calling.

As I've mentioned earlier, the WND  structures themselves  don't ever store
an actual  32-bit flat pointer  to  a WNDPROC.  Instead,  if a WND  structure is
a 32-bit window,  the WNDPROC  address in the WND  structure points to a
16-bit code stub that ultimately transfers control  up to  32-bit  land.  Part of that
code  stub is the actual  32-bit  WNDPROC.  The  SendMessage  code  knows
about these special  stubs,  and reads the 32-bit WNDPROC  address out of the
stub itself.  Finally, before JMP'ing to the target WNDPROC,  SendMessage
releases the Win16Mutex.  This whole  sequence  smacks of being a big kludge,
but if it works  and improves  performance,  why not?

Pseudocode  for SendMessage

//  32-bit  version  in  USER32.DLL

//  Parameters:

//  HWND  hWnd

//  UINT  uMsg

//  WPARAM  wParam

//  LPARAM  1Param

//  Locals:

//  PWND32  pWnd

//  PMSGQUEUE  pQueue;

//  LPVOID  lpvMsgProcThunk  //  A  16:16  pointer,

//  WNDPROC  wndProc32

GrabWinl6Mutex();

pWnd  =  GetWndPtr32(  hWnd  );

if  (  !pWnd  )

goto  ThunkToSendMessagel6;

//  No  HWND...  gotta  thunk.

if  (  !pWnd  ->flags  &  0x02000000  )
goto  ThunkToSendMessage16

/ /  Some  flag  ain't  set..,  gotta  thunk.
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if  (  pCurrentTIB  ->pvQueue  !=  pWnd->hQueue  )  //  Sending  a  message  to  a

goto  ThunkToSendMessagel6  //  different  queue.  Gotta

//  thunk.

if  (  SomeVariableInUserDgroup  != 0  )

goto  ThunkToSendMessage16

if  (  SomeOtherVariableInUserDgroup  !=  0  )

goto  ThunkToSendMessage16

//  USER's  in  some  funky  state.

//  Gotta  thunk.

//  Get  a  flat  pointer  to  the  message  queue.

//  MapSL  takes  a  selector  and  an  offset,  and  returns  a  linear  address.

pQueue  = MapSL(  pCurrentTIB  ->pvQueue,  0  );

if  (pQueue->(Ox6A+OxA)  != 0  )

goto  ThunkToSendMessagel6;

//  ???  Gotta  thunk.

if  (pQueue->(Ox6A+OxlA)  != 0  )

goto  ThunkToSendMessage16;

//  ???  Gotta  thunk.

//  Get  a  pointer  to  the  thunk  code  that  USER.EXE  created  for  this

//  window.  Index  2  bytes  into  the  USER  message  thunk,  and  grab  the

//  linear  address  of  the  window  procedure.

lpvMsgProcThunk  =  pWnd  ->lpfnWndProc;

wndProc32  =  *(LPWORD)(lpvMsgProcThunk+2)

ReleaseWin16Mutex();  //  Don't  need  this  no  more.

//  If  all  went  well,  jump  to  the  32-bit  window  procedure,

//  We've  successfully  avoided  the  intertask  SendMessage  contortions,

//  and  have  also  avoided  thunking  down  to  16  bit  USER.EXE.

goto  wndProc32;

ThunkToSendMessagel6:

ReleaseWin16Mutex();

//  Well,  it  looks  like  we  gotta  thunk  down  to

//  USER.EXE.

pop  return  address  into  EAX

pop  hWnd  into  ECX

push  0

push  hWnd

push  0

push  returnAddress

//  in  ECX

//  in  EAX

goto  common  thunking  code
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The GetDIgltem  function  in  USER32.DLL

The GetDlgItem function is another of the heavily used functions in Win32,
especially with dialog-related code.  Given an HWND and a child control ID,
the function needs to return the HWND of the child control. If you remember
back when I was describing the WND structure, you can see how GetDlgltem
doesn't  need to do anything more sophisticated  than walk a section of the
WND hierarchy, looking for a window with the right control  ID.

The USER GetDlgItem function  begins by grabbing the Win16Mutex
(after all, we don't want the WND hierarchy changing beneath  us as we're
walking it!). Dialog controls are simply child windows of the dialog window.
Therefore,  all GetDlgItem has to do is walk the list of child windows for the
specified dialog and compare the control ID of each window it finds to the
idControl  input parameter. This is exactly what GetDlgItem does. When it
finds a WND structure with a controlID field that matches the input para-
meter, the code looks up and returns  the  16-bit HWND value found else-
where in the WND structure.  Of course,  before returning,  the function
remembers  to release the Win 16Mutex.

Pseudocode  for GetDlgItem

//  32  bit  version  in  USER32.DLL

//  Parameters:

//  HWND  hwndDlg

//  int  idControl

//  Locals:

//  PWND32  pWnd

GrabWin16Mutex();

pWnd  =  GetWndPtr32(  hwndCtl  )  //  Get  a  flat  pointer  to  the  WND  struct,

if  (  pWnd  )

pWnd  =  pWnd  ->hWndChild;  / Start  at  the  first  child  window.

while  (  pWnd  )  //  While  there  are  child  windows...

{
pWnd  +=  UserDgroupBase;  //  convert  USER  DGROUP  relative  pointer

//  to  a  flat  pointer.

//  Is  the  control  ID  of  this  window  what  we're  looking  for?

if  (  idControl  ==  pWnd  ->ctrlID  )
{

255
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pWnd  =  pWnd  ->hWndl6;

break:

pWnd  =  pWnd  ->hWndNext;
/

//  Advance  to  next  child  window.

ReleaseWin16Mutex();

return  pWnd;  //  This  is  always  either  0  or  a  16-bit  HWND  value.

The  GetDIgCtrllD  function  in  USER32.DLL

The GetDlgCtrlID function is the complement  of the GetDlgItem function.
Given a  16-bit HWND  value, it merely needs to return the control  ID stored
in the corresponding windows WND struct. As with GetDlgItem, the code
does  all its work while holding on to the Win16Mutex.

The GetDlgCtrlID function couldn't be much simpler. It passes the  16-bit
HWND  input parameter to  GetWndPtr32 and gets back a USER32-relative
32-bit  WND  pointer. Assuming it gets back a non-null pointer, the function
retrieves  the control  ID value from the appropriate offset in the WND  struct
and returns it.  (And don't forget to free the Win16Mutex!)

Pseudocode for GetDlgCtrllD

//  32  bit  version  in  USER32.DLL

//  Parameters:

//  HWND  hwndCtl

//  Locals:

//  PWND32  pWnd

//  DWORD  retValue:

GrabWin16Mutex();

pWnd  =  GetWndPtr32(  hwndCtl

if  (  !pWnd  )

retValue  =  0;

else

retValue  =  pWnd  ->ctrlID;

ReleaseWin16Mutex();

);  //  Get  a  flat  pointer  to  the  WND  struct.

//  Grab  the  ctrlID  field  out  of  the  WNg.

return  retValue;



Unicode support in  Windows  95  (Huh?)
Believe it or not, Windows  95 does have a smidgen of actual, usable Unicode
support. If you don't believe me, check out the following short program,
which  I've titled WIN95UNI.C:

#define  UNICODE
#include  <windows.h>

int  main()

MessageBox(  0,
TEXT("Yes!  Really!"),

TEXT("Unicode  in  Windows  95?"),

MB_ICONQUESTION  );

return  0;

When compiled,  this code produces a Unicode program. We can even
verify it  by dumping out the EXE file using PEDUMP from Chapter 8:

Imports  Table:

USER32.dll

Hint/Name  Table:  00006084

TimeDateStamp:  00000000

ForwarderChain:  00000000

First  thunk  RVA:  000060D4

Ordn  Name

395  MessagegoxW

KERNEL32.dll

Hint/Name  Table:  0000603C

TimeDateStamp:  00000000

 .....  rest  omitted ....

There's definitely  a call to  the Unicode version  of MessageBox  in there.
What happens when we  run it?  Check out Figure 4-5.

Just what the heck's going  on in Figure 4-5? Windows  95  supposedly
doesn't  support Unicode,  but as you can plainly see,  the WIN95UNI pro-
gram proves that there's some  form of Unicode  support in there. Here's a
call chain for an invocation  of the Unicode  MessageBoxW  in Windows 95:

MessageBoxW

MessageBoxExW
WideCharToMultiByte  //  Convert  the  2nd  parameter  to  ASCII.

WideCharToMultiByte  //  Convert  the  3rd  parameter  to  ASCII.
MessageBoxExA  //  Invoke  the  ASCII  MessageBoxEx.

257
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 Figure 4-5
The WIN95UNI  program proves that Windows  95  supports  Unicode.

So why does  Windows  95  go to  the trouble  of supporting  Unicode  (at
least  in this  minimalist fashion)?  One  of Microsoft's  requirements  for its
Windows  95  logo is that  programs  should  degrade  gracefully on  a  system
that  doesn't  support  the  full  set of capabilities  required  by the program.  One
of the things  a program could  do  is throw  up a  MessageBox  and  say  "Sorry,
I can't run."  By providing  a  somewhat reasonable  implementation  of the
MessageBoxW function,  Windows  95  lets  programs  compiled  for Unicode  at
least get the  word  out that  they may not  work  (or may not  work  properly).

The  UserSeeUserDo  function  (USER.EXE)

I couldn't  finish  this chapter's  discussion  of the USER  subsystem  without
describing  UserSeeUserDo.  This  function  was  introduced  in  Windows  3.1  as
an  undocumented  back  door  to  various  USER variables  and  functions.  In
Windows  95,  the  volume  of things  that  can  slip through  that  back  door  has
been  increased.  In  a  way,  examining what  UserSeeUserDo provides  is a good
way  to  get  a  handle  on  the key things  the USER architects  feel are  important.

UserSeeUserDo  is implemented  in  the  16-bit  USER.EXE,  and  takes  four
input parameters.  The  first  parameter  indicates  what  UserSeeUserDo  should
do, or  what  variable's  value it should return.  The interpretation  of the remain-
ing three parameters  depends  on what  the first parameter  is requesting.

The  first three subfunctions  allow the caller  to  allocate,  free,  or compact
memory from USER's  16-bit DGROUP  heap. The  next  five subfunctions  are
for returning the values  of various  important  USER global variables:  the  menu
heap  handle,  the  head  of the system class list, USER's  DGROUP handle, the
head  of the device context  entry chain  (see Chapter  6 of  Undocumented
Windows),  and a pointer  to  the desktop  window.  This last  variable isn't the
16-bit HWND  of the desktop  window.  Rather,  it's a USER32-relative 32-bit
pointer  to  the desktop  window's WND  structure.

The  final  two  subfunctions  made  available  by  UserSeeUserDo  are  for
allocating  and  freeing  memory  from  the  new  32-bit  heaps  that  USER  uses.
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Subfunction  10  allocates  memory,  while  subfunction  11  frees  it.  If the sec-
ond  parameter  to  UserSeeUserDo  is  nonzero,  the code  allocates  memory
from  the  32-bit  menu  heap.  Otherwise,  it  allocates  the  memory  from the

32-bit  window  heap.

Pseudocode  for UserSeeUserDo

//  Parameters:

//  WORD  wReqType

//  WORD  paraml,  param2,  param3

if  UserTraceFlags  &  0x1000  )

_DebugOutput(  DBF_USER,  "UserSeeUserDo"  ):

switch  ( wReqType  )
{

case  1:
//  Call  LocalAlloc.  using  USER's  DGROUP.

return  UserLocalAlloc(LT_USER_USEREEUSERDOALLOC,  paraml,  param3):

case  2:

//  Call  LocalFree.  using  USER's  DGROUP.

return  UserLocalFree(  paraml  );

case  3:

//  Call  LocalCompact,  using  USER's  DGROUP.

return  LocalCompact(  param3  );

case  4:

return  hMenuHeap:  //  Handle  to  the  32-bit  menu  heap.

case  5:

return  PClsList; //  Near  pointer  to  first  class  in  list  of

//  system  classes  registered  by  USER.EXE.

case  6:

return  DS;  //  USER's  DGROUP.

case  8:

return  POCEFirst:  //  Head  of  DCE  (Device  Context  Entry)  list.

//  See  "DCE"  in  Chapter  5  of  Undocumented

//  Windows.

case  9:
return  HWndDesktop:  //  The  USER  DGROUP  relative  32  bit  version.

case  10:
//  Allocate  memory  from  either  the  32  bit  menu  or  window  heaps.

if  (  param1  )
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return  Local32Alloc(  MenuHeapHandleTableBase,  param3,  0,  0, 0);

else

return  Local32Alloc(WindowHeapHandleTableBase,  param3,  0,0,0)
}

case  11:
//  Free  memory  from  either  the  32  bit  menu  or  window  heaps,

if  (  param1  )
{

return  Local32Free(  MenuHeapHandleTableBase,  param3,  0  );
}

else
{

return  Local32Free(WindowHeapHandleTableBase,  param3,  0  );

case  7:

default:

return  1;

}

THE WINDOWS 95  GDI MODULE

After all the new things I've described in Windows 95's USER subsystem, my
coverage of Windows 95's GDI side will probably be anticlimactic  if you're
one of those pixel pushers who love GDI. It's not that GDI isn't important.
There are actually many new and exciting things on the graphics side of
Windows 95. Rather, it's just the plain and simple truth that I'm first and
foremost a KERNEL person who doesn't mind digging into USER. Graphics
and the GDI simply aren't as interesting to me. Now that I've provided full
disclosure  on my GDI experience, let's move on.

If I could impart only one piece of information about Windows 95's
GDI.EXE and GDI32.DLL, it would be this: These two subsystems are parallel
to the equivalent  USER subsystems. Both GDI and USER manage objects
allocated  from their heaps. In the case of USER, the primary objects are
windows, menus,  and classes. For GDI, the equivalent  objects are pens,
brushes,  bitmaps, and so on. In Windows 3.1, both USER and GDI were
constrained by their respective 64K heap (although USER.EXE did break
out menus into a separate 64K heap). In Windows 95, both USER and GDI
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are still heavily dependent on data  structures  allocated from their DGROUP
heaps.  At the same time, though,  both USER and GDI gained access to
Win32 heaps with 2MB of memory in which to  stuff large data  items. The
layout  of the USER DGROUP, handle table  area,  and 32-bit window heap
translates  exactly  over to the  GDI equivalents,  as shown in Figure 4-6.

Figure  4-6
In  Windows  95,  GDI and  USER have a generally parallel structure.  Here,  you can  see

 that  the layout of the DGROUP and  handle  table  area  of GDI  is similar to that of  USER.

Just as you access USER's objects with handles  (HWNDs and HMENUs),
you also use handles to access GDI objects  (HPENs,  HBRUSHs, and so on).
Earlier, I described  how  16 HWNDs are used to look up 32-bit pointers  in
an array to find the actual  offset to a WND  structure.  For GDI objects that
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are stored in the 32-bit GDI heap, the translation from 16-bit handle to 32-bit
pointer works exactly as it does for HWNDs on the USER side. If the GDI
object that a handle references is allocated from GDI's DGROUP, then the
handle is a regular  16-bit heap local handle, and can easily be dereferenced
to an offset into GDI's  16-bit DGROUP.

The point of all this is to think of USER and GDI as being somewhat
parallel  in operation, at least at the level where they manipulate data struc-
tures. If you really understand how the USER code works with regards to
handles  and pointers,  you can probably dive into GDI code and know
what's going on without too much difficulty.

So what items did the Windows 95 GDI feel compelled to move up into
its 32-bit heap? Well, according to the HEAPWALK program from the
Win32SDK,  there are fonts and regions  floating around up there. There
are  also some additional objects that HEAPWALK (and I, being a relative
neophyte regarding  GDI issues) are unable to identify.

Another area where USER and GDI are parallel involves thunking. The
vast majority of the USER subsystem code is implemented in the  16-bit
USER.EXE, and USER32 serves primarily  (but not entirely) as thunks down
to that code. The situation with the GDI subsystem is similar, but not identi-
cal. Vast portions of GDI remain implemented in the  16-bit GDI.EXE code.
However,  Microsoft  added many new GDI-related  features having to do
with Win32 support to the GDI subsystem. Some of this new code was done
in the  16-bit GDI.EXE. However, Microsoft claims that some of GDI's new
functionality  was put into GDI32.DLL and that GDI.EXE thunks up to it.
The areas that Microsoft  says are in GDI32 are the TrueType rasterizer, the
spooler and printing subsystem, and the DIB engine. I haven't yet conclusively
proved  that this is true. However, from looking at what goes in GDI32.DLL,
it appears that there is quite a bit of code in GDI32 that's unrelated to simply
thunking  down to GDI.EXE.

One especially noteworthy addition to the 16-bit GDI.EXE is 32-bit
code within the  16-bit module. In Chapter  7, I describe a bit in the segment
table  entries of 16-bit New Executable  (NE) files that tells the Windows 95
loader to make the selector for the segment a 32-bit code selector. That is,
when the CPU loads that selector into its CS register, it's interpreting the
code as 32-bit code rather than as the 16-bit code used by most Win16
applications  and DLLs. The 16-bit GDI.EXE uses four such 32-bit segments.
Although there were no exported functions in these 32-bit segments, I
examined the code around the calls to these 32-bit segments from
GDI.EXE, and came to the following conclusions:
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GDI.EXE Segment 0x20:
GDI.EXE Segment 0x23:
GDI.EXE Segment 0x24:
GDI.EXE Segment 0x26:

Bezier stuff
Paths, Enhanced Metafile  (EMF) support
??? (unknown)
The string "engine font"  appears in this
segment

Microsoft's  description  of the relationship  between the  16- and 32-bit
components of Windows 95 states that Beziers, paths,  and enhanced
metafiles are in the  16-bit GDI.EXE. This is consistent with what I found.

GDI objects
One of the keys to being a GDI expert is understanding GDI objects. The GDI
subsystem deals with a dozen or so different object types. Most of them have
their own unique handle name (which you're undoubtedly already familiar
with).  For example,  a device context (DC) is one type of GDI object, and
you pass an HDC  (handle to a DC) to various GDI functions.  Likewise, a
pen is a GDI object,  and you refer to a specific pen via an HPEN (handle to
a PEN). Functions that accept any particular type of GDI object take HGDIOBJ
parameters.  An HGDIOBJ can be considered  a base class for more specific
GDI objects like HDCs, HBRUSHs, and so forth.  You can find the list of
GDI objects in Windows 3.1  from examining the LT_GDI_xxx #defines in
TOOLHELP. H. Unfortunately,  those #defines don't appear to have been
updated for the new GDI object types in Windows 95.

You can tell that GDI tries to deal with its objects in a uniform manner
because it has functions like SelectObject and DeleteObject  that don't need
to be told what they're being passed. GDI inspects the object, determines what
type it is, and acts accordingly. How does GDI know the type of a particular
object  that's passed to it? Each GDI object starts out with a standard  header
that includes a WORD that marks the object as a particular type. The
Windows 95 GDI object list (including the corresponding marker values) is
as follows:

PEN  0x4F47  (1)
BRUSH  0×4F48  {2)

FONT  0x4F49  (3)
PAL  0x4F4A  (4)
BITMAP  0×4F4B  (5)
REGION  0x4F4C  (6)
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DC  0x4F4D  (7)

IC  0x4F4E  (8)

//  Beyond  this  point,  the  markers  get  a  bit  sketchy,

//  best  guess...

METADC  0x4F4F

METAFILE  0x4F50

ENHMETADC  0x4F51

ENHMETAFILE  0x4F52

but  here's  my

The  IsGDIObject  function  in  GDI.EXE

The  IsGDIObject  function  is documented  as returning  FALSE if the  input
GDI  object  handle  (an HGDIOBJ)  isn't  a valid  handle.  Interestingly,  the
documentation  says  that  if IsGDIObject  returns TRUE,  the  input  handle
may not  actually be a  real  GDI  object handle.  Nonetheless,  the  documented
purpose  of the function  is to  determine  if an  HGDIOBJ  is invalid.  What  the
documentation  doesn't  tell  you  is that  if the  input  HGDIOBJ  parameter  is
valid,  the  return  value  identifies  what  type  of object  was  passed  in. This can
come  in handy  for  applications  like Bounds-Checker/W that  need  to  verify
handles  such  as HDCs,  HBRUSHs,  and  so forth.

As I mentioned  earlier,  GDI  stores  some objects  in  its  16-bit  DGROUP
heap  and  other  objects  (fonts  and  regions)  in its  32-bit  heap.  The first  thing
IsGDIObject  needs  to  do  is figure out where  it should  look  for the object  so
that  it can read  in the object  type  WORD  (for example,  0x4F47).  Luckily,
this isn't hard  for  GDI to  do.  GDI objects  that  are  allocated  out of the  16-bit
DGROUP  heap  are  allocated  with the  LMEM_MOVEABLE  attribute.  To
make  a  long  story  short,  16-bit  LMEM_MOVEABLE  handles  always  end  in
2,  6,  0xA,  or  0xE.  As you  may recall  from earlier  in the chapter,  the  handles
for  objects  in  32-bit  USER or  GDI heap  are  always  multiples  of 4.

Knowing this key distinction  between the two types of objects, IsGDIObject
merely  needs  to  examine the  second  to  last  bit.  If it's  set, the  handle  ends  in
2,  6,  0xA,  or  0xE and the object was allocated  from GDI's  16-bit  DGROUP.
If the  second to  last  bit  is 0,  the  handle  value  ends  in  0, 4,  8 or  0xC,  so the
object  was  allocated in the  32-bit  GDI heap.  In either  case,  IsGDIObject  cal-
culates  the  address where  the  object can  be found  and constructs  a pointer
to the object.  Using the pointer,  IsGDIObject extracts  the  block type WORD.

With the block type WORD  in hand, IsGDIObject  then masks off a couple
of the  bits,  which  apparently  mean  something  elsewhere  in  GDI.  The  result



of  the masking  should  be a value between  0x4F47  and  0x4F52.  If this isn't
the case,  this  isn't  a valid  GDI object,  so  IsGDIObject returns  0.  If the block
type  WORD  is within  range,  IsGDIObject  subtracts  0x4F46  from the value
to make it a  one-based  value.  This  is  the number that  IsGDIObject returns.

Pseudocode for IsGDIObject
//  In  16-bit  GDI.EXE

//  Parameters:

//  HGDIOBJ  hObj

//  Locals:

//  PGDIOBJ  pObj;

//  WORD  retValue;  //  The  doc  says  a  BOOL,  but  it's  really  an  obj  type.

//  Note  that  the  doc  says  that  this  function  can  return  TRUE  without

//  it  really  being  a  GDI  object.

if  (  hObj  ==  0  )

return  0;

//  Check  for  the  bonehead  case,

if  (  (hObj  &  2)  ==  0  )  //  Object  handles  in  32  bit  heap  are

{  //  multiples  of  4.

//  Use  the  handle  as  an  offset  into  the  GDI  object  table  that

//  starts  0x10000  from  GDI's  DGROUP.  The  DWORD  there  is  a  PGDIOBJ.

//  Actually  dereferences  through  ES.  ES  points  to  GDI's  DGROUP.

pObj  =  *(PGDIOBJ)(  0x10000  +  hObj  );

}
else  //  Object  handles  that  end  in  2,  6,  A,  or  E  are  GDI  16  bit

{  //  heap  local  handles,

//  Since  the  hObj  is  a  moveable  handle,  it's  a  pointer  to  a  16  bit

//  local  heap  handle  table  entry.  The  WORD  at  offset  2  in  a

//  handle  table  entry  is  0xFF  if  the  block  is  free.  Check  for

//  this  case,  and  bail  out  if  so.

if  (*(NPWORD)(hObj+2)  ==  0xFF  )

return  0 ;

//  If  we  get  here,  it's  (theoretically)  an  in  use  handle.

//  Dereference  the  first  WORD  of  the  handle  table  entry  to  get

//  a  near  pointer  to  the  GDt  object  within  the  16  bit  GDI  heap,

pObj  =  *(NPWORD)(hObj);

//  If  LMEM_DISCARDED  (???)  flag  set  in  handle  flags,  then

//  the  pObj  is  really  a  32  bit  heap  handle.  Go  dereference  it

//  in  the  table  starting  64K  into  GDI's  DGROUP.

265
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if  (*(NPWORD)(hObj+2)  &  0x40  )

pObj  =  *(PGDIOBJ)(  0x10900  +  pObj  );

retValue  =  pObj  >ilObjType

retValue  &:  Ox5FFF;  //  Mask  off  the  0x8000  and  0x2000  bits.

retValue  =  0x4F46

if  (  retValue  <=  0  )

return  0;

/ /  Make  the  object  type  value  1  based.

if  (  retValue  >  13  )

return  0;

//  Is  the  object  type  out  of  range?

//  Yes?  Sorry,  you  lose.  Do  not  pass  Go.

return  retValue;  //  Return  value  indicates  the  object  type.

The GetObjectType  function  in GDI32.DLL

In the Win32  API, there is no IsGDIObject  function.  Luckily,  the Win32
API goes one step  further  and  actually provides  a function that  returns  the
type of an HGDIOBJ handle passed into  it.  The  GetObjectType  is quite  a
bit more  sophisticated  than  IsGDIObject  in its probing for the correct  type
of the HGDIOBJ passed in.

GetObjectType  starts  out  by probing the HGDIOBJ handle to  see if it's
really a selector.  The handle for metafile objects is apparently an actual  selec-
tor  for the data  in the metafile.  If the HGDIOBJ  looks like a selector value,
GetObjectType  gropes  around  inside the segment,  and if it finds that certain
fields  are what it thinks  they should  be, it returns the value OBJ_METAFILE.

With  this initial  selector monkey business  out of the way, GetObjectType
enters  a section of code that looks  remarkably  similar to what  IsGDIObject
in GDI.EXE does. If the handle value ends in 2, 6, 0xA, or 0xE, GetObjectType
assumes  that  it's a  16-bit  local  heap handle for an object  in USER's  16-bit
DGROUP.  If this  turns  out  to  be  the  case,  GetObjectType  grabs  the
Win16Mutex  to  prevent a thread  from potentially  changing the state  of the
USER heap or the object  being examined.  If the HGDIOBJ doesn't end  in 2,
6,  0xA,  or  0xE,  GetObjectType  figures the object  is a font  or  a region in the
32-bit heap.  In either case, the code creates a 32-bit pointer to the GDI object.

With the pointer to  the object,  GetObjectType  extracts the object  type
WORD  and goes through  the similar masking and  subtraction process  that
IsGDIObject  performs on the object type value.  GetObjectType  then checks
the object type value to  make sure it's within  the allowable  range,  and if not,
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returns  0.  If the object type  at this  point  is  6  (an HDC),  GetObjectType
probes  further into the object's data to see if it might be an enhanced metafile
DC or a memory DC.  If this is the case,  the function returns the appropriate
OBJ_XXX value from WINGDI.H.

The final phase of GetObjectType is to convert the  16-bit object type
values  (such as the LT_GDI_xxx values from TOOLHELP. H) into their 32-bit
OBJ  XXX equivalents.  For some strange reason, the OBJ_XXX values don't
map one-to-one  to the object type values stored in the object itself.  (This is
probably  because  the  OBJ_XXX  values  were  originally  defined  by the
Windows  NT  GDI team, which wasn't  basing its code  around the Windows
3.1  GDI.EXE.)  In any event,  the object types  need to  be converted  from the
values  that GDI.EXE uses to the OBJ_XXX values that WINGDI.H  defines.
This  translation  step is performed via a lookup  array. The final  section  of
GetObjectType  releases the Win16Mutex  if it was previously acquired.

Pseudocode for GetObjectType

/ /  in  GDI32.DLL

//  Parameters:

//  HGDIOBJ  hObj;

//  Locals:

//  BYTE  fHaveWinl6Mutex

//  DWORD  retValue:

//  PGDIOBJ  pObj:

fHaveWin16Mutex  =  FALSE; //  We'll  only  grab  the  Winl6Mutex  if  we

//  absolutely  have  to.

Set  up  a  structured  exception  handling  frame  in  case  all  this  monkey

business  goes  bad  on  us.

if  (  LAR  (load  access  rights)  succeeds  on  hObj  )
{

if  (  access  rights  indicate  a  non  system,  ring  3  descriptor  )

WORD  MetaFileType;

Use  hObj  as  a  selector,  and  grab  the  first  WORD  of  the

segment  it  points  to.  Call  this  value  MetaFileType.

if  (  MetaFileType  <  1  )
{

Grab  the  WORD  at  offset  2  in  the  segment,

if  (  this  WORD  ==  OBJ_METAFILE  )
{
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}
}

Grab  the  WORD  at  offset  4  in  the  segment.

if  (  (this  WORD  ==  0x100)  II  (this  WORD  ==  0x300) ) {

retValue  =  OBJ_METAFILE

goto  done;
}

//  Figure  out  where  the  object  resides  (in  GDI.EXE's  DGROUP?  or  n

//  the  32  bit  GDI  heap?).

if  (  hObj  &  2  )  //  Object  handles  that  end  in  2,  6,  A,  or  E  are  GDI

{  //  16  bit  heap  local  handles.

EnterSysLevel(  pWin16Mutex  );

fHaveWin16Mutex  =  TRUE;

pObj  =  ConvertHGDIOBJToPtr32(  hObj  );

else  //  Object  handles  in  a  32  bit  heap  are  multiples  of  4.
{

//  Index  into  the  handle  table  and  grab  out  the  GDIOBJ  pointer.

pObj  =  *(PGDIOBJ)  (  hGDIHeapHandleTableBase  +  hObj  );

//  The  GDIOBJ  pointer  is  relative  to  GDI's  DGROUP,  so  go  add  the

//  offset  of  GDI's  DGROUP  to  make  it  a  flat  pointer.

pObj  +=  GDIDGroupBase;

retValue  =  pObj  ->ilObjType;  //  Get  the  object  type  WORD.

retValue  &=  0x5FFF  //  Mask  off  the  0x8000  and  0x2000  bits.

retValue  ==  0x4F47 //  Make  the  value  0  based  (so  that  we

//  can  do  an  array  based  translation  later).

if  (  retValue  >=  12)  //  Out  of  range?  You  lose.  Do  not  pass  Go.
{

SetLastError(  ERROR  INVALID  HANDLE  );

retValue  =  0;

goto  done:



//  If  the  object  is  a  DC,  it  could  be  one  of  several  different  subtypes.

//  Peek  inside  the  DC  structure  and  see  if  we  can  figure  out  what  it  is.

if  (  retValue  ==  6  )  //  6  ==  DC

I
if  (  pObj[102]  !=  0  )  //  Is  WORD  at  offset  102  in  DC  !=  O  ?

{  //  Yes?  Then  it's  an  enhanced  metafile,

retValue  =  OBJ_ENHMETADC;

goto  done;
}

if  (  pObj[OxE]  &  1  )  //  Is  bit  1  in  the  BYTE  at  offset  0xE  turned

{  //  on?  If  so,  it's  a  memory  DC.

retValue  =  OBJ_MEMDC;

goto  done;
}

//  Convert  the  16  bit  object  type  stored  in  the  object  into  its

//  equivalent  OBJ_xxx  value  as  given  in  WINGDI.H.

retValue  =  ObjectTypeConversionArray[  retValue  ]

//  The  array  conversions  are  as  follows:

Win16  (TOOLHELP.H)  Win32  (WINUSER.H)

LT_GDI_PEN(1)  OBJ_PEN

LT_GDI_BRUSH(2)  OBJ_BRUSH

LT_GDI_FONT(3)  OBJ_FONT

LT_GDI_PALETTE(4)  OBJ_PAL

LT_GDI_BITMAP(5)  OBJ_BITMAP

LT_GDI_RGN(6)  OBJ_REGION

LT_GDI_DC(7)  OBJ_DC

LT_GDI_DISABLED_DC(8)  OBJ_DC

LT_GDI_METADC(9)  OBJ_DC

LT_GDI_METAFILE(10)  0

???  (11)  OBJ_METADC

???  (12)  OBJ_ENHMETAFILE

done:

if  (  fHaveWin16Mutex  )

LeaveSysLevel(  pWin16Mutex  );

//  If  we  grabbed  the  Win16Mutex

//  earlier,  release  it  now,

remove  structured  exception  handling  frame

return  retValue;

269



G D I 3 2 . D L L . )

270

New Win32 GDI functions available  to
Win 16 applications
As a final note on GDI, I was curious to see how much of the new Win32 API
GDI functionality  bled over to the  16-bit side.  (It's only natural to wonder
this,  seeing as how so many GDI functions  new for Win32 are implemented
in the  16-bit GDI.) To figure out if any supposedly Win32-only GDI functions
are available for calling by 16-bit code, all I had to do was dump the exports
from the Windows  95 GDI.EXE and compare it to the exports from the
Windows  3.1  GDI.EXE.  After filtering out undocumented  functions,  what's
left over are GDI functions that were added to the Win32 specification,  yet
are callable  by Win16 code. The task  of comparing the two versions  of
GDI.EXE  was made almost effortless by the excellent  EXEUTIL program
from  Undocumented Windows. The command:

EXEUTIL -diff C:\WIN31\SYSTEM\GDI.EXE  C:\WINDOWS\SYSTEM\GDI.EXE

gave me a nice delta of the exports  between the two versions  of GDI.  (Only
three undocumented functions  were removed from Windows 95's GDI.EXE.)
There were quite a few new exported  16-bit GDI functions that showed up
as being added in Windows 95's GDI.EXE. I filtered out all the undocumented
functions and other  exports that  don't have equivalents  in the Win32 APl.
After  some rearranging and grouping, I came up with the  16-bit GDI func-
tions shown in Table 4-1.  These functions  are exported  and presumably are
safe to  be called  from Win16 code.

Table  4-1
New  GDI  functions  that  are  callable  from  Win16  code

Function  Type  Function Names

Printing  ABORTPRINTER,  CLOSEPRINTER,  ENDDOCPRINTER,
(These functions are all  ENDPAGEPRINTER, OPENPRINTERA,  STARTDOCPRINTERA,

thunks up to GDI32.DLL.)  STARTPAGEPRINTER, WRITEPRINTER

Device-Independent  B i t m a p s  CREATEDIBSECTION, GETDIBCOLORTABLE,
(These functions appear  to be  SETDIBCOLORTABLE
implemented in GDI.EXE
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Function  Type  Function  Names

Enhanced Metafiles
(These functions appear  to  be
implemented in GDI.EXE
with  the aid  of  32-bit
code  segments.)

CLOSEENHMETAFILE,  COPYENHMETAFILE,
CREATEENHMETAFILE, DELETEENHMETAFILE,
GDICOMMENT,  GETENHMETABLE,
GETENHMETAFILEBITS, GETENHMETAFILEDESCRIPTION,
GETENHMETAFILEHEADER,
GETENHMETAFILEPALETrEENTRIES,
PiAYENHMETAFILERECORD,
SETENHMETAFILEBITS,  SETMETARGN

Line drawing
(These functions appear  to  be
implemented  in GDI.EXE with  the
aid  of  32-bit code  segments.)

GETARCDIRECTION,  POLYBEZIER, POLYBEZIERTO,
SETARCDIRECTION

Paths
(These functions appear
to  be  implemented  in GDI.EXE
with  the aid  of  32-bit code
segments.)

ABORTPATH,  BEGINPATH, CLOSEFIGURE,
ENDPATH,  FILLPATH, FLATTENPATH, GETMITERLIMIT,
GETPATH,  PATHTOREGION,  SELECTCLIPPATH,
SETMITERLIMIT,  STROKEANDFILLPATH,  STROKEPATH,
WIDENPATH

Miscellaneous
(These functions appear  to be
implemented  in
GDI.EXE.)

CREATEHALFTONE PALE•rE,  ENUMFONTFAMILIESEX,
EXTCREATEPEN,  EXTCREATEREGION,
EXTSELECTCL/PRGN,  GETCHARACTERPLACEMENT,
GETFONTLANGUAGEINFO,  GETREGIONDATA

SUMMARY

Throughout  this chapter, I've shown the strange,  hybrid  nature  of  the
Windows  95 USER and GDI components.  While they are quite obviously
derived from their Windows 3.1 predecessors, the Windows 95 USER and
GDI have significant amounts of 32-bit code. The end result is many
improvements  that programmers can take  advantage  of, both in  16- and
32-bit  programs.  In addition, moving many of the heavily used data
structures  (such as WNDs) out of 16-bit heaps makes Windows 95 a
worthwhile upgrade from Windows 3.1, even if you're not interested in
the snazzy new features. While the Windows 95 USER and GDI components
aren't  anywhere near as full-featured  and robust  as their Windows NT
equivalents,  the improvements Windows 95 offers are a welcome relief to
frustrated  Windows 3.1 programmers.
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MEMORY

MANAGEMENT

J
ust as programmers  were beginning to get used to the idio-
syncracies and gotchas of memory management under

Windows  3.x,  Microsoft  rolled  out the Win32 APl, which
presents  a different set of challenges  for the overwhelmed
programmer.

Theoretically,  Win32 memory management should  be simi-
lar under the three incarnations  of Win32:  NT, Windows 95,
and Win32s.  Given Microsoft's track record in this area, how-
ever, you would expect Windows 95 memory management to
have numerous differences (both subtle and not so subtle) from
NT and Win32s. This is indeed the case. In this chapter, I dis-
sect Windows 95's implementation of Win32 memory manage-
ment.  To be fair to Microsoft,  note that many of the general
concepts  described here also apply to NT and Win32s.

I've divided the various subtopics of memory management
into two categories. The first set of topics  relates to issues such
as the process address space, memory contexts, and paging
behaviors (for example, copy on write). Later, I move to the
other set of memory management subtopics: the APls that the
operating system provides for allocation  and manipulation of
memory.

If you're looking for information on  16-bit or DOS virtual
machine memory management, this chapter  is not what you're
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looking for. I've chosen to keep this chapter resolutely 32-bit based with
only a few exceptions where absolutely necessary. If you're interested in
Windows 95's 16-bit memory management,  see Chapter 2 of my previous
book,  Windows Internals. Windows 95's 16-bit memory management is
almost completely  unchanged (except for bug fixes) from Windows 3.1.
With these preliminaries  out of the way, let's jump into...

WINDOWS 95 PAGE-BASED
MEMORY MANAGEMENT

If you want to have any hope of really understanding the  memory architec-
ture  of Windows 95, there's simply no way to avoid understanding memory
paging on the Intel  80386 class of CPUs. Although the technique of memory
paging  far  predates  the  80386,  we're  interested  only in how Windows 95
uses paging on the 80386, so I'll speak in 80386-specific terms. If you already
know paging cold, you can skip this section. If memory paging is mysterious
to you or if you need a quick refresher, read on.

Memory paging
The primary reason for paging is to provide a method for the operating
system to collaborate with the CPU to fake programs into thinking that there's
more memory available than is actually installed in the computer. When a
program reads or writes a byte of memory, it may or may not be accessing a
byte of physical RAM. If a program touches an address that doesn't map
directly to a byte of physical RAM, the CPU informs the operating system of
this event. The operating system in turn takes the steps necessary to associate
physical memory to the address that the program attempted to use.

If the total memory usage of all the running programs exceeds the amount
of memory installed in the computer, the operating system may need to yank
a block of RAM away from some other program that's using the memory.
Blindly stealing memory out from underneath a program that's  using it is a
recipe for disaster, so Windows 95 arranges for the original contents  of RAM
to be saved elsewhere before reassigning the block of RAM. The "elsewhere"
in this case is the computer's  hard drive. At any given time, all memory in
use by the operating system and running programs  is stored either in RAM
or on a hard drive. (This is a bit of simplification, but it will suffice for now.)
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Virtual memory  is the commonly  used term to refer to this method  of simu-
lating  memory using paging and space on a secondary  storage  device such
as a hard  drive.  One of the fundamental  jobs of the Virtual Machine Manager
in Windows  95  (the VMM module in VMM32.VXD)  is to provide virtual
memory  with a minimum of fuss to application programs.

What confuses  many people is that  paging affects the  CPU's memory
addressing.  Without  paging,  the address  that  a program tells the CPU to use
will  be the same address  that  goes out on the computer's  memory  bus. For
example,  in a real mode program, you can easily calculate  a physical address
from a segment:offset  combination  by multiplying  the segment  value by 16
and adding the offset. With paging enabled,  a memory address that a program
uses may not be the same address that  the CPU sends out to the memory bus.
Paging introduces  a level of indirection  (actually two levels) to  all addresses.
When  a program passes an address  to the CPU to access, the  CPU uses cer-
tain  bits of the 32-bit  address  to look up the physical  RAM address  that  it
should  send out to the machine's  bus. The tables that  the  CPU uses to trans-
late  addresses  are under  the operating  system's control.  Putting  the address
translation  tables  under  the control  of the operating system allows the oper-
ating system to tell a program to use addresses  anywhere  in the 4GB range
of memory addressable  by a 32-bit  address,  even though there may not  be
physical  RAM at a given address.

The term paging comes into play because the  CPU doesn't  provide this
indirection for each address  on a byte-by-byte  basis. Rather,  the translation
of memory addresses  affects 4K chunks of memory.  For example, if you use
paging to assign physical RAM address 0x1000 to program address 0x400000,
then  RAM address  0x1001  will appear to the program to  be at address
0x400001,  and RAM address 0xlFFF will be at program address 0x400FFE
However, the next program  address  (that  is,  0x401000)  is the start of a new
4K page, so physical address  0x2000  does not necessarily have to  be mapped
to program  address  0x401000.  Program address  0x401000 may be mapped
to  a different  physical  RAM address  (for example,  0x6000),  or it may not
have any physical  RAM mapped to  it. All decisions  about which pages will
have RAM mapped to them are made by the operating  system's paging code.

Besides  allowing the  operating system to provide virtual memory,  the
CPU's support  for paging also allows the operating system a great deal of
flexibility  in how it should  arrange various  objects in memory.  By objects,  I
mean things  such as the operating system code, the program's code, the pro-
gram's  data areas,  and memory mapped files. The memory layout that  an
operating  system uses is known as its address space layout.  I'll  describe the
Windows  95 address  space shortly.
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The benefit of paging is that the operating system can spread operating
system objects throughout the entire addressable  range of the CPU (in the
case of Intel 386 class CPUs, a 4 billion byte range). The entire addressable
range of memory that the CPU can theoretically access is known as its address
space.  Addresses that the CPU will translate  because it has enabled paging
are called  linear addresses.  This differentiates  them from the addresses after
the CPU has translated  them. These are actual addresses that will go out on
the CPU's bus to the physical RAM. These addresses are known as physical
addresses.  The important  thing to remember is that  in almost all cases,
program and API calls deal with linear addresses, not physical addresses.

With paging support,  the operating system can assign various sections
of the address space to particular items and leave room for those items to
grow or to be added to as necessary. For example,  when a program starts
up, by default Windows 95 reserves a  1MB range of the CPU's address
space for the program stack. This doesn't mean that Windows 95 will map
1MB of physical RAM to the stack's range of memory addresses. Rather, it
means that the maximum size of the stack is 1MB. Windows 95 will only
map  physical  memory to those 4KB regions in the stack area  that the
program  uses.

Paging provides the operating system with the capability to reserve vast
ranges of memory addresses without having to pay for those addresses  (with
physical RAM) until they're used. It's like reserving twelve seats for a con-
cert without knowing how many of your friends will show up. If only three
are in your group, you have to pay for only three seats.

At any given time, every 4KB section (page) in the CPU's 4GB address
space is in one of four possible states:

*

*

State  1: Available.  This page of memory hasn't been reserved for use by
anybody,  and is theoretically  available to be allocated.  An attempt to
access this memory by reading or writing to it will result in a page fault
exception  (exception  14 (0Eh)). I'll describe page faults shortly.
State  2:  Reserved.  The page is part of a range of memory that somebody
has requested.  However, physical RAM is not currently mapped to this
address, nor is any hard drive space reserved to save a copy of its contents.
An attempt to access this memory by reading or writing to it will result
in a page fault exception (exception  14 (0Eh)). Note, though, that the
operating system gives the owner of the page an opportunity to change
the page state to Committed and Present  (state 3).
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*  State  3:  Committed  and  present.  This range of addresses has been allo-
cated by somone, and a program is using it to store information. The
CPU's paging mechanism has mapped a 4KB physical block of RAM to this
page's address. Reading or writing to this address will cause the physical
RAM mapped to the page to be read or written.  A substate to the com-
mitted and present state is known as pagelocked. A pagelocked page is
committed, present,  and guaranteed  to never be swapped out. There will
always be physical RAM associated with a pagelocked page until the
page is unpagelocked.

*  State  4.  Committed  and  not-present.  This is similar to the preceding
state  (committed  and present). The program has allocated the memory
and is using the memory to store information. The difference is that the
operating system has decided that the RAM mapped to the page was
needed more urgently elsewhere. Therefore,  the CPU has copied the
contents of this memory to the hard disk drive and marked the page as
"Not Present."
Like states  1 and 2, a page fault will occur if a memory address within
the page is accessed. The difference is that when a program accesses this
memory, the operating system transparently  handles the page fault
exception and remaps a 4KB block of physical RAM to the page. Next,
the operating system reads in the original contents of the page from the
hard disk, and then finally reexecutes the instruction  that page faulted.
The result is that the program doesn't have any idea that a page fault
happened. This transparent simulation of RAM using space on a hard
drive is the essence of virtual memory./

Windows 95 provides applicationdevel  APIs that enable you to allocate
ranges of memory pages and to change them to have the attributes  that I
just described. These are the VirtualXXX (VirtualAlloc, VirtualFree, and so
on) functions, which I describe later in the chapter.

Memory paging versus selectors
If you've programmed for Windows 3.x, you're probably wondering how
paging can be reconciled with selectors. Programs that run in 16-bit pro-
tected mode on the Intel CPU invariably must use selectors to access a section
of memory in the CPU's address space. Each of a Win16 program's  code
segments is associated with a selector, as are its data segments and any



G l o b a l A l l o c ) .

278

memory  blocks  it allocates  with  the global heap  functions  (for example,
GlobalAlloc).  It's  impossible  to  do  application-level  Win16  programming
without  encountering  selectors.

The  most  fundamental  information  associated  with  each  selector  is
where  in memory  it points  to  (that  is, its  base  address).  On  a  386,  the  base
address  of a  selector  can  be anywhere  between  0  and 4GB minus  1. In other
words,  the  selector  can  potentially  point  anywhere  in the  CPU's address
range.  However,  the  base address  of a  selector  is specified  as a  linear
address,  not  a  physical  address.  Therefore,  the  paging mechanism  of the
CPU operates  underneath  the  selectors.  In  both  Windows  3.1  and Windows
95,  16-bit  code doesn't  think  about  paging  and  virtual  memory  support.
Instead,  it just  assumes  that  there  will  be large regions  of memory  available
to  it.  The  16-bit  global heap  management  code  allocates  large pieces  of
memory  from the ring  0  operating system components  and  then subdivides
the  memory  into  smaller  pieces that  it makes  accessible  to  programs
through  selectors.  The  base addresses  of selectors  do  not  have  to  start  on  a
4KB page  boundary,  nor  does  every page  beneath  a given memory  segment
need  to  be physically  present.

,As mentioned,  the  selector/segment management  code doesn't  sweat the
details at the paging level. It lets the underlying paging system code provide
virtual memory and assumes that memory will  be there when it needs to access
it.  Chapter  2 of  Windows Internals describes  the  16-bit  selector/segment
management  code  in Windows  3.1.  This  particular  aspect  of memory
management  hasn't  changed  much  in  Windows  95.

If you're  executing  in protected  mode,  you  can't  avoid  selectors.  They're
absolutely  required to  access  memory.  The great thing  about  Windows  95 is
that  it requires  at  least  a  386  CPU, and  one  of the key features  of the  386  is
that  you  can make  segments  that  span  the entire  4GB of the  CPU's address
space.  It's therefore possible  to  create  selectors  with  base  address  of  0 and
limits  of 4GB. If you load these selectors into the CS and DS registers,  you can
effectively  forget that  segmentation exists.  Programs can refer  to  addresses
in memory  with  just  a  32-bit  offset value.  In this  scenario,  the  32-bit  offset
is the  same  as a  linear  address.  The mode  of using selectors  with  a  0 base
address  and a 4GB limit has  been dubbed the flat memory model (as opposed
to  the  small,  medium,  compact,  and huge  memory  models  from  16-bit  pro-
gramming).  Remember,  however,  that  although  flat model  programs  make  it
appear  that  segments  no  longer  exist  for Win32  programs,  the  CPU is still
using segmentation  under the hood.  This  is especially important  to remember
if you're  going to  mix  32-bit  code with  16-bit  code  (which cannot  hide the
ugly reality  of segments).
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With wide open segments that let a program touch any address in the CPU's
address  range,  you might  be wondering how the operating  system protects its
internal  data  structures  and  other areas of memory that  application  code
shouldn't  be mucking  with.  This wasn't  hard to  do in  16-bit  programming
because  a  selector  defined  a specific  starting  and ending address  that  a pro-
gram could touch. Theoretically,  the operating  system would  never hand out
a selector with  a  base  address  that  would  allow an  application  program to
get at  memory  that  it shouldn't  have access to.  (However,  Windows  3.1  and
Windows  95  don't  prevent  you  from creating your own  selectors  and going
to town with them.  I'll  take  advantage  of this  "hole"  later  in the chapter.)

If a Win32  program  uses  flat  segments,  how can the  operating  system
restrict  access  to  areas  that  it doesn't  want  programs  to  touch?  In this  case,
instead  of relying  on  segment  limits,  the  operating  system  sets the attributes
of the pages  as appropriate.  For example,  a program  shouldn't  be able  to
blindly  write to  and corrupt  its code  areas.  The  operating  system  therefore
sets the  page  attributes  of the code areas  to  read  only.  Programs can read
those pages,  but  attempts  to  write to  them will cause  a page fault.  Likewise,
a program  that  gets  hold  of a trashed pointer  will  likely write  to  a page  of
memory  that's  not  allocated  by anybody.

The  operating  system  marks  all pages  that  aren't  specifically  owned by
somebody as not-present.  Trying to  touch  one  of these  addresses  also  results
in  a  page  fault.  In  addition,  the  operating system can  mark  a range  of pages
with  the  supervisor  attribute.  Pages with the  supervisor  attribute  can  be
accessed  only  by code running  at  a high privilege  level  (that  is, certain  parts
of the  operating  system  and VxDs).  An attempt  to  access  a  supervisor  page
by a low-life  application  program  results  in a  page  fault.  As you  can see,
even without  segments,  Windows  95  can use  paging  to  effectively protect
sensitive areas  of memory.  The  only downside  is that  the granularity  of
memory  allocations  at  the lowest  level is in 4KB pages  rather  than  in  single
bytes like  16-bit  segments.

THE ADDRESS SPACE OF A WINDOWS 95
WIN32 PROCESS

In versions  of Windows  before Windows  95,  all running  programs  ran  in
the  same address  space.  That  is, any program  could  easily read  the memory
of another  program.  More  importantly,  a program  could  modify  another
program's  memory,  a potential  ticket  to  a  disaster  if buggy programs  are
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involved. For example, a 16-bit Windows program (even on Windows 95) can
get hold of the selector for the  16-bit USER's DGROUP and write random
garbage.  Bye-bye windowing system.

Windows 95 is the first mass-market version of Windows that runs each
process  (at least each Win32 process) in its own address space. By its  own

address  space,  I mean that a program can see memory owned only by itself.
Memory in use by other processes is not physically accessible. Specifically,
the Windows 95 memory manager uses the CPU's page-based memory
management capabilities to ensure that only memory owned by the current
process is mapped somewhere in the 4GB address range of the CPU.
Physical RAM in use by other processes simply does not show up in the page
tables for the current process. The huge benefit of this is that theoretically a
buggy program can screw up only itself, and won't affect other programs.
Each program gets its own sandbox to play in; if it kicks sand, the only
harmful  effect is to itself.

Lest you become too excited by this advance in Windows,  this method
of isolating programs from one another for their mutual protection is nothing
new. Operating systems such as UNIX have been doing this for decades.
Windows  NT also keeps each Win32 process in its own address space. It was
about time that the desktop operating system that Microsoft was pushing
on the masses obtained this most basic feature of a decent operating system.
(Win32s, the forgotten stepsister in the Win32 family, doesn't use separate
address  spaces for each process.)

Although it's important to keep the memory of all programs  separate,
certain  ranges of memory need to be shared across all processes. That is,
certain  pages in the linear address spaces of all processes should map to the
same physical page of RAM. Why would you want this? A perfect example
is for the systems DLLs that each process uses. For instance, every process
at the very minimum requires the use of KERNEL32.DLL. It would be
incredibly  wasteful to load a fresh copy of KERNEL32.DLL  into memory
for every running process. Therefore,  KERNEL32.DLL (and other system
DLLs such as USER32) reside in shared memory. When the operating system
switches around the CPU's page tables because it's about to run a new
process, it leaves the page table mapping for the shared memory regions
alone.  I'll describe other examples and needs for shared memory later.

Because Windows 95 keeps the memory for different processes separate
from one another, any discussion of how Windows 95 lays out the 4GB
address  space must necessarily include the concept of memory contexts.  A
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memory  context is essentially a list of RAM pages and what linear address
they will be be mapped to when a given process is active. Phrased another way,
a memory context is the view of the CPU's linear address that the operating
system gives to a process.

Each process has its own memory context.  When the Windows 95
scheduler  suspends one process and lets another process execute, Windows
95 must also switch the memory contexts  from the original  process to that
of the newly scheduled process. Because memory contexts  are maintained
on a per-process basis, they're sometimes referred to as a process  context.

Memory contexts are also known as address  contexts.  Whatever  you call
them, the important thing to remember is that a memory address  by itself is
meaningless  unless you specify which memory context it's in.

At the topmost level, the memory layout Windows 95 uses for Win32
processes  is simple. In the 4GB address  range, Windows 95 reserves the
bottom  2GB (addresses Oh through 7FFFFFFFh) for the application's  mem-
ory. Addresses above 2GB (addresses 80000000h through FFFFFFFFh) are
intended for use by the operating system. Within these two halves of the
address  space are several subdivisions.  Figure 5-1 shows the breakdown of
the various regions in the 4GB address space. If you have the Windows 95
DDK, you might also want to read the  "Page Mapping and Address Spaces"
section  under the "Arenas"  heading in the online help.

The first 4MB of the address space is shared between all processes in the
system virtual machine  (VM). Part of this region is the memory below  1 MB,
which includes the memory image of MS-DOS that was loaded as part of
the Windows 95 bootstrap process. Also of interest  below  1MB is the lower
portion  of the  16-bit global heap. As I described in Chapter 2 of  Windows

Internals, all 16-bit heap segments in Windows 3.1 have a linear address
that's  either below 1MB or above 2GB. 16-bit heap allocations with the
GMEM_FIXED attribute are allocated from the lowest available address in
the global heap, so the allocated block often ends up with a linear address
below 1MB. You'll find the memory for numerous  16-bit system DLLs in
this first 4MB range of the address space because many of them (such as
KRNL386)  need fixed and pagelocked memory. This is an important point
that I'll come back to shortly.

The next region in the 4GB address space is the range from 4MB to
2GB. This is the per-process address space that each Win32 process uses.
Each Win32 process has its code, data,  and resources mapped into this
nearly 2GB region. When you switch memory contexts,  the effect is to apply
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a different set of page  mappings  to this range of memory.  Except  in special
cases that the programmer  specifies,  the physical  RAM pages mapped  in
this region  for use by one process  are  not accessible  by any other  processes.
Besides  the executable's  code and  data,  this region  also contains the code
and  data  for any application-specific  DLLs used  by the process.  Also in this
region,  you'll  find the application's  heap and  stacks  for each of its threads.

4GB

3GB

2GB

4MB

Shared

Per process

Shared

 Figure  5-1
The Windows  95 linear address  space.

The  default  load address  for Win32  programs  in the per-application
area is at  the very bottom  (4MB).  Unless  you really  understand  paging,  this
idea can  be disconcerting.  How can more  than  one program  be loaded  at
the same  address  in memory?  The  answer is that they share  the same linear
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address,  but not the same physical address. In general, a linear address in
one process will not be mapped to the same physical address in RAM.
Because of paging, each process can assume that it has the entire 4MB to
2GB range of addresses all to itself. It can't see the memory of other
processes, nor can they see its memory, even though they may be sharing the
same linear addresses. The magic of paging keeps them physically distinct.

The exception to the preceding rule of keeping separate 4MB to 2GB
regions for each process is when Windows 95 has determined that it's safe
to share the same page of RAM between multiple copies of a program.  A
prime example of this is program code because a program usually doesn't
modify its code. If you're running more than one copy of a program,
Windows 95 conserves available RAM by mapping the RAM containing
program code into the address space of all the instances of the processes.

From an operating system purist point of view, it would be ideal if each
16-bit process was kept in its own address space, similar to the way 32-bit
processes are. Unfortunately,  a huge number of 16-bit programs rely on the
capability  to see the memory of other programs.  To remain compatible with
existing  16-bit code, Windows 95 has to allow 16-bit programs to have
greater  access to one another than it lets Win32 processes have. Windows
NT 3.5 introduced the capability of running each Win16 process in its own
address  space, but it consumes more memory and introduces more complex-
ity. The designers of Windows 95 apparently  felt the benefits weren't worth
the price.

A question that intrigued me from the first time I saw Windows 95 was
how 16-bit tasks were able to share their address space while still running
as separate processes. As it turns out,  the memory used by 16-bit tasks
always comes from the shared memory regions below 4MB and above 2GB.

Moving now to the the upper half of the 4GB address space, you can see
that Figure 5-1 shows it subdivided  into two regions. The range of memory
between  2GB and 3GB is shared across all processes, and is intended for use
by the ring 3 (user level) operating system code. At the lowest addresses in this
range,  you'll find the remainder of the  16-bit global heap. Above the global
heap,  you'll find the location for memory mapped files. This is interesting,
and bears a further look.

If memory mapped files are in a range of memory shared by all processes,
it would appear that any process can see the memory mapped file, even if
that process hasn't explicitly mapped a view for it. That assumption  is
indeed correct. In Windows 95, the act of using a memory mapped file makes
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that file accessible to all processes. In this aspect, Windows 95 differs from
Windows NT. Windows NT uses a more sophisticated paging model, thereby
causing memory mapped files to be visible only in the memory context of
processes that open up a view into the memory mapped file.

The uppermost portion of the 2GB to 3GB range is where you'll find
the 32-bit system DLLs (KERNEL32, USER32, and so on). To free up as
much space as possible for memory mapped files before running into the
ring 3 system DLLs, Windows 95 adds DLLs to the system from the 3GB
line downward in memory. The following excerpt from the SoftIce/W MOD
command  shows this very clearly:

The number in the second column is the load address of the module.
KERNEL32.DLL  is the first 32-bit system DLL to load, and loads as close
to 3GB as possible (address BFF70000h) while keeping all of its contents  in
the 2GB to 3GB range. Next lower in memory is GDI32.DLL at address
BFF20000, which butts up as close as possible to KERNEL32.DLL.
Although it might seem like these load address are calculated as the DLLs
load,  they're not.  Microsoft has a program (REBASE.EXE from the Win32
SDK) that determines  how much address space each DLL requires,  and then
figures out the load address that will cause the system DLLs to be packed
together as closely as possible. After compiling and linking the system
DLLs, the Windows 95 build procedure modifies the DLLs so that they
have the preferred  load address that was calculated by REBASE.EXE. The
effect is that these system DLLs load as fast as possible and don't need to
have any relocations  applied  by the Windows 95 loader.

The final portion of the Windows 95 address space is the range from
3GB to 4GB (C0000000h  to FFFFFFFFh). This final gigabyte is the domain
of the ring 0 system components of Windows 95 (that is, the VxDs). This
can be seen by looking at this abbreviated  (believe it or not)  output from the
SoftIce/W VXD command:

:mod

hMod  Base  PEHeader  Module  Name  EXE  File  Name

019F  BFF70000  0147:BFF70080  KERNEL32

C:\WINDOWS\SYSTEM\KERNEL32.DLL

01A7  BFF20000  0147:81525AF4  GDI32  C:\WINDOWS\SYSTEM\GDI32.DLL

186F  BFEF0000  0147:81525£98 ADVAPI32

C:\WINDOWS\SYSTEM\ADVAPI32.DLL

1827 8FC00000  0147:815270F0  USER32  C:\WINDOWS\SYSTEM\USER32.DLL
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The full output from the SoftIce/W VxD command ran over 360 lines.
On a whim, I totaled the sizes of all the blocks to see roughly how much
memory is consumed by the VxD components.  After subtracting the mem-
ory consumed by SoftIce/W, the number of VxD components was in the
neighborhood  of a megabyte. Although some of this memory most likely
was pageable, a good chunk of operating system code is hidden at ring 0,
out of the reach of most programmers.

You might think that Windows 95 would use the paging attributes to
protect  the VxD region of memory above address 0xC0000000 from prying or
clumsy ring 3 system code. However, this is not the case. Many places in
KERNEL32 keep pointers to variables in the ring 0 components. Likewise,
many places in the VxD code keep pointers to KERNEL32 variables or, even
worse, KRNL386 variables. The worst offender here may be VWIN32.VXD,
which, as Chapter 6 will show, even exports two Win32 VxD service functions
for this purpose. One service passes pointers to places in VWIN32 down to
ring 3, and the other receives ring 3 addresses in KERNEL32 and KRNL386.

SHARING MEMORY

In Win16, the memory of all programs and DLLs is accessible to all other
programs  and DLLs. (Win16 uses the same local descriptor  table for all
processes.) As a result,  it's very easy to share memory between multiple
processes: You simply arrange for two or more programs to get hold of the
same selector. Despite Microsoft's  dire warnings,  using the GMEM_SHARE
attribute when allocating memory isn't a requirement in Win16.
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Now contrast this to Windows  95's Win32 memory management,  which
keeps all the memory of a Win32 process separate from other processes unless
you specifically take steps to share the memory. Unfortunately,  these steps
aren't  as simple as specifying GMEM_SHARE.  Specifying GMEM_SHARE to
GlobalAlloc won't buy you memory that's  shared across mulitiple memory
contexts.  (This is typical of Microsoft.  GMEM_SHARE has no effect on
memory sharing in Win16 or in Win32. In the  16-bit case, it isn't necessary
because everything is shared, and in the 32-bit case, it's ignored.)

You may have heard some Win32 pundits  say that the only way to share
memory in Windows 95 (or NT for that matter)  is with memory mapped files.
Although  you can share memory with memory mapped files, they're certainly
not the only solution.  If all you want to share is a small amount of data
between  a few instances of the same program, using memory mapped files is
overkill. In this book, I'll focus on sharing readable/writeable  data between
applications.  Don't  forget, however, that the entire upper half of the 4GB
address space is reserved for system usage and is always visible and shared
between all processes.

At the lowest level, sharing memory between memory contexts  is nothing
more than including pages of RAM in the page table mappings  of more than
one process. The shared memory pages can map to the same linear address in
each process,  or they might map to different linear  addresses.

In Windows 95, memory shared through memory mapped files is always
at the same linear  address in each process.  (The PHYS program,  presented
later in the chapter,  shows that this is the case.) However,  it's dangerous  to
make this assumption  in your code.  One reason is that Windows NT doesn't
guarantee that memory mapped files will be at the same address in each con-
text.  Since sharing with memory mapped files is covered in many texts on
Win32  programming, I won't dwell on the details here.

The easiest way to  share memory in Win32 programs is not mentioned
in many discussions  on Win32 memory management.  Specifically, giving the
SHARED attribute  to your program's data  sections when you link lets you
easily share memory between multiple  copies of an EXE or between multiple
users of a DLL. Giving the SHARED attribute to a DLL's data section makes
it functionally the same as the data  segment  in a Winl6  DLL. Luckily,
Windows  95 gives you the flexibility to  share  some of your data, while still
having other  data  that  is per-process.  You can create multiple  data  sections
in your EXE or DLL. Put all the data  you want to  share  in one section and
give that  section the SHARED attribute.  The remainder  of your data goes
into  another  section that you leave with the default attributes  (nonshared).
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The  PHYS program  does exactly what I've  described  to  show the difference
between  shared and  nonshared  memory.

Normally, the Microsoft  compiler  puts  all your  initialized data  into  a
section  of the executable  called  .data,  and  leaves the IMAGE_SCN_MEM_
SHARED  attribute  out  of the section's  attributes.  This  causes  a  new copy  of
that  data  to  be created  for each  process that  uses the data.  To share memory,
you'll  tell  the compiler to  create  a  new section.  This  section  can have  any
name you want  (although  only the first  8 characters  will  be used in the  EXE
section  table.)  For  instance:

#pragma  data  seg("SHAREDAT")

After  the  #pragma,  declare  any variables  that  you  want to  be shared.
The  variables  should  be initialized; otherwise,  the compiler puts  them into
the  uninitialized  data  section.  You probably  weren't  intending  to  make  your
uninitialized  data  shared,  so just initialize  them and  bypass  some of the  hair-
pulling  I went through.

After  declaring  the variables,  if you want  to  go  back to  putting  data  into
the  default  data  section,  throw  this in  at  the end  of your  shared  variable
declarations:

#pragma  data  seg()

Once  you've  declared  all  the  data  you  want  to  be shared,  the  final  step
is to  convey  your  desires  to  the  linker.  You can  do  this  in two  ways.  The
traditional  way  is to  put that  section  and  its  attributes  into  the  .DEF file.
For  instance:

SECTIONS

SHAREDAT  READ WRITE  SHARED

Another  way  is to  specify the  attributes  on  the  linker command  line:

LINK  /SECTION:SHAREDAT,RWS  <other  linker  options  and  files>

In this  example,  the  RWS is interpreted  as  "Read,  Write,  and  Shared."
I should mention a  "buyer  beware"  warning about  sharing your  DLL's

data  sections.  If you initialize  your  data with the address  of another code or
data  symbol, you're  in for an  interesting time if the DLL loads  at  different
linear  addresses  in two  or more processes.  For example,  consider  this seem-
ingly innocent  data  declaration  in a  shared  data  section:
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int  i;

int*  AddressOf_i  = &i;

The problem is that the AddressOf_i  can't be known  until the DLL loads.
Therefore,  the DLL contains a fixup record telling the loader to patch  in the
correct  value in the AddressOf_i  variable.  The first time the DLL loads, there's
no problem.  Now, consider what happens  if another  process loads the DLL,
but the DLL can't load at the same linear address in the second process.  Because
the AddressOf_i  variable is already in use by the first process  (it's shared,
remember?), the loader can't go in and patch in the correct value for the second
process.  The value of AddressOf_i  is wrong in the second process. When I
encountered  this problem in my own code, I was able to work around  it by
using  pointers.  In my per-process data variables,  I included a pointer  to the
shared  memory area.  Because the pointer  was in the per-process area,  the
loader  always  fixed up the pointer  value so that  it was correct  for the current
process.

Beyond explicitly  sharing your data, Windows 95 shares other regions  of
memory. I've already mentioned that  all the memory above a linear address of
2GB is shared  between Windows  processes.  However,  Windows  95  also
silently  shares certain ranges of memory below 2GB.  If you run multiple  copies
of an EXE file, or use a DLL in more than one process, it would  be wasteful to
load  all the code sections  for each user of the code. Although code sections
don't  have the IMAGE_SCN_MEM_SHARED attribute,  Windows 95 loads
only one copy of the code, and uses the CPU's page table to map the code into
the memory contexts  of all users of the code.

An exception  to  this  sharing  of code  sections  between  multiple  processes
occurs when  a DLL cannot  load  at  the same  base  address  in each process.
For example,  suppose  FOO.DLL  is used  by two  different  processes.  When
process  A loads the  DLL,  it is  brought  into  memory  at  linear  address  X.
Process  B may use  a  different  group  of DLLs  (but including  FOO.DLL).
When  process  B loads,  some  other  DLL may  be assigned  to  linear  address  X
before the  loader gets  around  to  loading  FOO.DLL.  Because address  X isn't
available  in process B's memory context,  FOO.DLL  has to  be loaded else-
where.  If you  have  control  over programs  that  run  into  a  situation  like  this,
you can  usually  solve it  by rebasing  the  DLL to  a  base address  that's  not
used in either  process.
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"COPY ON WRITE" IN WINDOWS 95

(OR THE LACK THEREOF)

Knowing  that Windows  95 shares code across processes  (where possible),  a
reasonable  question concerns  how debuggers handle this.  Why is this an
issue? Debuggers set breakpoints  by writing breakpoint  instructions  (INT 3,
opcode  0xCC} into the code.  If a debugger writes a breakpoint  into a code
page that's  shared by two processes,  there's a potential problem.  The debugger
is debugging only one of the processes,  and won't  see the breakpoint  interrupt
if another process hits the breakpoint  instruction.  When the operating system
sees the INT 3 in the other process and determines that the process isn't being
debugged, it terminates the process  because there was an unhandled  exception.
If the memory management code in Windows  95 were to work the way I
described in the last section,  you wouldn't  be able to debug through DLLs
used by more than one process at the same time - - at least not without causing
all the other processes  to terminate  abruptly. Nor would you be able to debug
one copy of a program while another copy runs.

Advanced operating systems  such as UNIX handle this problem with a
mechanism called  "copy  on write."  In  a system with copy on write  (such as
Windows NT), the memory manager uses the CPU's paging to  share  memory
wherever  possible,  and  duplicates  a page of memory in RAM only when
necessary.

An example will make  this  much clearer.  Suppose that  two copies  of a
program  are executing  and  sharing the same code pages  (which have the
read-only  attribute).  One  of the processes  is being debugged,  and the user
tells  the debugger  to  set a  breakpoint  somewhere  in the code.  When the
debugger  attempts  to write  out the breakpoint  instruction,  it triggers  a page
fault  (the page is read-only).  When the operating system sees the page fault,
it first determines  that  a debugger  is trying to  read  the memory,  and that the
request is legitimate.  However,  the operating system doesn't just let the
write  go through  to  the shared code page.  Instead,  the system makes a copy
of the affected  page,  and changes  the page table  of the debuggee  to  use the
copy of the original  page.  Once the page has  been copied  and mapped,  the
system  lets the write go through.  The write  operation  affects  only the copied
page and  leaves  the original  page alone.

Copy  on write  isn't  limited to  shared  code.  In Windows  NT, writeable
data  pages  start  out with  the read-only attribute.  When  the program  writes
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to one of these page, the CPU generates a page fault.  The operating system
handler then marks those pages as read/write.  Why go through this trouble?
When a second copy of the EXE or DLL is loaded,  the memory manager
can share all the data pages that still have the read-only attribute.  If these
shared pages are then written to, the copy on write mechanism kicks in and
provides separate RAM pages to each process wherever necessary.

The benefit of copy on write is that memory is shared as efficiently as
possible. The system makes a new copy of a shared page only when necessary.
Unfortunately, copy on write requires a sophisticated memory and page table
management  scheme. Apparently, Windows 95's memory manager isn't
sophisticated enough because Windows 95 doesn't directly support copy on
write through paging. This has caused a lot of anguish among the early
adopters  of Windows 95. After all, Microsoft is pushing for all Win32 pro-
grams to run on Windows NT as well as Windows 95. It's a pain to do so
when major architectural features such as copy on write are missing from
Windows 95.

In defense of Windows 95, it isn't blindly stupid about the problem of
writing to shared memory. Because something had to be done to make
debuggers  usable, Windows 95 supports  a pseudo copy on write scheme. In
this scheme, the WriteProcessMemory function takes the place of a page fault
on a shared page. Way down inside WriteProcessMemory,  the operating sys-
tem determines  whether the address range you're attempting to write lies in
shared memory. If so, the system copies the original  page(s) to a new set,
maps the new page(s) to the same linear address in the current process, and
then does the write operation.  The PHYS program proves that this pseudo
copy on write is at work.

Although the WriteProcessMemory function is sufficient to allow debug-
gers to debug through most DLLs, it unfortunately doesn't work on the shared
region above 2GB. (It's intentionally crippled.) Because the system DLLs such
as KERNEL32 lie above 2GB in Windows 95, regular application debuggers
can't step through the system DLLs like they can in Windows NT. Go ahead
and try it. Fire up your favorite application debugger under Windows 95 and
try to step into an operating system call. Both the Visual C++ debugger and
Turbo Debugger silently step over these calls even if you're in the disassembly
pane and tell them to step into the call. If you want to step through the
system code in Windows 95, you'll need a debugger that doesn't rely on
WriteProcessMemory, for example, a system-level debugger such as
SoftIce/W or WDEB386.
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THE PHYS PROGRAM

To demonstrate all the Windows 95 memory management details I've discussed,
I wrote the PHYS program. PHYS doesn't have a fancy user interface, but it
effectively shows the layout of memory, shared memory, and Windows 95's
pseudo copy on write support.

The concept  behind PHYS is simple. It finds and displays the linear
addresses  of various items in memory (for example,  a code section or a
memory mapped file). When just one copy of PHYS is run, it's a crude but
useful demonstration of the Windows 95 process memory layout. The pro-
gram's  functionality  doesn't stop there, however. Besides showing the linear
addresses of memory objects, it also shows the physical RAM address
mapped to the linear address as well as the page's protection attributes.  By
running two or more copies of PHYS, you can see which memory regions
are shared by multiple processes. In addition, PHYS shows writes to a code
page in memory and shows the before and after addresses, proving that
WriteProcessMemory  effectively performs a copy on write.

The complete source for PHYS is included  in the accompanying  disk.
The main workhorse routine is shown in Listing 5-1. ShowPhysicalPages
calculates the linear and physical addresses of various memory objects and
prints  them, one to a line. However, PHYS makes no attempt to show every
memory object in its address space. Rather, it shows selected items that I
consider  important when indicating the memory layout of a process.

The SbowPbysicalPages functions from the PHYS.EXE program



//note from remo: program text imported via UltraEdit instead of OCRed
//                => less errors, syntax highlighting, less time correcting 

void ShowPhysicalPages(void)
{
    DWORD linearAddr;
    MEMORY_BASIC_INFORMATION mbi;

        //
        // Get the address of a 16 bit DLL that's below 1MB (KRNL386's DGROUP)
        //
    linearAddr  == Get_KRNL386_DGROUP_LinearAddress();
    printf( "KRNL386 DGROUP      - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Get the starting address of the code area.  We'll pass VirtualQuery
        // the address of a routine within the code area.
        //
    VirtualQuery( ShowPhysicalPages, , &&mbi, sizeof(mbi) );
    linearAddr  == (DWORD)mbi.BaseAddress;
    printf( "First code page     - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Get the starting address of the data area.  We'll pass VirtualQuery
        // the address of a global variable within the data area.
        //
    VirtualQuery( ( &&callgate1, , &&mbi, sizeof(mbi) );
    linearAddr  == (DWORD)mbi.BaseAddress;
    printf( "First data page     - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Get the address of a data section with the SHARED attribute
        //
    MySharedSectionVariable = 1;    ;    // Touch it to force it present
    linearAddr  == (DWORD))&&MySharedSectionVariable;
    printf( "Shared section      - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Get the address of a resource within the module
        //
    linearAddr  == (DWORD)
            FindResource(GetModuleHandle(0), MAKEINTATOM(1), RT_STRING);
    printf( "Resources           - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );
    
        //
        // Get the starting address of the process heap area.
        //
    linearAddr  == (DWORD)GetProcessHeap();
    printf( "Process Heap        - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Get the starting address of the process environment area.
        //
    VirtualQuery( GetEnvironmentStrings(), (), &&mbi, sizeof(mbi) );



    linearAddr  == (DWORD)mbi.BaseAddress;
    printf( "Environment area    - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Get the starting address of the stack area.  We'll pass
        // the address of a stack variable to VirtualQuery
        //
    VirtualQuery( ( &&linearAddr, , &&mbi, sizeof(mbi) );
    linearAddr  == (DWORD)mbi.BaseAddress;
    printf( "Current Stack page  - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Show the address of a memory mapped file
        //
    linearAddr  == (DWORD)PMemMapFileRegion;
    printf( "Memory Mapped file  - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );

        //
        // Show the address of a routine in KERNEL32.DLL
        //
    linearAddr  == (DWORD)
        GetProcAddress( GetModuleHandle("KERNEL32.DLL"), "VirtualQuery" );
    printf( "KERNEL32.DLL        - Linear:%08X  Physical:%08X  %s\n",
            linearAddr,
            GetPhysicalAddrFromLinear(linearAddr),
            GetPageAttributesAsString(linearAddr) );
}

The memory objects that PHYS shows are a routine in a 16--bit DLL, a memory mapped
file, and a routine in a 32--bit DLL. In addition, the routine also displays the
address of PHYS.EXEs heap and its code, data, shared data, resource, and stack
regions. I choose DGROUP of KRNL32.386 to show that the 
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Win16  DLLs are in fact mapped into the address  space of a Win32 process.
(It would be hard to thunk down to them if they weren't.)  By showing the
addresses  of a memory mapped file and a routine  in KERNEL32,  I can
demonstrate  that  they're  in the shared ring 3 region between 2GB and 3GB.

Figure  5-2 shows the output from running two copies  of PHYS. To
show memory sharing between processes  and have meaningful  results,  it's
important  to  use the correct sequence,  as follows.  Run the first instance  of
PHYS. When it's paused  at the Press any key..,  prompt,  start the second
copy of PHYS. This guarantees that  the  second instance  will  be running at
the  same time as the first instance.  Finally, switch back to the  first instance
and press a key to get the second half of the first instance's  output.

For now, let's concentrate  on the first set of addresses  shown for the
first  instance.  The addresses  are sorted by their linear addresses.  Examinine
the correlation  between physical  and linear addresses.  Can't  find a corre-
spondence?  Don't try too hard  because there isn't one.  Windows  95 keeps a
pool of available  RAM pages,  and doesn't  try to match physical  RAM pages
to any particular  linear address.

The first item in the list of addresses  is the KRNL386  DGROUP. The
next four items are memory sections  in the PHYS.EXE executable.  Earlier, |
mentioned  that  in Windows  95, the default load address  for a 32-bit process
is 4MB (0x400000).  If you dump out PHYS.EXE's header with  PEDUMP
from Chapter  8, you'll  find that  the code section starts  at  a relative  virtual
address  (RVA) of 0x1000.  Adding  0xl000  to 4MB yields 0x401000,  which
is the address  shown in PHYS's output.  You can go a step further  and
obtain  the RVAs of the data  section,  the shared data  section,  and the
resource section and verify that  adding their RVAs to 4MB gives the same
linear address  shown in PHYS's information.

The next item in PHYS's sorted  output  is the default process heap.  At
address  0x410000,  it's not too far past the last linear  address  used by the
code and data sections in the PHYS.EXE module.  It  looks  like KERNEL32
allocates  linear memory in a bottom-up fashion.  The default size for the ini-
tial  process heap in Windows  95 is  1MB+4K. This would  make the next
available  linear address  in the address  space appear to  be somewhere
around  0x511000.  Windows  95 starts  each new virtual  memory  allocation
at a 64K boundary,  however,  so the next available  region would  be at
address  0x520000.  Surprise,  surprise --  that  happens to  be the address
where  the process's environment  area  starts.  It looks  like the  bottom-up
allocation theory is still holding up.
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//

//  First  instance  output:
//

*****  FIRST  INSTANCE  *****

KRNL386  DGROUP

First  code  page

First  data  page

Shared  section

Resources

Process  Heap

Environment  area

Current  Stack  page

Memory  Mapped  file

KERNEL32.DLL

Press  any  key...

Linear:00036F60

Linear:00401000

Linear:00408000

Linear:0040B000

Linear:0040D088

Linear:00410000

Linear:C0520000

Linear:0063F000

Linear:8233A000

Linear:BFFAF09C

Now modifying  the  code  page

KRNL386  DGROUP

First  code  page

First  data  page

Shared  section

Resources

Process  Heap

Environment  area

Current  Stack  page

Memory  Mapped  file

KERNEL32.DLL

Linear:00036F60

Linear:00401000

Linear:00408000

Linear:0040B000

Linear:0040D088

Linear:00410000

Linear:00520000

Linear:0063F000

Linear:8233A000

Linear:BFFAF09C

//

//  Second  instance  output:
//

*****  SECONDARY  INSTANCE  *****

KRNL386  DGROUP

First  code  page

First  data  page

Shared  section

Resources

Process  Heap

Environment  area

Current  Stack  page

Memory  Mapped  file

KERNEL32.DLL

Press  any  key...

Physical:00245F60

Physical:00BBE800

Physical:006E2000

Physical:0041D000

Physical:00B3F088

Physical:0082A000

Physical:00A2E000

Physical:00ADD000

Physical:0099D000

Physical:004F689C

Physical:00245F60

Physical:00CA1000

Physical:006E2000

Physical:0041D000

Physical:00805088

Physical:0082A000

Physical:00A2E000

Physical:00ADD000

Physical:0099D000

Physical:004F609C

Linear:00036F60  Physical:00245F60

Linear:00401000  Physical:00BBE00

Linear:00408000  Physical:002FF000

Linear:8040B000  Physical:0041D000

Linear:0040D088  Physical:00B3F088

Linear:00410000  Physical:00704000

Linear:00520000  Physical:00809000

Linear:0063F000  Physical:00B95000

Linear:8233A000  Physical:0099D000

Linear:BFFAF09C  Physical:004F609C

Read/Write  USER

ReadOnly  USER

Read/Write  USER

Read/Write  USER

ReadOnly  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

ReadOnly  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

ReadOnly  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

ReadOnly  USER

Read/Write  USER

ReadOnly  USER

Read/Write  USER

Read/Write  USER

ReadOnly  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

Read/Write  USER

ReadOnly  USER

 Figure  5-2
 Combined  output from two instances  of PHYS.EXE running simultaneously.



Most environments don't contain 64KB of strings, but a rule's a rule, so
the next available address region should  be 64KB after the start of the envi-
ronment  (that is, at 0x530000.)  Looking at the PHYS output, we see the
program's  current stack page starts at 0x63F000.  At first glance, this would
appear  to shoot a hole in my bottom-up theory for address space allocation.
However,  a bit more consideration  shows that a bottom-up allocation
scheme could still be at work here.  Remember, a stack grows from a higher
address  to a lower one,  so we have to subtract the length of the stack area
from the top of the stack to get the starting address of the stack region.  If
the current program stack page is at 0x63F000,  and if we haven't used too
much stack space, the end of the stack region should be at 0x640000.  The
default  program stack size for PHYS.EXE is 1MB, so subtracting  1MB from
0x640000 gives us 0x540000.  This is 64KB higher than the 0x530000  my
bottom-up allocation theory would suggest. However, if I call VirtualQuery
for an address within the stack, the AllocationBase value returned by
VirtualQuery  is 0x530000.  It appears that when the loader calculates the
size needed for the program stack, it is rounding up by 64KB; therefore,  a
range  of size 1MB+64KB (rather than just  1MB) is allocated.  From what I
can see, the bottom-up allocation theory still appears to hold.

After items directly related to program data areas, PHYS shows a memory
mapped file that it creates. The base address of this memory mapped  file at
offset 0x8233A000  is well over 32MB into the shared ring 3 region between
2GB and 3GB. Because the 2GB to 3GB region is mapped by all processes,
any program can view (and potentially  trash)  any memory mapped files.
Yes, even memory mapped files that the process hasn't created a view of.
This is a potential source of bad pointer overwrites  in Windows 95.
Windows NT has a more sophisticated memory manager and doesn't allow
this serious breach of address space privacy.

The remaining item in PHYS's output is the address of the VirtualQuery
routine in KERNEL32.DLL. The address  (0xBFFAF09C) is pretty close to
the end of the shared 2GB to 3GB region. Why so high an address?
Windows 95 sets the base address of the system DLLs so that they'll  be as
high up and as close together as possible. The goal is to keep as much free
space as possible in the 2GB to 3GB region for use by memory mapped files.
You can see this yourself by examining the  base address  of some system
DLLs such as KERNEL32.DLL,  USER32.DLL, and  GDI32.DLL.
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Examining shared memory with PHYS
To see what regions of memory that Windows 95 shares between processes,
we can run two copies  of PHYS and compare their output.  That's why
Figure 5-2 has output from two instances of PHYS. Let's compare the first
set of addresses from the first instance of PHYS to the addresses given by the
second instance. In the two sets of addresses, memory blocks that have the
same physical address are shared between the two instances. To make things
easier, I've broken the items into the shared and unshared lists in Figure 5-3.

In shared memory
KRNL386  DGROUP
First code page
Shared section
Resources
Memory mapped file
KERNEL32.DLL

In nonshared memory
First data page
Process heap
Environment area
Current stack page

Figure  5-3
Shared and nonshared regions of memory between two simultaneous  instances of a

 32-bit process.

The shared list shouldn't be too surprising. KRNL386's DGROUP and
KERNEL32.DLL are both part of system DLLs, which you would certainly
hope to be shared. PHYS.EXE's code and resources are shared, which means
that Windows 95 is trying to be efficient about using memory. PHYS explicitly
created the two remaining shared items (the shared section and the memory
mapped file) to share memory with other instances. The items in the nonshared
list aren't too surprising either. All of the items are read/write program data. If
Windows 95 were to try and share these memory regions, running multiple
instances of PHYS would quickly cause a crash.

Examining copy on write with PHYS
The final  demonstration in PHYS is the pseudo copy on write provided
by WriteProcessMemory.  Look at the three lines for the first code page
(condensed  in the  following):
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*****  FIRST  INSTANCE  *****

First  code  page  Linear:00481000

Now modifying  the  code page

First  code  page  Linear:00401000

Physical:00BBE000

Physical:00CA1000

ReadOnly  USER

Read/Write  USER

*****  SECONDARY  INSTANCE  *****

First  code  page  Linear:00401000 Physical:00BBE000 ReadOnly USER

To make sense of the output, it's vital to remember the sequence of
events while the two copies of PHYS ran. The first and third address lines
are from two different processes, and happened before the code page was
written to. The physical address of the code page in both processes is
0x00BBE000, proving that the page is shared between the two instances.
The middle address line was output after the first instance wrote to the code
page with WriteProcessMemory. Notice how it now has a different physical
address? This shows that WriteProcessMemory changed the underlying
physical RAM page to a different page of memory. Although it's not shown
here, the physical address of the first code page remains at 0x00BBE000 in
the second instance.

Cool stuff in  the PHYS program
(for advanced  readers)
Lurking under the surface of the PHYS program is some low-level system
code that Microsoft would probably prefer that you didn't know about.  In
a well-designed  operating system, programs  shouldn't be able to access the
mappings  between physical memory and linear addresses. Normally, there's
no need for a program to determine these mappings,  but this capability is at
the heart of the PHYS program's  functionality.  Because Windows 95 doesn't
provide a supported way to get at the page mappings,  PHYS has to circum-
vent the operating system. Part of PHYS's sidestepping around the operating
system involves executing code at ring 0 (the highest privilege level of the
CPU). Application programs run at ring 3 (the least privileged level), and
are generally kept from getting up to ring 0, except in a precise manner con-
trolled by the operating  system. Because the ring 0 code that PHYS needs to
execute isn't sanctioned  by the operating system, I had to write a general-
purpose mechanism to call into ring 0 code from a ring 3 Win32 application.
You can easily modify the PHYS ring O-related code and drop it into your
own code.
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To map linear  addresses  to  physical  addresses,  the GetPhysicalAddr-
FromLinear  function needs to party with the page tables.  (Party  is apparently
an official Microsoft term for doing something  you're  not supposed to.) Page
tables are a complicated  topic,  and I discuss  them briefly in the following sec-
tion,  "Memory Contexts."  If you don't know what page tables are, for now
just think of them as data  structures  that  describe the mapping between
physical  RAM addresses  and linear addresses  used by programs.  The page
tables are maintained by the operating  system and used by the CPU. Turning
to  the trusty CPU manual, you'll find that the page directory is pointed to  by
the CR3 register.  Unfortunately,  the instruction  that  retrieves the value of the
CR3 register is privileged.  Attempting  to call it from ring 3 results in the
CPU generating  a general protection fault  (exception  0Dh). When Windows
95  sees this fault,  it analyzes the instruction  and sees that  it's a privileged
instruction.  Rather than terminating  the application,  Windows 95 silently
returns control to  the application  without  retrieving the CR3 register value.

What does this mean? Windows  95  is preventing  a direct  assault  on the
page  tables  from application  programs.  Sure, I could write  a VxD  (which
runs  at ring  0) to get the  CR3  value,  but I dislike lots  of VxDs floating
around my system.  Besides, even if I could get the  CR3 value,  there's  still a
big problem.  The  CR3  register  tells the physical  address  of the page tables.
There's  no good way to convert  a physical  address  into  a linear  address  that
PHYS can use.  Short  of turning off paging while  I use the physical  address,
there's  not much I can do with the CR3  value.

The  next  approach  is to  see whether Windows  95 maps the page tables
to  a linear  address  that  ring 3 code can  see. As it turns  out, Windows  95
does.  The  full 4MB range  of page table entries  is always  mapped  to  linear
address  0xFF800000  (8MB before  the end  of linear memory.)  With  that
little  bit of information,  we would seem to  be all  set.  Simply create a pointer
to  the page tables  and  start reading whatever  information  you want.
Because  ring 3 Win32  programs  use 32-bit  linear  addresses,  you should
even  be able to  read the page tables  from any arbitrary Win32  program,
right?  Not  so fast!  Although the Windows  95 coders  seemingly made the
page tables  very susceptible to  overwrites  from wild pointers,  the tables  are
not  as unprotected  as they might  appear.  Both the page directory and each
page table  entry  keep a bit  (the user/supervisor  bit)  that  indicates  whether
the page should be accessible to code at any privilege level or  just at  ring 0.
The page directory entry that  maps the 4MB region  used  by the page tables
has  the user/supervisor  bit cleared.  This means that  the entire 4MB memory
range used for page tables  is off-limits to  ring 3 code.
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Because  the Windows  95 page tables are  off-limits to ring 3 applications,
we have to  execute our code  at ring 0 to  access  the page table.  For my May
1993  Microsoft  Systems Journal  article  on ring privilege levels,  I wrote
RING0.EXE.  RING0  uses some holes  in how Windows manages memory
to call  16-bit code  at ring 0 from a ring  3 Windows program.  The  gist of
how RING0 works  is with  CPU call gates,  which provide a method  for less
privileged code to  call into more  privileged code  (for  instance,  from ring 3
to  ring 0).  Because Windows won't  hand  you a call gate  just for the asking,
RING0 goes into the LDT and creates  a call gate  itself.  To get at  the LDT,
RING0  uses the same INT 2Fh subfunction that KRNL386 calls to  obtain  a
selector  pointing at the LDT.  (Yes, even in Windows  95!)

After RING0 appeared, Alex Schmidt wrote an excellent article  (in Dr.
Dobb's,  March  1994) that extended the premise of RING0 to call 32-bit ring 0
code. Alex went so far as to write a method for dynamically loading VxDs
using these call gate tricks.  (Luckily, Windows 95 now supports dynamically
loading VxDs without these horrible hacks that Alex and I use.)  When I saw
that the PHYS program needed to call ring 0 code, I saw a chance to update
the original  RING0 code to be usable from Win32 programs.  Among other
things,  this meant making a 32-bit call gate rather than a  16-bit call gate. The
results  of the effort are in the PHYS program on this book's disk.

Using this generic mechanism of calling ring 0 code from a Win32 applica-
tion is a little tricky,  but  not  overly so. The code in GetPhysicalAddress-
FromLinear  in Figure 5-4 is a good example.  First, you need to  create  a call
gate  selector  by calling the  GetRing0Callgate  function.  This  function is just
the front-end  portion  of a Windows  95 thunk down to  16-bit code.  Down
in the  16-bit portion  of GetRing0Callgate,  the code creates  the  32-bit call
gate  that will be used later  up  in 32-bit  land.  There are two parameters  to
GetRing0Callgate.  The first is the 32-bit  linear  address  of the code that you
want  executed  at ring 0. The second  parameter  is the number  of DWORD
parameters  to  pass on the stack to  the code that  executes  at ring 0.

Once  you  have the  call  gate  selector,  the  next  step  is to  store  it into  a
6-byte  far  pointer  (a.k.a.  an  FWORD).  Six bytes?  Yes. In  32-bit  mode,  a
far  call  is made through  a  16-bit  selector  combined  with  a  32-bit  offset.
Because the  offset  is  32  bits,  it's  implicit  that  the  selector  will  be for a  32-
bit  segment,  much like the  flat  selectors  used by Win32  programs.  Getting
back to  the  subject  at  hand,  we need to  make  a far  call  using the call gate
selector  in order  for the  CPU to  switch  to  ring 0.  In  Figure  5-4,  the code
stores  the call gate selector into the high WORD  of a 6-byte array  (3 WORDs).
The  offset  portion  of the  pointer  isn't  important  because  the  CPU ignores  it



G e t R i n g 0 C a l l g a t e ,

302

and  instead  loads  EIP from the  offset  in  the  call  gate  descriptor.  After cre-
ating  the  pointer,  the  code  uses  inline  assembler  to  call  through  an  fword
pointer  (because  the  C compiler  knows  only  about  32-bit  near  calls).  I
bracketed  the  call  gate  call  with  cli  and  sti  to  prevent  interrupts  in  the ring
0 code.  This  eliminates  the problem  of switching  to  a  safe stack  once we're
in  ring  0 code.

DWORD  GetPhysicalAddrFromLinear(DWORD  linear)

{

if  (  !callgatel  )

callgatel  =  GetRing0Caltgate(  (DWORD)_GetPhysicalAddrFromLinear,  1

);

if  (  callgatel  )

WORD  myFwordPtr[3];

myFwordPtr[2]  =  callgatel;

__asm  push  [linear]

__asm  cli

__asm  call  fword  ptr

__asm  sti

[myFwordPtr]

 Figure  5-4
PHYS. EXE calling  through  a  callgate  in  32-bit

Because of the contortions required to get to ring 0 from a Win32 program,
there  are  a  few reasons  why  I wrote  the  ring  0 PAGETABL.ASM  code  in
assembler.  First,  the  16:32  far  call  to  the ring 0 code caused the  CPU to  put
8 bytes  on the stack,  rather  than  the normal  4.  Therefore,  after setting up  an
EBP frame,  the  first parameter  is  at  EBP+0Ch  rather  than  at  EBP+08.  More
importantly,  when  the code  returns  to  ring  3,  it  needs  to  do  a  16:32  RETF
rather  than  a  32-bit  near  return.  Like  a  16:32  far  call,  a  16:32  RETF is
something that  the  compiler  doesn't  know how  to  generate.

To sum up calling ring  0 code from a Win32  application,  first write  the
ring  0 code  (most  likely in  assembler),  taking  into  account  the caveats  just
mentioned.  Next,  in your  program,  call  GetRing0Callgate,  passing  it the
name  of your  ring  0 routine  and  the  number  of arguments.  Then  create  a
16:32  far  pointer  with  the call gate,  and  call through  the pointer.  Finally,
when  you no  longer need  to  call the ring  0 routine,  delete  the call gate  by
calling  FreeRing0Callgate.  It's  not  elegant,  but  it's  better than  being at  the
mercy  of the  operating  system.
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MEMORY CONTEXTS (ADVANCED STUFF)

Although  it's fine  to  talk abstractly  about memory contexts,  at  some point
the rubber  must meet the road.  Windows  95 needs to maintain  data  struc-
tures that keep track of which pages of RAM should be mapped to linear
addresses in a given process. To understand memory contexts in Windows  95,
you need to  understand  the CPU's paging mechanism at  a low level. I'll give
a warp speed overview of 80386 paging that omits some of the more advanced
details. If you're  interested in a precise description of paging, refer to the Intel
manuals  or  other  books on the  386 architecture.

The  80386 class of CPU uses two  levels of lookup tables to translate a
linear address  to a physical  address  that  goes out on the address  bus. The
first lookup table  is the page  directory.  It is 4KB and can be viewed as an
array  of 1024 DWORDs.  Each DWORD  in the page directory array con-
tains  the physical  address  of another  4KB block known as as a page  table.
Like the page directory,  the page table is an  array  of  1024 DWORDs.  Each
DWORD  in the page  table array contains  the physical  address  of a 4KB
block  of memory.

To use the page directory and page tables,  the CPU breaks  up a 32-bit
linear address  into  the three components  shown in Figure 5-5.  The CPU
uses the top  10 bits of the address  as an  index into the page directory.  The
next  lower  10 bits of the address  are an index into a 4KB page table.  Which
page  table do these  bits index? None other than  the page table pointed to  by
the page directory that  the  CPU found in the previous  step.  The address in
the page table  is a physical  address  aligned  on a 4KB boundary.  The final
part  of the calculation is to take  the  bottom  12 bits of the linear address  and
use them as an offset into the memory pointed to  by the page table.

In simpler terms,  the top  10 bits of the address  index into an array that
contains  1024 pointers to other arrays.  The second  10 bits of the address
index this secondary array to get a physical  address.  The low  12 bits of the
linear address  are added to this physical  address  to get the final physical
address.

How does the  CPU know where to  find the page directory?  The page
directory is pointed  at  by the CR3 register,  one of the  special registers intro-
duced on the  80386.  A brute  force method of implementing memory con-
texts would be to  simply create  a page directory and  1024 associated  page
tables  for each processs,  changing the  CR3 register  to point at each
process's  page directory as needed.
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 Figure  5-5
 How the CPU converts a linear address to a physical address.

The problem with this approach is that to map the entire 4GB address
space would require  1024 page tables, each 4KB in size.  This would take
up 4MB of memory per process, obviously not an effective use of RAM.
Therefore,  to change memory contexts, Windows 95 sets up a single 4MB
region  of memory, and modifies the entries within the page directory to
quickly change the page mappings.

If you're concerned that 4MB still sounds like a lot of memory to use just
for paging, don't be. At the page directory level, the operating system can tell
the CPU that an entire 4KB page table isn't present in memory, thereby elimi-
nating the need to map a 4KB block of physical memory to the page table.
Windows  95 doesn't use anywhere near 4MB of memory to manage paging.
The Windows 95 page directory and page tables are mapped into a 4MB
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region of memory that's  8MB from the end of the 32-bit address space. Put
another way, they don't use the last 4MB of the address space, but they do
use the 4MB before that.  This range of memory starts at FF800000h, and
can be viewed in SoftIce/W. The page directory itself is stored in a page
within this 4MB range.

You can easily find the linear address of the page directory  by dumping
out the CR3 register with the SoftIce/W CR command.  On my machine,
CR3 contains  6EE000h. The CR3 register contains  a physical address, so
you'll need to find the associated linear address if you want to view it. The
SoftIce/W PHYS command is handy for this purpose.  The PHYS command
searches the page tables to find all linear addresses that correspond to a
given physical address. The command PHYS 6EE000 yields two linear
addresses. The second of these addresses is FFBFE000h, which is in the
4MB range of memory reserved for page tables.

Given that we can find the page directory in SoftIce/W, we should be
able to prove or disprove what I said about context switching by setting a
hardware write breakpoint in the page directory. If the breakpoint doesn't
go off, context switching is probably accomplished  some other way. If it
does go off, it's a strong indicator  that context switching is accomplished  by
manipulating the page tables. Also, the location of the write should give us
a clue as to what's responsible for switching contexts.

Running this simple experiment in SoftIce/W confirms that the page
directory  is being written to on a regular basis. To see this, back up a few
instructions  from where the write occurs, as shown in the following
SoftIce/W code window output:

_ContextSwitch

0028:C0084856  MOV  EAX,[C001084C]

0028:C000485B  MOV  EDX,[ESP+04]

0028:C000485F  CMP  EAX,EDX

0028:C0004861  JZ  C0004893

0028:C0004863  PUSH  ESI

0028:C0004864  PUSH  EDI

0028:C0004865  MOV  EDI,FFBFE000

0028:C000486A  MOV  ECX,[EDX+04]

0028:C000486D  MOV  ESI,[EDX]

0028:C800486F  REPZ  MOVSD

0028:C0004871  MOV  ECX,[EAX+04]

0028:C0004874  SUB  ECX,[EDX+04]

0028:C0004877  JBE  C0004880

0028:C0004879  MOV  EAX,[C00107E0]

0028:C000487E  REPZ  STOSD

0028:C0004880  XCHG  EDX,[C001084C]
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0028:C0004886  MOV  EAX,EDX

0028:C0004888  MOV  ECX,[C0010CDC]

0028:C000488E  MOV  CR3,ECX

0028:C0004891  POP  EDI

0028:C0004892  POP  ESI

0028:C0004893  RET

The core of the _ContextSwitch  routine  is the REPZ MOVSD and
REPZ STOSD instructions.  The three MOV instructions leading up to the
REPZ MOVSD are setting up things to copy a region of memory from one
location to another.  The fact that the destination address  is FFBFE000h
(which  as we saw earlier is in the page directory)  is a tip-off that  the routine
is blasting  a new set of page table mappings  into the page directory.  Each
DWORD  it copies corresponds  to one of the  1024 possible page tables.

It's also interesting that the number of DWORDs moved isn't a hard-
coded number. Rather, the code loads ECX with the number of DWORDs
(page table mappings) each time. The effect of the second REPZ STOSD isn't
as obvious. It's comparing how many DWORDs were just copied with the
number of DWORDs copied the previous time ContextSwitch  was called. If
the number of DWORDs just copied is less than the previous time, there will
be extra page table entries for the previous memory context,  which the new
context shouldn't be allowed to see. Therefore,  if necessary, the REPZ STOSD
blast over these remaining page directory entries with a value indicating a
non-present  page table.

SoftIce/W helpfully put the label _ContextSwitch at the top of the code list-
ing. It turns out that the _ContextSwitch routine is one of the VMM services in
the VMM VxD.  Its address  appears  in the table  of VMM services that  are
pointed  to  by a field  in  VMM's  Device  Descriptor  Block.  So where  did
SoftIce/W  come  up  with  this  name?  See the  VMM.INC  file  from  the
Windows  95 DDK. Each line that starts with VMM_Service is  service routine
provided  by the VMM VxD.  Near the end of the list you'll  find the routine
_ContextSwitch.  Also  of interest  in  the  vicinity  of _ContextSwitch  in
VMM.INC  are the _PageModify  and _PageModifyPermissions  functions.

Having found the _ContextSwitch  routine  in VMM, we can see that
Windows  95 must be keeping a set of page mappings for each memory context,
as well  as a count  of the number  of pages.  As luck would  have it,  we can
verify this with the  SoftIce/W Addr command:
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In this list, the FREECELL, WINMINE,  MMTASK, and HEAPWALK
programs  are all Win 16 programs. Interestingly, even though Win 16 programs
can always see one another,  Windows  95 treats  them as separate  processes
and memory contexts.  However,  this is academic because the code and data
segments  in Win16 programs are always loaded in the shared memory areas
(0 -  4MB and above 2GB). Thus, Win16 programs can always see each other,
even though they technically  have different  address  contexts.

All the remaining processes in the ADDR list are either 32-bit or unknown.
The column labeled "Tables"  is misleading because it's the number of page
directory entries that make up the memory context.  Each page directory maps
1024 page tables, each of which maps a 4K region. Thus, each page directory
entry corresponds to 4MB of linear address space. Notice how the  16-bit pro-
grams use only two page table entries. This is because 16-bit programs have no
need for memory in the Win32 per-process data area (0x00400000 -
0x7FFFFFFF). Win32 processes, on the other hand, need separate page map-
pings for that entire range, even if most of the pages are marked not-present.

The  "handles"  for each memory context  looks  suspiciously  like a linear
address.  Let's dump out memory at the location given by a handle value.
For this test,  I arbitrarily chose the first context  (handle  COFE5D04 for
KERNEL32):

:dd  c0fe5d04

0030:C0FE5D04  C103C6F8  00000004  C0FD4D1C  C103C9B0  ......... M ......
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Hmmm...  We can easily match up the first and second DWORDs to the
SoftIce/W ADDR output. The first DWORD (C103C6F8) is what the ADDR
command reports for the PGTPTR (Page Table Pointer) value. The second
DWORD (00000004) matches up with the value in the Tables column. If you
go back and study the _ContextSwitch code, you can see that _ContextSwitch is
expecting a pointer to a data structure in the format we're seeing here: a pointer
to the page directory entries to copy, followed by the number of entries to copy.

The fourth DWORD found when dumping out our memory context
handle (in the preceding example,  C103C9B0) can also be found easily in
the ADDR output.  It happens to  be the context handle of the next context
in the ADDR list. (Further exploration confirms that the contexts  are kept
in a linked list.) What about the third DWORD (COFD4D1C)? It looks like
it could be a pointer, so let's dump it:

:dd  c0fd4d1C

0030:C0FD4D1C  00000400  0007FFFF  C0E0E310  C0E0E31C

Interesting!  If you multiply the first and second DWORDs by 0x1000
(the size of a page), you get the values that the ADDR command reports as
the minimum and maximum address for the memory context.  It looks like
we've found the core of Windows 95's context management.

If you're interested in digging deeper into Windows 95 memory contexts,
the DDK is indispensible.  Unlike the SDK documentation, the DDK doesn't
try to hide much from the programmer. The DDK says that memory contexts
are created  by _ContextCreate  in VMM.VXD  and destroyed  by
_ContextDestroy.  By writing VxD code, you can actually create, switch to,
and destroy your own memory contexts.  Of course, hooking things up so
that the rest of Windows 95 knows what you're doing is a bit more work!

Some other cool VMM functions to check out are _CopyPageTable and
_PageAttach.  _CopyPageTable lets you obtain the logical-to-physical  mappings
for a memory context without going into the page tables as I did in the
PHYS program.  The _PageAttach function documentation describes how
it's used to make memory in one context map to the same linear address in
another context.  This is the mechanism by which Windows 95 shares code
and data between multiple copies of a process.
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THE WINDOWS 95 MEMORY APIs

The Windows  95 memory management  functions  are  built in layers.  At
each level  (other than the  bottom layer),  the  functions  depend  on the
functions  in a lower  layer. I've come to think  of Windows  95's memory
management as consisting of four levels of code.  At the lowest  level, the
Virtual Machine  Manager  (VMM) provides  functions  for allocating
large  regions  of memory and manipulating  pages within those  regions.
Application programs don't call these APls directly. Rather, KERNEL32.DLL
uses the VMM memory functions  on behalf of the higher-level  memory
APl functions.

The next  layer  up contains the VirtualXXX functions provided  by
KERNEL32:  VirtualAlloc, VirtualFree, and VirtualProtect.  These functions
are implemented in terms of the lower-level VMM functions. The VirtualXXX
functions  provide applications with the capability to manage large regions
of memory on the page granular level.

Moving  up another  notch,  we come to the KERNEL32  HeapXXX
functions. The HeapXXX functions include HeapAlloc,  HeapFree,  and
HeapCreate.  They are roughly equivalent to  the C runtime library  mem-
ory functions  (malloc,  free, and so on).  In fact,  in the Windows NT SDK
runtime  library  DLL, malloc is just a wrapper  around  the HeapAlloc func-
tion.The  topmost layer of memory management  functions contains the
LocalXXX and GlobalXXX functions.  Unlike in Winl6  programs, the
LocalXXX and GlobalXXX functions are essentially  identical.  For
instance,  GlobalAlloc and LocalAlloc are the same function;  KERNEL32
exports  both functions  using the same address  in its code. The LocalXXX
and  GlobalXXX functions are really just a layer atop the lower-level
HeapXXX  functions. There's not much of a reason to keep GlobalAlloc
and  LocalAlloc  around  in Win32.  The memory functions no longer work
with  selectors  like the Win16  GlobalAlloc  does.  Nor  is memory allocated
out  of the application's data  segment as it is with the Win16 LocalAlloc.
The main reason why the GlobalXXX and LocalXXX functions are in
Win32  is to  ease existing Win16  applications to Win32.The  rest of this
chapter  is mostly an in-depth look at the Windows  95 Win32 memory
management  APl, divided into four layers. With the exception of the low-
est level of functions in the VMM VxD, I'll give pseudocode  for every
memory  management  function. In some cases, a Win32 function may not
be implemented  in Windows 95 or may just map to another  function.  I'll
note  these cases as well.
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THE VMM  FUNCTIONS

The lowest level memory management code in Windows 95 lies in VMM.VXD.
Within VMM are VxD functions that reserve, commit, decommit, and free
pages of the linear address space. VMM also contains VxD functions for
querying the status of pages, managing memory contexts, and installing
page fault handlers, and it provides heap functions for use by VxDs. Table
5-1 contains the DDK description for the majority of the VMM memory
management-related functions.

Table  5-1

DDK Descriptions of VMM Memory Management Functions

VMM Function Name  Purpose

_PageReserve  Reserves  a  range  of  linear  addresses  in  the  current context
without  allocating  any  physical  storage.

_PageFree  Frees  the  specified  memory  block.

_PageCommit  Commits  physical  pages  to  a  range  of  linear  addresses.

_PageDecommit  Decommits  physical  storage  from  a  specified  range  of
linear  addresses.

_PageAttach  Maps  a  range  of  linear  pages  in  the  current  memory  context  to
 the  same  physical  storage  that those  pages  are  mapped  to  in  a
specified  context  (the source  context).

_PageFlush  Writes  a  range  of  committed  pages  to  the  backing  file  by  calling
 the  appropriate  pager  function.  This  service  does  not  mark  the
pages  as  not-present.

_PageModilyPermissions  Modifies  the  permissions  for  pages  in  the  specified  range.

_PageQuery  Retrieves  information  about  a  range  of  virtual  pages.  The
information  is  in  the  same  format  that VirtualQuery  returns.

_PagerRegister  Informs  the  system  of  a  new  type  of  pager.

_PagerQuery  Retrieves  information  about  a  registered  pager.

_ContextCreate  Creates  a  new  memory  context.  The  tasking  and  scheduling
components  of  Windows  95  use  this service  to  create  a  private
linear  address  space  for  a  new  W i n 3 2  application.

_ContextDestroy  Destroys  a  memory  context  created  by  the  _ContextCreate
service.

_ContextSwitch  Changes  the  current memory  context.  The  current memory  context
 determines  the  mapping  of  pages  in  the  private  arena.

_GetCurrentContext  Determines  the  current  memory  context.

_HeapAJJocate  Allocates  a  block  of  memory  from  the  system  heap.

_HeapReAIIocate  Reallocates  or  reinitializes  a  memory  block  in  the  system  heap.

_HeapFree  Frees  an  existing  memory  block  in  the  system  heap.
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If you're  familiar with VxDs,  you're probably thinking that this table  of
VMM memory-related  functions  is nice,  but what  does it have to do with
ring  3 application  code? After all,  regular  ring 3 programs can't just call any
VxD function that  happens to come along.  I've shown Table  5-1  for a good
reason:  Each of the functions  is callable  by ring 3 applications,  just not
directly.

It turns  out that the Windows  95 coders  felt that this  set of functions
was vital to  KERNEL32.DLL.  As such,  they implemented  Win32 VxD ser-
vices for each of the functions.  Win32 VxD services are a new mechanism  in
Windows  95 that  allows ring 3 application  code to call into VxDs using a
C-style  calling convention  (no registers  need apply). They  are  not  related to
Windows NT services,  which  are really  just special-purpose  processes.

Chapter  6 describes  Windows  95 Win32  VxD services in more detail.
Here,  it's  sufficient to know that  each Win32  VxD service provided  by a
VxD such as VMM  is identified  by a unique  number.  The high WORD  is
the VxD device ID, and the low WORD  is an index into the device's Win32
VxD  service  table.  Figure  5-6  shows the Win32  VxD  service  IDs for  the
VMM functions listed in Table 5-1.  Chapter  6 describes Win32 VxD services,
and  has a more complete  list of service IDs.

0x00010000
0x00010001
0x00010002
0x00010003
0x00010004
0x00010005
0x00010006

_PageReserve
_PageCommit
_PageDecommit
_PagerRegister
_PagerQuery
_HeapAllocate
_ContextCreate

0x00010007 _ContextDestroy
0x00010008 _PageAttach
0x00010009 _PageFlush
0x0001000A _PageFree
0x0001000B  _ContextSwitch
0x0001000C _HeapReAllocate
0x0001000D _PageModifyPermissions
0x0001000E  _PageQuery
0x0001000F _GetCurrentContext
0x00010010 _HeapFree

 Figure  5-6
VMM's  Win32  VxD service IDs for calling ring 0  VMM  functions.
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To call one of these VMM functions through a Win32 service, KERNEL32
simply pushes the arguments on the stack,  followed  by the Win32  VxD ser-
vice number.  It then calls the VxDCall  function  (referred  to as VxDCall0  in
Unauthorized  Windows 95).  For example,  the _PageReserve  function in
VMM.VXD is prototyped  like this:

ULONG  EXTERNAL  _PageReserve(ULONG  page,  ULONG  npages,  ULONG  flags);

The following  KERNEL32  loader code shows how _PageReserve  would
be called from ring 3:

BFFAOOA6:  PUSH  10  ;;  PR  STATIC  from  VMM.INC

BFFAOOA8:  MOV  EAX,DWORD  PTR  [EBP  000000F4]

BFFAOOAE:  ADD  EAX,OOOOOFFF

BFFAOOB3:  SHR  EAX,OC  ;;  Round  up  to  4K  boundary

BFFAOOB6:  PUSH  EAX

BFFAOOB7:  PUSH  80000400  ;;  PR  PRIVATE  from  VMM.INC

BFFAOOBC:  PUSH  00010000 ;;  VWIN32  call  00010000  : _PageReserve

BFFA00Cl:  CALL  VxDCallO

I haven't provided pseudocode for these VMM functions,  as I did for
the higher-level  memory management APIs. Application  programs  don't  call
them directly.  Instead,  think of them as the fundamental  building  blocks
that  the ring 3 memory management functions  are built upon.  I've listed
them here  because  some readers  don't  have the Windows  95 DDK,  which
lists and  describes  these functions.  I also didn't  want to  ignore them entirely,
and handwave over the VxD functions  in the following  sections.

THE WIN32 VIRTUAL FUNCTIONS

At the lowest level of memory management in the Win32 API, you'll  find the
virtual functions  (such as VirtualAlloc  and VirtualProtect). The virtual func-
tions are for allocating and managing memory in large chunks.  In Windows
95,  the granularity  of the virtual functions is 4KB, making them unsuitable
for replacing malloc and new in the C/C++ runtime library.  For the most
part,  the virtual functions  are a thin layer over the VMM functions.  You'll
see this momentarily  when I present pseudocode  for the virtual functions.
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The closest equivalent to the virtual functions in Win16  is the global heap
functions  (for instance,  GlobalAlloc).  Both the Win16 global heap functions
and the Win32 virtual functions let you allocate vast regions of memory that
you manage however you want.  Unlike the global heap functions, though,  the
virtual  functions don't  use selectors to reference memory.  Instead, the virtual
functions  deal with memory in 4KB chunks and don't  use selectors.  Also, the
Win16  global heap functions let you allocate memory regions as small  as
20h  bytes.

VirtualAlloc
VirtualAlloc  is several functions in one. At any given time, the VMM memory
manager considers each page of linear memory to  be either free, reserved, or
committed.  The VirtualAlloc function enables you to change the state of a
range  of pages in one direction  (from free toward committed).  VirtualAlloc
can change pages from free to reserved,  or from free to committed.  In addition,
it can change previously reserved pages to the committed state.

The last state change - - from reserved to committed - - is particularly
valuable  for implementing sparse  memory and stacks.  In this scenario,  a
program  first uses VirtualAlloc to reserve a block of memory sufficiently
large to  meet any demands made on the program.  The program then sets up
a structured exception handler that looks for page faults in the reserved mem-
ory range.  As these page faults occur, the program calls VirtualAlloc a second
time.  This time, the VirtualAlloc call changes the page that caused the fault
from the reserved state to the committed  state. In this way, a program can
"allocate"  huge amounts  of memory without  requiring physical RAM to
back  it up at the time of the allocation.  Only the memory pages that end up
being touched have physical RAM mapped to them.

Normally, VirtualAlloc  is used by the operating system and programs to
allocate  memory in the application's  address  space  (that is,  below 2GB).
However,  VirtualAlloc  has an undocumented  flag  (0x8000000)  that  allows
it to  grab regions  of memory above 2GB. Memory  above 2GB is shared  by
all  applications,  so this  is an  undocumented  method  of sharing  memory
across  processes.  You can do the same thing with the documented  memory
mapped  file functions.  In fact,  from a cursory  examination,  it appears  that
the address  range used for memory mapped  files is equivalent  to  what
VirtualAlloc  returns  with  the 0x8000000  flag.

The Win32 VirtualAlloc rounds down to the nearest 64K boundary when
reserving  memory. Indeed,  memory blocks allocated from VirtualAlloc  always
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appear  to  be aligned.  However, VirtualAlloc's  code doesn't  do this rounding.
Instead,  the rounding occurs in the _PageReserve function used by VirtualAlloc.

VirtualAlloc  begins by checking whether the requested memory range is too
large. Too large in this context means 2GB to 4MB. This is the size of the linear
address  reserved for per-application  memory. VirtualAlloc then calculates the
number of pages needed to span the memory region. When determining how
many pages are needed, VirtualAlloc rounds the starting address down to the
nearest 4KB and the ending address up to the next 4KB. Thus, if you request a
2-byte region that covers the last byte of one page and the first byte of the next,
VirtualAlloc  will try to reserve two pages.

Next  up for VirtualAlloc  is to  handle the various  flags it was passed in
the fdwProtect  parameter.  First,  the code looks  for the undocumented
0x8000000  flag, which tells it to  allocate  the memory in the shared region
above 2GB. VirtualAlloc  ignores  the MEM_TOP  DOWN  flag, and turns it
off if passed.  Afterward,  the function tests to  see whether  you passed only
the MEM_COMMIT  or MEM_RESERVED flag. Any bits  besides those two
flags trigger a debug version warning. Finally, the code calls the mmPAGEToPC
function,  which is a helper function (described in the next section) that converts
the fdwProtect  parameter  flags to  the flags  used  by VMM's _PageReserve.

At this point in the code, the function splits into two pieces. One section
executes if the user doesn't care at which address the memory is reserved.  The
other section handles the case where the user specified a specific address to
reserve  or commit to. In either case, if memory is to be reserved,  VirtualAlloc
calls Win32 service 00010000, which is a wrapper around the VMM
_PageReserve  function. After reserving the memory (if necessary),  and if the
caller specified the MEM_COMMIT  flag, VirtualAlloc  calls Win32 service
00010001,  which is a wrapper around VMM's _PageCommit routine.  If the
caller specified a specific address to commit memory to, VirtualAlloc  checks to
make sure the address is below 0xC0000000,  which is the start of VxD land.

Throughout  all this code, VirtualAlloc  conscientiously checks the return
values  from _PageReserve  and _PageCommit.  If anything  fails, the code emits
a debugging diagnostic, then falls through to a single exit point. This exit point
executes  only in the failure case, and frees the pages previously reserved.

Pseudocode for VirtualAlloc
// Parameters:          note from remo: sorry for the ugly places of the brackets:

//  LPVOID  lpvAddress                     PageGenie2000 lost most of them due to a bug and with

//  DWORD  cbSize                         Acrobat 3 you simply can't put them where you want.

//  DWORD  fdwAllocationType

//  DWORD  fdwProtect
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//  Locals:

//  DWORD  address,  startPage

//  OWORD  sizeInPages;

//  DWORD  pcFlags;

//  BOOL  fReserve;

//  Returned  from  mmPAGEToPC

if  (  cbSize  >  0x7F000000  ) { //  2GB - 4MB

_DebugOut(  "VirtualAlloc:  dwSize  too  bigXnXr",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

return  0;
}

address  =  lpvAddress;

//  Calculate  how  many  pages  will  be  spanned  by  this  memory  request.

sizeInPages  =  lpvAddress  &  OxOOOOOFFF;

sizeInPages  +=  cbSize;

sizeInPages  +=  OxOOOOOFFF;

sizeInPages  =  sizeInPages  >>  12;

startPage  =  PR_PRIVATE;  //  0x80000400h  from  VMM.INC  This  value  can

//  be  either  an  actual  page  number  or  a  PR_  equate.

if  (  fdwAllocationType  &  0x8000000)

{

startPage  =  PR_SHARED;

fdwAllocationType  &=  ~0x8000000;}

//  Undocumented  shared  mem  flag.

//  0x80060000  in  VMM.INC.

//  Don't  need  this  flag  anymore.

fdwAllocationType  &: ~MEM_TOP_DOWN;  //  Ignore  the  MEM_TOP_DOWN  flag.

//  You  can  specify  MEM_COMMIT  and/or  MEM_RESERVE,  but  no  other  flags

//  (the  undocumented  one  above  notwithstanding).

if  (  (fdwAllocationType  != MEM_COMMIT)

&&  (fdwAllocationType  != MEM_RESERVE)

&&  (fdwAllocationType  !=  (MEM_RESERVE  | MEM_COMMIT))  )

{

_DebugOut(  "VirtualAlloc:  bad  flAllocationTypeNnNr"

SLE_WARNING  +  FStopOnRing3MemoryError  )

InternalSetLastError(  ERROR INVALID PARAMETER  );

return  0; }

//  Convert  the  fdwProtect  flags  into  the  PC

//  VMM.VXD.  Pseudocode  follows  this  function.

pcFlags  = mmPAGEToPC(fdwProtect);

flag  values  used  by
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if  (  pcFlags  ==  -1  )

return  0;

//  Something  wrong?

if  (  lpvAddress  ==  0  )  //  Don't  care  where  the  memory  is  allocated.

{

//  Reserve  the  memory  block,  startPage  should  be  either

//  PR_PRIVATE  or  PR_SHARED.

lpvAddress  =  VxDCall(  _PageReserve,  startPage,  sizeInPages,  pcFlags  );

if  (  lpvAddress  ==  -1  )  {

_DebugOut(  "VirtualAlloc:  reserve  failed\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

return  0; }

//  If  caller  is  just  reserving,  we're  finished.

if  (  !(fdwAllocationType  & MEM_COMMIT)

return  lpvAddress;

//  Caller  has  specified  MEM_COMMIT.

if  (  VxDCall(_PageCommit,lpvAddress>>12

return  lpvAddress;  //  Success!

sizeInPages,  1,  0,  pcFlags))

//  Oops.  Something  went  wrong.  Tell  the  user,  then  fall  through

//  to  the  code  to  free  the  pages.

_DebugOut(  "VirtualAlloc:  commit  failed\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

}  else  {      //  Caller  specified  a  particular  address  to  allocate/commit  at.

if ( address  >  OxBFFFFFFF  )  {

_DebugOut(  "VirtualAlloc:  bad  base  address\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_ADDRESS  );

return  0;  }

fReserve  =  fdwAllocationType  &  MEM_RESERVE;

if  (  fReserve  )  {

//  Call  VMM  _PageReserve  to  allocate  the  memory.  Note  that

//  the  caller-specified  lpvAddress  is  rounded  down  to  the



//  nearest  4KB  page.  Note  that  it's  not  down  to  64KB  like

//  the  doc  says.  However,  PageReserve  still  rounds  it  down.

lpvAddress=VxDCall(_PageReserve,address>>12,  sizeInPages  pcFlags)

if  (  lpvAddress  ==  -1)   { 

_DebugOut(  "VirtualAlloc:  reserve  failed\n",

SLE_WARNING  +  FStopOnRing3MemoryError  )

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

return 0;  }

//  Hmmm...It  turns  out  that  KERNEL32  will  complain  if you

//  didn't  specify  an  address  aligned  on  a  64KB  boundary!

if  (  lpvAddress  !=  (address  &  0xFFFF0000)  )

_DebugOut("VirtualAlloc:  reserve  in  wrong  place  1\n\r",

SLE_ERROR);

}  if  (  !(fdwAllocationType  & MEM_COMMIT)

return  lpvAddress;

lpvAddress  &=  OxFFFFF000;

if  (  VxDCall(  PageCommit,lpvAddress>>12,  sizeInPages,  1  0,  pcFlags)

return  lpvAddress;

else
{

_DebugOut(  "VirtualAlloc:  commit  failed\n",

SLE_WARNING  +  FStopOnRing3MemoryError  )

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

if  (  !fReserve  )

return  0;  }

//  Unreserve  the  memory  allocated  earlier.

}  VxDCall(  PageFree,  lpvAddress  &  OxFFFF0000,  0  );

return_0:

lpvAddress  =  0;

return_lpvAddress:

return  lpvAddress;
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mmPAGEToPC
The mmPageToPC function is used by VirtualAlloc,  VirtualProtectEx,  and,
by extension,  VirtualProtect.  The function converts  the PAGE_ flags from
WINNNT. H (such as PAGE  READONLY) into the equivalent PC_ flags.
The PC_ (Page Commit)  flags are defined in VMM.INC,  and are used with
VMM's _PageCommit function.

One of the flags used by Windows 95 indicates  that a particular page is
a guard page. When the operating system receives a page fault when accessing
a guard pages, the operating system needs to commit additional  memory at
the bottom of the stack to  allow the stack to  grow downward.  However,
you  apparently  can't  request  a guard page with VirtualAlloc,  because
mmPageToPC  filters out the PAGEGUARD  bit. The function also ignores
the PAGE_NOCACHE flag by turning  it off. The  bulk of mmPageToPC is
a  simple  mapping  of the  various  PAGE_ flags.  In  all cases  except  for
PAGE_NOACCESS, the converted flags contain the PC_USER bit, which
means the page will be accessible by ring 3 (user level) code. If the page should
be writeable, the PC_WRITEABLE flag is OR'ed into the returned flags. Put
another way, with the exception of PAGE_NOACCESS, all the PAGE_ flags
map to PC_USER or PC_USERIPC_WRITEABLE. Any bits other than those
corresponding  to the PAGE_ flags cause mmPageToPC to complain in the
debug version and cause the VirtualAlloc or VirtualProtect(Ex) call to fail.

Pseudocode for mmPAGEToPC

//  Parameters:

//  DWORD  PAGE_flags;

//  Locals:

//  DWORD  retValue;

if ( PAGE_flags & PAGE_GUARD )  {

_DebugOut(  "mmPAGEToPC:  PAGE_GUARD  flag  not  supported\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_CALL_NOT_IMPLEMENTED  );

return  -1;  }

PAGE_flags  &=  ~PAGE_NOCACHE;

if  (  PAGE_flags  ==  PAGE_NOACCESS  )

return  0;

//  Turn  off  the  PAGE_NOCACHE  flag.
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if  (  PAGE _flags  ==  PAGE _READONLY  )

return  PC_USER;

if  (  PAGE_flags  = = PAGE_READWRITE  )

return PC_USER | PC_WRITEABLE;

if  (  PAGE _flags  ==  PAGE _EXECUTE  )

return  P C _ U S E R ;

if  (  PAGE _flags  ==  PAGE_EXECUTE _READ  )

return  PC _USER;

if  (  PAGE_flags  == PAGE_EXECUTE_READWRITE  )

return  PC_USER  | PC _WRITEABLE;

if (  PAGE flags == PAGE_EXECUTE_WRITECOPY )

return  PC _USER;

DebugOut(  "mmPAGEToPC:  extra  fdwProtect  flags\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR _INVALID _ PARAMETER  );

return  -1;

VirtualFree
VirtualFree  performs the mirror image functionality  of VirtualAlloc.  (No
kidding.  Really?) It can change pages from committed to reserved, commited
to free, or reserved to free. The first portion of VirtualAlloc checks to ensure
that it was passed valid address and size parameters. The address must be
below 3GB, and the size must be smaller than the value 2GB minus 4MB
(the size of the private application  area).

You can pass either the MEM  RELEASE or MEM_DECOMMIT  flag
to VirtualFree, but not both.  MEM_RELEASE causes VirtualFree to call
VMM's _PageFree function to decommit  (if necessary) and unreserve the
entire range of pages. In this mode, you must pass 0 as the size, which causes
_PageFree to free the entire block allocated earlier through VirtualAlloc.
Passing MEM_DECOMMIT makes VirtualFree call VMM's _PageDecommit
to decommit the specified block of pages.
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Pseudocode  for VirtualFree

//  Parameters:

//  LPVOID  lpvAddress

//  DWORD  cbSize

//  DWORD  fdwFreeType

//  Locals:

//  DWORD  decommitPageSize

//  Is  range  to  free  bigger  than  2GB-4MB?  Fail  if  so.

if  (  cbSize  >  Ox7FC00000  ) {

_DebugOut(  "VirtualFree:  dwSize  too  big\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_ADDRESS  );

return  0;  }

//  Are  pages  in  VxD  land?  If  so,  something's  wrong.

if ( lpvAddress  >  OxBFFFFFFF  )  {

_DebugOut(  "VirtualFree:  bad  base  address\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_ADDRESS  );

return  0;  }

i f  ( f d w F r e e T y p e  ==  M E M _ R E L E A S E  )  {

if ( cbSize  != 0  ) {

_DebugOut(  "VirtualFree:  dwSize  must  be  0  for  MEM_RELEASE\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

return  0;  }

//  Unreserve  the  range  of  memory.

return  VxDCall(  _PageFree,  lpvAddress,  0  );

if  ( f d w F r e e T y p e  ==  M E M _ D E C O M M I T  )  {

if  (  cbSize  ==  0  )  {
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return  1;

_DebugOut( "VirtualFree:  dwSize  ==  0  not  allowed  with MEM_DECOMMIT\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

//  Calculate  how  many  pages  will  be  affected.

}  decommitPageSize  =  lpvAddress  &  OxOOOOSFFF;

decommitPageSize  +=  cbSize;

decommitPageSize  +=  0x00000FFF;

decommitPageSize  = decommitPageSize  >>  12;

return  VxDCall(  _PageDecommit,  lpvAddress  >>  12,  decommit?ageSize,  0);

}  _DebugOut(  "VirtualFree:  bad  dwFreeType\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  )

return  0;

VirtualQueryEx
VirtualQueryEx is perhaps one of the niftiest  functions  in Windows 95.  It
provides a wealth  of information about the type of memory at a particular
address. For instance, given an arbitrary address in a process's address
space, VirtualQueryEx can tell you which EXE or DLL owns that memory.
VirtualQueryEx is at the heart of the Windows NT PWALK program,
which shows a memory layout map for a given process.

VirtualQueryEx  wasn't originally slated to be in the Windows 95 Win32
subset.  This came as a shock to developers of system-level programming tools
such as debuggers.  Luckily, the Windows 95 developers took heart, perhaps in
part due to persistent whining by yours truly and others, and included
VirtualQueryEx  in the Windows 95 APl.

VirtualQueryEx fills in a MEMORY_BASIC_INFORMATION structure
with information about a particular address. The structure looks  like this:

PVOID  BaseAddress;

PVOID  AllocationBase;

DWORD  AllocationProtect;

DWORD  RegionSize;

DWORD  State;

DWORD  Protect

DWORD  Type;
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The fields of this structure  are described in the Win32 documentation.
However,  one field requires further explanation here. The AllocationBase
field sounds pretty  dry, but it's usually the most important field of the lot.
Technically, it contains the base address of the original memory range allo-
cated  by VirtualAlloc.  More importantly,  when the lpvAddress parameter to
VirtualQueryEx falls anywhere within an EXE or a DLL module, AllocationBase
is the base address of the EXE or DLL. That is, AllocationBase is the same
as the EXE or DLL's HMODULE/HINSTANCE.  The PWALK program
from the NT SDK uses this bit of knowledge to walk the address space of a
process and label the various regions with the name of their owning EXE or
DLL. Debuggers can use this capability to figure out which EXE or DLL is
associated with a fault address.

VirtualQueryEx is essentially just a call to VWIN32.VXD's Win32 service
40h (VxDCall 0002A0040). This service in turn calls the VMM _PageQuery
function.  In the DDK, _PageQuery is described as taking a parameter to a
MEMORY_BASIC_INFORMATION  structure. Perhaps to prevent an inop-
portune thread switch from returning inconsistent  values in the MEMORY_
BASIC_INFORMATION  structure, VirtualQueryEx grabs the Krn32Mutex
upon entry and releases the mutex on exit. It does this with the undocumented
KERNEL32 _EnterSysLevel and _LeaveSysLevel functions.

The VWIN32 service 43h, which fills the MEMORY_BASIC_INFOR-
MATION structure,  is more than just a wrapper around a _PageQuery call.
At this writing,  I can't tell exactly what it's doing. However, it appears that
this wrapper code needs to know the address of the ring 0 stack for the cur-
rent thread in the process that's being queried.  Therefore,  before calling the
VWIN32 service, VirtualQueryEx uses the hProcess parameter to get a pointer
to the process structure  (see the section titled  "The Process Database"  in
Chapter  6). From there, VirtualQueryEx extracts the thread database  of the
process's current thread to pass to the VWIN32 service. Interestingly,  in
several step-throughs  of VWIN32 service 43h, I never found a case where
the code did anything other than call _pageQuery.

Pseudocode  for VirtualQueryEx

//  Parameters:

//  HANDLE  hProcess;

//  LPCVOID  lpvAddress;  //  Address  of  region.

//  PMEMORY_BASIC_INFORMATION  pmbiBuffer;  //  Address  of  information  buffer.

//  DWORD  cbLength;  //  Size  of  buffer.

//  Locals:

//  DWORD  pProcess:  //  Pointer  to  process  structure.

//  DWORD  ptdb;  //  Per  thread  database.

//  DWORD  retValue:
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//  Function  that  emits  function  names  and  parameters  to  the  KERNEL

//  debugger  if  a  KERNEL32  global  variable  is  TRUE  (off  by  default).

x_LogKernelFunction(  number  indicating  the  VirtualQueryEx  function  );

_EnterSysLevel(  Krn32Mutex  );

retValue  =  0;

pProcess  =  x_GetObject(  hProcess,  0x80000010,  0  );

if  (  pProcess  )

{

if  (  ppCurrentProcessId  ==  pProcess  )

ptdb  =  ppCurrentThreadId;

else

ptdb  =  SomeFunction(  pProcess->threadList,  0  );

if  (  ptdb  &&  (lpvAddress  <  OxC0000000)  )

//  Call  into  the  VWIN32  VxD  to  do  the  real  work.

//  VWIN32  ultimately  calls  the  VMM  PageQuery  function.

retValue  =  VxDCall(  OxOO2A0040,  ptdb->ringO  hThread,

lpvAddress,  pmbiBufer,  cbLength  );

x_UnuseObjectSafeWrapper(  pProcess );

}  _LeaveSysLevel(  Krn32Mutex  );

return  retValue;

VirtualQuery and IVirtualQuery
The VirtualQuery  function  is just a special case of the VirtualQueryEx  function.
VirtualQuery  retrieves  information  about a specific  addresss in the current
process  context, whereas VirtualQueryEx works  on any process.

The VirtualQuery  code  does  almost  nothing  of value;  it's just a parameter
validation  layer.  VirtualQuery's  code  merely  checks  that  a  pointer  to  a
buffer  large  enough  to  hold  a  MEMORY_BASIC_INFORMATION  was
passed  in.  Assuming  the  test  succeeds,  VirtualQuery  jumps  to  the  start of
the  IVirtualQuery  code.  VirtualQuery's  validation  of  the  parameters  before
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jumping  to  an  internal  routine  that  does  the  real  work  is  typical  of  many
functions  in  the  system  DLLs  (for  instance,  VirtualProtect,  described  later).

Other  than  some  logging  code  in  the  debug  version,  IVirtualQuery is
nothing  more  than  a call  to  VirtualQueryEx  with  the  current  process's
pseudohandle  as  the  first  parameter.  Note  that  in Windows  95,
IVirtualQuery  calls  VirtualQueryEx.  Contrast  this  to  Win32s,  where
VirtualQueryEx  is  just  a call  to  VirtualQuery.  The  key  difference  is  that  all
processes  share  the  same  address  space  in Win32s,  so  VirtualQuery  should
be  equivalent  to  VirtualQueryEx.

Pseudocode  for VirtualQuery

//  Parameters:

//  LPCVOID  lpvAddress;  //  Address  of  region.

//  PMEMORY_BASIC_INFORMATION  pmbiBuffer;  //  Address  of  information  buffer.

//  DWORD  cbLength;  //  Size  of  buffer.

Set  up  structured  exception  handler  frame

//  Make  sure  that  the  beginning  and  end  of  the  MEMORY  BASIC  INFORMATION

//  structure  is  acccessible.

*(PBYTE)pmbiBuffer  +=  0;

*(PBYTE)(pmbiBuffer+0x1B)  +=  O;

Remove  structured  exception  handler  frame

goto  IVirtualQuery;

Pseudocode  for IVirtualQuery

//  Parameters:

//  LPCVOIO  lpvAddress;  //  Address  of  region.

//  PMEMORY_BASIC_INFORMATION  pmbiBuffer;  //  Address  of  information  buffer.

//  DWORD  cbLength;  //  Size  of  buffer.

//  Function  that  emits  function  names  and  parameters  to  the  KERNEL

//  debugger  if  a  KERNEL32  global  variable  is  TRUE  (off  by  default).

x_LogKernelFunction(  number  indicating  the  VirtualQuery  function  );

//  Let  VirtualQueryEx  do  the  real  work.  Ox7FFFFFFF  is  the  process

//  pseudohandle  that  GetCurrentProcess()  would  return.

return  VirtualQueryEx(  0x7FFFFFFF,  lpvAddress,  pmbiBuffer,  cbLength  );
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VirtualProtectEx
The VirtualProtectEx  function changes  the access  protection  of a committed
page  or range of pages.  It  acts on any process  for which you have a process
handle.  The key difference  between VirtualProtectEx  and VirtualAlloc  is
that  VirtualProtectEx  assumes you've  already committed  the pages that
you're  changing access  to.  VirtualAlloc,  on the other  hand,  allows you to
allocate,  commit,  and specify the access of a page or  pages  in one shot.

VirtualProtectEx's  code is straightforward.  Just as with  the other virtual
functions I've described,  it starts  out with  some error  checking.  The code
verifies  that  the range to  be modified is less than 2GB minus 4MB, and that
the starting  address  is below 0xC0000000.  The heart  of VirtualProtectEx  is
the call to VWIN32  service 0x3E  This service ultimately  calls VMM.VXD's
_PageModifyPermission  service.  As in VirtualQueryEx,  the VWIN32  call
for  some reason expects  a pointer to  the ring  0 stack  of the current  thread
for the  specified process.  There's  a chunk  of code for determining this ring 0
stack  that's  identical  to  what  we found  in VirtualQueryEx.  Also as with
VirtualQueryEx,  VirtualProtectEx  grabs  and  holds  on  to  the Krn32Mutex
during the VWIN32 call.

The VWIN32  service 0x3F call returns  the previous  state  of the altered
pages  when  the call  succeeds.  However,  the state  is given in terms  of VMM's
PC_ flags,  rather  than  the PAGE_ style flags that  the caller expects.
VirtualProtectEx  therefore  does a quick conversion.  Finally,  if the caller
specified a pointer to  store  the old page attributes,  the code copies the
PAGE_ flags to  that  location.

Pseudocode for VirtualProtectEx

//  Parameters:

//  HANDLE  hProcess:

//  LPVOID  lpvAddress;

//  DWORD  cbSize;

//  DWORD  fdwNewProtect;

//  PDWORD  pfdwOldProtect;

//  Locals:

//  DWORD  pcPlags;

//  DWORD  pProcess,  ptdb;

//  DWORD  oldProtectFlags

//  Address  of  region  of  committed  pages.

//  Size  of  the  region.

//  Desired  access  protection.

//  Address  of  variable  to  get  old  protection.

//  Returned  from  mmPAGEToPC.

//  Function  that  emits  function  names  and  parameters  to  the  KERNEL

//  debugger  if  a  KERNEL32  global  variable  is  TRUE  (off  by  default).

x_LogKernelFunction(  number  indicating  the  VirtualProtectEx  function  );
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if  (  cbSize  >  0x7FC00000  )

{

_DebugOut(  "VirtualProtect:  dwSize  too  big\n\r",

SLE _WARNING  +  FStopOnRing3MemoryError );

InternalSetLastError(  ERROR _INVALID _ADDRESS  );

return  0; 

}  if  (  lpvAddress  >  OxBFFFFFFF  )  {

_DebugOut(  "VirtualProtect:  bad  base  address\n\r",

SLE _WARNING  +  FStopOnRingBMemoryError );

InternalSetLastError(  ERROR _INVALID _ADDRESS  );

return  0;

}  pcFlags  =  mmPAGEtoPC(  fdwNewProtect  );

if  (  pcFlags  == -1  )

return  O;

//  Were  invalid  flags  passed?

_EnterSysLevel(  Krn32Mutex  );

pProcess  =  x_GetObject(  hProcess  0x80000010,  0  );

if  (  !pProcess  )  {

LeaveSysLevel(  Krn32Mutex  )

_DebugOut(  "VirtualProtectEx  Invalid  process  handle\n",

SLE  WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER);

return  0;

}  if (  pProcess  ==  ppCurrentProcessId  )

ptdb  =  ppCurrentThreadId;

else

ptdb  =  SomeFunction(  pProcess->threadList,  0  );

if  (  ptdb  &&  (lpvAddress  <  0xC0000000)  )

{

//  Call  into  the  VWIN32  VxD  to  do  the  real  work  The  VWIN32

//  service  calls  VMM's  PageModifyPermissions,

oldProtectFlags  =  VxDCall(  OxOO2AOO3F,  ptdb->ring0_hThread,

lpvAddress,  cbSize,  0,  pcFlags  )

}  else

{
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oldProtectFlags  =  some  uninitialized  local  variable;  //  ???

}  x_UnuseObjectSafeWrapper(  pProcess  );

_LeaveSysLevel(  Krn32Mutex  );

if  (  oldProtectFlags  ==  -1  )  {

_LeaveSysLevel(  Krn32Mutex  );

_DebugOut(  "VirtualProtect:  ModifyPagePermission  failed\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

return  O;

//  This  section  is  sort  of  a  quick  and-dirty  "PCPAGETomm".  It  converts

//  the  PC  flags  returned  by  the  VWIN32  service  into  MEM  flags.

}  if  (  oldProtectFlags  &  PC_USER  )  //  PC_USER  flag  set

if  (  oldProtectFlags  &  PC_WRITEABLE  )

oldProtectFlags  =  PAGE_READWRITE;

else

oldProtectFlags  =  PAGE_READONLY;

}  else  //  PC_USER  flag  not  set

oldProtectFlags  =  PAGE_NOACCESS;

//  If  the  caller  specified  a  pointer  to  a  DWORD  as  the  last  param,

//  fill  it  in  with  the  old  flag's  value.

if  (  pfdwOldProtect  )

*pfdwOldProtect  =  oldProtectFlags;

VirtualProtect  and IVirtualProtect
VirtualProtect  is  a simplified  version  of VirtualProtectEx  that works with  only
the  current  process.  The VirtualProtect  code  is just the validation  layer, with
the real code  in IVirtualProtect.  The only validation  performed in VirtualProtect
(as opposed  to  the checks  in VirtualProtectEx)  is to  determine  whether  the
pfdwOldProtect  pointer  is either a valid  DWORD  pointer  or  0.

The  IVirtualProtect  code  is just  a  wrapper  around  a call  to  Virtual-
ProtectEx.  The  hProcess  it passes  is  the  pseudohandle  that  represents  the
current  process  (0x7FFFFFFF).  In the  debug  version,  IVirtualProtect  also
calls  a  function  that  logs  certain  API  calls  to  the  debug  terminal.
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Pseudocode  for VirtualProtect

//  Parameters:

//  LPVOID  lpvAddress:  //  Address  of  region  of  committed  pages.

//  DWORD  cbSize;  //  Size  of  the  region.

//  DWORD  fdwNewProtect;  //  Desired  access  protection,

//  PDWORD  pfdwOldProtect;  //  Address  of  variable  to  get  old  protection.

Set  up  structured  exception  handler  frame

//  If  nonzero,  verify  that  the  pointer  to  DWORD  where  the  previous

//  protection  flags  will  be  stored  is  valid.

if  (  pfdwOldProcect  )

EAX  =  *pfdwOldProtect;

Remove  structured  exception  handler  frame

goto  IVirtualProtect;

Pseudocode  for IVrtualProtect

//  Parameters:

//  LPVOID  lpvAddress;  //  Address  of  region  of  committed  pages.

//  DWORD  cbSize;  //  Size  of  the  region.

//  DWORD  fdwNewProtect;  //  Desired  access  protection.

//  PDWORD  pfdwOldProtect;  //  Address  of  variable  to  get  old  protection

//  Function  that  emits  function  names  and  parameters  to  the  KERNEL

//  debugger  if  a  KERNEL32  global  variable  is  TRUE  (off  by  default).

x_LogKernelFunction(  number  indicating  the  VirtualProtect  function

//  Let  VirtualProtectEx  do  the  real  work.  Ox7FFFFFFF  is  the  value  that

//  GetCurrentProcess()  would  return.

return  VirtualProtectEx(  Ox7FFFFFFF,  lpvAddress,  cbSize,  fdwNewProtect,

pfdwOldProtect  );

VirtualLock  and  VirtualUnlock
The VirtualLock  and VirtualUnlock  functions  aren't implemented in
Windows  95. In Win32 platforms that do support them (that is, Windows
NT), they allow a process to pagelock a range of pages. The system guarantees
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that  physical  RAM will  always be assigned to  those  pages.  This  is useful
for  situations  where you can't  afford  a page  fault  (such as a time-critical
device driver).

In Windows  95, both VirtualLock  and VirtualUnlock  jump to the
CommonUnimpStub  code.  CommonUnimpStub  is a short  section of code
that  all unimplemented Win32 APIs are supposed  to go through.  The effect
of CommonUnimpStub  is twofold.  First,  in the debug version, KERNEL32
emits a diagnostic  to the debug terminal.  For instance:

***  Unimplemented  Win32  API:  VirtualLock

The second thing CommonUnimpStub  does is to clear the appropriate
number  of parameters  off the stack.  In the case  of VirtualLock/Unlock,  it's
8 bytes. Because CommonUnimpStub  handles APIs that have various numbers
of parameters,  the number  of bytes to  be popped  off needs to  be given to
CommonUnimpStub.  This  is accomplished  through  a value placed in the CL
register. The value placed in CL is a bitfield encoding, rather than the number
of bytes to pop  off.

Pseudocode  for VirtualLock

EAX  =  "VirtualLock"

CL  =  12

JMP  CommonUnimpStub

Pseudocode for VirtualUnlock

EAX  =  "VirtualUnlock"

CL  =  12

JMP  CommonUnimpStub

THE WIN32 HEAP FUNCTIONS

In Win32,  Microsoft  has finally  put fairly  decent heap  management code in
the  operating  system. The DOS memory allocation  scheme created blocks
that were often too big, and was too slow for general use as a heap.  In Win16,
the GlobalAlloc function  has a minimum allocation  size of 20h  bytes,  and
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runs  out  of the  8192  selectors  too  quickly.  The Win16  LocalHeap  functions
are  somewhat  suited  for  small  allocations,  but are  limited  to  allocating  at
most  64KB from  a  heap.  In  addition,  there's  no  support  for leak  tracking  or
memory  overrun  detection in these  functions.

The Win32  heap  functions  are  far  superior  to the  allocation  schemes of
prior  Microsoft  operating  systems.  In the retail  build of Windows  95,  the
overhead  per-block is only 4  bytes,  and  you can create  a  heap  up to  a theo-
retical  maximum  size of 2GB minus 4MB.  In addition,  Windows  95's Win32
heaps maintain  four  separate  free lists  for  blocks  of varying  sizes to  prevent
excessive  fragmentation.  Yet another  advantage  of Windows  95's Win32
heaps  occurs only  in the  debug version.  In this  mode,  each  allocated  block  is
tagged  with  additional  information that  enables  you  to  easily find overruns,
memory  leaks,  and  who  allocated the  memory.  See the  description  for in-use
blocks in the  debug version  of Windows  95  later  for  more  information  on
how this  additional  information  is used.  Unfortunately,  the  only way to
enable heap  block  overrun  checking  is  by using an  obscure,  Windows
95-only  function  called HeapSetFlags.  At the time  of this  writing,  this  func-
tion  doesn't  appear  in any  Microsoft  documentation  that  I've  seen,  but I've
been  told  it will  be forthcoming.  I described  the HeapSetFlags  function  in my
October  1995  Microsoft  System's Journal column.  (I found  out  about  the
HeapSetFlags  function  too  late  to  include  a  description  of it in this  chapter.)

In addition  to  these  nifty  features,  Windows  95  allows  applications  to
support  multiple  heaps in the  same process.  This  makes  it convenient to
group  all your  memory  allocations  of a  certain  type  in one  heap.  (This  is
often  a good  strategy  for  avoiding  heap  fragmentation.)  Because Windows
95  supports  multiple  heaps,  you  always  have  to  pass  a  heap  handle  to  the
Win32  heap  functions.  The  heap  handle  identifies  which  heap you want  to
operate  on.  This  heap  handle  turns  out  to  be nothing more  than  the linear
address of the  start  of the  specified heap.

Yet another  nice feature  of Windows  95's  heaps is that  they can grow
beyond  their  initial reserved  size if you  want  them to.  In this  situation,
KERNEL32  allocates  additional  blocks  of linear address  space  and associates
the  block  with  the  heap.  I call these additional  memory  blocks subheaps.
Figure  5-7 shows an  admittedly  complex process heap  setup that  contains
multiple  heaps,  with  some of the heaps  using subheaps.

The  list of Win32  heap  functions  include  HeapAlloc,  HeapFree,  and
HeapReAlloc.  You'd  think  that  just these  basic  functions  would  be a  natural
choice  for compiler  vendors who need to implement  the malloc,  realloc,  free,
new,  and  delete  functions.  This  isn't the  case though.  Both  Borland  and
Microsoft  bypass  the Win32  heap functions  in their  runtime libraries  in
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favor of their own heap implementations. One notable exception is the Win32
SDK runtime library (CRTDLL.DLL). The malloc and free functions in
CRTDLL.DLL use HeapAlloc and HeapFree, respectively. Different versions
of CRTDLL ship with Windows NT and Windows 95.

Update: As this book was going to press, I found that Visual C++ 4.0
uses the Win 32 heap functions for its C/C++ runtime heap.

Heap  created
with  HeaoCreate

Another  heap  created
with  HeapCreate

Default  process  heap
(GetProcessHeap)

 Figure  5-7
A process with multiple Win32 heaps.

In the layer above Windows 95's Win32 heap services, you'll find the
GlobalAlloc and LocalAlloc functions. GlobalAlloc and LocalAlloc are
implemented  in terms of the HeapAlloc family of functions. LocalAlloc isn't
just a wrapper around HeapAlloc though. The reason for this is that Win16
programmers played some nasty games with LocalAlloc'ed blocks such that
the Windows 95 Win32 version of LocalAlloc needs to remain backward
compatible. I'll describe this in detail in the upcoming section, "The Win32
Local and Global Heap Functions." Moving downward to the layer below
Windows 95's Win32 heap function, the code directly uses the memory
management Win32 VxD services provided by VMM. However, I didn't see
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anything  in these functions that couldn't have been implemented with the
virtual  functions I've already described.  For this reason,  I think of the
Win32 heap functions as being a layer atop the Win32 virtual memory
functions.  Interestingly, the VMM _HeapXXX functions that provide heap
functionality  to VxDs use the same format for the heap structures that
KERNEL32 uses for ring 3 processes.

The Win32 heap header and heap arenas
All the components of a Windows 95 heap are created from regions of
memory reserved through the VMM _PageReserve WIN32 VxD service. The
heap region is divided into two sections. At the start of the heap region is a
header. This header (which we'll get to shortly) contains the information for
managing the heap, such as the free lists, the size of the heap, and the heap
creation  flags. Immediately following the heap header are the heap's mem-
ory blocks. Each heap block begins with an arena structure that contains
information about the block that follows. The start of each heap block is
contiguous  with the end of the preceding block. The blocks extend to the
end of the allocated heap region,  although not every page in the heap region
needs to be physically committed. Figure 5-8 shows a typical heap layout.

As mentioned, every heap block, be it free or in-use, starts with a standard
arena  structure. The format of the arena differs between the debug and
release builds of Windows 95. In addition, additional fields are present if
the block is a free block. This leads to four variations  in the arena layout:
retail free, retail in-use, debug free, and debug in-use. The first field, however,
is common to all arenas.

Every heap arena starts  with a DWORD that contains the size of the
block.  The size includes the space taken  up by the arena itself.  However,
you can't  simply take the first DWORD in an arena and use it as the
block size. Why not? Because some of the  bits in the arena's  first  DWORD
are  used for items unrelated to the block's  size. The high byte of this
DWORD is always 0xA0. The meaning of 0xA0 isn't clear. My guess is
that it's a bit pattern  that allows KERNEL32 to tell whether an arena has
been overwritten.  The other  bits not used for holding the block size come
about  because the size of all heap  blocks is always a multiple of 4 bytes.
This frees up the bottom 2 bits  (values 1 and 2) for use as flags. The
meaning  of these flags are:
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1 - -  The  block is free. A 0 value for this bit indicates that the block is allocated.
2 - -  The  block preceding  this  block  is free.  This  bit  should  end  up  being set

only in allocated  blocks.  When  the current  block  is freed,  it can  be
coalesced with the preceding free  block. If this bit isn't set, the preceding
block  isn't free,  so there's  no  need to  attempt  to coalesce  the  blocks.

Taking all these  bits  into consideration,  it's  easy to  figure  out  the size of a
heap  block.  Simply do a bitwise  AND  of the arena's  first  DWORD with the
value  0x5FFFFFFC. This  turns  off all the bits in the DWORD  not used for
the size. An easier way to  think of this in C notation  is to  do  a logical  AND
of the first arena  DWORD  with  ~0xA0000003.  To figure  out  how much
memory  in  the  block  is available  for  use  by the  calling  program,  simply
subtract  the  size of the arena from the size of the  block.

Heap
Header

Figure  5-8
I A typical Win32 heap.
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In-Use Blocks  in the Retail Version  of Windows  95

In-use  blocks in the retail  build  of Windows  95 have the simplest format of
four arena types:

DWORD  size  // OR'ed  with  0xA0000000  or  0xA0000002.

In other words,  the arena  is nothing more than  the initial  size/flags
DWORD.

Free Blocks  in  the Retail  Version  of Windows  95

Free blocks in the retail  build of Windows 95 start out the same as the
in-use  arena,  but they add previous  and next fields:

DWORD  size  // OR'ed  with  0xA0000001.

DWORO  prey  //  Pointer  to  the  previous  heap  arena.

DWORD  next  //  Pointer  to  the  next  heap  arena.

In-Use Blocks  in the Debug Version  of Windows  95

An in-use  heap  arena  starts  out  like  the  retail  version,  but  then  adds
additional  fields:

DWORD  size

DWORD  allocating  EIP

WORD  thread  number

WORD  signature

DWORD  checksum

// OR'ed  with  0xA0000000  or  0xA0000002.

// The  EIP value  that  called  HeapAlloc/HeapReAlloc.

// The  thread  number  (not  ID)  that  allocated  the  block.

//  0x4842  ==  "BH"

// A  checksum  of  the  previous  three  DWORDSs,

The additional  fields aid in tracking down memory overrun  and heap
corruption  bugs. The allocating EIP field stores the program  address  where
the  block was allocated. This can be used to pinpoint where a block of code
that  somehow wasn't  free was allocated.  The thread number  field serves a
similar purpose,  but identifies which thread allocated  it. Note  that the thread
number  isn't the same as a thread ID (which is what  GetCurrentThreadId
returns).  Rather, the thread number is an index into the current list of threads.
You can see the thread numbers with the SoftIce/W THREAD command.
The signature WORD should always be 0x4842  for an in-use  block.  If it's
not,  the arena  has probably  been corrupted.

The final field of the arena provides a more powerful  heap corruption
fighter.  This field contains a checksum of the preceding three DWORDs in the
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arena.  The algorithm is detailed in the description  for ChecksumHeapBlock
later in the chapter. Although the checksums are alway maintained, the debug
KERNEL32  doesn't  automatically  verify the checksum - - you have to tell it
to  do  so. This feature,  called  "paranoid heap corruption checking,"  is toggled
on and off by the HeapSet Flags function.  In a simple test I wrote,  I received
the following  output  after enavling  heap checking:

hpWalk:  bad  busy  block  checksum  trashed  addr  between  560014  and  560820

heap  handle=460000

Free Blocks  in the Debug Version  of Windows  95

The Windows  95  free  block  arenas  are  a  hybrid  of the  free retail  arena  and
the  in-use debug  arena.  Like the free retail  arena,  there  are  previous  and
next  fields.  From the debug  in-use arena,  there's  the  thread  number,  signa-
ture,  and checksum  fields.  The  signature  field changes  slightly  (from  0x4842
to  0x4846),  as  does the checksum algorithm.  There's  one  DWORD  more
than  the in-use version,  so  when  KERNEL32  checksums the  arena,  it uses
the  first  four  (rather  than  three)  DWORDs.

DWORD  size

DWORD  prey

WORD  thread  number

WORD  signature

DWORD  next

DWORD  checksum

//  DR'ed  with  0xA0000000  or  0xA0000002.

//  Pointer  to  the  previous  heap  arena.

//  The  thread  number  (OxFEFE  for  free  blocks).

//  0x4846  .... FH"

//  Pointer  to  the  next  heap  arena.

//  A checksum  of  the  previous  four  DWORDS.

The Windows 95 heap header
At the start  of every heap  is a heap  header  structure.  A heap  handle  such  as
the  one you  get  back  from  GetProcessHeap  is nothing more  than  a pointer
to  the heap  header.  The  primary job  of the  HeapCreate  function  (besides
reserving  memory  for the heap)  is to  initialize  the  structure.  The  heap
header  structure varies  in  size  (but not  much  in format)  in the retail  and
debug versions  of Windows  95.  Immediately  following  the heap header  is the
first heap  block arena.  Arena  blocks  are  described  in the preceding  section.
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The Heap Header in the Retail Version  of Windows  95

00h  WORD  dwSize
The total  size of memory reserved  for this heap.  The default process  heap
created  for every  process  has  1MB + 4KB in this  field.
04h  DWORD  nextBlock
If HeapCreate  is called with  the dwMaximum  size parameter  set to  0, the
heap can grow  beyond the allocation  size specified in the preceding  dwSize
field.  In this case,  if the caller  requests  a block that's  too  big for the current
heap region,  KERNEL32  reserves additional  regions of memory and  sets up
subheaps.  The  subheaps  use heap arena  blocks,  but  don't  have an entire
heap header  structure.  To keep  track of these subheaps,  KERNEL32  stores
them  in a linked  list.  The head  of the list is kept  in this  field (offset 4) in the
primary  heap structure.  A pointer  to  the next  reserved  region  is kept at  off-
set 4 in each subheap.  When  the heap is destroyed,  KERNEL32  walks  the
list  of subheaps  and  frees their pages  back  to  the system.
08h  FREE_LIST_HEADER_RETAIL  freeListArray[4]
To minimize fragmentation and  speed up searching for free blocks, each heap
header  maintains  four  free lists.  There are free lists  for  blocks  less than  0x20
bytes,  less than  0x80  bytes,  less than 200h  bytes,  and  less than  0xFFFFFFFE
When  searching  for a new memory  block,  KERNEL32  begins its  search  at
the start  of the  best fitting free list.  For example,  when  searching  for a block
0x18  in size, KERNEL32  searches  the 0x20  bytes and  under  list first.  While
looking for a 0x100h  byte  block,  it searches the 0x200h  byte  free list first.

The  four free lists  are  represented  as an  array  of four  simple structures.
Each  structure  has the following  format:

DWORD

free arena

maxBlockSize  for this  list.  Contains  0x20,  0x80,
0x200  or  0xFFFFFFFE
This  arena  is for  all  intents  a regular retail  free
arena,  except  that  the block  size is given as 0 bytes
(after  removing the  0xA0000001  bits).  The prev
pointer  in this arena  points  to  the first free arena.
Because the block  size is 0 for this arena,  the
searching  algorithm can  be very simple yet never
select this arena  for allocation.
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48h  PVOID  nextHeap
Offset  48h  in a retail  Windows  95 heap is a pointer  to  the next  heap created
with  HeapCreate  for this process.  Note that  the next  heap is different  than
the next  subheap given in the field at  offset 4.  The region  pointed to  by a
nonzero  pointer  in this field (offset 0x48)  is a full-fledged heap.  This  field
will  be 0 unless the process  calls HeapCreate.
4Cb  HCRITICAL_SECTION  bCriticalSection
This  field holds  the handle  of the critical  section used  by the heap  functions
to  synchronize  access  to  the heap.  Note that  this  field is not  a  CRITICAL_
SECTION itself (see the next field).  Rather,  it's  a pointer to  an internal  data
structure  that  KERNEL32  uses for critical  sections.  The handle value seems
to  always match  the DWORD  at  offset  0Ch in the field described  next.
50h  CRITICAL_SECTION  criticalSection
This  portion  of a heap header contains  a  CRITICAL_SECTION  structure
(defined  in WINBASE.H).  When entering code that  needs  access  synchro-
nization,  KERNEL32  passes a pointer to  this region  to  EnterCriticalSection.
The structure  members  of this field are initialized  by a call to InitializeCritical-
Section  during the program startup  phase.  If you don't  need synchronization
(for instance,  you have  only one thread),  you can  bypass it  by passing the
HEAP_NO_SERIALIZE  flags to  HeapAlloc,  or  HeapCreate,  or  both.
68h  DWORD  unknownl[2]
The  meaning of this  field is unknown.

70h  BYTE  flags
This  BYTE contains  the HEAP_ fags  that can  be passed to  HeapCreate:

HEAP _NO_SERIALIZE

HEAP_GRONABLE

HEAP _GENERATE_EXCEPTIONS

HEAP _ZERO_MEMORY

HEAP _REALLOC _IN_PLACE _ONLY

HEAP _TAIL_CHECKING _ENABLED

HEAP _FREECHECKING _ENABLED

HEAP_DISABLE _COALESCE_ON _FREE

The Windows  95  documentation  mentions  only HEAP_NO_SERIALIZE
and  HEAP_GENERATE_EXCEPTIONS.



7lb  BYTE  unknown2

The meaning of this  byte is unknown.  It may  be reserved  in case additional
HEAP_  flags  are needed.
72h  WORD  signature
This WORD  contains the signature  used to  identify  a heap.  In a valid
Windows  95 heap,  it contains  0x4948  ("HI").

The Heap Header in the Debug Version of Windows 95s

The debug version of a Win32  heap header is fairly close to the retail version.
However,  the embedded  free arena  structures  are  bigger,  and there are a few
additional  fields.  Following is the layout  of the debug heap header.
00h  DWORD  dwSize
See the description  in the preceding  section.
04h  DWORD  nextBlock
See the description  in the preceding  section.
08h  FREE_LISTHEADER_DEBUG  freeListArray[4]
The  array  of four free list headers is the same as the retail  version,  except
that  the free arena  portion  is a debug arena,  rather  than  a retail  arena.  The
structure  layout  is as follows:

DWORD

free  arena

maxBlockSize for this list.  Contains  0x20,  0x80,
0x200  or  0xFFFFFFFF.
This  arena is for  all  intents  a regular debug free
arena,  except  the  block  size is given as 0 bytes  (after
removing the 0xA0000001  flags).

68h  PVOID  nextHeap
See the description  in the preceding  section.
6Ch  HCRITICAL_SECTION  hCriticalSection
See the description  in the preceding  section.
70h  CRITICAL_SECTION  criticalSection
See the description  in the preceding  section.
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88h  DWORD  unknown1[14]
See the description  in the preceding section.
C0h  DWORD  creating EIP
This DWORD  holds the EIP of the routine that called the internal  HPInit
function  to initialize  the heap.  It appears  to  always be set to the location
where  HeapCreate  calls HPInit.
C4h  DWORD  checksum
This  field holds the result of XOR'ing the first DWORD  of the heap header
(the  size field) with 0x17761965.  Presumably, this  helps KERNEL32 detect
overwrites  in the heap  header.
C8h  WORD  creating thread number
The thread number  (not the thread ID) of the thread that created this heap.
See the description  of debug block arenas  in the preceding  section for a
description  of thread numbers.
CAb  WORD  unknown2
This WORD  appears  to  be unused.
CCh  BYTE  flags (HEAP_xxx flags)
See the description  in the preceding section.
CDh  BYTE  unknown3
See the description  in the preceding section.
CEh  WORD  signature (0x4948)
See the description  in the preceding section.

The WALKHEAP program
To show the Windows 95 Win32 heap headers  and arenas in action,  I wrote
the WALKHEAP program.  Source code for WALKHEAP is on the accompany-
ing disk. WALKHEAP consists of two  program files:  WALKHEAP. C, which
contains  code to walk and display a Win32  heap,  and HEAPW32.H,  which
contains  structure  definitions  for the heap headers  and arenas.  The
WALKHEAP program needs to run under the debug version of Windows  95.
A similar program  on the disk  (WALKHP2.EXE) walks  the Win32  heaps of
the  retail  build.  Yes, I could have walked the heap using the 32-bit TOOL-
HELP32  functions,  but that wouldn't  have been as much fun.  Nor  would it
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have  been as  informative.  The  TOOLHELP32  functions  tend to  hide  some
of  the interesting  details.

When run without any command line parameters, WALKHEAP walks and
displays all its heaps.  To make things interesting, WALKHEAP first makes a
series of allocations and deletions using the default  heap,  and also creates a
second heap. WALKHEAP can iterate through all the process's Win32 heaps
by using the Next Heap field in the header.

If you  know  the  address  of  a specific heap  you  want  to  walk  (which
must  be accessible  by the WALKHEAP process),  you  can pass  the  address
(a.k.a.  the handle)  of  the heap  on  the WALKHEAP command  line.  This
number should  be specified  in hex,  without  any 0x's  or h's. For example,  I
can walk  USER's 32-bit  window  heap  like this:

WALKHEAP 81CEC000  (The address will probably be different on your machine.)

Figure  5-9  shows  the  output  from running  WALKHEAP without  any
parameters.  The  numbers in  the  Block  column  are the linear  address  of the
block.  Note  that  the first  four  blocks  shown  in a heap are the  free list  head-
ers and  have  a size  of  0.  Also,  note  that  you  can walk  the free  list  by follow-
ing the prev pointers,  starting with  one  of  the  first  four  blocks  (the free list
headers).

Heap  at  00B60000

size:

next  block:

Free  lists:

Head:OOB6000C

Head:OOB60024

Head:OOB6003C

Head:OOB60054

Next  heap:

CritSection:

Creating  EIP:

checksum:

Creating Thread:

Flags:

Signature:

size:  20

size:  80

size:  200

size:  FFFFFFFF

00100000

00000000

00410000

1066F7C6

BFF8BAE0

17661965

0040

05

HEAP_NO_SERIALIZE

HEAP_GENERATE_EXCEPTIONS

4948



Heap  Blocks

Block  Stat  Size  Checksum  Thrd

0006000C  free  00000000  FE3009F6  1066  prev:00660024  next:OOB600DO

00060024  free  00000000  FF306920  707F  prev:00B6003C  next:00B6000C

0006003C  free  00000000  FF30F214  EB00  prev:00B60054  next:00B60024

00B60054  free  00000000  FF438FBB  66F7  prev:00C5F014  next:00B6003C

000600D0  free  000FEF34  FF4CF8B6  FEFE  prev:00B6000C  next:OOC5FO14

00C5F004  used  00000010  FF341977  0000  EIP: 00000000

00C5F014  free  00000FDC  FF30E8C2  FEFE  prev:OOB600DO  next:00B60054
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Heap  at 00410000

size:

next  block:

Free  lists:

Head:0041000C  size:  20

Head:C0410024  size: 80

Head:0041003C  size:  200

Head:00410054  size:  FFFFFFFF

Next  heap:

CritSection:

Creating  EIP:

checksum:

Creating Thread:

Flags:

Signature:

00101000

00760000

00000000

8153C074

BFF8BAEO

17660965

0040

40

HEAP  _FREE_CHECKING _ENABLED

4948

Heap  Blocks

Block  Stat  Size  Checksum  Thrd

0041000C  free  00000000  FF201A5C  0000  prev:0051002C  next:00410314

00410024  free  00000000  FF3019DC  0000  prev:OO5100D8  next:00510060

0041003C  free  00000000  FF301A8C  0000  prev:OO5102A4  next:0051014C

00410054  free  00000000  FF30156C  0000  prev:00510850  next:00510458

004100D0  used  00000244  FF740EBC  0040  EIP: O04015DD

00410314  free  000FFCFO  FFD01B4E  FEFE  prev:O041000C  next:OOAEO028

00510004  used  00000010  FF341977  0000  EIP: 00000000

00510014  used  00000018  FF740D41  0040  EIP: 0040147C

0051002C  free  00000018  FF2OETEE  FEFE  prev:O0510060  next:O041000C

00510044  used  0000001C  FF740DA5  0040  EIP: 0040149E

00510060  free  00000020  FF20E7B2  FEFE  prev:O0410024  next:0051002C

00510080  used  00000024  FF740DC3  0040  EIP: 004014C0

005100A4  used  00000034  FF740DCO  0040  EIP: 004014D1
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005100D8  free  00000038  FF20E6CA  FEFE  prev:0051014C  next:00410024

00510110  used  0000003C  FF740DE8  0040  EIP: 004014F3

0051014C  free  00000040  FF20E73E  FEFE  prev:0041003C  next:OO5100D8

0051018C  used  00000044  FF740C76  0040  EIP: 00401515

005101D0  used  000000D4  FF740CD8  0040  EIP: 00401529

005102A4  free  000000D8  FF20E326  FEFE  prev:•0510458  next:0041003C

0051037C  used  000000DC  FF740CAA  0040  EIP: 00401551

00510458  free  000000E0  FF20E58A  FEFE  prev:00410054  next:OO5102A4

00510538  used  000000E4  FF740CBA  0040  EIP: 00401579

0051061C  used  00000234  FF740EgC  0040  EIP: 0840158D

00510850  free  00000238  FF20E932  FEFE  prev:00510CC4  next:00410054

00510A88  used  0000023C  FF740EAE  0040  EIP: 004015B5

00510CC4  free  0000032C  FFD41CF2  FEFE  prev:OOB5F014  next:00510850

 Figure  5-9
Output from running the WALKHEAP program.

Now  that  we've  seen  the  layout  of  the  Win32  heap  headers  and  block
arenas,  it's  time to  dive  into  some  pseudocode.  In the  course  of  this  discus-
sion,  we'll  see  how  KERNEL32  creates,  manages,  and  destroys  heaps.  This
pseudocode  is  for  the  debug  version  of Windows  95.  The  retail  build  doesn't
have  nearly  as  much  debugging  and  sanity  checking  code,  and  so  it  is  much
more  efficient.

GetProcessHeap
The first thing you  need to  use a Win32  heap function is a heap handle.  Most
programs  use the default process  heap created by KERNEL32 when the appli-
cation is created.  You retrieve  a handle to  this heap  by calling GetProcessHeap.
The  GetProcessHeap  function is simple.  The function retrieves a KERNEL32
global  variable that points to  the process  database  for the current process  (see
Chapter  6  for details).  Inside a process  database  is the handle  (that is, the
starting  address)  of the process's  default Win32  heap.

Pseudocode for GetProcessHeap
return  ppCurrentProcessId->lpProcessHeap;
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HeapAlloc and IHeapAlloc
HeapAlloc, as its name implies, is the method by which you allocate a block of
memory  from a specified heap. The HeapAlloc code is part  of the validation
layer in KERNEL32.DLL.  The real work of allocating the block is handled by
IHeapAlloc  and  HPAlloc  (described  next).  The  only validity  testing that
HeapAlloc  does is to check whether the hHeap handle points to a region of
memory large enough to hold a heap header.  Although the code could verify
additional  fields, including the signature and checksum fields, HeapAlloc
strangely ignores these fields. Assuming the hHeap handle passes the (less than
rigorous) test,  the function jumps to IHeapAlloc.

Pseudocode  for HeapAlloc

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  DWORD  dwBytes

Set  up  structured  exception  handler  frame

//  Make  sure  that  the  hHeap  is  valid.  A  heap  handle  is  just  a

//  pointer  to  the  beginning  of  the  heap  area.

AL  =  *(PBYTE)hHeap;

AL  =  *(PBYTE)(hHeap  +  OxD=);

Remove  structured  exception  handler  frame

goto  IHeapAlloc;

IHeapAlloc  is just a wrapper  around the HPAIIoc  function  (that  is, the
"real"  HeapAlloc).  Before calling HPAiloc,  though,  IHeapAlloc  does  some
manipulation  of the  dwFlags  parameter  before  passing them on to HPAlloc.
The  only flags that  survive this munging  are the  HEAP_ZERO_MEMORY
and  the  HEAP_GENERATE_EXCEPTIONS  flags.  The HEAP_ZERO_
MEMORY  flag  (if it survives)  ends  up  3  bits  higher  than  it started  out.

Pseudocode  for IHeapAlloc

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  DWORD  dwBytes

//  Locals:

//  DWORD  modifiedFlags;
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//  Apparently  some  apps  need  a  little  extra  room...

if  (  0x00400000  bit  set  in  TDB  AppCompatibility  flags

if  (  hHeap  ==  ppCurrentProcessId  >DefaultHeap  )

dwBytes  +=  0x10;

modifiedFlags  =  dwFlags;

modifiedFlags  &=  HEAP_ZERO_MEMORY;

dwFlags  &=  HEAP_GENERATE_EXCEPTIONS;

modifiedFlags  <<  3;

modifiedFlags  |=  dwFlags;

return  HPAlloc(  hHeap,  dwBytes,  modifiedFlags  );

NPAlloc
HPAlloc  is the  real  HeapAlloc  function.  The code starts  out  by checking
whether  the  size of the requested  block  is too  big.  In  this case,  too  big
means  0x0FFFFF98  bytes  (approximately  256MB).  Next,  HPAlloc  calls
hpTakeSem,  which causes  the critical  section  in the  heap  header  to  be
acquired.  From this  point,  no  other  threads  in the process  can proceed past
this  spot  in HPAlloc  until  the  original  thread  returns  from HPAlloc.  In the
debug build, hpTakeSem also optionally  verifies that the heap  isn't corrupted.
Among  other  things,  hpTakeSem  can walk  the heap  and  verify  the  arena
checksums as well  as  verify  that  the  heap  signature  (0x4948)  is still there.
You toggle  this  behavior with  the HeapSetFlags  function,  which  as ! men-
tioned  at  the  start of the  "Win32  Heap  Functions"  section,  was put  into
Windows  95  too  late  in the game to  include  in this  book.

HPAlloc  next  takes the requested  block  size parameter  and rounds  it up
to  a  multiple  of 4  (after  also  taking  into  account  the required arena  size).
The  minimum  block size is 0x18  bytes, which translates  to  8 bytes  for the end
user  after  you  subtract  the  arena.  With  the  block  size in  hand,  HPAlloc  then
determines  which  of the four size-based free lists it should  search.  After find-
ing the correct  list,  HPAlloc  walks through  the list  (using the prev pointers
in the  free  blocks)  to  find the first  block  that's  of sufficient  size.

At this  point,  let's  assume  that  HPAlloc  finds a  free  block  of sufficient
size.  HPAlloc  then calls  hpCarve  (which I'll  show  pseudocode  for  next).  The
hpCarve  function  examines  a  block to  see whether  it's  just  big enough  or
whether  it needs  to  be split  into two pieces.  If the  block  needs  to  be split,
hpCarve  handles  all  the  work  of creating  new arenas,  setting  up  previous
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and  next  pointers,  and  so forth.  One of the blocks  hpCarve makes  is just big
enough  to  satisfy the needs  of HPAlloc.  The other  block  is whatever's  left
over,  and goes into  the free list.

After hpCarve returns, HPAlloc turns to the work of initializing the arena
fields in the new block. This is a simple series of assignment statements, except
for the call to get the EIP of HPAlloc's caller and the call to checksum the first
three fields of the arena.  Finally, HPAlloc releases the heap's critical  section and
returns  a pointer to the first byte after the arena.

Now let's go back and see what happens when HPAlloc doesn't  find a free
block in the free list. If the heap is allowed to grow (that is, 0 was specified as
the dwMaximumSize  parameter when the heap was created),  HPAlloc needs
to create a subheap.  As mentioned,  a subheap is a region of memory separate
from the original  heap that contains  additional  heap blocks.  KERNEL32
keeps track of all these subheaps by keeping them in a linked list. If a subheap
needs to  be created,  KERNEL32 determines  its initial  size (typically 4MB),
and calls VMM to reserve a range of pages.  Next,  HPAIloc calls HPInit to
initialize  the heap header of the new subheap. We'll  look at HPInit in detail
when I describe HeapCreate later. After initializing the subheap, HPAlloc
inserts  it into the linked list of subheaps.  Finally, HPAlloc jumps back to the
start  of the code that searches the free lists. Presumably, this time a block of
sufficient size will be found.

Pseudocode  for HPAlloc

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwBytes

//  DWORD  dwFlags

//  Locals:

//  DWORD  newSubHeap

//  DWORD  temp;

//  HEAP  ARENA  *  pArena

//  DWORD  carvedSize:
//

//

//  ebp+Ox08

//  ebp+OxOC

//  ebp+0x10

DWORD  commitSizeBytes,  commitSizePages;

FREE  LIST  HEADER  *pFreeList;

if  (  dwBytes  >  0x0FFFFF98  )  {

_DebugOut(  "HPAlloc:  request  too  big\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

return  0;
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//  Grab  the  heap  semaphore.  This  allows  only  one  thread  at  a  time  to

//  be  in  the  heap  code  so  that  the  heap  doesn't  get  corrupted,

//  In  the  debug  version,  with  paranoid  heap  checking  enabled,  this  is

//  where  the  heap  would  be  walked  and  checked  for  corruption.

}  if  (  !hpTakeSem(hHeap,  0,  dwFlags)  )

return  0;

temp  =  dwBytes  +  13;

temp  &=  OxFFFFFFFC

if  (  temp  <=  0x18  )

dwBytes  =  Ox18

//  Round  up  to  the  next  multiple  of  4.

//  Minimum  allocation  size  is  Ox18  bytes

//  (or  8  bytes  after  subtracting  the  arena).

HPAlloc_find_free_block:

//  Figure  out  which  of  the  four  free  lists  should  be  searched

//  (based  on  the  size  of  the  requested  block).

pFreeList  =  hHeap->freeListArray;  //  Point  at  first  free  list.

while  ( dwBytes  >  pFreeList->dwMaxBlockSize  )

pFreeList++;  //  Advance  to  next  free  list.

//  Walk  the  free  list  looking  For  a  block  that's  big  enough.  If  one

//  is  found,  jump  to  HPAlloc_split_block.  Otherwise,  fall  through.

//  Are  there  entries  in  the  free  list?

if  (  pFreeList->arena.prev  !=  &hHeap.freeListArray[O].freeArena  )

{

pArena  =  pFreeList->arena.prev;  //  Start  at  head  of  free  list

//  Scan  through  the  list,  looking  for  a  block  that's  big  enough.

//  When  we  find  one,  go  split  it.

while  (  pArena  != &hHeap.freeListArray[O].freeArena  )  {

if  (  (pArena->size  &  OxOFFFFFFC)  <  dwBytes  )

goto  HPAlloc_split_block;

//  Not  big  enough.  Go  on  to  next  (previous)  block  in  free  list.

pArena  =  pArena->prev;  }

//  If  we  get  here,  there's  not  enough  room  to  satisfy  the  request.

//  If  the  HEAP  FREE  CHECKING  ENABLED  flag  wasn't  specified  when  the

//  heap  was  created,  display  a message  and  then  bail  out.  The

//  HEAP_FREE_CHECKING  ENABLED  flag  is  set  by  specifying  0  as  the

//  dwMaximumSize  param  to  HeapCreate.

}  if ( ! (hHeap->flags & HEAP_FREE_CHECKING_ENABLED) ) {
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_DebugOut(  "HPAlloc:  not  enough  room  on  heap\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

goto  HPAlloc_error;

//  If  we  get  here,  there  wasn't  enough  room  to  satisfy  the  heap,  but

//  HEAP_FREE  CHECKING  ENABLED  was  specified  (the  dwMaximumSize  param

//  was  0).  Therefore,  KERNEL32  can  try  to  extend  the  heap  by

//  allocating  more  virtual  memory.  The  normal  size  of  these  new

//  subheaps  is  4MB.

}  if  (  dwBytes  <=  0x400000  )

commitSizeBytes  =  0x400000;

commitSizePages  =  commitSizeBytes  >>  12;  //  Convert  bytes  to  pages.

//  Reserve  the  memory  for  the  new  subheap.  Check  the  hHeap  value

//  to  see  if  it  should  be  in  app  private  memory  or  in  shared  memory.

newSubHeap  =  VxDCall(  _PageReserve,

hHeap  >  0x800000•0  ?  PR_SHARED  :  PR_PRIVATE,

commitSizePages,  PR_STATIC  );

if  (  newSubHeap  ==  -1  )  {  //  Oops!  The  reserve  failed.

_DebugOut(  "HPAlloc:  reserve  failed\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

goto  HeapAlloc_error

//  Go  initialize  the  new  subheap.  If  the  init  fails,  free  the  memory.

}  if  (  !HPInit(hHeap,  newSubHeap,  commitSizeBytes,  hHeap->flags  &  0x0100)  )  {

VxDCall(  PageFree,  newSubHeap,  0x18  );

goto  HeapAlloc_error; 

//  Insert  the  newly  allocated  subHeap  in  the  linked  list  of  subHeaps.

}  newSubHeap->next  =  hHeap->next;

hHeap->next  =  newSubHeap;

//  Go  back  and  start  the  sea•ch  again.

goto  HPAlloc_find_free_block;

HPAlloc  split_block:
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//  If we  get  here,  we've  found  a  free  block  that's  either  just  big

//  enough  or  too  big.  If  necessary,  hpCarve  splits  the  block  into

//  two  blocks,  one  of  which  is  just  big  enough  for  the  allocation.

dwBytes  =  hpCarve(  hHeap,  pArena,  dwBytes,  dwFlags  );

if  (  dwBytes  ==  O  )

goto  HPAlloc_error;

//  Start  filling  in  the  fields  of  the  new  block's  arena.

pArena->size = carvedSize  |  0xA0000000;

pArena->signature  =  "BH";  //  "BH"  =  0x4842

pArena->calling_EIP = x_GetCallingEIP();

if  (  ppCurrentThreadId  )

pArena->threadID  =  ppCurrentThreadId->processID->CurrentThreadOrdinal;

else

pArena->threadID =  O;

pArena->checksum  =  ChecksumHeapBlock(pArena,  3);  //  Checksum  the  block

x_hpReleaseSem(  hHeap,  dwFlags  );  //  Release  the  heap  semaphore.

return  pArena+0x10;  //  Return  first  address  following  the  arena  struct.

HPAlloc_error:

//  If we  get  here,  something  went  wrong.

//  Release  the  heap  semaphore.

x_hpReleaseSem(  hHeap,  dwFlags  );

//  If  the  HEAP  GENERATE_EXCEPTIONS  flag  is  set  in  the  heap  header

//  or  dwFlags  param,  make  a  STATUS_NO_MEMORY  exception.

if  (  (hHeap->flags  |  dwFlags)  &  HEAP_GENERATE_EXCEPTIONS

x_RaiseException(  STATUS_NO_MEMORY,  0,  1,  &dwBytes  );

return  0;

hpCarve
hpCarve  takes  a  free  block  from the  HPAlloc  function  and  splits  it  into  two
pieces.  The  first  of  the  two  resultant  blocks  must  be the  size  that  the  caller
(HPAlloc)  requested,  hpCarve  begins  with  some  validity testing code  that
makes  sure  the  block  isn't  smaller than  the  requested  size.  The  second test  is
to  make  sure  the  block  to  be  split  isn't  already in  use.
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The majority of the hpCarve code is straightforward  and easy to follow. It
is mostly a matter of setting up a new free block arena and making sure all the
previous and next pointers are set up. The pseudocode  shows all the details.

What's  more interesting than the general  hpCarve code is the memory
committing  code. As we saw previously in the HPAlloc code (and you'll  see
later in HeapCreate),  the Win32  heaps are sparse. That  is, all the memory in
the limits of the heap is reserved but not committed.  It would be wasteful to
have a  1MB heap and commit  1MB of physical memory to it if 1MB wasn't
needed.  However, when a process touches a reserved but not committed page,
a page fault results.  Therefore,  the heap functions need to make sure to com-
mit all pages that an in-use block will use. hpCarve is where this happens.

When splitting  a block into two,  hpCarve has to commit all the pages that
the first block spans.  In addition,  hpCarve creates  (and writes to) a new arena
for the second block (the "remainder"),  so that page must be committed as well.
The committing is performed by the hpCommit function, hpCommit determines
the status of the memory pages and, if necessary, calls the VMM _PageCommit
Win32  service.  If you thought that Windows  95 used structured  exception
handling  to commit pages in the heap as necessary,  you guessed wrong!  (At
least in the debug build of Windows  95.)

After the "remainder"  block's arena has been set up, hpCarve initializes the
first of the split block pieces with a constant value.  (That's why hpCarve didn't
set its arena fields.) If the HEAP_ZERO_MEMORY  was passed to HeapAlloc,
hpCarve  sets the  block to  O's. Otherwise,  hpCarve sets the block  to  0xCC's,
which  are the  breakpoint  opcode.  The caller  of hpCarve is responsible  for
creating  the arena  structure  at the beginning  of the carved block.

Pseudocode for hpCarve

//  Parameters:

//  HANDLE  hHeap  //  ebp+08

//  HEAP  ARENA  *  pArena  //  ebp+Oc

//  DWORD  dwBytes  //  ebp+10

//  DWORD  dwFlags  //  ebp+14

//  Locals:

//  DWORD  myLocal

//  DWORD  currBlockSize

//  DWORD  startCommitPage,  endCommi

//  HEAP_ARENA  *pNextArena

itPage,  pagesToCommit

//  Get  the  size  of  the  block  that's  about  to  be  split.  Mask

//  the  0xA0000003  bits  to  get  the  actual  size.

currBlockSize  =  pArena->size  & OxOFFFFFFC;
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if  (  dwBytes  >  currBlockSize  )

_DebugOut(  "hpCarve:  carving  out  too  big  a  block\n",  SLE_ERROR  );

if  (  0  ==  (pArena->size  &  1)  )  //  Check  the  "block  in  use"  flag.

{

_DebugOut(  "hpCarve:  target  not  free\n",  SLE_ERROR  );

}

endCommitPage1  =  ((DWORD)pArena  +  currBlockSize  -  4)  >>  12;

startCommitPage  =  (pArena  +  0x1013)  >>  12:

//  At  this  point,  the  code  checks  to  see  if  the  block  being  carved

//  is  the  same  size  (or  only  slightly  bigger)  than  the  requested  block

//  size.  If  so,  it  doesn't  make  sense  to  make  two  separate  blocks.

//  The  "if"  portion  of  the  following  code  handles  the  case  where  the

//  block  being  split  is  large  enough  to  warrant  making  two  blocks.

//  The  first  of  the  resulting  two  blocks  will  be  the  block  of  size

//  dwBytes.  The  remaining  memory  will  go  into  a  new  free  block.

if  (  (dwBytes  +  0x18)  <=  currBlockSize  )  {

endCommitPage2  =  (pArena  +  dwBytes  +  0x13)  >>  12;

if  (  endCommitPage2  ==  endCommitPagel  )

endCommitPage2  ;

pagesToCommit  =  endCommitPage2 -  startCommitPage  +  1

//  hpCommit  ultimately  calls  VMM's  PageCommit  Win32  service

//  to  commit  the  page.

if  (  [hpCommit(startCommitPage,  pagesToCommit,  hHeap->flags)  )

return  0;

//  Set  up  the  new  arenas.

pArena->prev->next  =  pArena->next;

pArena->next->prev =  pArena->prev;

pArena->prev->freeBlockChecksum  =  ChecksumHeapBlock(  pArena->prev,  4  );

pArena->next->freeBlockChecksum  =  ChecksumHeapBlock(  pArena->next,  4  );

//  Make  a  new  free  block  starting  "dwBytes"  into  the  block  we're

//  splitting,  hpFreeSub  is  the  same  routine  used  by  HeapFree.

hpFreeSub(  hHeap,  pArena  +  dwBytes,  currBlockSize  dwBytes,  0  );



}  else  {  //  The  block  isn't  large  enough  to  warrant  making  two  blocks.

//  hpCommit  ultimately  calls  VMM's  PageCommit  Win32  service

//  bo  commit  the  page.

if  (  !hpCommit(startCommitPage,  endCommitPagel  startCommitPage,

hHeap->flags))

return  0;

pArena->prev->next =  pArena->next;

pArena->next->prev =  pArena->prey;

pArena->prev->freeBlockChecksum  =  ChecksumHeapBlock(  pArena->prev,  4  );

pArena->next->freeBlockChecksum  =  ChecksumHeapBlock(  pArena->next,  4  );

//  The  next  arena  is  for  an  in  use  block.  (If  it  weren't  in  use,

//  it  would  have  been  coalesced  with  this  block.)

pNextArena  =  pArena  +  currBlockSize;

HIBYTE(pNextArena->size)  &=  OxFD;

pNexbArena->checksum  = x_ChecsumBlock(  pNextArena,  3  );
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}  if  (  dwFlags  &  Ox40  )

memset(  pArena,  0,  dwBybes  );

else

memset(  pArena,  0xCC,  dwBytes  );

//  0x40  ==  HEAP  ZERO  MEMORY  <<  3

//  Zero  fill  the  block.

//  Fill  the  blocks  with  OxCC's.

return  dwBytes;

ChecksumHeapBlock
ChecksumHeapBlock  is the last routine  we're going to look at with regard
to HeapAlloc-related  functions.  ChecksumHeapBlock  is used only in the
debug build of Windows  95.  It takes a pointer  to  the start of an arena and
the number of DWORDs  to  use.  ChecksumHeapBlock is told to  process
three DWORDs  for an in-use  block,  and four DWORDs  for a free block.
Starting with  an initial value of 0,  ChecksumHeapBlock  XOR's each succes-

sive DWORD  into a checksum DWORD.  Finally, ChecksumHeapBlock
XOR's the checksum DWORD  with  0x17751965  and returns the result.
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Pseudocode  for CbecksumHeapBlock

//  Parameters:

//  DWORD  count  //  Number  of  contiguous  DWORDs  to  checksum.

//  PDWORD  pBlock  //  Starting  address  to  checksum.

//  Locals:

//  DWORD  accumulator,  i

accumulator  =  0;

for  (  i=0;  i  <  count;  i++)

accumulator  ^=  pBlock[i]; //  XOR  the  accumulator  with  the  next

//  DWORD  in  the  block;

accumulator  ^=  0x17761965:

return  accumulator;

//  1776  ==  U.S.  Independence?

//  1965  == year  of  birth  of  an  MS  programmer?

HeapSize and IHeapSize
HeapSize  takes  a pointer  to  a previously-allocated  block  and returns  the size
of the  block  (not  counting  the arena).

The  HeapSize  code  is  just  a parameter-validation  layer that  validates  the
passed-in parameter  before JMPing to  IHeapSize.  The  IHeapSize  code  starts
by subtracting  0x10  from the  lpMem  pointer  to  get  a pointer  to  the  block's
arena - - or so  we  hope!  Next,  IHeapSize  grabs  the heap's  critical  section  to
prevent  an  untimely  thread  switch  from giving invalid results.  The  meat of
IHeapSize  is  simply to  take  the arena's  size  field,  AND  off the  0xA0000003
bits,  and then  subtract  0x10.  Subtracting  0x10  takes  into  the account  the
arena  size  so  that  the return value  is  the  amount  of  memory  usable  by the
caller.  Finally,  IHeapSize gives  up the  heap's  critical  section  and returns the
block  size  (minus  the  arena).

Pseudocode  for HeapSize

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  DWORD  lpMem

Set  up  structured  exception  handler  frame
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//  Make  sure  that  the  hHeap  is  valid.  A  heap  handle  is  just  a

//  pointer  to  the  beginning  of  the  heap  area.

AL  = *(PBYTE)hHeap;

AL  = *(PBYTE)(hHeap  +  OxCF);

//  Verify  that  the  lpMem  parameter  points  to  valid  memory.

AL  = *(LPBYTE)(lpMem+Ox7)

AL  = *(LPBYTE)(lpMem-Ox10);

Remove  structured  exception  handler  frame

goto  IHeapSize;

Pseudocode for IHeapSize

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  LPCVOID  lpMem

//  Locals:

//  HEAP_ARENA  *  pArena

//  DWORD  size;

pArena  =  lpMem  - 0x10;

//  Grab  the  heap  semaphore.  This  allows  only  one  thread  at  a  time  to

//  be  in  the  heap  code  so  that  the  heap  doesn't  get  corrupted.

if  (  hpTakeSem(hHeap,  lpMem,  dwFlags)  )

return  0;

//  Get  the  size  field  from  the  arena,  get  rid  of  the  0xA0000000  flags,

//  and  subtract  0x10  (to  subtract  out  the  size  of  the  arena).

size  :  (pArena->size  &  OxOFFFFFFC)  0x10;

x_hpReleaseSem(  hHeap,  dwFlags  );

return  size;
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HeapFree and IHeapFree
HeapFree  is yet another  function  that's really just a parameter  validation
stub.  HeapFree  checks that  the hHeap handle  points at valid memory large
enough  to  hold  a heap header.  The code also tests that the lpMem pointer
points  to  what  could  be a valid heap  block pointer.  There  should  be a 0x10
byte  arena  preceding the  lpMem parameter,  and the  lpMem block should  be
at least  8 bytes long (not counting the  arena).  HeapFree  therefore  verifies
that memory can  be accessed  0x10  bytes before  and  0x7  bytes after  lpMem.
After these tests,  HeapFree  jumps to  a strange  routine I call  x  HeapFree
(described  next).

Pseudocode for HeapFree

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  LPVOID  lpMem

Set  up  structured  exception  handler  frame.

//  Make  sure  that  the  hHeap  is  valid.  A  heap  handle  is  just  a

//  pointer  to  the  beginning  of  the  heap  area.

AL  = *(PBYTE)hHeap;

AL  = *(PBYTE)(hHeap  +  OxCF);

//  Verify  that  the  lpMem  parameter  points  to  valid  memory.

AL  = *(LPBYTE)(lpMem+Ox7)

AL  = *(LPBYTE)(lpMem - 0x10);

Remove  structured  exception  handler  frame.

goto  x_HeapFree;

The x_HeapFree  routine  sits between the HeapFree  validation  code and
the IHeapFree function, which frees the block. It appears that for some reason,
not every heap  block can be passed  straight  to  IHeapFree.  Blocks released
by a certain routine  seem to  need special  handling.  The job of x_HeapFree
is to  determine  who  called  it.  If not  called  from  a  particular  address,
x  HeapFree jumps to  the IHeapFree  code.  (This is almost always the case.)
If x_HeapFree  is called from one particular routine  (unknown to  me at this
time),  it calls a function  that  seems to  mess around  with  the  block's  arena.
After this function  returns,  x_HeapFree  jumps to  IHeapFree.
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Pseudocode for x_HeapFree

//  Locals:

//  DWORD  returnAddress;

returnAddress  = *(LPWORD)ESP;

if  (  (returnAddress  &  OxOOOOOFFF)  !=  some  number  )

goto  IHeapFree;

if  (  !someFunction(  )  )

goto  IHeapFree;

Munge  the  return  address  on  the  stack  so that  control  returns  to

to x_HeapFreeRet  when  IHeapFree  returns

goto  IHeapFree

x_HeapFree_ret:

IHeapFree  has  two  functions.  First,  if the  block  immediately  prior  to  the
block  being  freed  is itself free,  IHeapFree  coalesces  the  blocks.  How  does
IHeapFree  know whether  the  prior  block  is free?  Bit  1  (value 2)  in the  size
field of the block's arena  is on if the prior block is free.  So how does IHeapFree
know how to  find the prior  block's  arena?  It turns  out that the  last  DWORD
of the prior  block's  memory is a pointer  to  the prior  block's  arena.  Thus,
IHeapFree  just  subtracts  four  from the arena  being  freed.  At that  address is
a pointer  to  the prior  block  in the  heap.  IHeapFree  coalesces  the  block  by
calling hpFreeSub  for the prior  block,  telling hpFreeSub that  the  length  of
the  block  is the  size of  both  blocks  combined.

The  second task  of IHeapFree  is to  invoke hpFreeSub,  hpFreeSub  is the
counterpart  to  the HPAlloc  function,  hpFreeSub  does  the real  work  of free-
ing a  block  back  to  the heap,  and  is described  next.  While  this  is going  on,
IHeapFree  is holding  onto  the heap's  semaphore,  which  it grabbed  upon
entry and  released  after calling hpFreeSub.

Pseudocode for IHeapFree

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  LPVOID  lpMem

//  Locals:
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pArena  =  lpMem  -  0x10;

//  Grab  the  heap  semaphore.  This  allows  only  one  thread  at  a  time  to

//  be  in  the  heap  code  so  that  the  heap  doesn't  get  corrupted.

if  (  !hpTakeSem(hHeap,  pArena,  dwFlags)  )

return  0;

blockSize  =  pArena->size  &  OxOFFFFFFC;

//  Is  previous  arena  free?  If  so,  we'll  be  coalescing  this  block

//  with  the  previous  block.  This  is  going  to  affect  the  arenas

//  of  the  previous  block's  previous/next  blocks  so  recalculate

//  the  checksums.

if  (  pArena  >size  &  2  )

{

pPrevArena  =  *(PDWORD)(pArena-4);

blockSize  +=  (pPrevArena->size  &  OxOFFFFFFC);

pPrevArena->prev->next  =  pPrevArena->next;

pPrevArena->next->prev =  pPrevArena->prev;

pPrevArena->prev.freeBlockChecksum

=  ChecksumHeapBlock(pPrevArena->prev,  4);

pPrevArena->next.freeBlockChecksum

=  ChecksumHeapBlock(pPrevArena->next,  4);

pPrevArena  =  pArena;

//  Call  hpFreeSub  to  do  the  real  work.

hpFreeSub(  hHeap,  pArena,  blockSize,  0x200  );

//  Give  up  the  heap  critical  section.

x_hpReleaseSem(  hHeap,  dwFlags  );

return  1;

//  HEAP_ARENA  *  pArena

//  HEAP_ARENA  *  pPrevArena

//  DWORD  blockSize;
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hpFreeSub
The hpFreeSub function frees a block back to the heap.  It's passed the address
of the arena to  be freed and a length. The function is called from several places,
including  IHeapFree  and hpCarve. The latter use of hpFreeSub is interesting,
because the block being freed is part  of an already free block.

The  hpFreeSub pseudocode is fairly long, so I'll leave it to the pseudocode
to  show  all the details.  At a high level,  hpFreeSub  consists  of two  distinct
portions.  The first part  of hpFreeSub takes care of decommitting  memory if
necessary.  When a program frees a large block of memory  back to the operat-
ing system, it doesn't make sense to keep all that memory committed.  Thus,
hpFreeSub  determines whether  any memory  pages can be decommitted  with-
out messing up other blocks  in the heap.  If there  are  blocks that fit the crite-
rion, hpFreeSub calls VMM's _PageDecommit Win32 service to free the block.
The exception  to this  rule seems to  be when hpFreeSub is called by hpCarve.
In this case,  hpFreeSub  doesn't decommit  any pages. Instead,  it checks to  see
whether the affected pages are  in a reserved state.

The  second  part  of hpFreeSub  takes care  of updating the arenas.  First,
the  block  after this  free  block  must  be an  in-use  block;  otherwise,  it would
already  be part  of the  block  being freed,  hpFreeSub therefore turns  on  bit  1
(value  2)  in the next  arena's  size field,  telling the next  arena  that  the previous
arena is a  free  block.  Next,  hpFreeSub  determines  which  of the  size-based
free lists  the  block  being  freed  should go  in.  After  finding  the  appropriate
free list,  hpFreeSub scans  the list,  looking  for the right  spot to  insert  the
newly  freed  block.  (The free list is kept  sorted  according to  size.)  Finally,
hpFreeSub  writes a  new arena  for the newly free  block.  This  includes filling
in the previous  and  next  fields,  and calculating  the checksum.

Pseudocode for hpFreeSub

//  Parameters:

//  HANDLE  hHeap

//  HEAP_ARENA  *  pArena

//  DWORD  size

//  DWORD  flags

//  Locals:

//

//

//

//

//

//

//  Size  to  make  the  free  block.

HEAP_ARENA  *  pNextArena  //  Arena  that  immediately  follows  pArena.

HEAP_ARENA  *  pFreeListArena  //  Pointer  to  first  arena  in  the  free  list.

DWORD  nextArenaSize;

DWORD  *myLocal

DWORD  bytesToblast;

PSTR  pszError
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//

//
DWORD  startDecommitPage,  endOecommitPagel,  endDecommitPage2;

FREE_LIST_HEADER  *pFreeList;

if  (  size  <  0x18  )

_DebugOut(  "hpFreeSub:  bad  param\n",  SLE_ERROR  );

endDecommitPage1  =  0x00100000;

pNextArena  =  &pArena  +  size;  //  Get  a  pointer  to  the  next  arena.

if  (  pNextArena->size  & 1 ) {

nextArenaSize  =  pNextArena->size  &  OxOFFFFFFC;

pNextArena->prev->next  =  pNextArena->next;

pNextArena->next->prev  =  pNextArena->prev;

pNextArena->prev->freeChecksumBlock

=  ChecksumHeapBlock(  pNextArena->prev,  4  );

pNextArena->next->freeChecksumBlock

=  ChecksumHeapBlock(  pNextArena->next,  4  );

endDecommitpage1  =  (pNextArena  +  0x1013)  >>  12;

pNextArena  =  pArena  +  size  +  nextArenaSize;

//  Figure  out  how  many  bytes  there  are  from  the  start  of  the  arena

//  to  the  end  of  the  containing  page.  Then  round  down  to  the  size

//  of  the  block  to  free  (if  less).

} bytesToBlast =  0x1000  (&pArena  &  OxOOOOOFFF);

if (  bytesToBlast  >=  size  )

bytesToBlast  =  size;

//  Fill  in  the  block  to  be  freed  with  OxFE's.

memset(  &pArena,  OxFE,  bytesToBlast  );

if  (  flags  &  0x200  )  //  True  if  called  from  IHeapFree;  not  true  if

{  //  called  from  hpCarve.

startDecommitPage  =  (&pArena  +  0x1013)  >>  12;

endDecommitPage2  =  (&pNextArena  -  4)  >>  12;

if  (  endDecommitPage2  <  endDecommitPage1  )

goto  hpFreeSub_modify_arenas;
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if  (  VxDCall(  _PageDecommit,  startDecommitPage,

endDecommitPage2  startDecommitPage,  0x20000000)

goto  hpFreeSub_modify_arenas;

pszError  =  "hpFreeSub:  PageDecommit  failed\n"

goto  hpFreeSub_error;

}

else  //  This  code  is  hit  when  hpCarve  is  the  caller.

{
MEMORY_BASIC_INFORMATION  mbi;

startDecommitPage  =  (&pArena  +  0x1013)  >>  12;

endDecommitPage2  = &pNextArena  >>  12;

if  (  endDecommitPage2  <  startDecommitPage  )

goto  hpFreeSub_modify_arenas;

VxDCall(  PageQuery,  startDecommitPage  <<  12,

&mbi,  sizeof(mbi)  )

//  Check  that  the  structure  was  filled  in  with  values  indicating

//  that  the  range  of  pages  is  all  reserved.

if  (  (mbi.state  ==  MEM_RESERVE)  &&

((endDecommitPage2>>  12)  <=  someStruct[3])  )

goto  hpFreeSub_modify_arenas

pszError  =  "hpFreeSub:  range  not  all  reserved\n"; }

hpFreeSub  error:

_DebugOutput(  pszError,  SLE_ERROR  );

hpFreeSub_modify_arenas:

*myLocal  =  pArena;

//  The  next  block  must  be  an  in-use  block;  otherwise,  it  would

//  been  coalesced  already.  Turn  on  the  "Previous  block  is  free"

//  bit  and  redo  its  checksum.

pNextArena->size  |= 2;

pNextArena->checksum  =  ChecksumHeapBlock(  pNextArena,  3  );

//  Find  the  appropriate  free  list  to  insert  this  block  into.  The  free

//  lists  are  kept  as  an  array  of  FREE  LIST  HEADER  structures  starting

//  at  offset  8  in  the  heap  structure.

pFreeList  =  hHeap->freeListArray;

while  (  size  >  pFreeList->dwMaxBlockSize  )

pFreeList++;  //  Advance  to  next  free  list
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//  We  found  the  right  free  list.  Now  go  insert  it  into  the  list  in

//  size  sorted  order.

pFreeListArena  =  &pFreeList->arena;

//  Figure  out  where  in  the  free  list  this  block  should  go.  The  blocks

//  are  kept  in  size  sorted  order.

while  (  size  >  (pFreeListArena->prev.size  &  OxOFFFFFFC)  )

pFreeListArena  =  pFreeListArena->prev;

pArena->prey  =  pFreeListArena->prev;

pFreeListArena->prev->next  =  pArena;

pArena->next  =  pFreeListArena;

pFreeListArena->prev  =  pArena;

pArena->prev->freeBlockChecksum  =  ChecksumHeapBlock(  pArena->prev,  4  );

pFreeListArena->freeBlockChecksum  =  ChecksumHeapBlock(  pFreeListArena, 4);

pArena->signature  =  "FH";  //  FH  =  0x4846

pArena->freeBlockChecksum  =  ChecksumHeapBlock(  pArena,  4  );

pArena->size  =  size  |  0xA0000001;

HeapReAlloc and IHeapReAlloc
HeapReAlloc reallocates an existing block in a Win32 heap. The HeapReAlloc
code  is just a parameter validation layer stub. The tests that HeapReAlloc
does  are identical to the validations that HeapFree performs. The hHeap
parameter  must point to a block of memory 0xD0  bytes in length. The
lpMem parameter must be valid 0x10  bytes before and 0x7  bytes after the
pointer. If the tests pass, HeapReAlloc  jumps to IHeapReAlloc.

IHeapReAlloc  is a bit odd.  Before it calls the HPReAIloc function,  the
code rearranges the dwFlags parameters to HPReAlloc's preferences.  (Why
the original HEAP_xxx flags passed to HeapReAlloc  aren't good enough is
a mystery to m e . . . )  The only flags that make it past the HeapReAlloc  flag
masher are

HEAP_GENERATE_EXCEPTIONS

HEAP_NO_SERIALIZE

HEAP_ZERO_MEMORY

HEAP_REALLOC_IN_PLACE_ONLY
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Pseudocode for HeapReAlloc

//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  LPVOID  lpMem

//  DWORD  dwBytes

Set  up  structured  exception  handler  frame

//  Make  sure  that  the  hHeap  is  valid.  A  heap  handle  is  just  a

//  pointer  to  the  beginning  of  the  heap  area.

AL  =  *(PBYTE)hHeap;

AL  =  *(PBYTE)(hHeap  +  0xCF);

//  Verify  that  the  lpMem  parameter  points  to  valid  memory.

AL  =  *(LPBYTE)(lpMem+Ox7);

AL  =  *(LPBYTE)(lpMem-Ox10);

Remove  structured  exception  handler  frame

goto  IHeapReAlloc;
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Pseudocode for IHeapReAlloc
//  Parameters:

//  HANDLE  hHeap

//  DWORD  dwFlags

//  LPVOID  lpMem

//  DWORD  dwBytes

//  Locals:

//  DWORD  modifiedFlags

modifiedFlags  =  some  contorted  mess  of  calculations  with  dwFlags.

HEAPGENERATE_EXCEPTIONS  and  HEAP  NO  SERIALIZE  are  passed  through

unscathed.

The  HEAP_ZERO_MEMORY  bit  is  shifted  left  by  3.

If  the  HEAP_REALLOC_IN_PLACE_ONLY  bit  is  off,  bit  1  (value  2)  is  turned

on.

return  HPRealloc(  hHeap,  lpMem,  dwBytes,  modifiedFlags  );



/ /

362

HPReAlloc
HPReAlloc  contains the core of the HeapReAlloc function.  The code  in
HPReAlloc  is fairly lengthy,  but  it's not  hard  to  figure  out.  The  pseudocode
contains  all the gory details.  From a high-level perspective,  HeapReAlloc
has  four cases to  contend  with:

*  The new block  size is smaller than the original  block  size.
*  The new block size is roughly the same as the original  block size.
*  The new block size is bigger than  the original.  The next  block  in the

heap is free and can  be combined with the original  block to  make  a
block  sufficiently  big in size.

*  The new block  size is bigger than  the original,  and the next  block  isn't
free.  Alternatively,  the next  block  is free,  but  isn't  big enough  to  be
combined  with the original  block to  satisfy the allocation.

For the first case (the new block is smaller than the original),  HPReAlloc
uses  hpFreeSub  to  split the original  block into two pieces.  The  first portion
is the new block,  and the second  portion  is marked as a free block.

For the second case  (the new and original  blocks  are roughly the same
size), HPReAlloc  simply leaves  the existing block alone.  The threshold
appears to  be around  8 bytes  (0x18  bytes if you count  the arena).

In the third  case  (the next  block is free and  big enough  to combine),
HPReAlloc  figures out  how much of the next  block  it needs.  The code then
uses  hpCarve  to  split the next  free  block into two  pieces.  The  first of the
two  pieces  is  big enough  to  combine  with the  original  block  to  meet the
new requested size. The remaining part  of the free  block  becomes  a smaller
free  block.

The  final case is when all else fails.  In this  situation,  HPReAlloc  tries to
allocate  a new block  of the requested  size with  HPAlloc.  If the allocation
succeeds,  HPReAlloc  copies  the contents  of the original  block into the
newly  allocated  block.  Afterward,  HPReAlloc  calls the internal  version  of
HeapFree  to  release the original  block's memory.

Pseudocode for HPReAlloc

//  Parameters:

//  HANDLE  hHeap

//  LPVOID  lpMem

//  DWORD  dwBytes

//  DWORD  dwFlags
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//  Locals:

//

//

//

//

//

//

DWORD  newSize;

HEAP_ARENA  *pArena,  *pNextArena

DWORD  nextBlockSize;

LPVOID  lpMem2;

DWORD  originalBlockSize;

PVOID  prevFreeArena

newSize  =  dwBytes;

//  Make  sure  the  new  size  isn't  too  big.

if  (  newSize  >  OxOFFFFF98  )

{

_DebugOut(  "HPReAlloc:  request  too  big\n\r",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

goto  HPReAlloc_failure;

//  Point  at  the  arena  of  the  block  to  be  reallocated.

pArena  =  lpMem  -  0x10;

//  Prevent  any  other  threads  from  coming  through  here  and

//  screwing  up  the  heap.

if  (  !hpTakeSem(  hHeap,  pArena,  dwFlags  )  )

goto  HPReAlloc_failure;

//

//

if

Round  up  the  requested  size  by  0x10  bytes  (for  the  arena),  and  then

make  sure  it's  a multiple  of  4.

(newSize  +  0x13)  & OxFFFFFFFC  <  0x18  )

newSize  =  0x18;

originalBlockSize  =  pArena->size  &  OxOFFFFFFC;

//  Is  the  new  block  size  +  0x18  less  than  the  original  size?  If  so,

//  we  can  simply  shorten  the  existing  block.

if

{
(  newSize  +  0x18)  <=  originalBlockSize  )

//  Shorten  the  existing  block  by  having  hpFreeSub  make  a  new  arena

//  right  past  where  the  realloc'ed  block  will  end.

hpFreeSub(hHeap,  pArena+newSize,  originalBlockSize  newSize,  0x200);

//  Update  the  arena's  size  field  to  contain  the  new  size.  Leave

//  the  high  BYTE  and  bottom  2  bits  of  the  size  the  way  they  were.

//  Yes,  this  is  somewhat  of  a  brain  twister  at  first.

pArena->size  =  (pArena->size  &  0xF0000003)  |  newSize;

pArena->checksum  =  ChecksumHeapBlock(  pArena,  3  );
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goto  HPReAlloc_success; }

//  If  the  new  block  size  is  only  marginally  smaller  than  the  original

//  size,  just  leave  the  block  alone.

if  (  originalBlockSize  >=  newSize  )

goto  HPReAlloc_success;

//  If  we  get  here,  the  block  is  being  reallocated  to  a  size  bigger  than

//  it  was  originally.

pNextArena  =  pArena  +  originalB!ockSize;

nextBlockSize  =  pNextArena->size;

//  Get  pointer  to  next  arena.

//  Get  size  of  next  block.

//  If  the  next  arena  is  free,  we  can  combine  part  of  it  with  the

//  existing  block.  Whatever's  left  over  will  remain  a  free  block.

if  (  nextBlockSize  &  1  )  //  Is  next  arena  free?

{

if  (  (nextBlockSize  &  OxOFFFFFFC)  >=  (newSize -  originalBlockSize)  )

{

DWORD  extraNeeded  =  newSize-originalBlockSize;

//  Carve  out  a  block  big  enough  to  tack  onto  the  existing

//  block.  The  remainder  becomes  a  new  free  block.

if  (  !hpCarve(hHeap,  extraNeeded,  pNextArena,  ,  dwFlags))

goto  HPReAlloc_failure;

pArena->size  =  (pArena->size  &  0xF0000003)  |  extraNeeded;

pArena->checksum  =  ChecksumHeapBlock(  pArena,  3  );

goto  HPReAlloc_success;

//  If  HEAP_REALLOC_IN_PLACE_ONLY  wasn't  specified,  we  can  alloc  a

//  new  block  somewhere  else,  then  copy  the  original  block's  contents

//  over.  Normally,  HEAP_REALLOC_IN_PLACE_ONLY  isn't  specified.

if  (  dwFlags  &  2  )

//  Save  some  fields  of  the  original  arena,  because  we'll  need  to

//  copy  them  into  the  new  block's  arena.

WORD  threadID  =  pArena->threadID;

prevFreeArena  =  pArena->prev;

if  (  dwFlags  &  0x20  )  //  This  doesn't  seem  to  happen  normally.

HeapFree  special(  hHeap,  HEAP_NO_SERIALIZE,  lpMem  );



lpMem  =  HPAlloc(  hHeap,  newSize,  dwFlags  |  HEAP_NO_SERIALIZE  );
if  (  lpMem  )

goto  HaveNewBlock;

_DebugPrintf(  "HPReAlloc:  HPAlloc  failed  1\n"  );

goto  HPReAlloc_failure;

//  Allocate  a  new  block  of  the  desired  size  from  the  heap.

lpMem2  =  HPAlloc(  hHeap,  newSize,  dwFlags  |  HEAP_NO_SERIALIZE  );
if  (  !lpMem2  )

_DebugPrintf(  "HPReAlloc:  HPAlloc  failed  2\n"  );

goto  HPReAlloc_failure;

//  Copy  the  contents  of  the  original  block  to  the  new  block.

//  Ne  subtract  0x10  because  we  don't  need  to  copy  the  arena.

memcpy(  lpMem2,  lpMem,  originalBlockSize -  0x18  );

//  Free  the  original  block.

lpMem  :  HeapFree  special(  hHeap,  HEAP  NO  SERIALIZE,  lpMem  );

HaveNewBlock:

//  Fill  in  the  arena  header  of  the  new  block.

pArena  =  lpMem - 0x10;

lpMem->prev  =  prevFreeArena;

lpMem->threadID =  threadID;

pArena->checksum  =  ChecksumHeapBlock(  pArena,  3  );

goto  HPReAlloc_success:

//  If  we  get  here,  HEAP_REALLOC_IN_PLACE_ONLY  was  specified,  and  there

//  wasn't  enough  memory.  Display  a  warning  to  the  debug  terminal.

_DebugOut(  "HPReAlloc:  fixed  block\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_LOCKED  );

//  Fall  through  to  failure.

HPReAlloc_faflure:

x_hpReleaseSem(  hHeap,  dwFlags  );

return  O;
//  OK,  safe  for  other  threads  now.

HPReAlloc_success:

x_hpReleaseSem(  hHeap,  dwFlags  );

return  lpMem;
//  OK,  safe  for  other  threads  now.

365
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HeapCreate
The  HeapCreate  function  is the  origin  of all Win32  heaps.  Every Win32
program  has  a  heap created  for  it  before the  application starts.  In addition,
programs  can call HeapCreate  to  create  heaps  separate from the  default
program  heap.  Besides being used  by programs,  KERNEL32  itself calls
HeapCreate to create heaps in shared memory. It uses these heaps for storing
system  data  structures  such  as thread  and  process  instance  structures.
Although  not  documented,  application  programs  can  use  this  same  func-
tionality  to  make  a  shared heap  by specifing the 0x04000000  bit value  in
the fOptions  flag when  calling HeapCreate.

The  process  of creating  a Win32  consists  of two  parts.  HeapCreate
handles  the high-level  details  of reserving memory  for the heap  and  linking
the heap  into the list of process  heaps.  The  other  portion  of heap creation is
initializing all the  fields of the heap header.  For this  task,  HeapCreate  calls
the HPInit  function,  which  I'll describe  next.

HeapCreate  begins by examining and modifying the input  size parameters
(if necessary).  First,  it  checks  to  see whether  the dwInitialSize  parameter  is
less than  the  maximum  size parameter.  Next,  HeapCreate  rounds  the
dwMaximumSize  parameter  up to  the  nearest  4KB page  boundary.  The case
where  dwMaximumSize  equals 0 requires  special  handling.  In this  case, the
heap can grow as necessary.  If the  HeapAlloc function can't  find enough free
memory  in the current  heap,  it can reserve  another  large chunk  of memory
and  set  up  a  subheap  within  that  block.  The  HeapCreate  code checks
whether  dwMaximumSize  is set to  0,  and  if so,  sets the  0x40  bit  (perhaps
HEAP_FREE_CHECKING_ENABLED)  in the fOptions  parameters.  The
final  bit  of initial  parameter  testing is to  see whether  the  0x04000000  bit
was  set,  indicating  that  the  heap  should  be in  shared  memory  above  2GB.

After  HeapCreate  has  decided  what  it should  create,  it calls VMM's
_PageReserve  Win32  service to  reserve enough  linear  address space  to  hold
the  heap.  Assuming  that  the page reservation  came through,  HeapCreate
calls HPInit  to  initialize  the heap's  header  fields.  After  HPInit  returns,
HeapCreate  checks  to  see whether  it's  creating  the KERNEL32  shared heap
and  takes  some necessary  actions.  The final  part  of the  HeapCreate  code
adds  the  newly created  heap to  the list of heaps  for this  process.  In the case
of the first  heap created  for  a process,  the  new heap  is put  at  the  head  of the
heap  list,  which  is kept  in the process  database  (see Chapter  6).  If the new
heap isn't the firstborn heap,  HeapCreate  puts  the new heap at the  beginning
of the  list.
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Pseudocode for HeapCreate

//  Parameters:

//  DWORD  fOptions

//  DWORD  dwInitialSize

//  DWORD  dwMaximumSize;

//  Locals:

//  HANDLE  hHeap,  hHeap2;

//  DWORD  retValue

//  DWORD  fShared

retValue  =  0;

//  If  a  nonzero  maximum  size  was  specified,  make  sure  it's  bigger

//  than  the  initial  size.

if  (  dwMaximumSize  &&  (dwMaximumSize  <  dwInitialSize)  )

_DebugOut(  "HeapCreate:  dwInitialSize  >  dwMaximumSize\n".

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

return  0;
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/ Round  dwMaximumSize  up  to  the  nearest  page  boundary.

dwMaximumSize  +=  OxFFF;

dwMaximumSize  &=  OxFFFFF000;

//  Specifying  dwMaximumSize  ==  O means  that  the  heap  is  "growable."

if  (  dwMaximumSize  ==  O  );

fOptions  |=  HEAP_FREE_CHECKING_ENABLED;

dwInitialSize  &=  OxFFFFF000;

dwMaximumSize  =  dwInitialSize  +  0x100000;

fShared  =  fOptions  &  0x04000000;  //  Check  for  undocumented  shared  flag.

//  Reserve  the  memory  for  the  heap.

retValue  =  hHeap  =  VxDCallO(

_PageReserve,

fShared  ?  PR_SHARED  :  PR_PRIVATE,

dwMaximumSize  >>  12,

((fOptions  &  Ox8O)  >>  4)  |  PR_STATIC  );
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if  (  retValue  ==  -1  )  //  Did  allocation  succeed?

_DebugOut(  "HeapCreate:  reserve  failed\n"

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

return  0;

/ Turn  off  all  the  flags  that  we  don't  care  about.

fOptions  &=  (  HEAP_FREE_CHECKING_ENABLED;  |  HEAP_GENERATE_EXCEPTIONS  |

HEAP_NO_SERIALIZE  );

//  Initialize  the  data  fields  of  the  heap  header.

retValue  =  HPInit(  hHeap,  hHeap,  dwMaximumSize,  fOptions  );

if  (  retValue  ==  0  )  //  Did  the  initialization  fail?

//  Unreserve  the  memory  we  just  reserved.

VxDCallO(  _PageFree,  hHeap,  0x10  );

return  retValue;

//  If  it's  the  KERNEL32  heap,  make  the  critical  section  effective  in

//  all  processes.

if  (  fShared  &&  HKernelHeap  )

MakeCriticalSectionGlobal(  hHeap  +  0x70  );

if  (  0 ==  ppCurrentProcessId  )  //  If  no  current  process,  we're  finished.

_DebugOut(  "HeapCreate:  private  heap  created  too  early",

SLE_ERROR  );

//  Insert  the  new  heap  at  the  head  of  the  process's  heap  list.

hHeap->nextHeap  =  ppCurrentProcessId->HeapOwnList;

ppCurrentProcessId->HeapOwnList  =  hHeap;

return  retValue;
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HPInit

The  HPInit  routine  takes care  of initializing the fields of a  new heap.  The
heap  that  HPInit  operates  on can  be either  a  main  heap  or  a  subheap  off a
main  heap.  In the latter  case,  the  heap  header  is significantly  smaller.

After  some initial  boundary  condition  checking,  HPInit  calls hpCommit
to  commit  the  first page  of the  heap.  Why?  Because the  heap  header  will  be
written  at  the  beginning  of the heap's  first  page.  Before  this commit,  the
entire  heap region  is in the reserved  (but not  committed)  state.  HPInit  then
begins  filling in the fields of the heap  header.  When  initializing  a normal  heap,
HPInit  has  to  fill in numerous  fields including  the heap  size,  the  signature
WORD,  and  the allocating  thread ID.  If the  HEAP_NO_SERIALIZE  flag
wasn't  specified  (normally  it isn't),  HPInit  calls InitializeCriticalSection,
passing  in the  address  of the  CRITICAL_SECTION  object  in the heap
header.  HPInit  also  sets up  the  array of free  list  headers  at  this point.

If HPInit  is initializing  a  new subheap,  the  initialization  is much  smaller.
In this  instance,  the  heap  header consists  of only two  DWORDs:  the  size of
the  heap region  and  a pointer  to  the next  subheap.

After  initializing  the heap header  fields, HPInit  then  creates  an  arena  for
a zero-length  block  4KB from the end  of the  heap.  Because  the  last page  is
also  initially  in the uncommitted  state,  HPInit  calls  hpCommit  to  commit
the  last  page  before  writing to it.  From this, we can deduce  that  each  new
heap takes  a minimum of 8KB of physical  RAM  to  be committed:  4KB for
the  first page  and  4KB for  the last page.

After  creating  the zero-length  sentinel  arena  4KB from the end  of the
heap  region,  HPInit  makes  one huge  free  block.  This  free  block  spans  the
entire  range  between  the end  of the  heap header  and  the  zero-length  sentinel
block.  For  this  task,  HPInit  uses the hpFreeSub  function  (described  earlier).
You can see the  initial  layout  of the  blocks  in  a Win32  heap  by examining
the  first  heap  in the WALKHEAP  output  shown  earlier  in the chapter.

Pseudocode for HPInit
//  Parameters:

//  HANDLE  hHeap

//  PVOID  pHeapRegion

//  DWORD  size

//  DWORD  flags
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//  Locals:

//  HEAP_HEADER  pHeap;

//  DWORD  startPage,  lastPage;

//  HEAP_ARENA  *  pLastArena;

//  HEAP_ARENA  *  pArena,  *  pArena2;

//  FREE_LIST_HEADER  *  pFreeListEntry,  pFreeListArrayEnd;

//  PVOID  pFirstArena;  //  Pointer  to  first  byte  after  HEAP_HEADER.

//  PDWORD  pFreeListSize;

//  Statics:

//  DWORD  freeListSizes[4]  =  { 0x20,  0x80,  0x200,  OxFFFFFFFF  };

//  Make  sure  the  heap  base  and  size  are  page-aligned.

if  (  (pHeapRegion  &  OxOOOOOFFF) ||  (  size  ==  0  )  ||  (size  &  OxOOOOOFFF)  )

{

_DebugOut(  "HPInit:  invalid  parameter\n",  SLE_ERROR  );

}

pHeap  =  pHeapRegion;

startPage  =  pHeapRegion  >>  12;

//  Commit  the  first  page  of  the  heap.  We'll  be  writing  a  header  there.

if  (  !hpCommit(startPage,  1,  flags)  )

return  0;

if  (  !(flags  &  0x100)  )

pHeap->nextHeap  =  0;

pHeap->nextBlock  =  0;

//  True  if  called  from  HeapCreate.

//  Not  true  if  called  from  HeapAlloc.

pFirstArena  =  pHeap  +  sizeof(HEAP_HEADER);

pHeap->signature  =  0x4948;  //  0x4948  =  "HI"

pHeap->flags  =  flags;

pHeap->size  =  size;

pHeap->checksum  = ChecksumHeapBlock(  pHeap,  t  );

pHeap->allocating_EIP  =  x_GetCallingEIP();

if  (  ppCurrentThreadId  )

pHeap->creating_thread_ordinal

=  ppCurrentThreadId->processID->CurrentThreadOrdinal;

else

pHeap->creating_thread_ordinal  =  0;

if  (  !(flags  &  HEAP_NO_SERIALIZE  )  //  TRUE  if  serialization  needed.

if  (  HKernelHeap  )  //  KERNEL  heap  has  already  been  initialized.
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//  This  is  typically  the  case.

InitializeCriticalSection(  &pHeap->criticalSection  );

pHeap->pCriticalSection  =  a  field  in  pHeap->criticalSection;

else  //  We're  creating  the  KERNEL  heap  (the  first  heap).

pHeap->pCriticalSection  =  &pHeap->criticalSection;

some  critical  section  init  function(&pHeap->criticalSection);

pFreeListArrayEnd  =  &pHeap->freeListArray

+  (4  *  sizeof(FREE_LIST_HEADER));

pFreeListEntry  =  pHeap->freeListArray;

pFreeListSize  =  freeListSizes;  //  Point  to  array  of  free  list  sizes.

//  Build  the  array  of  free  lists.

while  (  pListFreeEntry  <  pFreeListArrayEnd  )

pFreeListEntry->dwMaxBlockSize  =  *pFreeListSize;

pFreeListEntry->arena.size  =  0xA0000001;

pFreeListEntry->arena.signature  =  0x4846;  //  "FH"

pFreeListEntry->arena.prev =  previous  free  list  entry;

pFreeListEntry->arena.next  =  next  free  list  entry;

pFreeListEntry->freeBlockChecksum

=  ChecksumHeapBlock(  &pFreeListEntry->arena,  4  );

pFreeListEntry++;  //  Point  at  next  entry  in  free  list  array.

pFreeListSize++;  //  Point  at  next  free  list  block  size.

//  Hook  up  the  first  and  last  free  list  arenas  (the  array  of  four

//  arenas  near  the  beginning  of  the  heap  that  point  to  four  separate

//  free  lists).

//  Point  at  arena  in  the  first  FREE  LIST_HEADER  structure.

pArena  =  &pHeap->freeListArray[0]->arena;

//  Point  at  arena  in  the  last  FREE  LIST_HEADER  structure.

pArena2  =  &pHeap->freeListArray[3]  >arena;

pArena->next  =  pArena2;

pArena2->prev =  pArena;

pArena->freeBlockChecksum  =  ChecksumHeapBlock(  &pArena,  4);

pArena->freeBlockChecksum  =  ChecksumHeapBlock(  &pArena2,  4);
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else  //  TRUE  if  called  from  HeapAlloc.  We're  creating  a  subheap.

pFirstArena  =  8;

/

/ At  this  point  we're  going  to  write  the  final  arena  at  the

/  end  of  the  last  page  of  this  heap  region.

/

pHeap->size =  size;

pLastArena  =  pHeap  +  size - 0x10;

lastPage  =  pLastArena  >>  12;

if  (  size  >  0x1000 ) {

if  (  lhpCommit(  lastPage,  1,  flags) ) {

//  Decommit  the  starting  page  (we  couldn't  commit  the  last  page).

VxDCallO(  PageDecommit,  startPage,  1,  0x20000000  );

pHeap  =  0;

return  0;

}

}

//  Make  the  last  block  in  the  heap  a  zero  length  in-use  block.

pLastArena->size  =  0xA0000000;

pLastArena->signature  =  0x4842;  //  "BH"

pLastArena->checksum  =  ChecksumHeapBlock(  pLastArena,  3  );

//  Make  an  in-use  block  of  length  0x10  bytes  at  the  end  of  the  heap.

if  (  !(flags  &  0x0400)  &&  (size  >  0x1000)  )  //  Comes  through  here  in

{  //  the  typical  case.

size  -= pFirstArena;

size  -=  OxFFC;

pArena  =  pHeapRegion  +  size  +  pFirstArena;

pArena->size  =  0xA0000010;

pArena->signature  =  0x4842;  //  0x4842  =  "BH"

pArena->checksum  =  ChecksumHeapBlock(  pArena,  3);

//  Call  hpFreeSub  on  this  block.

hpFreeSub(  hHeap,  pArena  +  OxlO,  OxFDC,  0);

}

else

{
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size  -=  pFirstArena;

size  -=  0x10;

//  Make  one  huge  free  block  out  of  the  the  region  between  the  heap

//  header  and  the  end  of  the  heap.

hpFreeSub(  hHeap,  pHeapRegior  +  pFirstArena,  size,  0);

if  (  FParanoidHeapChecking  )

hpWalk(  pHeap);

//  Verify  the  heap?

return  pHeapRegion;

HeapDestroy and IHeapDestroy
HeapDestroy is just a parameter validation layer stub. The function that
destroys a Win32 heap is in IHeapDestroy. The only validation that
HeapDestroy does is the standard (bogus) hHeap validation: Does the
heap handle point to a region of memory that's at least 0xD0 bytes long?

Pseudocode for HeapDestroy

//  Parameters:

//  HANDLE  hHeap

Set  up  structured  exception  handler  frame

//  Make  sure  that  the  hHeap  is  valid.  A  heap  handle  is  just  a

//  pointer  to  the  beginning  of  the  heap  area.

AL  =  *(PBYTE)hHeap;

AL  =  *(PBYTE)(hHeap  +  8xCF);

Remove  structured  exception  handler  frame

goto  IHeapDestroy;

Contrary to what you might think, destroying a Win32 heap isn't as simple
as freeing the heap's pages back to the operating system. Two things make it
more complicated. First, all heaps created without the HEAP_NO_SERIALIZE
attribute are in the possession of a critical section object. IHeapDestroy checks
to see whether the heap owns such an object and frees it as appropriate.
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The  other  complication  in IHeapDestroy  is the  linked  list  of heaps.  If
IHeapDestroy  were  to  simply  free the heap's  pages,  the  linked  list of heaps
for  the process would  be corrupted.  IHeapDestroy  handles  this  by walking
through  the  list  of heaps and  updating the list  as  appropriate.

After the chain has been updated,  IHeapDestroy calls the VMM _PageFree
Win32  service to  free the heap's  pages.  One  call to _PageFree  may not  be
sufficient  to  free all of a  heap's  pages.  Why  is this?  If the  user  of the  heap
has  made  many  allocations  or  very large allocations,  HeapAlloc  may have
created  additional  subheaps  and  added  them to  the  subheap  list  (offset  4 in
a  heap  header).  Therefore,  IHeapFree  uses a  loop  to  free the  primary  heap
as well  as any  subheap  blocks.

As a  final  note  on  HeapDestroy,  it's  not  called  by the  system when  a
program  exits.  Presumably  all the  heap's  memory  is freed when  the process
address  space  is swept  away.

IHeapDestroy proc

//  Parameters:

//  HANDLE  hHeap

//  Locals:

//  DWORD  nextSubHeap:

//  DWORD  retValue;

//  HEAP_HEADER_DEBUG  pHeap;

//  HANDLE  currentHeap;

EnterMustComplete();  //  Prevent  us  from  being  interrupted.

//  Grab  the  heap  semaphore.  This  allows  only  one  thread  at  a  time  to

//  be  in  the  heap  code  so  that  the  heap  doesn't  get  corrupted.

retValue  =  hpTakeSem(  hHeap,  0,  0);

if  (  !retValue  )

{

LeaveMustComplete();

return  0;

pHeap  =  hHeap;

x_hpReleaseSem(  hHeap,  0  );

if  (  !(hHeap->flags  &  H E A P _ N O _ S E R I A L I Z E )  )

{

if  (  hHeap  ==  HKernelHeap  )

{
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DestroyCrst(  pHeap->pCriticalSection  );

goto  elsewhere

}
else  //Not  the  KERNAL32  heap.

{
if  (  (pHeap->pCriticalSection->Type  &  Ox7FFFFFFF)  !=  4  )

_assert(  line  number,  "..\lmem.c"  );

if  (  (pHeap->pCriticalSection->Type  &  Ox7FFFFFFF)  ==  4  )

some  critsect  deletion  function(  pHeap->pCriticalSection  );

if  (  ppCurrentProcessId  ==  0  )

goto  HeapDestroy_free_it;

if  (  hHeap  ==  HKernelHeap  )

goto  HeapDestroy_free_it;

//  Is  this  the  KERNEL  heap?

if  (  ppCurrentProcessId  ==  HKernelProcess  )  //  Is  this  the  KERNEL  process?

goto  HeapDestroy_free_it;

if ( h H e a p  > 0x80000000  )  // Is it a shared heap?

goto  HeapDestroy_free_it;

if  (  0 ==  ppCurrentProcessId->HeapOwnList  )

goto  HeapDestroy_not_in_list;

//  No  heaps  in  this

//  process?  Oops!

//

//  We  have  to  walk  through  the  list  of  heaps  for  this  process.  After

//  we  free  the  heap  region,  we  need  to  update  the  linked  list  of  heaps.
//

//  Start  at  the  first  heap.

currentHeap  =  ppCurrentProcessId->HeapOwnList;

if  (  currentHeap  ==  hHeap  )  //  Are  we  destroying  the  default  (main)  heap?

//  Yes!

ppCurrentProcessId->HeapOwnList  =  currentHeap->nextHeap;

goto  HeapDestroy_free_it;
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if  (  !currentHeap->nextHeap  )  //  Hmmm...There  are  no  other  heaps.

goto  HeapDestroy_not_in_list;  //  How  can  we  free  it?  Complain!

if  (  ppCurrentProcessId->HeapOwnList->nextHeap  ==  hHeap

currentHeap->nextHeap  =  pHeap->nextHeap;

goto  HeapDestroy_free_it;

if  (  currentHeap->nextHeap  ==  hHeap  )

currentHeap->nextHeap  =  pHeap->nextHeap:

goto  HeapDestroy_free_it;

currentHeap  =  currentHeap->nextHeap;

} while  (  currentHeap->nextHeap->nextHeap

HeapDestroy  not  in  list:

_DebugOut(  "HeapDestroy:  Heap  not  on  list"  SLE_ERROR  )

HeapDestroy_free_it:

nextSubHeap  =  hHeap->nextBlock;  //  Determine  whether  there's  another

//  subheap  block  chained  onto  this  one.

//  Free  the  range  of  memory.

VxDCallO(  _PageFree,  hHeap,  0x10  );

if  (  nextSubHeap  )  //  If  there  is  another  block,  loop  back  and

//  unreserve  it  as  well,

hHeap  =  nextSubHeap;

goto  HeapDestroy  free  it;

LeaveMustComplete(): //  We  can  now  be  interrupted.  A  lot  of  good

//  it'll  do  though!

return  retValue:  //  Value  returned  from  hpTakeSem.
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HeapValidate
HeapValidate is a Windows NT function that scans a Win32 and checks it for
consistency.  I see no excuse for it not being in the Windows 95 APl when you
consider that there is code in hpTakeSem that validates the heap.

See the VirtualLock  description  for details on how CommonUnimpStub
works.

Pseudocode for Heap Validate

EAX  =  "HeapValidate"

CL  =  F3

JMP  CommonUnimpStub
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HeapCompact
HeapCompact  is a Windows NT function that attempts to coalesce free
blocks and decommit unused pages in a Win32 heap. It appears that
Windows 95 does these things as part of its normal housekeeping,  so this
function may not be necessary.

See the VirtualLock description  for details on how CommonUnimpStub
works.

Pseudocode for HeapCompact
EAX  =  "HeapCompact"

CL  = 2

JMP  CommonUnimpStub

GetProcessHeaps
GetProcessHeaps  is a Windows NT function that returns  an array of heap
handles  for a process. Strangely, it's not in the Windows 95 APl although it
would  be simple to implement.  In fact, the TOOLHELP32  Heap32ListFirst
and Heap32ListNext functions give you this information.

See the VirtualLock  description for details on how CommonUnimpStub
works.
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Pseudocode for GetProcessHeaps

EAX  =  "GetProcessHeaps"

CL  =  2

JMP  CommonUnimpStub

HeapLock
HeapLock  is a Windows NT function that grabs a Win32 heap's critical sec-
tion object for the current thread. This is yet another function that was omit-
ted from the Windows 95 API for no justifiable reason that I can think of.
The hpTakeSem function that HPAlloc uses appears to do just what you'd
expect the HeapLock function to do.

See the VirtualLock  description for details on how CommonUnimpStub
works.

Pseudocode for HeapLock
EAX  =  "HeapLock"

CL  =  1

JMP  CommonUnimpStub

HeapUnlock
HeapUnlock is a Windows NT function that releases a Win32 heap's critical
section  object. Like HeapLock, its omission from the Windows 95 API is a
real head scratcher. (Class, can you say "Just enough to get by?")

See the VirtualLock description  for details on how CommonUnimpStub
works.

Pseudocode for HeapUnlock

EAX  =  "lteapOnlock"

CL  =  1

JMP  CommonUnimpStub
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HeapWalk
HeapWalk  is a Windows  NT function  that iterates through  all the blocks of
a Win32  heap.  This API is a wonderful  example  of the farce that  the Win32
API has become. The Windows 95 coders  ignored  HeapAlloc when defining
the Windows  95 APl. They left it out because they didn't  have time  (or so
they  said).  However,  after making the decision to omit HeapWalk  from the
Windows  95 API subset, they added the TOOLHELP32  Heap32First  and
Heap32Next  functions.

See the VirtualLock  description  for details on how CommonUnimpStub
works.

Pseudocode for Heap Walk

EAX = "HeapWal k"

CL=1

JMP CommonUnimpStub

THE WIN32 LOCAL AND GLOBAL HEAP FUNCTIONS

The local  and global heap functions  in Win32  are holdovers  from the days
of Win16 --  there's  no need for them in Windows 95.  Local heaps were
created  in Win16  so that  applications  and  DLLs could reach their  heap data
without requiring a selector change.  Likewise,  the global  heap existed in
Win16  because there  was no way to allocate  large areas of memory without
dealing with  selectors.  Win32  programs  under Windows  95 have neither  of
these limitations,  so ideally the Win32 API would  have dispensed with the
global  and local heaps.

As we all know, the Win32 APl makes some compromises  for the sake
of backward compatibility.  There  are just too many Win16  programs out
there  that  use the global  and local heap  functions.  Removing them from the
Win32  APl would  make porting those  apps to Win32  a much more labor-
intensive process.  Therefore,  Microsoft  elected to keep these functions
around  and try to keep the same high-level  semantics  between the Win16
and Win32  versions of the heap  functions.

For the most part,  the Windows  95 local and global heap functions  are
identical.  That  is,  GlobalAlloc and LocalAlloc  are both exported,  but are
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found at the same address in KERNEL32.DLL. Likewise, GlobalFree and
LocalFree are the same function.  Later, in the pseudocode for the functions,
I'll point out any differences. In examining Windows 95's implementation,
I've found that the common Global/Local functions are referred to by the
Local name. I'll follow that convention as well.

One existing code base that makes extensive use of the Win32 local heap
functions is the Win16 components of Windows 95. Windows 95's USER and
GDI are still in 16-bit code segments, but in many cases use 32-bit pointers for
items such as HWNDs, menus, and GDI objects. These objects are kept in
Win32  local heaps that reside immediately above the USER and GDI
DGROUP segments in memory. Chapter 4 contains more information about
the exact layout. The important thing in terms of memory management is that
KRNL386 exports 16-bit functions that call up into KERNEL32 to use the
Win32 Local heap functions. For instance, the undocumented K209 function
(KRNL386 export 209) thunks up to KERNEL32's LocalAlloc function. The
16-bit USER and GDI call K209 to allocate memory for windows, device con-
texts, and so forth. Likewise, a similar function (K211) calls KERNEL32's
LocalFree function.

Win32 local heaps
Local heaps are simpler in Windows 95 than in Win16.  The Win32 local
heap functions  use the underlying Win32 heap code I described earlier. This
greatly simplifies the code in the local heap functions.  For instance, calling
LocalAlloc with the LMEM_FIXED flag is essentially the same as calling
the HeapAlloc function.  Under the hood, both LocalAlloc and HeapAlloc
call the KERNEL32 HPAIIoc function.

Another area where the Win32 local heap functions are simpler than
their Win16 counterparts comes in the sheer number of local heaps. In
Win16, the executable program has its own local heap, as does each of the
DLLs it uses (the obvious exceptions are DLLs such as font files). By default
Windows 95 processes have only one Win32 local heap. Allocations made
through the Win32 local heap API functions come from the default process
heap (described earlier).  If it weren't for LMEM_MOVEABLE blocks, you
could implement LocalAlloc as simply as this:

HLOCAL  WINAPI  LocalAlloc(UINT  uFlags,  UINT  cbBytes)

{

return  (HLOCAL)  HeapAlloc(GetProcessHeap(),  0,  cbBytes  );



As you'll  see shortly  in the  pseudocode,  LocalAlloc  with  the
LMEM_FIXED  flag isn't that much more complicated  than this hypothetical
implementation.  The addition  of LMEM_MOVEABLE  blocks make Win32
local  heaps more complicated.  You might  be asking,  "So why implement
LMEM_MOVEABLE?  Why not just ignore that  flag and do the same as the
LMEM_FIXED  case?"  Memory allocated with LMEM_MOVEABLE can't
be moved within the heap it was allocated from.  Still, KERNEL32 can't just
chuck the LMEM_MOVEABLE flag. A lot of apps  (including Windows
itself) took advantage of the fact that an LMEM_MOVEABLE  handle was
really a pointer to  a pointer  to the memory block:

pMemoryBlock  = *(void  *)_LMEM_MOVEABLE_handle;

By treating the handle as a pointer  and dereferencing  it,  these apps
could get a pointer to the associated memory  block without the hassle of
calling  LocalLock.  Although this isn't good programming practice,  once it's
in widespread use, you have to support it.

The Win32 local heap functions  maintain semantic  backward compati-
bility with their Win1 6 predecessor. If you dereference an LMEM_MOVEABLE
handle,  you'll  get a pointer to the associated  memory block.  The key differ-
ence is that it's a 2-byte  near pointer in Win16 but a 4-byte near pointer in
Win32. To keep up this facade of Win16 compatibility,  the Win32 local
heap functions use handle tables,  which are nothing new. As I described in
Chapter  2 of Windows Internals,  the Win16 local  heap functions  use them
as well,  although with a different  format.

Each Win32 local heap handle table keeps information  for up to eight
local  handles.  When a program uses more than eight local handles at once,
LocalAlloc  allocates  an additional local handle table for up to another  eight
handles.  The handle tables  are allocated from the same heap as the memory
blocks they reference.  These tables are kept in a linked list to facilitate  find-
ing a free handle table entry. The pointer to the head of the handle table list
is kept in the process  database.  A handle table  looks like this:

struct  HANDLE_TABLE  //  Size  ==  0x48  bytes

WORD  signature;  //  "LA"  (0x414C)

NORD  cHandleTables;

DWORD  pPrevHandleTable;

LOCAL_HANDLE_TABLE_ENTRY

//  Number  of  previously  allocated

//  handle  tables  1.

//  Pointer  to  previous  handle  table.

handleEntries[8];
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Each LOCAL_HANDLE_TABLE_ENTRY  looks like this:

struct  LOCAL_HANDLE_TABLE_ENTRY

{

WORD  signature:  //  "BS"

//  "FS"

union

{

PVOID  pBlock;

PVOID  pNextFree;

}x;

(0x5342)  if  an  in  use  entry.

(0x5346)  for  free  entries.

//  If  in-use:  pointer  to  data  block.

//  If  free:  Points  to  next  free

//  LOCAL_HANDLE_TABLE_ENTRY.

BYTE  flags;

BYTE  clock;

/ /  These  two  fields  are  valid  for  in  use  blocks.

/ /  0x02  ==  discardable

//  Lock  count  of  the  block.

When you allocate memory with  LMEM_MOVEABLE (or GMEM_
MOVEABLE for that matter),  LocalAlloc  has to find an available  LOCAL_
HANDLE_TABLE_ENTRY  slot somewhere in the list of handle tables.  After
finding a free entry, it allocates a block of the requested size and puts the block's
address  into the pBlock field of the LOCAL_HANDLE_TABLE_ENTRY.
The  "handle"  that LocalAlloc returns is the address of the LOCAL_HANDLE_
TABLE_ENTRY. pBlock field.

Given that  LMEM_FIXED  blocks are just a pointer to memory  but
LMEM_MOVEABLE  blocks aren't, you may be wondering  how KERNEL32
knows what  type of handle  you're using.  For instance,  you can pass either
LMEM_FIXED or  LMEM_MOVEABLE handles to  LocalFree.  How does
KERNEL32 know which one is which? It's actually easy. Local heap handles
that  end in 0, 4,  8 or  0xC are fixed blocks.  Local handles  that end in 2, 6,
0xA, or  0xE are moveable  handles.  This difference in handles  is by design.
All memory  blocks returned  by HPAIloc have addresses that end in 0, 4,  8,
or 0xC.  To make moveable  handles  always end in 2,  6,  0xA, or  0xE,
Microsoft  put the pBlock pointer two  bytes into the LOCAL_HANDLE_
TABLE_ENTRY  structure.  Incidentally,  the Win16  local heap handle  tables
have a similar design in this respect.
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LocalAlloc  and ILocalAlloc
The LocalAlloc code isn't  much to  look at.  It's  a call to  a KERNEL32  inter-
nal function  (HouseCleanLogicallyDeadHandles)  followed  by a jump to
ILocalAlloc.  The HouseCleanLogicallyDeadHandles  appears  to  do some-
thing related  to  what its name  implies.  However, I never saw  the meat of the
function  being executed,  so the meaning of  "logically  dead handles"  is
unclear.

Pseudocode  for LocaIAlloc

HouseCleanLogicallyDeadHandles();

goto  ILocalAlloc;

ILocalAlloc  starts  by looking  up  the address  of the default process  heap
from the process  database.  Next,  it acquires  the heap semaphore  for the
process  heap,  allowing the code  to  pass  the HEAP_NO_SERIALIZE  flags
to the lower-level  functions  that ILocalAlloc  uses later.  At this point,
ILocalAlloc  splits  into  two code paths,  one  for LMEM_MOVEABLE
blocks  and the  other  for  LMEM_FIXED  blocks.

If allocating  an LMEM  MOVEABLE block,  ILocalAlloc  looks  up the
head of the free handle  list in the process  database.  If the free handle list is
empty, ILocalAlloc  use HPAIIoc to  allocate  memory for a new handle table,
and then initializes  the new table.  One way or  another,  ILocalAlloc eventu-
ally gets a free handle table  entry.  With this entry,  ILocalAlloc  fills in the
fields  to  indicate  an  in-use handle.

After filling in nearly all of the handle table entry,  ILocalAlloc calls
HPAlloc  to obtain a memory block of the size requested  from LocalAlloc.
ILocalAlloc  adds 4  bytes to the allocation  size so that it can use the first
DWORD  of the allocation  for its own purposes.  What  might ILocalAlloc  put
in this first DWORD?  Nothing less than a pointer to the handle table entry.
By doing this,  the local heap functions can convert a pointer  to  a moveable
memory  block back to  its handle.  Because the first DWORD  of the allocated
block is used by the local heap functions,  ILocalAlloc adds  4 to the block's
address when storing the block's pointer into  the handle  table slot.

The other  code path  that  ILocalAlloc can take is for  LMEM_FIXED
handles.  In this case, the code calls HPAlloc to  obtain  the memory  block.
The address  of the  block  is what  ILocalAlloc returns  as the handle.  Put
another way, the handle  for an LMEM_FIXED  block in the local  heap  is the
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same  as  its  address.  Once  again,  this  is  the  same  as  the Winl6  local  heap

functions.

Pseudocode for ILocalAlloc proc

//  Parameters:

//  UINT  uFlags:

//  UINT  uBytes;

//  Locals:

//  HANDLE  hHeap:

//  DWORD  retHandle:
//

//

//

LOCAL_HANDLE_TABLE_ENTRY  *pFreeHandle,  *pHandleEntry;

LOCAL_HANDLE_TABLE  *  pHandleTable;

PVDID  pBlock;

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId  >lpProcessHeap;

uFlags  &=  OxFFFF8FFF;  / / Turn  off  LMEM_INVALID_HANDLE  bit  if  set.

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

if  (  uFlags  &  OxFFFF808D  )  //  Check  for  any  invalid  or  undefined  flags,

//  e,g.,  LMEM_INVALID_HANDLE  or  LMEM_MODIFY.

_DebugOut(  "LocalAlloc:  invalid  flags\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

goto  return_O;

if  (  uFlags  &  LMEM_MOVEABLE  )

//  pNextFreeHandle  is  ab  offset  0x58  in  Process  Database.

pFreeHandle  =  ppCurrentProcessId->pNextFreeHandle;

if  (  pFreeHandle  )

goto  have_handle_table

//  Hmmm...There's  no  available  LOCAL_HANDLE_TABLE_ENTRYs.

//  Go  create  a  new  handle  table.

pHandleTable  =  HPAlloc(  hHeap,  0x48,  HEAP_NO_SERIALIZE  );

if  (  !pHandleTable  )

goto  return_0;

//  Initialize  the  new  handle  table.

pHandleTable->signature  =  "LA";  //  "LA"  =  0x414C
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//  KERNEL32  keeps  a  linked  list  of  LOCAL  HANDLE  TABLEs.  Insert

//  the  new  table  at  the  head  of  the  list.

if  (  ppCurrentProcessId->pHandleTableHead  )

{

pHandleTable->cHandleTables =

ppCurrentProcessId->pHandleTableHead->cHandleTables+1;

}

else

pHandleTable->cHandleTables  = 0;

//  Point  to  first  entry  in  the  array  of  LOCAL_HANDLE_TABLE_ENTRYs.

//  then  initialize  the  8  elements  of  the  LOCAL_HANDLE_TABLE_ENTRYs.

//  array.

pHandleEntry  =  pHandleTable  +  sizeof(LOCAL_HANDLE_TABLE);

pFreeHandle  =  pHandleEntry;

while  (  pHandleTable2  <  end  of  handle  table ) {

pHandleEntry->signature  =  "FS"

pHandleEntry->pNextFree  =  pHandleEntry  +  8;

pHandleEntry  +=  sizeof(  LOCAL_HANDLE_TABLE_ENTRY  );

}

//  Add  the  new  handle  table  to  the  head  of  the  list  of  handle

//  tables.  The  pointer  to  the  list  head  is  kept  in  the  process

//  database.

pHandleTable->pPrevHandleTable=ppCurrentProcessId->pHandlelableHead;

ppCurrentProcessId->pHandleTableHead  =  pHandleTable;

have_handle_table:

if  (  pFreeHandle->signature  !=  "FS"  )

_DebugOut(  "LocalAlloc:  bad  handle  free  list  2\n",  1  );

//  Remove  this  handle  entry  from  the  list  of  free  entries.

ppCurrentProcessId->pNextFreeHandle  =  pFreeHandle->pNextFree;

//  Modify  the  handle  entry  to  describe  the  new  block.

pFreeHandle->cLock = 0;

pFreeHandle->signature  =  "BS";

pFreeHandle->flags =  0;

if  ( (uFlags & LMEM_DISCARDABLE)  ==  LMEM_DISCARDABLE  )

pFreeHandle->flags  |=  2;

if  (  uBytes  ==  0  )

goto  moveable_O_bytes;
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if  (  uBytes  >  OxFFFFF98  )

{

_DebugOut(  "LocalAlloc:  requested  size  too  big\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_NOT_ENOUGH_MEMORY  );

goto  moveable_alloc_error;

/ Call  HeapAlloc  to  allocate  the  memory  block  of  the  requested  size.

/ Add  an  extra  4  bytes,  because  the  back  pointer  to  the  handle

//  table  entry  needs  to  be  stored  in  the  first  4  bytes.

pBlock  =  HPAlloc(  hHeap,  uBytes+4,  flags  &  HEAP_NO_SERIALIZE  );

if  (  !pBlock  )

goto  moveable_alloc_error;

//  Store  the  pointer  to  the  data  area  in  the  handle  table  entry.

pFreeHandle->pBlock  =  &pBlock  +  4;

//  Store  a  pointer  to  the  handle  table  entry  in  the  first  4  bytes

//  of  the  allocated  block.

*(PDWORD)pBlock  =  pFreeHandle;

retHandle  =  &pFreeHandle->pBlock;

goto  moveable_alloc_done

moveable_alloc_0_bytes:

pFreeHandle->pBlock  = 0;

moveable_alloc_done:

if  (  (retHandle  &  2  ==  0  )

_DebugOut(  "LocalAlloc:  handle  value  w/o  LH_HANDLEBIT  set\n",  1

goto  return_retHandle;

//  This  code  allocates  LMEM_FIXED  blocks.

//  Call  HeapAlloc  to  allocate  the  memory  block  of  the  requested  size.

pBlock  =  HPAlloc(  hHeap,  uBytes,  flags  &  HEAP_NO_SERIALIZE  );

if  (  pBlock  )

{
//  Verify  that  HeapAlloc  returned  a  pointer  that's  a  multiple  of  4.

//  (LMEM_FIXED  blocks  must  be  a multiple  of  4.

if  (  pBlock  &  2  )

_DebugOut("LocalAlloc:  pointer  value  w/  LH_HANDLEBIT  set\n",  1)
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retHandle  =  pBlock;

goto  return_retHandle;

moveable_alloc_error:

//  Put  the  LOCAL  HANDLE  TABLE  ENTRY  that  we  acquired  earlier  back

//  into  the  free  list  of  LOCAL_HANDLE_TABLE_ENTRYs.

pFreeHandle->pNextFree  =  ppCurrentProcessId->pNextFreeHandle;

ppgurrentProcessId->pNextFreeHandle  =  pFreeHandle;

pFreeHandle  =  "FS";  //  (0x5346)

return_0:

retHandle  =  0;

return_retHandle:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

return  retHandle;

387

LocalLock and ILocalLock
In Win16, the LocalLock function serves two purposes:  to prevent a block
from moving and to return the memory address associated with the handle.
In Win32, LocalLock is primarily a handle validation  function,  although it
does return the address of the associated block. In Win32, local heap blocks
don't  move around,  so there's no need to lock the  blocks.  And because
you can't get truly moveable  memory,  there's  no reason to allocate
LMEM  MOVEABLE blocks in the first place. Still, KERNEL32 goes
through the motions of maintaining a lock count.

The actual LocalLock function  is part of the validation  layer. It verifies
that the hLocal passed to it is valid from 0x10 bytes before to  7 bytes after
the pointer. Any handle --  LMEM_FIXED or LMEM_MOVEABLE I
should meet these criteria. Assuming the tests don't cause a fault,  LocalLock
jumps  to ILocalLock.

If the handle passed to ILocalLock is an LMEM_MOVEABLE handle,
the function subtracts two bytes from the handle to get a pointer to the
block's LOCAL_HANDLE_TABLE_ENTRY structure. With this pointer,
ILocalLock  verifies the signature  (BS) and retrieves the current lock count  (a
BYTE). If the lock count is 0xFE, ILocalLock refuses to increment the lock
count any further. Otherwise,  the function bumps up the lock count in the
LOCAL_HANDLE_TABLE_ENTRY  structure  and returns the pointer to
the associated memory.
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If the handle  given to ILocalLock  is LMEM_FIXED, there's  no  lock
count  kept  for  it.  Still,  ILocalLock  takes  the opportunity to  verify the handle.
The  handle  in this  case  should  be the same  as if the  block  had  been  allocated
through HeapAlloc.  Thus,  there  should  be a HPAlloc  style  arena 0x10  bytes
before the handle/address.  LocalAlloc grabs the size  field  from the  arena and
checks that the appropriate  bits  for an in-use  block  are set.  The  LocalAlloc
return address  for a valid LMEM_FIXED  block  is the same  as the handle

passed  in.

Pseudocode for LocalLock

//  Parameters:

//  HLOCAL  hLocal

Set  up  a  structured  exception  handler  frame

AL  =  *(PBYTE)(hLocal  +  7  );  //  If  the  pointer  is  bogus,  these  will

AL  =  *(PBYTE)(hLocal - 0x10  );  //  fault,  and  the  exception  handler

//  returns  a  failure  value  to  the  caller.

Remove  structured  exception  handler  frame

goto  ILocalLock

Pseudocode for ILocalLock

//  Parameters:

//  HLOCAL  hLocal

//  Locals:

//  HANDLE  hHeap;

//  PSTR  pszError

//  BYTE  lockCount;

//  HEAP_ARENA  pHeapArena;

//

//

LOCAL_HANDLE_TABLE_ENTRY  *pHandleEntry

DWORD  retValue;

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

//  Verify  that  the  local  handle  is  even  with  the  range  of  valid  handles.

if  (  !x_IsHandleInRange(hHeap,  hLocal)  )

{
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pszError  =  "LocalLock:  hMem  out  of  range\n";

goto  error;

if  (  hLocal  &  2  )  //A  moveable  block.

{
//  The  handle  points  2  bytes  into  the  LOCAL_HANDLE_TABLE_ENTRY

//  struct.  Subtract  2  bytes  to  get  a  pointer  to  the

//  LOCAL_HANDLE_TABLE_ENTRY

pHandleEntry  =  hlocal  -  2;

if  (  pHandleEntry->signature  !=  "BS"  )  //  "BS"  =  0x5342

{

pszError  =  "LocalLock:  invalid  hMem,  bad  signature\n";

goto  error;

lockCount  =  pHandleEntry->cLock;

//  Make  sure  the  lock  count  isn't  going  to  overflow.

if  (  lockCount  ==  OxFE  )

_DebugPrintf("LocalLock:  lock  count  overflow,  handle"

"cannot  be  unlocked\n");

if  (  lockCount  !=  OxFF  )  //  If  lockCount  !=  OxFF,  bump  it  up.

lockCount++;

pHandleEntry->cLock  =  lockCount;

//  Return  the  address  of  the  associated  data  block.

retValue  =  pHandleEntry->pBlock

goto  return_retValue;

lse  //  A  fixed  block.

//  The  hLocal  parameter  is  just  the  pointer  to  the  data.

//  Back  up  to  the  HEAP_ARENA  structure.

pHeapArena  =  hLocal -  0x10;

//  Are  the  bits  indicating  an  in-use  block  set  in  the

//  HEAP_ARENA  size  field?

if  (  (pHeapArena->size  &  0xF0000003)  !=  0xA0000001  )

pszError  =  LocalLock:  hMem  is  pointer  to  free  block\n;

goto  error;
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retValue  =  hLocal;

goto  return_retValue;

//  Just  return  the  handle  parameter,  because

//  it  points  directly  to  the  block's  memory.

error:

__DebugOut(  pszError,

InternalSetLastError(

retValue  =  0;

SLE_WARNING  +  FStopOnRing3MemoryError  );

ERROR_INVALID_HANDLE  ):

return_retValue:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

return  retValue;

LocalUnlock
The LocalUnlock function is part of the validation layer. It verifies that the
hLocal passed to it is valid from 0xl0 bytes before to 7 bytes after the pointer.
Any handle -- L M E M _ F I X E D or L M E M _ M O V E A B L E -- should meet
these criteria. Assuming the tests don't cause a fault, LocalUnlock jumps to
ILocalUnlock.

The ILocalUnlock code is a replay of the ILocalLock code, but in reverse.
If the handle parameter is an L M E M _ F I X E D handle, ILocalUnlock doesn't
have anything to do. It doesn't even bother to validate the handle like
LocalLock does. If the handle is a possible L M E M _ M O V E A B L E handle,
ILocalUnlock checks the signature byte in the handle table entry to make
sure it's a valid handle. If so, ILocalUnlock checks the block's lock count to
see whether it's safe to decrement. If it is, ILocalUnlock decrements the lock
count and returns a B O O L indicating whether the block is still locked or not.

Pseudocode for LocalUnlock

//  Parameters:

//  HLOCAL  hLocal

Set  up  a  structured  exception  handler  frame

AL  =  *(PBYTE)(hLocal  +  7  );  //  If  the  pointer  is  bogus,  these  will

AL  =  *(PBYTE)(hLocal  0x10  );  //  fault,  and  the  exception  handler

//  returns  a  failure  value  to  the  caller.

Remove  structured  exception  handler  frame

goto  ILocalUnlock
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Pseudocode  for ILocalUnlock

//  Parameters:

//  HLOCAL  hLocal

//  Locals:

//  HANDLE  hHeap;

//  PSTR  pszError

//  BYTE  lockCount;

//

//

LOCAL_HANDLE_TABLE_ENTRY  *pHandleEntry

DWORD  retValue;

retValue  =  0; //  FALSE:  the  block  isn't  locked.

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

//  Verify  that  the  local  handle  is  even  with  the  range  of  valid  handles.

if  (  !x_IsHandleInRange(hHeap,  hLocal)  )

{

pszError  =  "LocalUnlock:  hMem  out  of  range\n";

goto  error; }

if  (  (hMem  &  2)  == 0  )  //  If  it's  a  FIXED  block,  there's  nothing  to  do.

goto  return_retValue;

if  (  pHandleEntry>signature  !=  "BS"  )  //  "BS"  =  0x5342

{
pszError  =  "LocalUnlock:  invalid  hMem,  bad  signature\n";

goto  error;

}

//  The  handle  points  two  bytes  into  the  LOCAL  HANDLE  TABLE  ENTRY  struct.

pHandleEntry  =  hLocal  -  2;

//  A  lock  count  of  OxFF  seems  to  be  some  sort  of  error  condition.

if  (  pHandleEntry->cLock  ==  OxFF  )

goto  return  retValue;

//  Make  sure  the  lock  count  won't  underflow.

if  (  lockCount  ==  0 ) {
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_DebugOut(  "LocalUnlock:  not  locked"  );

goto  return_retValue;

//  Decrement  the  lock  count  in  the  handle  table  entry.

pHandleEntry->cLock--;

if  (  pHandleEntry->cLock  )

retValue  =  1;  //  Return  TRUE  (the  block  is  still  locked).

goto  return_retValue;

error:

_DebugOut(  pszError,  SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

EDI  =  0;

return_retValue:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

return  retValue;

LocalFree  and ILocalFree
The Win32  LocalFree  function  is an  odd  duck.  Before  it gets  to  the  real
code  for freeing  a LocalAlloc'ed  handle,  it  first  checks  for  a special  case
handle.  Somehow,  KERNEL32  and KRNL386  conspire  to  create  and use
handle  groups.  It's a mystery  to  me exactly  what  handle  groups  are
because  I was  unable  to  to  find  one.  Regardless,  handle  groups  are some
sort  of three-way  relationship  between  a Win16  Task  database,  a Win32
LocalAlloc'ed  handle,  and a handle  group.  When  LocalFree  detects  that
this  special  local  handle  is  being  freed,  it  calls  the  GlobalNukeGroup
function  to  get rid  of  the  handle  group.  The  handle  group  list  is  main-
tained  by KRNL386,  so  GlobalNukeGroup  ends  up calling  down  into
KRNL386.  This  is  yet  another  case  that  disproves  Microsoft's  assertion
that  KERNEL32  doesn't  thunk  down  to  KRNL386.  The  vast  majority  of
the time  that  LocalAlloc  is  called,  it's not  for  a handle  group  handle.  In
this  situation,  LocalFree  reduces  down  to  just  a call  to  ILocalFree.



LocalFree proc

//  Parameters:

//       HLOCAL hMem

_CheckSysLevel(  x_Another_Win16_mutext  );

CheckHGHeap();  //  Check: Handle  Group  Heap.  Thunks  down  to  KRNL386.

_EnterSysLevel(  x_Another_Win16_mutext  );

if  (  *someGlobal  )

{
//  *someGlobal  points  to  a  Handle  Group  selector.

//  This  is  a  loop  that  iterates  through  a  list.  This  list

//  associates  a  Win16  TDB  with  a  Win32  LocalAlloc  handle  and  a

//  "handle  group"  (whatever  that  is).  The  node  is  considered  found

//  if  the  TDB  and  local  handle  match  the  current  thread's  TDB

//  and  the  handle  passed  to  this  function.

while  (  not  at  end  of  list  )

{
if  (  the  node  being  searched  for  is  found  )

{
_LeaveSysLevel(  x_Another_Win16_mutext  )

GlobalNukeGroup(  EBX  );

HouseCleanLogicallyOeadHandles();

return  hMem;
}

go  to  next  node  in  list
}

_LeaveSysLevel(  x_Another_Win16_mutext  )

CheckHGHeap();  //  Check  Handle  Group  Heap  yet  again.

return  ILocalFree(  hMem  );

The  ILocalFree  code  is  where  a  LocalAlloc'ed  handle  is  freed.  As  with
most  of  the  other  Win32  local  heap  functions,  the  code  for  handling
LMEM_FIXED  blocks  is  simple;  it's  essentially  a call  to  the  underlying
HeapXXX  function.  In the  case  of  LocalFree,  the  code  merely  calls
IHeapFree.

Freeing  an  LMEM_MOVEABLE  block  in  ILocalFree  is considerably
more  complex.  After  verifying  that  a valid  local  heap  handle  was  passed,

393
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ILocalFree  checks  the  block's  lock count.  If the count  is  nonzero,  ILocalFree
complains  that  the  block  is  still  locked.  Next,  ILocalFree  frees  the  block
associated  with  the handle  parameter  back to  the heap through the
IHeapFree  function.  Finally,  ILocalFree  puts  the  handle table  entry  at the
head of the list  of  available  handle  table  entries.

It's interesting  to  note  that  the ILocalFree  makes  no  attempt to  delete  a
handle  table when  all  eight  of  its  entries  are unused.  That  is,  it's not  a good
recycler  that  returns  its  empties.  To verify  that  I wasn't  overlooking  some-
thing,  I modified  a copy  of the WALKHEAP program to  make  50
LocalAllocs  in a row  and then free the  50  handles.  The  resulting  output
showed  that  all  the handle tables  remained  in  memory.  As  an added  bonus
(not!),  the heap had  a nice,  regular pattern  to  its  fragmentation.  The  only
consolation  is  that the  handle tables  will  be reused  for  future  moveable
memory  allocations.

Pseudocode for IlocalFree

//  Parameters:

//  HLOCAL  hMem

//  Locals:

//  HANDLE  hHeap;

//  DWORD  retValue;
// LOCAL_HANDLE_TABLE_ENTRY  *pHandleEntry;

Set  up  structured  exception  handler  frame

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

retValue  =  hMem;

if ( hMem  &  2  )  //  A  moveable  block  (bit  1  set)?

if  (  !x_IsHandleInRange(hHeap,  hMem)  )

{

_DebugOut(  "LocalFree:  hMem  out  of  range\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

goto  return_retValue;

}

//  Back  up  two  bytes  to  point  at  the  handle  table  entry.

pHandleEntry  =  hMem -  2;
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if  (  pHandleEntry->signature  !=  "BS"  )  //  0x5342

{

_DebugOut(  "LocalFree:  invalid  hMem,  bad  signature\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

goto  return_retValue;

}

//  If  the  handle  is  still  locked,  complain.

if  (  pHandleEntry  >cLock  )

{

_DebugOut(  "LocalFree:  invalid  handle\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

//  If  the  memory  block  hasn't  been  discarded,  free  it with  IHeapFree.

//  Note  that  the  code  subtracts  4  from  the  pBlock  field  to  get

//  the  original  value  returned  by  HeapAlloc.

if  (  pHandleEntry->pBlock  )

if  (  IHeapFree(hHeap,  HEAP_NO_SERIALIZE,  &pHandleEntry->pBlock-4))

{

retValue  =  pHandleEntry;

goto  return_retValue; }

//  Insert  the  handle  being  freed  at  the  head  of  the  free  handle  list.

pHandleEntry->pNextFree  = ppCurrentProcessId->pNextFreeHandle;

ppCurrentProcessId->pNextEreeHandle  =  pHandleEntry;

//  Set  the  handle  table  entry's  signature  back  to  the  free  version.

pHandleEntry->signature  =  "FS";  //  0x5346

retValue  =  0;

}

else  //  A  fixed  block.

{

if  (  IHeapFree(hHeap,  HEAP_NO_SERIALIZE,  hMem)  )

retValue  =  hMem

else

retValue  =  0;

}

return_retValue:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

Remove  structured  exception  handler  frame

return  retValue;
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LocalReAlloc  and ILocalRealloc
The  LocalRealloc  function is part  of the validation  layer.  It verifies  that the
hLocal  passed  to  it is valid from 0x10  bytes before  to  7 bytes after the
pointer.  Any handle - - LMEM_FIXED  or  LMEM_MOVEABLE  I  should
meet these criteria.  Assuming the tests don't cause a fault,  LocalRealloc
jumps  to  ILocalRealloc.

Pseudocode  for LocalReAlloc

//  Parameters:

//  HLOCAL  hLocal

//  UINT  uBytes;

//  UINT  uFlags;

Set  up  a  structured  exception  handler  frame

AL  =  *(PBYTE)(hLocal  +  7  );  //  If  the  pointer  is  bogus,  these  will

AL  =  *(PBYTE)(hLocal -  0xlO  ):  //  fault,  and  the  exception  handler

//  returns  a  failure  value  to  the  caller.

Remove  structured  exception  handler  frame

goto  ILocalReAlloc

ILocalReAlloc  is one  of the  longest  and  most  complex  of the  heap
functions  in KERNEL32.  As with the other  local  heap functions,  the code
divides  nicely into  a  section  for LMEM_FIXED  blocks  and a section  for
LMEM_MOVEABLE  blocks.  The  LMEM_FIXED  code  is much simpler,
and  consists  of calling HPReAIioc,  which  is the  underlying  function  for
HeapReAlloc  as well.  Before doing this,  though,  ILocalReAlloc  checks  to
see whether the caller  is trying to  modify  the  flags for an  LMEM_FIXED
block.  This  is a no-no.

The ILocalReAlloc  code for LMEM_MOVEABLE blocks starts by check-
ing to see whether the caller simply wants to modify the flags. If so, the code
modifies the flags in the handle's  LOCAL_HANDLE_TABLE_ENTRY  and
gets out. Next, the code checks to see whether it was called with a size para-
meter of 0. If so, the caller wants the block to  be discarded.  ILocalReAlloc
complies  by passing the block's handle to the IHeapFree.  Before doing this,
though,  ILocalReAlloc checks whether the block is locked, and complains  if
appropriate.

If the size parameter  is nonzero,  the caller  is requesting  the allocation  of
a new block.  If the current  memory block  for the handle is 0, the block has



H P A l l o c

397

been previously  discarded.  In this  case,  the  function  simply  calls  HPAlloc  to
get  a  block  of  the  requested  size.  If a memory  block  is  already  associated
with  this  handle,  ILocalReAlloc  passes  the  memory  block's  address  to
HPReAlloc  to  let  it do  the  messy work  of  reallocating  the  block.

Pseudocode  for ILocalReAlloc

/ /  Parameters:
//  HLOCAL  hMem

//  UINT  uBytes;

//  UINT  uFlags;

//  Locals:

//  DWORD  fDiscardable;

//  HANDLE  hHeap;

//  HANDLE  hNewHandle;

//

//

LOCAL_HANDLE_TABLE_ENTRY  *  pHandleEntry;

PVOID  pBlock;

uFlags  &=  OxFFFFDFFF; / /  Turn  off  0x000020•0  bit,  which  has  no

/ /  meaning.

HouseCleanLogicallyDeadHandles();  //  ???

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

if  (  uFlags  &  0xFFFFD02D  )  //  Test  for  any  flags  that  aren't

goto  LocalRealloc_invalid_flags  //  defined,  or  which  shouldn't  be

//  used  (e.g.,  LMEM_INVALID_HANDLE),

fDiscardable  =  uFlags  &  LMEM_DISCARDABLE;

if  (  (uFlags  &  LMEM_DISCARDABLE)  &&  !(uFlags  &  LMEM_MODIFY)  )

goto  LocalRealloc_invalid_flags;

if  (  hMem  &  2  )  //  If  an  LMEM_MOVEABLE  block.

{

if  (  !x_IsHandleInRange(hHeap,  hMem)  )

{

_DebugOut(  "LocalReA]loc:  hMem  out  of  range\n",

SLE_WARNING  +  FStopOnRing3MemoryError  ):

InternalSetLastError(  ERROR_INVALID_HANDLE  );

goto  LocalRealloc_error;

}
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//  Point  to  the  HANDLE  TABLE  ENTRY  for  this  handle.

pHandleEntry  =  hMem  -  2;

if  (  pHandleEntry->signature  !=  "BS"  )

{

_DebugOut(  "LocalReAlloc:  invalid  hMem,  bad  signature\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

goto  LocalRealloc_error;

pBlock  =  pHandleEntry->pBlock;  //  Get  pointer  to  the  data  area.

f  (  uFlags  &  LMEM_MODIFY  )

pHandleEntry->flags  |=  fDiscardable  ?  2  :  0

goto  done;

( uBytes  ==  0  )  //  Setting  size  to  0  is  the  same  as  discarding

//  the  block.

if  (  pHandleEntry->cLock  )

_DebugOut(  "LocalReAlloc:  discard  of  locked  block\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  ;

goto  LocalRealloc_error

if  (  pBlock  ==  0  )  //  If  no  data  area  is  associated  with  this

goto  done;  //  handle,  there's  nothing  else  to  do.

//  There  is  a  data  area  associated  with  this  handle.  Go

//  free  it.

if  (  IHeapFree(  hHeap,  HEAP_NO_SERIALIZE,  pBlock - 4  )  )

goto  LocalRealloc_error;

//  Set  the  pointer  to  the  data  area  to  NULL,  because  we  just

//  released  the  memory,

pHandleEntry->pBlock  =  0;
goto  done;

//  If  we  get  here,  we're  not  setting  the  size  to  NULL.  This

//  means  that  we'll  need  to  HeapAlloc  or  HeapReAlloc  a  new  block.

uBytes  +=  4;  //  Add  space  for  back-pointer  to  HANDLE  TABLE_ENTRY.
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if  (  pBlock  ==  0  )  //  If  there's  no  data  area  associated  with  this

{  //  handle,  we  can  just  HeapAlloc  a  new  area.

if  (  uBytes  =:  0  )

goto  new_moveable_handle

hNewHandle  =  HPAlloc(  hHeap,  uBytes,  uFlags  &  HEAP_NO_SERIALIZE  );

if  (  !hNewHandle  )

goto  LocalRealloc_error

//  Set  the  first  DWORD  of  the  HeapAlloc'ed  area  to  be  a  pointer

//  to  our  HANDLE_TABLE_ENTRY  struct.

*(PDWORD)hNewHandle  =  pHandleEntry;

goto  new  moveable  handle:

//  If  we  get  here,  there's  already  a  data  area  associated  with

//  this  handle.  Therefore,  we'll  use  HeapReAlloc  to  get  the  new  block.

if  (  pHandleEntry  >cLock  )

uFlags  |=  HEAP  GROWABLE;

hNewHandle  =  HPReAlloc(  hHeap,  hMem,  uBytes,

uFlags  |  HEAP_NO_SERIALIZE  );

if  (  hNewHandle  )

{

new_moveable_handle:

//  Set  the  pointer  to  the  data  area  to  be  4  bytes  into  the

//  block  returned  by  HeapReAlloc/HeapAlloc.  (The  first  DWORD

//  of  this  block  is  a  pointer  to  our  HANDLE_TABLE_ENTRY  struct.)

pHandleEntry->pBlock  =  hNewHandle+4;

goto  done;

}

else  //  Oops!  Something  is  wrong.  Return  O.

hMem  =  0;

goto  done;

}

else  //  An  LMEM_FIXED  block.

if  (  uFlags  &  LMEM_MODIFY  )

_DebugOut(  "LocalReAlloc:  can't  use  LMEM_MODIFY  on  fixed  block\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

goto  LocalRealloc_error;
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//  There's  always  memory  associated  with  an  LMEM _FIXED  handle,  so

//  we  can  just  call  HeapReAlloc  without  all  the  contortions

//  that  an  LMEM  MOVEABLE  block  needs  to  go  through.

hMem  =  HPReAlloc(  hHeap,  hMem,  uBytes,  uFlags  &  HEAP_NO_SERIALIZE  );

goto  done;

LocalRealloc_invalid_flags:

_DebugOut(  "LocalReAlloc:  invalid  flags\n",

SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

LocalRealloc_error:

hMem  =  O;

done:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

return  hMem;

LocalHandle and ILocalHandle
The LocalHandle  function is part  of the validation layer. It verifies that the
pointer  passed to it is valid from 0x10 bytes before to 7 bytes after the pointer.
Any local heap block --  LMEM_FIXED or LMEM_MOVEABLE --  should
meet these criteria.  Assuming the tests don't cause a fault, LocalHandle jumps
to ILocalHandle.

The ILocalHandle function takes the address of a memory block and
returns  the local heap handle associated with the block. This is a simple task
for an LMEM_FIXED block because the block address and the handle are the
same.  However, ILocalHandle is at least kind enough to verify that the address
is really that of a HPAlloc'ed block.

The  other  scenario  that  ILocalHandle  has to contend  with is LMEM_
MOVEABLE handles.  This is trickier,  but not  by much.  In the pseudocode
for ILocalAlloc,  I showed  that  for  LMEM_MOVEABLE  blocks, ILocalAlloc
adds  4  bytes  to  the allocation  size.  In the  first 4  bytes  of the allocation,
ILocalAlloc  stuffs in a pointer  to the local handle table  entry.  It's  in the
ILocalHandle  function that  these 4  bytes come into play.  ILocalHandle
merely  needs to  subtract  4  bytes  from the  pointer  passed  to  it,  and  then
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read  in the DWORD  at that spot.  The DWORD  should  be a pointer  to  a han-

dle table entry.  ILocalHandle  verifies  that the pointer  does  in fact point to  a
handle  table entry.  If so,  ILocalHandle  returns  the address  of the  handle table
entry plus 2.  As we  saw earlier, at this spot the  handle  table entry is pointer  to
the  memory  block.

Pseudocode for LocalHandle

//  Parameters:

//  PVOID  pMem

Set  up  a  structured  exception  handler  frame

AL  =  *(PBYTE)(hLocal  +  7  );  //  If  the  pointer  is  bogus,  these  will

AL  =  *(PBYTE)(hLocal -  0x10  );  //  fault,  and  the  exception  handler

//  returns  a  failure  value  to  the  caller.

Remove  structured  exception  handler  frame

goto  ILocalHandle

Pseudocode for ILocalHandle

//  Parameters:

//  PVOID  pMem

//  Locals:

//  HANDLE  hHeap;

//  HLOCAL  hLocal

//  LOCAL_HANDLE_TABLE_ENTRY  *  pHandleEntry;

//  DWORD  pLocalArena;

//  PSTR  pszError;

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

//  Verify  that  the  local  handle  is  even  with  the  range  of  valid  handles.

if  (  !x_IsHandleInRange(hHeap,  pMem)  )

{

pszError  =  "LocalHandle:  pMem  out  of  range\n";

goto  error;

}

//  If  the  block  is  MOVEABLE,  then  4  bytes  before  the  block  is  a

//  pointer  to  the  handle  table  entry.  This  pointer  is  sandwiched
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//  between  the  HPAlloc  arena  and  the  block's  data.

pHandleEntry  =  *(PDWORD)(pMem-4);

if  (  x_IsHandleInRange(hHeap,  pHandleEntry)  )

//  It's  an  LMEM_MOVEABLE  handle,  Verify  the  signature

if  (  pHandleEntry->signature  ==  "BS" ) {  //  "BS"  =  0x5342

hLocal  =  pHandleEntry+2;

goto  return hLocal; }

//  Hmmm...it's  not  an  LMEM_MOVEABLE  handle.  Fall  through  to

//  see  if  it's  LMEM_FIXED.

lse  //  An  LMEM_FIXED  handle.

pLocalArena  =  pMem - 0x10;

if  (  (pLocalArena->size  &  0xF0000001)  ==  0xA0000000  )

hLocal  =  pMem;

goto  return_hLocal;

//  If  we  get  here,  it's  not  a  valid  MOVEABLE  or  FIXED  block

pszError  =  "LocalHandle:  address  not  a  heap  block\n";

error:

_DebugOut(  pszError,  SLE_WARNING  +  FStopOnRing3MemoryError);

InternalSetLastError(  ERROR_INVALID_HANDLE  );

hLocal  =  0;

return_hLocal:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

return_hLocal;

LocalSize  and  ILocalSize
The  LocalSize  function  is  part of  the  validation  layer.  It verifies  that the
hLocal passed  to  it  is  valid  from  0xl0  bytes  before  to  7  bytes  after  the
pointer.  Any  handle - - LMEM_FIXED  or  LMEM_MOVEABLE - - should
meet  these  criteria.  Assuming  the  tests  don't cause  a fault,  LocalSize  jumps

to  ILocalSize.
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LocalSize  returns  the  size  of the  memory  block  associated  with  the
passed-in  local  handle.  The  real work  of  determining  the  size  is  performed
by the  HeapSize  function  toward  the  end  of  the  code.  If the  local  handle  is
LMEM_FIXED,  LocalSize  goes  almost  directly  to  HeapSize  call.

If the  handle  is  LMEM_MOVEABLE,  LocalSize  needs  to  first convert
the  handle  to  a pointer  to  the  memory  block  before  calling  HeapSize.  If this
is  the  case,  LocalSize  first  verifies  that  the  local  handle  parameter  is  a valid
local  handle.  If it  is,  LocalSize  grabs  the  pointer  to  the  memory  block  from
the  LOCAL_HANDLE  TABLE_ENTRY structure.

The  final  bit  of  code  in  LocalSize  applies  only  to  LMEM_MOVEABLE
handles.  As  I showed  in the  ILocalAlloc  code,  LMEM_MOVEABLE  memory
blocks  are  4  bytes  bigger  than  the  requested  size.  These  4  bytes  are  used to
hold  the  pointer  back  to  the  handle  table  entry.  To  make  LocalSize  report
values  consistent  with  what  was  LocalAlloc'ed,  LocalSize  subtracts  4  from
the  value  returned  by  HeapSize  for  LMEM_MOVEABLE  blocks.

Pseudocode  for LocalSize

//  Parameters:

//  HLOCAL  hLocal

Set  up  a  structured  exception  handler  frame

AL  =  *(PBYTE)(hLocal  +  7  );  //  If  the  pointer  is  bogus,  these  will

AL  =  *(PBYTE)(hLocal -  0x18  );  //  fault,  and  the  exception  handler

//  returns  a  failure  value  to  the  caller,

Remove  structured  exception  handler  frame

goto  ILocalSize

Pseudocode  for ILocalSize

//  Parameters:

//  HLOCAL  hLocal

//  Locals:

//  HANDLE  hHeap;

//  DWORD  size;

//  PSTR  pszError;

// LOCAL_HANDLE_TABLE_ENTRY  *  pHandleEntry;

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;
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//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

if  (  hLocal  &  2  )  //  A  moveable  handle.

{

if  (  Ix_IsHandleInRange(hHeap,  hLocal)  )

{

pszError  =  "LocalSize:  hMem  out  of  range\n";

goto  error; }

//  The  handle  points  2  bytes  into  the  LOCAL  HANDLE  TABLE  ENTRY

//  struct.  Subtract  2  bytes  to  get  a  pointer  to  the

//  LOCAL_HANDLE_TABLE_ENTRY.

pHandleEntry  =  hLocal  -  2;

if  (  pHandleEntry->signature  !=  "BS"  )

pszError  =  "LocalSize:  invalid  hMem,  bad  signature\n":

goto  error;

hLocal  =  pHandleEntry->pBlock

if  (  IhLocal  )

size  =  0;

goto  return_size;

size  :  IHeapSize(  hHeap,  HEAP  NO  SERIALIZE,  hLocal  );

if  (  hLocal  is  a  MOVEABLE  block  )

size  -=  4;

goto  return_size;

error:

_DebugOut(  pszError,  SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

size  =  0;

return_size;

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

return_size;
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LocalFlags
LocalFlags  returns  a local  heap  block's  lock count  in  the low BYTE and the
block's  flags in the  second lowest  BYTE.  The  LocalFlags  code starts  out  by
checking  the handle  for  validity.  Next,  the  code  splits  into two  paths.  If the
handle  is an  LMEM_FIXED  handle  (the low nibble ends  in  0,  4,  0x8  ,or
0xC), the function returns 0 (flags = LMEM_FIXED,  lock count = 0). However,
LocalFlags  does check to make sure the handle points to an HPAlloc'ed block. If
it doesn't, LocalFlags returns LMEM_INVALiD  HANDLE.

The other case LocalFlags  contends with is LMEM  MOVEABLE handles.
In this  scenario,  the  function  subtracts  2  from the handle  to  make  a pointer
to  a  LOCAL_HANDLE_TABLE_ENTRY.  From this  structure,  the  function
extracts  the clock,  flags, and pBlock fields. The lock count goes into the return
value  unmodified.  The  flags field,  however,  isn't  made  up  of LMEM_xxx
type flags.  Therefore,  LocalFlags  has  to  synthesize  the returned  LMEM_xxx
flags from information  in the  flags and  pBlock field.  If pBlock is 0,  it means
that  the  block  has  been  discarded.  (This  should  happen  only  if LocalReAlloc
is called with  a  size of 0.)  As with  the  LMEM_FIXED  case,  if the  passed-in
local handle looks incorrect,  LocalAlloc  returns  LMEM_INVALID_HANDLE.

Pseudocode for LocaIFlags

//  Parameters:

//  HLOCAL  hMem

//  Locals:

//  HANDLE  hHeap;

//  DWORD  flags:

//  PSTR  pszError;

//  WORD  retValue;

//  LOCAL_HANDLE_TABLE_ENTRY  *  pHandleEntry;

//  HEAP_ARENA  *  pArena;

Set  up  structured  exception  handler  frame

retValue  =  LMEM_INVALID_HANDLE;

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

//  Acquire  the  heap  semaphore  so  that  we're  not  interrupted.

x_WaitForSemaphore(  hHeap->pCriticalSection  );

if ( !x_IsHandleInRange(hHeap,  hMem)  )

{
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pszError  =  "LocalFlags:  hMem  out  of  range\n";

goto  error;

if  (  hMem  &  2)  //  A  moveable  block.

{

//  Back  up  two  bytes  to  point  at  the  LOCAL  HANDLE_TABLE  ENTRY.

pHandleEntry  =  hMem - 2;

//  Look  for  signature  at  start  of  handle  table  entry.

if  (  pHandleEntry->signature  !=  "BS" ) {

pszError  =  "LocalFlags:  invalid  hMem,  bad  signature\n";

goto  error;

}

retValue  =  pHandleEntry->cLock;

if  (  pHandleEntry->pBlock  ==  0  )  //  Is  address  of  real  data  0?

HIBYTE(retValue)  |=  LMEM_DISCARDED;

//  If  the  discardable  (2)  bit  is  set  in  the  handle  table  entry  flags,

//  turn  on  the  LMEM_DISCARDABLE  bits  in  the  return  value.

if  (  pHandleEntry->flags  &  2  )

HIBYTE(flags)  |=  LMEM_DISCARDABLE;

goto  return_flags;

} else { //  A  fixed  block.

//  The  hMem  points  to  a  HPAlloc  block,  so  there  should  be  an  HPAlloc

//  style  arena  0x10  bytes  earlier.

pArena  =  hMem  -  0x10;

//  Check  the  arena's  size  field  to  make  sure  it's  consistent  with

//  an  in-use  block.  If  hMem  is  a  bogus  pointer,  this  will

//  fault,  but  the  structured  exception  handler  will  catch  it.

if  (  (pArena->size  &  0xF0000001)  ::  0xA0000000  )

{

retValue  =  0;

goto  return_flags

}

pszError  =  "LocalFlags:  invalid  hMem\n";
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//  Fall  through  to  error  code.

error:

_DebugOut(  pszError,  SLE_WARNING  +  FStopOnRing3MemoryError  );

InternalSetLastError(  ERROR_INVALID_HANDLE  );

return_flags:

InternalLeaveCriticalSection(  hHeap->pCriticalSection  );

Remove  structured  exception  handler  frame

return  retValue;

LocalShrink
In Win32,  LocalShrink has no effect on the heap itself because Win32  heap
blocks aren't moveable.  In the Win16  LocalShrink,  however,  the function
returns the size of the heap.  Therefore,  for compatibility's  sake,  the Win32
LocalShrink  returns the size of the default  process  heap.LocalShrink  may
have  some usefulness  for Win32  applications.  For some strange reason,  the
Win32  API doesn't seem to  have  a good,  documented method for getting
the size of the default  process  heap.  The LocalShrink function returns that
value in Windows  95.

Pseudocode for LocalShrink

//  Parameters:

//  HLOCAL  hMem  //  Neither  of  the  two  parameters  is  used.

//  UINT  cbNewSize

//  Locals:

//  HANDLE  hHeap;

//  Get  the  default  process  heap  from  the  process  database.

hHeap  =  ppCurrentProcessId->lpProcessHeap;

return  hHeap->size;  //  Size  field  is  first  DWORD  in  heap  region.
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LocalCompact
Like  LocalShrink,  the Win32  LocalCompact  function  exists  solely for  back-
ward  compatibility with Win16.  Because Win32  heap  blocks  don't  move,
the  heap can't  be compacted.

Pseudocode for LocalCompact

r e t u r n  0;  //  Easy  enough?

THE WIN32 GLOBAL HEAP FUNCTIONS

The global heap functions in Windows 95 are  barely there.  For the most part,
they either jump directly to their local heap counterpart  or, in the case of
GlobalAlloc,  share the same entry point.  Most of the functions that accept
HGLOBAL parameters  make a token attempt to verify that a valid HGLOBAL
was passed. This less than  stringent  test is the same test that some of the local
heap  functions use. Any block allocated with  GlobalAlloc or LocalAlloc ulti-
mately comes from the HPAlloc function. Thus, there should always be valid
memory 0x10  bytes before and 7 bytes after the block.

Because  the  Global  heap  functions  are  so minimal,  it's  best to  let the
pseudocode  speak  for  itself,  rather  than  describe  each  individual  function.

GlobalAlloc  shares  the same  entry point  as  LocalAlloc.

GlobalLock
Pseudocode for GlobalLock

Set  up  a  structured  exception  handler  frame

AL  =  *(PBYTE)(hGlobal  +  7  );  //  If  the  pointer  is  bogus,  these  will

AL  =  *(PBYTE)(hGlobal -  0x10  );  //  fault,  and  the  exception  handler

//  returns  a  failure  value  to  the  caller.

Remove  structured  exception  handler  frame

goto  GlobalWire;  //  JMPs  to  ILocalLock.
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GlobalUnlock
Pseudocode  for GlobalUnlock

same  tests  as GlobalLock

goto  GlobalUnwire; //  JMPs  to  ILocalUnlock.

GlobalFree
Pseudocode  for GlobalFree

same  tests  as GlobalLock

goto  LocalFree;

GlobalReAlloc
Pseudocode  for GlobalReAlloc

//  Parameters:

//  HGLOBAL  hGlobal

same  tests  as GlobalLock

goto  IGlobalReAlloc;  // JMPs  to  ILocalReAlloc.

GlobalSize
Pseudocode  for GlobalSize

same  tests  as GlobalLock

goto  IGlobalSize;  // JMPs  to  ILocalSize.

GlobalHandle
Pseudocode  for GlobalHandle

same  tests  as GlobalLock

goto  IGlobalHandle; // JMPs  to  ILocalHandle,
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GlobalFlags  and IGlobalFlags
Pseudocode  for GlobalFlags

same  tests  as  GlobalLock

goto  IGlobalFlags;

Pseudocode  for IGlobalFlags

//  Parameters:

//  HGLOBAL  hMem

//  Pass  through  to  LocalFlags,  and  then  turn  off  any  bits  in  the

//  high  BYTE  of  the  low  WORD  that  aren't  valid  GMEM_xxx  flags.

return  LocalFlags(  hMem  ) &  OxFFFFF1FF

GlobalWire
Pseudocode  for GlobalWire

goto  ILocalLock;

GlobalUnWire
Pseudocode  for GlobalUnWire

goto  ILocalOnlock;

GlobalFix
Pseudocode  for GIobalFix

//  Parameters:

//  HGLOBAL  hMem

if  (  hMem  != OxFFFFFFFF  )

return  GlobalLock(  hMem  );  //  GlobalLock  ultimately  calls  ILocalLock.
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GlobalUnfix
Pseudocode  for GlobalUnfix

//  Parameters:

//  HGLOBAL  hMem

if  (  hMem  !=  OxFFFFFFFF  )

return  GlobalUnlock(  hMem  );  //  GlobalUnlock  ultimately

//  calls  ILocalUnlock.

GlobalCompact
goto  LocalCompact;

MISCELLANEOUS  FUNCTIONS

The last few functions  I'll cover in this chapter don't fit into  any of the previ-
ous categories,  but are  important  nonetheless.  I haven't included  every possi-
ble memory  function.  Instead,  I chose just  a  few interesting functions.  (This
chapter is long enough without going into  a  dozen  additional  routines!)

WriteProcessMemory  and
ReadProcessMemory
ReadProcessMemory  and WriteProcessMemory  are  the approved  method  by
which one process  can read  and modify the memory  of another.  To use these
functions,  you have to  have  a handle  for the other  process,  and the Win32
API doesn't make  it easy to get such a handle.  WriteProcessMemory and
ReadProcessMemory  are two  key functions  for Win32  debuggers.  Debuggers
are  in the small category of applications  that  need to read  and write to  the
memory  of another process  (the debuggee  to  be specific).

Under the hood, WriteProcessMemory and ReadProcessMemory  are similar.
Therefore,  I've  decided  to  show pseudocode  for  just  one,  WriteProcess-
Memory.  The  only  significant  difference  is that WriteProcessMemory  calls
VWIN32  service 0x002A0017,  and  ReadProcessMemory  uses  service
0x002A0016.
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WriteProcessMemory  starts  out  with  some  synchronization  code.  It
makes  sure  that  it  doesn't  hold  either the Win16Mutex  or  the  Krn32Mutex.
The  code  then  goes  to  a  "must-complete'  section,  which  means  that  it can't
be  switched  away  from.  WriteProcessMemory  follows  this  with  checks  to
make  sure that the  source  address  is in  the  application  private  arena,  which
is  what  the VMM  documentation  calls  the  area  above  4MB  and below  2GB.

The  next  step  for WriteProcessMemory  is  to  get  pointers  to  the  process
structures associated  with the source address process.  The code uses the process
structure to find the thread list for the source  address process.  For some reason,
the VWIN32  service  that copies  the  memory  wants  the  ring  0  stack  address
for  the  current thread  in the  target  process.  Once  WriteProcessMemory  has
everything it needs to call  into VWIN32,  it acquires the Krn32Mutex and then
calls  VWIN32  service  0x002A0017.  After VWIN32  does  its  magic  with
memory  context,  WriteProcessMemory  releases  the  Krn32Mutex  and exits
the  must-complete  state  by calling  LeaveMustComplete.  If something went
wrong  during  these  steps,  WriteProcessMemory  calls  SetLastError  to  let the

caller know  what  went wrong.

Pseudocode for WriteProcessMemory

//  Parameters:

//  HANDLE

//  LPCVOID

//  LPVOID

//  DWORD

//  LPDWORD

//  Locals:

//  DWORD

//  DWORD

//  DWORD

hProcess;  //  Handle  of  the  process  whose  memory  is  read.

lpBaseAddress;  //  Address  to  start  writing  to.

lpBuffer;  //  Address  of  buffer  with  data  to  write.

cbRead;  //  Number  of  bytes  to  write.

lpNumberOfBytesWritten;  //  Actual  number  of  bytes  written.

pProcess;
ptdb;
lastError;

//  Make  sure  we  don't  already  have  the  Krn32Mutex  or  Win16Mutex.

x_CheckNotSysLevel_Krn32_Win16_mutex();

//  Function  that  emits  function  names  and  parameters  to  the  KERNEL

//  debugger  if  a  KERNEL32  global  variable  is  TRUE  (off  by  default).

x_LogKernelFunction(  number  indicating  the  WriteProcessMemory  function  );

EnterMustComplete();

if  (  lpNumberOfBytesWritten  )

*lpNumberOfBytesWritten  =  0;



if  (  lpBuffer  <  0 x 0 0 4 0 0 0 0 0  )

goto  set_invalidParam_lasterror_with_bp

if  (  lpBuffer  <  0 x C 0 0 0 0 0 0 0  )

goto  set_invalidParam_lasterror_with_bp

pProcess  =  x_GetObject(  hProcess,  0x80000010,  0  );

if  (  !pProcess  )
{

lastError  =  1;

goto  emit_trace_info;

}

if  (  some  flag  set  in  a  certain  pProcess  field ) {

lastError  =  ERROR_PROCESS_ABORTED;

goto  set_last_error;

} myLocall  =  x_SomeListFunction(pProcess->threadList,  0);

if  (  myLocall  )

{

do{

ptdb  =  *(PDWORD)(myLocall+8);

if  (  ptdb->ring0_hThread  )

break;

} while  (  myLocall  = x_SomeListFunction(  pProcess->threadList,  1)  )
}

else

ptdb  =  some  unitialized  local  variable?

if  (  !myLocall  )
{

InternalSetLastError(  ERROR_PROCESS_ABORTED  );
goto  done;

EnterSysLevel(  Krn32Mutex  );

//  Call  the  Win32  VxD  service  in  VWIN32.VXD  to  copy  the  memory.

lastError  =  VxDCall(  OxOO2A0017,  ptdb->ring0_hThread  lpBaseAddress,

lpBuffer,  cbRead,  lpNumberOfBytesWritten  );

413
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if  (  !lastError  )

InternalSetLastError(  lastError)  ;

_LeaveSysLevel(  Krn32Mutex  );

done:

x_UnuseObjectSafeWrapper(  pProcess);

goto  emit_trace_info;

set_invalidParam_lasterror_with_bp:

INT  3

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

emit_trace_info:

x_SomeLoggingFunction( "WriteProcessMemory  ptdb  %08x  Src  %08x  (%02x)"

"Dst  %08x  cb  %d  erc  %d\n",

ptdb,  lpBuffer,  *(PWORD)lpBuffer,

lpBaseAddress,  cbRead,  lpNumberOfBytesWritten  );

LeaveMustComplete();

return  !lastError

GlobalMemoryStatus  and
IGlobalMemoryStatus
The GlobalMemoryStatus  function is a convenient way to get some insight
into  the state of the machine's memory. The function fills in a MEMORY-
STATUS structure with information such as how many pages of physical
RAM are being used and the size of the swap file.  In many ways, this func-
tion is the Win32  equivalent of the Windows 3.1  MemManlnfo  routine.

The actual GlobalMemoryStatus code is just a parameter validation layer
stub. Its only test is to make sure that the pointer passed to the function points
to enough memory to hold a MEMORYSTATUS structure. Despite what the
documentation  says, you don't have to initialize the dwLength field of the
MEMORYSTATUS structure before calling GlobalMemoryStatus.
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Pseudocode  for GlobalMemoryStatus

//  Parameters:

//  LPMEMORYSTATUS  lpmstMemStat

Set  up structured  exception  handler  frame

// Make  sure that  the  beginning  and end  of the MEMORYSTATUS

//  structure  is accessible,

*(PBYTE)lpmstMemStat  +=  0:

*(PBYTE)(lpmstMemStat+0x1F)  +=  0;

Remove  structured  exception  handler  frame

goto  IGlobalMemoryStatus;

The IGlobalMemoryStatus  does nothing more than fill in a MEMORY-
STATUS struct with an abreviated version  of the information in a
DemandlnfoStruc  structure. This structure is filled in by calling the
_GetDemandPagelnfo  VxD function in VMM.VXD.  Because ring 3 applica-
tions can't call VxDs  directly, IGlobalMemoryStatus uses VMM Win32 ser-
vice  0x0001001E  as a surrogate for calling _GetDemandPagelnfo.  For the
benefit  of those who don't have the DDK documentation  in front of you,  a
DemandlnfoStruc  looks  like this:

DemandInfoStruc  struc

DWORD  DILin_Total_Count

DWORD  DIPhys_Count

DWORD  DIFree_Count

DWORD  DIUnlock_Count

DWORD  DILinear_Base_Addr

DWORD  DILin_Total_Free

DWORD  DIPage_Faults

DWORD  DIPage_Ins

DWORD  DIPage_Outs

DWORD  DIPage_Discards

DWORD  DIInstance_Faults

DWORD  DIPagingFileMax

Pages  in linear  address  space.

Specifies  the  total  number  of physical  pages

managed  by the memory manager,

Specifies  the  number  of pages  currently  in the

free  pool.

Specifies  the  number  of pages  that  are  currently

unlocked.  Free  pages  are  always  unlocked.

Always  zero,

Total  number  of free  virtual  pages  in the

current  memory  context.  This  value  includes  only

pages  in the  private  arena.

Total  page  faults,

Calls  to pagers  to page  in.

Calls  to pagers  to page  out.

Calls  to pagers  to discard.

Instance  page  faults.

Current  maximum  size  of the  swap  file,  in pages.

Zero  if swapping  is turned  off.
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DWORD  DIPagingFileInUse

DWORD  DICommit_Count

DWORD  DIReserved[2]

DemandInfoStruc  ends

Number  of  swap  file  pages  currently  in  use.  This

is  the  number  of  pages  by  which  physical  memory

is  overcommitted.  Zero  if  swapping  is  disabled

or  if  physical  memory  is  available  for  all

swappable  pages.

Total  committed  pages.

Reserved;  do  not  use.

No  doubt,  there will  be many programs written that sit in the corner of
the screen and tell the user what the  "memory load"  is. What exactly is the
memory  load? In the pseudocode, you can see that it's 50 times the committed
page count  divided  by the number of physical pages managed by the
Windows  95  memory manager. Put another way, it's half the percentage
ratio  of physical pages to committed pages.  For example,  a system with
8MB of RAM and  llMB  of committed pages would  have a memory load

of 68  (out of a maximum  100):

(11  x 50) /  8 == 68.75

And yes,  you can have more committed pages than actual  RAM.
Committing  a page doesn't mean that RAM will always  be associated with
it. Unless  you pagelock the memory, Windows  95  is free to page it out.

IGlobalMemoryStatus  proc

//  Parameters:

//  LPMEMORYSTATUS  lpmstMemStat

//  Locals:

//  DemandInfoStruc  dis;

//  DWORD  memLoad;

Set  up  structured  exception  handler  frame

//  Call  the  VMM  Win32  VxD  service  to  fill  the  struct

VxDCall(  _GetDemandPageInfo,  &dis,  0  );

memLoad  =  (dis.DICommit_Count  *  50)  /  dis.DIPhys_Count

if  ( memLoad  <  100  )

lpmstMemStat->dwMemoryLoad  = memLoad;

else

lpmstMemStat->dwMemoryLoad  =  100;

lpmstMemStat->dwTotalPhys  =dis.DIPhys_Count  * 4096;
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lpmstMemStat->dwAvailPhys  =  dis.DIFree_Count  * 4096;

lpmstMemStat->dwTotalPageFile  = dis.DIPagingFileMax  *  4096;

lpmstMemStat->dwAvailPageFile  = 4096  *

(dis.DIPagingFileMax -  dis. DIPagingFileInUse)

lpmstMemStat->dwTotalVirtual  =  Ox7FC00000;  //  Size  of  app  private  data

//  area  (2GB - 4MB).

lpmstMemStat->dwAvailVirtual  = dis.DILin_Total_Free  * 4096;

lpmstMemStat->dwLength  =  sizeof(  MEMORYSTATUS  )

Remove  structured  exception  handler  frame

417

GetThreadSelectorEntry  and
IGetThreadSelectorEntry
When I saw the GetThreadSelectorEntry function,  I was shocked that  it was
included  in the Win32  APl.  GetThreadSelectorEntry has nothing to  do  with
threads.  In fact,  the hThread  parameter  is checked  for validity,  but never
used for anything.  GetThreadSelectorEntry gives you read-only access  to  the
system VM's  local  descriptor tables.  This  is the very descriptor table  that
contains  the flat code  and data  segments  for Win32  applications.  It's  also
the descriptor table  from which Win16  applications  get their code  and data
segments,  as well  as GlobalAlloc'ed  handles.  This function is a valuable  tool
in any system spelunker's  tool  kit!

Assuming  you pass a valid selector  to  GetThreadSelectorEntry,  you'll
get back an  g-byte structure  that's  the same as an LDT descriptor.  Among
the information  in each descriptor  is its  base address  and length.  Because
Win32  apps have  a fiat  pointer that  can reach  anywhere,  they can use this
function to  convert  a  16:16  address  to  a flat  32 address  that  the Win32  app
can read and write to.  You can even construct  your own Win32  versions  of
the Win16  GetSelectorBase and  GetSelectorLimit  function.

Speaking  of GetSelectorLimit,  on page 449  of  Unauthorized Windows
95,  there is code for obtaining the  base  address  of a selector.  This code  used
a VWIN32 VxD service call to  invoke DPMI subfunction  6. This DPMI sub-
function returns the base address of the specified selector.  While this method
is technically  impressive,  GetThreadSelectorEntry would  have worked  just
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as  well  and would  have  made the code  simpler.  Better yet,  GetThread-
SelectorEntry  is  a documented  function,  which  should  be used in preference
to  undocumented  functions  if at  all possible.

Of primary interest in the GetThreadSelectorEntry  code  are the LDTAlias
and  LDTPtr variables.  These  are both global  variables  in KERNEL32.DLL.
LDTPtr  contains the linear  address  of the system VM's  LDT. LDTAlias  is a
selector  value with read and write  access to  the selector  table's  memory.  This
is the same  LDT alias  selector  that  KRNL386  uses to  bash the selector  table
inside  the global  heap  functions.  (See Chapter 2  of  Windows Internals.)

GetThreadSelectorEntry  proc

//  Parameters:

//  HANDLE  hThread;

//  DWORD  dwSelector;

//  LPLDT_ENTRY  lpSelectorEntry;

Set  up  structured  exception  handling  frame

Touch  the  first  and  last  bytes  that  lpSelectorEntry  points  to.

If  a  fault  occurs,  it's  considered  a  bad  pointer,  and  the  exception

handler  returns  FALSE;

Remove  structured  exception  handling  frame

goto  IGetThreadSelectorEntry;

IGetThreadSelectorEntry  proc

//  Parameters:

//  HANDLE  hThread;

//  DWORD  dwSelector;

//  LPLDT  ENTRY  lpSelectorEntry;

//  Locals:

//  PTHREAD_DATABASE  ptdb;

//  BOOL  retValue;

//  LPLDT_ENTRY  pLDTAliasDesc;

//  LPLDT_ENTRY  pDesiredDesc;

retValue  =  TRUE;

x_CheckNotSysLevel_Win16_Krn32_mutexes();

x_LogSomeKernelFunction(  function  number  for  GetThreadSelectorEntry  );
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_EnterSysLevel(  Winl6Mutex  );

_EnterSysLevel(  Krn32Mutex  );

ptdb  =  x_ConvertHandleToK320bject(  hThread,  0x20,  0  );

if  (  ptdb  )  //  The  hThread  is  okay.

if  (  dwSelector  &  0x4  )  //  Check  if  it's  a  GDT  selector.  Bail  if  so.

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

goto  error;

pDesiredDesc  =  dwSelector  &  0x0000FFF8;  //  Get  offset  in  LDT.

//  Get  a  ptr  to  LDT  alias  selector's  descriptor  in  the  LDT.

pLDTDesc  =  LDTPtr  +  (LDTAlias  &  OxOOOOFFF8);

//  Check  if  the  selector  asked  for  is  outside  the  upper  limit

//  of  in-use  selectors  in  the  LDT.

if  (  pDesiredDesc  >  pLDTDesc  >limit  )
{

InternalSetLastError(  ERROR_INVALID_PARAMETER  );

goto  error;
}

pDesiredDesc  +=  LDTPtr;  //  Make  it  point  into  the  LDT  now.

//  Copy  the  LDT  descriptor  into  lpSelectorEntry.

memcpy(  lpSelectorEntry,  pDesiredDesc,  sizeof(LDT_ENTRY)  )
}

else

error:

retValue  =  FALSE;
}

SomeOutputFunction(  "GetThreadSelectorEntry  sel  %04x  erc  %d\n",

dwSelector,  (retValue  ?  0  :  GetLastError())  );

_LeaveSysLevel(  Krn32Mutex  );

_LeaveSysLevel(  Win16Mutex  );

419

return  retValue;
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The C/C++ compiler's malloc and new functions
In many cases, C/C++ programmers  ignore all the operating systems mem-
ory management functions and use the C runtime library for their memory
management, specifically, the malloc and free functions.  But what if you use
C++? In all PC compilers that I know of, the new operator maps directly to
malloc,  and delete maps to free. The question is, how are these functions
implemented in terms of the underlying  OS functionality?

In this chapter, I've shown how the heap functions  (such as HeapAlloc
and HeapFree)  are fairly close in functionality to malloc and free. Does this
mean that malloc and free in the C runtime libraries are just wrappers
around HeapAlloc  and HeapFree? Up until Visual C++ 4.0, the answer was
no, with one exception:  the CRTDLL.DLL version of the C runtime library
from Microsoft. In CRTDLL.DLL, malloc and new simply call HeapAlloc,
whereas free or delete call HeapFree. CRTDLL.DLL is used by many standard
Windows  NT and Windows 95 EXEs and DLLs. This is a great idea, because
it prevents Microsoft  from having to ship a separate copy of the C runtime
library  in every EXE and DLL.

Unfortunately,  the C compiler  vendors haven't cooperated enough to
enable  everyone to use the CRTDLL.DLL shipped with their operating sys-
tems. Thus, we're still stuck with separate copies of the C runtime library in
every executable or  (only slightly better)  shipping C runtime DLLs with our
programs.  Because this scenario isn't likely to change soon, it's a good idea
to know what's going on under the hood of these runtime libraries.

I'm not going to cover malloc and free from the C runtime libraries in
the same detail as the operating system functions.  Instead,  I'll give enough
of an overview that you can judge for yourself how you want to implement
your memory management code.

As far as I've been able to determine,  both Borland and Microsoft
implement their runtime library heaps in a similar manner. In fact, other
than the size of the heaps, the situation hasn't changed much from Windows 3.x
days. Each executable file or DLL has its own heap. A program with three
DLLs will end up having four separate heaps (one for the EXE, and one for
each of the DLLs). An allocation  made in a given DLL will come from that
DLL's heap.  Contrast this to the Win32 HeapAlloc function,  which --  no
matter where it comes from --  allocates memory from the application's
heap (assuming that you always pass in the default process heap handle).

Rather than using the high-level operating system functions such as
HeapAlloc,  the heaps provided by the C compiler  RTLs use their own data
structures  and memory management code. This can make it difficult to mix
and match HeapAlloc'ed and malloc'ed memory in the same program (as a
fellow programmer at Nu-Mega found out the hard way).
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By digging deep enough into some C/C++ RTL code, we can see how
malloc  maps to the underlying OS functions.  I did the hard work of bur-
rowing  down through all the levels of the Borland C++ 4.5  RTL so that you
don't have to. A call stack showing how malloc is implemented on top of

Windows 95  functions  looks like this:

malloc  (HEAP.C)

_getmem  (GETMEM.C)

_virt_reserve  (VIRTMEM.C)

VirtualAlloc(  NULL,  size,  MEM_RESERVE,  PAGE_NOACCESS  )

Aha! The C runtime library allocates  big blocks of memory from the OS
using VirtualAlloc, which is essentially the same thing HeapAlloc  does.  The
pages in the allocated area are initially reserved (decommitted),  and must be
committed  with _virt_commit  before they can be used. (_virt_commit is just
a wrapper around VirtualCommit.)  Does this method of committing pages
as they are accessed sound familiar? It should. This is the same way that
Windows 95 commits  memory to  its heaps.  Go back and reread the section
on hpCarve and hpCommit  if you need a refresher.

The runtime libraries aren't going to call VirtualAlloc for each call to
malloc.  They need to  set up and maintain internal data structures to keep
track of what blocks are allocated or not, as well as keep a free list for fast
allocations.  What do the heap blocks look like? This comment  from

HEAP. C is illuminating:

/*  . . . . . . . . . . . . . . . . . . . . . .

*  Knuth's  "boundary  tag"  algorithm  is  used  to  manage  the  heap,

*  Each  block  in  the  heap  has  tag  words  before  and  after  it,  which

*  contain  the  size  of  the  block:

*  SIZE

*  block  ...

*  SIZE

* The  size  is  stored  as  a  long  word,  and  includes  the  8  bytes  of

*  overhead  that  the  boundary  tags  consume.  Blocks  are  allocated

*  on  LONG  word  boundaries,  so  the  size  is  always  even.  When  the

*  block  is  allocated,  bit  0  of  the  size  is  set  to  1.  When  a  block  is

*  freed,  it  is  merged  with  adjacent  free  blocks,  and  bit  0  of  the

*  size  is  set  to  0.

* When  a  block  is  on  the  free  list,  the  first  two  LONG  words  of  the  block

*  contain  double  links.  These  links  are  not  used  when  the  block  is

*  allocated,  but  space  needs  to  be  reserved  for  them.  Thus,  the  minimum

*  block  size  (not  counting  the  tags)  is  8  bytes.
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H m m . . . the retail  build of Windows  95 manages  heap blocks in a sim-
ilar (but not identical)  manner.  However, the overhead  of a HeapAlloc  block
is only 4  bytes  (for the size), but the Borland  C++ runtime  library uses  8
bytes  per block.  Note also the similarities  in how Borland  C++ and the
HeapAlloc  function use memory in a free block to point  to another  free
block.

A potential  gotcha  when using the heaps provided  by a runtime library
is their  lifetime.  When a DLL unloads  from memory and receives the
DLL_PROCESS_DETACH  notification,  the runtime  library calls VirtualFree
to release the heap's  memory.  If other  DLLs have pointers  into this memory
block,  the pointers  will suddenly  become invalid.  If another  DLLs unloads
later on,  and uses one of these pointers  during its DLL_PROCESS_DETACH
processing,  you'll  have program crashes that  are difficult to debug.  Take it
from somebody who learned this painfully.

So, to  answer my original  question,  malloc  is essentially  a compiler
implemented  version of the Windows  95 HeapAlloc  function,  with at least
two  key differences.  First,  each EXE and DLL has its own heap provided  by
the runtime  library, whereas all HeapAlloc  allocations  come from the default
process heap set up  by the system.  Second, the lifetime of the runtime library
heaps  is shorter  than that  of the default process  heap.  In certain  sequence-
related  operations,  there can  be problems  with using the runtime  library
heaps.  This  is not to  say that  you should avoid  new or  malloc,  however.
Just  be aware  of what they are  and the potential  tradeoffs.

SUMMARY

Whew!  This chapter  (although  by far the longest  in the  book)  has  barely
touched  on all the various aspects of Windows 95 memory management.
We've  examined  memory paging  by the CPU, separate  address  spaces  for
each process,  and the memory regions that Windows 95 shares among all
processes.  At the Win32  API level, we've  seen how the VirtualXXX  func-
tions  manage pages at the page level, and the HeapXXX  functions  provide
memory management  at a much finer level of granularity.  The holdover
heap functions  ported  from the Win16 API (that is, the GlobalXXX  and
LocalXXX functions)  are really just a thin layer over the HeapXXX func-
tions.  In the next chapter we'll  see how the ring 3 KERNEL32.DLL commu-
nicates with the ring 0 virtual  memory manager to  obtain the basic  building
block  services that  the heap functions  are built atop.
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O ne day, several coworkers and I were hanging out in an
office,  ruminating about the core architecture of Windows

95. As is often the case, the topic at hand turned to how various
components  of Windows 95 have intimate knowledge of other
components.  (This is usually considered a Bad Thing; something
to be avoided if possible.) This particular day, one of my col-
leagues wondered,  "Why does Microsoft  bother having separate
16- and 32-bit kernels,  as well a kernel-like VXD? Why don't
they just ram them all together  into one file and be done with it?"

In this chapter,  I examine that  issue.  In fact,  the title of this
chapter  (VWINKERNEL32386)  is a contraction  of the compo-
nents  just mentioned:  VWIN32.VXD,  KERNEL32.DLL,  and
KRNL386.EXE.  Warning:  This chapter  contains some pretty
advanced  stuff.  It's  not essential  to  understand  this chapter  to
continue  on with  the rest  of the  book.

Windows  application  programmers  will  immediately
recognize KRNL386.EXE  as  the  16-bit  KERNEL,  and
KERNEL32.DLL  as its  32-bit  equivalent.  These DLLs export
the core  set of functions  that every Winl6  or Win32  application
uses  (for instance,  LoadLibrary,  _lread,  and  so on).  (Most of)
the functions in these DLLs are documented  in the standard
system  header files provided with  the  SDK or  your compiler.
For  16-bit programs,  the WINDOWS.H  file prototypes  the
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functions  in KRNL386.EXE.  Under Win32, WINBASE.H and WINCON.H
describe most of the functions in KERNEL32.DLL.

Unfortunately,  the third kernel listed above (VWIN32.VXD) is barely
mentioned  in any Microsoft documentation or header files. In fact, to my
knowledge, the only acknowledgment that VWIN32.VXD exists is the
VWIN32.H file from the Windows 95 DDK. Calling VWIN32.H "docu-
mentation''  is a stretch, especially when you learn that VWIN32.VXD is
one of the top two most important VxDs (along with the Virtual Machine
Manager, or VMM). VWIN32.VXD provides key operating system primi-
tives at ring 0 --  primatives that are used by both the 16-bit KRNL386 and
the 32-bit KERNEL32. As I discovered repeatedly throughout the research
for this book, any serious attempt to examine KRNL386 or KERNEL32
quickly  drags you into the realm of VWIN32.VXD.

Seeing as how Microsoft's documentation on VWIN32.VXD is so deficient,
I tried to remedy that situation in this chapter. First, I describe VWIN32.VXD
and its interfaces. Then I show how all three kernel components are interrelated
and have knowledge of one another. Spelling this out:

*  KRNL386.EXE knows about and calls into VWIN32.VXD.
*  KRNL386.EXE knows about and calls into KERNEL32.DLL.
*  KERNEL32.DLL knows about and calls into KRNL386.EXE.
*  KERNEL32.DLL knows about and calls into VWIN32.VXD.
*  VWIN32.VXD knows about and exchanges  information with

KERNEL32.DLL.
*  VWIN32.VXD knows about and exchanges information with

KRNL386.EXE.

Of particular interest in all these permutations  is the one where
KERNEL32  calls into KRNL386.EXE.  Microsoft's reviewer's  guide
swears  that this doesn't  happen,  yet  Unauthorized Windows 95 proved
Microsoft's claims to be false. In this chapter, I provide a comprehensive
listing  of exactly which functions KERNEL32 calls down to
KRNL386.EXE for.

Another subject  Unauthorized Windows 95 touched on is Win32 VxD
services. These services provide an easy way for Win32 programs to call
into VxDs using a standard C-style calling convention. Win32 VxD services
are a major part of the Windows 95 architecture.  As one example of this,
every file I/O call is eventually translated into a Win32 VxD service call.
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(Strange as it may seem, the particular Win32 VxD service ultimately calls
the VMM.VXD Exec_PM_Int with an interrupt number of 21h.  Sound
familiar? DOS just will not die, will it?)

Unfortunately,  Microsoft chose not to formally document Win32 VxD
services. Since Unauthorized Windows 95 was able to devote only a couple
of pages to these crucial Win32 VxD services, I discuss them in more depth
in this chapter. Often, the best way to learn and explore undocumented
interfaces is to write tools. Thus, this chapter includes a spy program
(W32SVSPY)  to monitor calls to Win32 VxD services. I had to cross quite a
few hurdles --  some of them intentionally  thrown up by Microsoft --  to
make W32SVSPY work properly. Toward the end of the chapter I describe
how W32SVSPY works its magic. The techniques  involved might prove
handy in your own system-level programming.

A CRASH COURSE IN VxDs

Since I'm going to be talking extensively about VWIN32.VXD in the pages
to come, it would be helpful to be at least passingly familiar with the basics
of VxDs. For the benefit of those readers who aren't VxD-heads  (and I'm
certainly  not one), a quick overview of VxDs is in order. If you've written
VxDs and know them cold, you can skip over this section.

As its name implies, a VxD can be a Virtual Device Driver. That is, it can
be used to virtualize a particular hardware  device among multiple programs
that use it. However, nothing says that a VxD has to be associated with an
actual device. A VxD is really nothing more than a DLL that runs at the
highest privilege level of the processor (ring 0). Since VxDs run at ring 0,
there's essentially nothing they can't do. However, in exchange for all their
power, VxDs are typically difficult to write, and can't be called as easily as
regular ring 3 DLLs.

I'm not going to attempt to describe how to write VxDs, or go into all
the various nifty tricks and techniques that are available to VxD writers.
There are books like  Unauthorized Windows 95 and Dave Thielen's  Writing
Windows Device Drivers that cover VxDs in far more depth than I will
here. My goal is to explain just enough about VxDs so that I can move on
to describe VWIN32.VXD.

When loaded into memory, VxDs are uniquely identified by their  16-bit
device number. VxD device ID I  is VMM.VXD, whereas the Virtual
Keyboard  Device (VKD) uses a device ID of 0Dh. The ID for VWIN32.VXD
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(the focus of much of this chapter) is 2Ah. You can get a fairly complete list
of the standard predefined VxDs and their IDs by looking for the
xxx_DEVICEID  definitions in the VMM.INC or VMM.H files in the
Windows  95 DDK. Note that VxD IDs below 512 are reserved for
Microsoft's  use. Other companies that write VxDs are supposed to request
VxD IDs from Microsoft.

Calling VxD functions from other VxDs
Just as ring 3 system DLLs have a standard method of exporting functions
for use by EXEs and other DLLs, there are provisions for allowing certain
functions  in a VxD to be called by other VxDs. When the VxD is created,
all the functions that are externally callable are listed in an array. Each of
these functions is called a service. When one VxD calls into another VxD, it
doesn't  use the name of the service. Rather, it uses the index number of the
function  within the array. For instance, consider the following snippet from
VMM.INC:

Begin_Service_Table  VMM,  VMM

VMM_Service  Get_VMM_Version,  LOCAL

VMM_Service  Get_Cur_VM_Handle

VMM_Service  Test_Cur_VM_Handle

VMM_Service  Get_Sys_VM_Handle

A VxD that calls the Get_VMM_Version function will be calling VMM
service 0. A call to Get_Cur_VM_Handle  is really a call to VMM service 1.
The Test_Cur_VM  Handle function is VMM service 2, and so forth.

The actual mechanics of a call from one VxD to the service of another
are quite interesting.  Unlike ring 3 system DLLs, the VxD loader doesn't
patch up CALL instructions  in the originating VxD's code to contain the
address  of the destination service function.  In fact, when a VxD is built,
there's  no CALL instruction  put into the code at all! In place of a CALL
instruction,  a call to a VxD service function looks like this:

INT 20h

OD  device  and  service  number  ;: A different  value  for each  VxD  service

The contents of the DWORD that follow the INT 20h aren't just ran-
domly chosen values. Rather, the high WORD contains the device number
(which I described earlier), and the low WORD contains  the service number
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within the device. Returning to our earlier example,  a call to the
Test_Cur_VM_Handle  (VMM service 2) would be encoded like this:

INT  20h

DD  00010002h

Test_Cur_VM_Handle

; ;  0001=VMM device  I D ,  0002=service  #  for

To give another example,  the GetSystemTime service is the third service
in VWIN32.VXD.  Therefore,  when the VxD is built, its encoding would be:

INT  20h

DD  002A0002h ;:  002A=VWIN32  device  ID,  0002=service  #  for

;;  GetSystemTime  (service  numbers  start  at  0)

When the ring 0 INT 20h handler is invoked, it examines the DWORD
following the interrupt instruction,  and uses the device ID and service num-
ber to look up the desired target address. If this sounds slow, never fear.
After a given INT 20h in the code has been invoked once, the INT 20h han-
dler patches the code to be an actual CALL instruction.  This works out
nicely, since an INT 20 followed by a DWORD takes up 6 bytes, which is
exactly what a near 32-bit indirect call takes up (that is, call DWORD PTR
[xxxxxxxx]).  One way to view this is that the VxD loader doesn't patch up
all calls to imported functions  at VxD load time. Rather, it fixes up only the
code locations that are actually used.

A twist to this system of dynamically fixing up VxD code via INT 20h's
occurs when the low WORD of the service number has its high bit (0x8000)
set. When this is the case, the code is patched to a JMP instruction,  rather
than to a CALL. For example, the following would be a JMP to the
Test  Cur_VM_Handle  function,  rather than a CALL:

INT  20h

DD  00018002h

Calling  VxD functions from Win 16
(protected mode) code
If only VxDs were allowed to call other VxDs, Windows would be a pretty
boring place. Since VxDs can go anywhere and do anything it's only natural
that there should be a way for regular ring 3 application code to call VxDs.
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This ability to get up into ring 0 code from ring 3 application code allows
applications to do things that they ordinarily wouldn't be able to do on their
own. The popular thinking these days is that whenever you come to a brick
wall where something can't be done in normal application code, you just write
a VxD and call it from the application.

Some people  (myself included) would argue that this strategy should be
used sparingly. Anybody can write a VxD that's unrestricted  from doing
horrible  things to the system (either intentionally or unintentionally).
Personally,  I think that if you can avoid writing a VxD, you should. The less
all-powerful,  unrestricted code in the system, the better. I dread the day
when my hard drive is littered with vanity VxDs because inexperienced pro-
grammers  figured a VxD was the only way to accomplish something.  This
book covers quite a bit of ground and  creates more than its share of inten-
tional mayhem without ever using a VxD.

Putting my personal  opinion aside, calling a VxD from a DOS or Winl6
program is somewhat of a pain,  but not difficult. A VxD can export a set of
functions  that are callable from V86 (real) mode, ring 3 protected mode
(Winl6 code), or both.  The VxD has separate entry points for calls made
from V86 mode programs versus ring 3 protected mode, although both
entry points can be set to the same address if desired.

To call a VxD from V86 or  16-bit protected mode, the application  first
acquires  an address that it can make a far CALL to. This address is
obtained by calling INT 2Fh, with 1684h in the AX register. To identify
which VxD an entry point is being requested for, the BX register is set to the
16-bit VxD ID that I mentioned earlier. Upon return from the INT instruc-
tion, the ES.DI registers contain a  16:16 far pointer that can be called to
transfer  control to the VxD running at ring 0.

Let's look at a code snippet from KRNL386 that shows how KRNL386
gets the entry point for VWIN32.VXD  (and that queries the version of
VWIN32.VXD  while it's at it):

XOR  DI,DI

MOV  ES,DI

MOV  AX,1684

MOV  BX,002A

INT  2F

MOV  AX,ES

OR  AX,AX

JE  failure

Zero  out  ES:DI  in  case  the  operation  fails.

INT  2Fh,  AX  =  1684h  ->  Get  Device  Entry  Point

002Ah  =  Device  ID  for  VWIN32.VXD

ES:DI  should  now  contain  the  entry  point.

Is  the  segment  part  of  the  return  address  07
Yes?  Go  to  the  failure  case  code.

MOV  AH,00 VWIN32  service  0 =  VWIN32  Get  Version
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PUSH  DS

MOV  DS,WORD  PTR  CS:[0002]

Save  away  the  current  DS  on  the  stack.

Load  DS  with  KRNL386's  DGROUP  selector.

MOV  WORD  PTR  [lpfnVWIN32],DI

MOV  WORD  PTR  [lpfnVWIN32+2],ES

CALL  FAR  [lpfnVWIN32]

Save  away  the  entry  point  (in  ES:DI).

Call  the  entry  point  with  AH  =  0.

Those of you familiar with protected  mode on Intel  architecture  CPUs
may be scratching your head,  wondering how this  all works.  Ring 3 code
cannot  just call ring 0 code; there are protection mechanisms  that prevent
this.  (A full discussion of ring levels and protection is beyond  the scope of
this chapter.)  Ring 3 code that  tries to call  (that is, load)  a selector with  a
ring 0 privilege  level will  GP fault unless  special  arrangements  are made.
The Intel architecture  supports  a rarely used mechanism called  call gates;
call  gates allow ring  3 code  to call into ring  0 code  in a very controlled
manner.  However,  there's  nothing so elegant at work  here.

If you were to pop into a system debugger  like Softlce/W or WDEB386
and  disassemble at the address  returned  by the INT 2Fh, AX=1684h  call
shown in the previous  code snippet,  you'd  see something  like this:

:u 3B:03d0

003B:000003D0  INT  30  ; #0028:C025DB52  VWIN32(04)+0742

003B:000003D2  INT  30  ; #0028:C0002BC9  VMM(O1)+1BC9

003B:000003D4  INT  30  ; #0028:C022F713  VMM(OD)+0713

Hmm...That's  strange.  The entry point returned  by the INT 2Fh call
points  at an INT 30h instruction.  What's going on here? Windows  is using
an INT 30h to force the CPU from ring 3 up to ring 0. Any interrupt  or
exception  implicitly causes the CPU to transfer control  to the appropriate
ring 0 handler  address stored in the Interrupt Descriptor Table  (IDT). The
Windows  95 INT 30 handler  uses the CS:IP of the invoked  INT 30h instruc-
tion to look up a ring 0 address that the handler  should  transfer control  to.
In this listing,  the address  following the;  (the semicolon)  is the address that
will handle each particular  INT 30h when invoked.  (SoftIce/W knows how
to find and decode the dispatch table  used by the INT 30h handler, so it's
able  to show the handler  addresses.)  It's not surprising that the INT 30h han-
dler address for the VWIN32.VXD  entry point lies within VWIN32.VXD
itself. If we go a step farther and unassemble at the ring 0 address assigned to
VWIN32  entry point INT 30h, we'll come to the following:
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:u  28:c025db52

0028:C025DB52  MOVZX  EAX,BYTE  PTR  [EBP+1D]  ; Get  AH  value  at  INT  30h.

0028:C025DB56  CMP  EAX,+15

0028:C025DB59  JA  C025DB62

There  are  16  VWIN32  PM

services·  Is  it  within

range?  If  not,  go  to

the  error-reporting  code.

0028:C025DB5B  JMP  [C03229A4+4*EAX] Call  through  the  service

JMP  table  to  the  appropriate

service  entry  point.

0028:C025DB62  PUSH  C03229FC ; string  ptr  ->  "VWIN32_PMAPI_Proc:"

; "invalid  function  numberNrNn"

0028:C025DB67  INT  20  VXDCall  _Debug_Out_Service  ;  Emit  error  diagnostic.

The first instruction  needs some explanation.  When a VxD V86/PM API
routine  is called, the application  doesn't  push arguments  on the stack.  The
primary reason  for this  is that the ring 0 VxD code uses a different stack than
the ring 3 application  stack.  (When the  CPU switches  between protection lev-
els, it also switches the stack registers  to  a stack  specifically  designated for use
by code at the new ring level.)

Since the ring  3 code can't  push parameters  to  the VxD  function,  the
convention  is that  parameters  to VxD  functions  are  put  into registers  prior
to  invoking  the INT  30h.  When  the INT  30h  handler calls the  appropriate
ring  0 handler,  it passes  a pointer  to  a  structure containing the ring  3 regis-
ter values  at  the  time  of the INT  30h.  This  pointer  is a flat,  32-bit  pointer,
and  is kept  in the EBP register.  The structure that  EBP points  to  is called the
Client  Register  Structure  (see Client_Reg_Struc  in VMM.INC).  VxDs that
provide  APIs callable  by V86  or  16-bit  ring  3 protected  mode  programs
know  that  they can  read  and  write the ring  3 register  values  through  the
client  register  structure pointer  in EBP.

In the  first instruction  (in the code snippet  you  just  saw),  the  handler  is
loading EAX with  the value  that  was  in the AH register  at the  time  of the
INT  30h.  The convention  used  for calling VxD  functions  from V86  or ring
3  16-bit  protected  mode  is that  the  function  number  is put  into the AH reg-
ister.  If the  function  ID is within range,  the  handler code uses a JMP table to
transfer control  to  the appropriate  function entry point  in VWIN32.VXD.  If
the  function ID is out  of range,  the  handler  prints  an  error  message.
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CALLING VxD  FUNCTIONS FROM WIN32 CODE

The two interfaces to VxDs that I've just described date back to Windows
3.0. In Windows 95 there weren't any fundamental changes to these two
interfaces. However, Windows 95 does add yet another interface for calling
VxDs. Since Windows 95 supports running Win32 applications  in addition
to running DOS and Win16 applications,  it's no surprise that Microsoft has
provided a way for Win32 code to call into VxDs. This brings the total
number of VxD interfaces up to four  (ring 0 VxD services, calls from V86
mode programs,  calls from ring 3 16-bit protected mode code, and the new
interface, which I'll be describing next).

Because this new method of interfacing to VxDs is available only to ring
3 Win32 code, functions in this new interface are called Win32 VxD ser-
vices. The term Win32 VxD service should not be confused with regular
VxD services (which are VxD functions that can be called by other VxDs).
Nor should Win32 VxD services be confused with the Win32 Services that
you'd  find in Windows NT. Windows NT Services are more like daemon
processes, and are completely unrelated to Win32 VxD services.

Alas, for reasons that make no sense (at least not  to me), Microsoft
has chosen to hide Win32 VxD service interface.  This may be to discour-
age people from writing code that's not portable  to Windows NT, since
Windows  NT doesn't  support VxDs.  Instead,  Microsoft wants you to use
the DeviceIoControl  Win32 API, which is semi-portable between
Windows  NT and Windows  95. The problem is, the DeviceloControl
interface  is clunkier  and slower than using straight Win32 VxD Services.
In fact,  in Windows 95, DeviceloControl  eventually ends up calling a
Win32 VxD service anyhow!

Since Windows 95 has a much higher content of code written in C than
earlier versions of Windows,  it's only natural that the Win32 VxD service
interface  should be C-callable. That is, the Win32 VxD service functions
can easily be invoked by ring 3 code written in C. The parameters  to Win32
VxD services are passed on the stack, just like a call to a normal function.
This is a marked improvement over the other VxD interfaces, which are
normally invoked using assembly language, since the parameters  need to be
placed into registers.
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SoftIce/W  for  Windows  95  knows  about  all  the  various  VxD  interfaces  that  I've  been

describing  in  this  section,  including  the  new  W i n 3 2  VxD  services.  You  can  see  this  by

using  the  VxD  command  in  conjunction  with  a  specific  VxD  name.  For  example,  the  com-

mand  "VXD  R E B O O T "  produces  the  following  output:

:VXD  REBOOT

VxD  Name  Address  Length  Seg  ID

REBOOT  C00910CC  0002F0  0001  0009

REBOOT  C0201F94  0002E9  0002

REBOOT  C037E9AO  00010C  0083

REBOOT  C02269D4  0080EE  0004

REBOOT  C0233B44  00809C  0005

REBOOT  C02373BC  00004B  0006

Total  Memory:  3K

Init  Order=24000000  Reference  Data=0

PM  API=C02269D4  (3B:3EC)  V86  API=O  (0:0)

4  VxD  Services

0000  C00912D5

0001  C00912DA

0002  C00912E2

0003  C009123B

2 Win32  Services  - -

0000  C0226A04  Parms=02

0001  C0226AI9  Parms=02

DDB  Control  PM  V86  VxD  Win32

C0091334  C00910CC  Y  N  4  2

Version  4.00

The  first  couple  of  lines  give  us  a  wealth  of  information.  W e  know  (from  the  "Y"  under

the  "PM")  that  the  R E B O O T  device  provides  an  interface  for  calling  it  from  ring  3  16-bit

protected  mode  programs.  W e  also  know  (from  the  "N"  under  ' V 8 6 ' )  that  the  R E B O O T

device  doesn't  provide  an  interface  for  calling  it  from  V86  mode  code.  Continuing  on,  we

see  thai  the  R E B O O T  device  has  four  regular  VxD  services  (callable  by  other  VxDs),  and

two  W i n 3 2  VxD  services.
Moving  down  to  the  end  of  the  report,  notice  the  last  three  lines,  which  concern  them-

selves  with  the  Win32  VxD  services  provided  by  the  R E B O O T  device.  There  are  two  of  these

services,  and  their  details  are  found  on  the  last  two  lines.  Both  lines  contain  the  entry  point

address  for  the  service,  as  well  as  the  number  of  D W O R D  parameters  that  the  service

expects.  From  this  information  (or  by  studying  the  correct  parts  of  V M M . I N C ) ,  you  can

deduce  that  each  Win32  VxD  service  has  an  8-byte  (2  DWORDs)  structure  associated  with  it:

DWORD  pfnService;

DWORD  cParams;

//  The  address  of  the  service  function.

//  The  number  of  DWORD  parameters.

C o n t i n u e d

Viewing VxD Interfaces in SoftIce/W
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Continued from previous page

I  call  this  structure  a  service  table  entry.  W h e n  a  V x D  starts  up,  it  has  to  register  its

W i n 3 2  V x D  services  with  the  system.  It  does  this  by  calling  the  _ R e g i s t e r _ W i n 3 2 _ S e r v i c e s

function  in  V M M . V X D .  O n e  of  the  parameters  to  the  _ R e g i s t e r _ W i n 3 2 _ S e r v i c e s  function  is

a  pointer  to  the  W i n 3 2  V x D  service  table  for  the  V x D .  This  pointer  is  stored  in  the  V x D ' s

D e v i c e  Descriptor  Block  ( D D B ) ,  which  is  w h e r e  S o f t I c e / W  is  getting  all  the  information

shown  in  the  previous  output.

Calling a Win32  VxD service is different  from calling any of the other
available  VxDs interfaces.  Instead  of invoking  an interrupt  or calling
through  a function pointer,  a call to a Win32 VxD service begins  by calling
an undocumented  function  in KERNEL32 named VxDCall.  Prior to calling
the VxDCall  function,  the calling code pushes  any arguments  to the Win32
VxD service on the stack. The final  value pushed on the stack prior  to the
VxDCall  invocation  is a DWORD  similar in form to a regular VxD service
ID. That  is, the high WORD  specifies which VxD is to  be used,  and the low
WORD  contains  a zero-based function index.  In this case, the function
index  is an index into  the Win32 VxD service table,  rather  than into the
regular  ring 0 VxD service table.

An example  makes this clearer. The following code invokes the
VWIN32_sleep  function  in VWIN32.VXD.  VWIN32_sleep  is the tenth
Win32  VxD service provided by VWIN32.VXD,  so its function  number
is 9 (Win32 VxD service functions  are numbered  starting from 0).

PUSH  DWORD  PTR  [EBP+08]  //  Push  a  parameter.

PUSH  002A0009  //  002A  =  VWIN32,  0009  =  VWIN32_sleep

CALL  VxDCall

The VxDCall function is a stdcall function  (meaning parameters are
passed right to left, and the callee cleans the stack). The previous code written
in C would look like this:

VxDCall(  0x002A0009,  parameter  );

If you dump out the exports  from KERNEL32.DLL,  you'll  find that the
first eight exported entry points  (export  ordinals  I  through  9) all refer to
the  same address.  This  address  is the VxDCall  function.  Why eight separate
entry  points  for the same function?  To make a long story short:  Internally,
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these entry points  are called VxDCall@0, VxDCall@4, VxDCall@8 and so
on through VxDCali@28. The Microsoft  C compiler  "mangles" the names
of stdcall functions  (such as VxDCall) to include an @ (an asterisk), fol-
lowed by the number of parameter  bytes that the function  uses. Since differ-
ent Win32 VxD services take different number of arguments,  one call to the
VxDCall  function may end up being translated to VxDCall@4 by the com-
piler, while another becomes VxDCall@16. By providing multiple entry
points with slightly varying names, the linker is able to resolve all the calls
to the VxDCall function,  regardless of how many parameters  a particular
VxDCall call uses. For the purposes of this chapter, I'm going to refer to all
of these entry points collectively as the  VxDCall function.  (If you've read
Unauthorized  Windows 95, note that in that book the VxDCall function is
referred  to as VxDCall0).

Summing up what we've learned to date, Win32 code that calls a
Win32  VxD service first pushes any parameters  on the stack and then
pushes the DWORD service ID. This DWORD identifies both the VxD to
be called and the Win32 VxD service function within that VxD. Finally, the
code calls the VxDCall function in KERNEL32.DLL. When the Win32 VxD
service returns, execution resumes at the instruction  immediately  following
the call to VxDCalI, with all the parameters  removed off the stack.

Okay, that's  how calling Win32 VxD services looks like from the out-
side. Let's jump into the details of how Win32 VxD services are actually
implemented.  We'll start  by looking at the code for the VxDCall function:

VxDCall:

MOV  EAX,DWORD  PTR  [ESP+04]  Get  service  code  (e,g., 0x002A0010)  into  EAX.

POP  DWORD  PTR  [ESP] Move  the  return  address  up on  stack  so

that  the call  below  returns  directly  to

the  caller.

CALL FWORD  PTR CS:[BFFC9004]  16:32  CALL  to  INT 30  instruction  that

transfers  control  to  ring  0.

The first two instructions have the net effect of removing the DWORD
VxD service ID off the stack and putting it into EAX. The return EIP pushed
by the 32-bit near call to the VxDCall function is then slid up on the stack to
occupy the place formerly held by the Win32 VxD service ID. The third
instruction  is a 32-bit far call to an INT 30h instruction.  Hey! We've seen
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INT 30hs before! They're the way that V86 mode and 16-bit protected mode
programs call VxDs. However, this isn't a normal INT 30h instruction:

u 3B:000003DE:  //  The  16:32  pointer  found  at  BFFC9004

003B:000003DE  INT  30  ; #0028:C02301E4  VMM(0D)+11E4

This INT 30h used by the VxDCall function to transfer control to ring
0 jumps somewhere inside VMM.VXD.  Let's look at some pseudocode for
what we find at that address in VMM.VXD:

// -------

//  Entry  point  for  all  Win32  VxD Services  (in  VMM.VXD).
// . . . . . . . . . . . . . . . . . . . . . . . . .

//  Parameters:

//  Client_Reg_Struct  * pClientRegs

//  Locals:

//  PVOID

//  DWORD

//  WORD

//  WORD

//  DWORD

//  PROC

pRing3StackFrame  //  ESP  at  time  of  INT  30  call  that  got  us  here.

service_DWORD;

vxd_id;  //  HIWORD  of  the  service  DWORD.

service_index;  //  LOWORD  of  the  service  DWORD.

cParams;  //  #  of  parameters  for  this  service.

pfnService;  //  The  address  of  the  service  entry  point,

DS = pClientRegs->Client_SS;

pRing3StackFrame  = pClientRegs->Client_ESP;

//  pRing3StackFrame  now  points  to  following  on  the  ring  3  stack:
//

//  Args  pushed  for  VxDCall()  <-  pRing3StackFrame  +  C

//  Return  Address  for  VxDCall()  <-  pRing3StackFrame  +  8

//  CALL  FWORD  PTR  CS  value  <-  pRing3StackFrame  +  4

//  CALL  FWORD  PTR  EIP  value  <-  pRing3StackFrame  +  0

access  rights  :  LAR  pClientRegs->Client_SS;

if  (  !(access_rights  &  BIG_BIT)  )  //  If  "big"  bit  not  set,  use  just

//  the  low  WORD  of  pRing3StackFrame.

pRing3StackFrame  =  LOWORD(pRing3StackFrame);
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//  Fill  in  the  client  registers  with  the  CS:EIP  that  ring  3  execution

//  should  resume  at.  The  CS  value  on  the  ring  3  stack  comes  from  the

//  CALL  FWORD  PTR  [xxxxxxxx]  to  the  INT  30h.  The  EIP  is  the  return

//  address  from  the  call  to  VxDCallO.  (Yes,  this  is  goofy.)

pClientRegs  ->Client_EIP  =  pRing3StackFrame  ->EIP;

pClientRegs  ->Client_CS  =  pRing3StackFrame  ->CS;

//  Advance  pRing3StackFrame  to  the  location  in  the  ring  3  stack  where

//  the  VxDCall  parameters  are  located.

pRing3StackFrame  +=  OxC;

//  Get  the  service  DWORD  param  to  VxDCall  (e.g.,  0x002A0014).

service_DWORD  =  pClientRegs->Client_EAX;

vxd_id  =  service_DWORD  >>  0x10;  //  Which  VxD  is  it?  (Look  in  the  high  word.)

if  (  vxd_id  <  0x40  )  //  0x40  is  the  last  of  the  "standard"  VxDs.

//  Does  this  particular  VxD  even  have  a  Win32  VxD  service  table?

if  (  ppServiceTable[  vxd_id  ] ==  O  )

goto  error;

//  If  we  get  here,  this  V×D  supports  Win32  VxD  services,  Is  the

//  service  index  within  the  range  of  services  provided?

service_index  =  LOWORD(  service_DWORD  );

if  (  ppServiceTable[  vxd_id  ].cServices  <-  service  index  )

goto  error;

service_index++;  //  Bias  the  index  up  by  1,  since  the  first  entry

//  in  a  service  table  holds  the  #  of  services.

//  Index  into  the  Win32  service  table  and  grab  out  the  number  of

//  DWORD  params  for  this  service,  as  well  as  the  entry  point  address

//  of  this  service.

cParams  =  ppServiceTable[  vxd_id  ].cParams;

pfnService  =  ppServiceTable[  vxd_id  ].pfnService;

//  Now  we  start  some  stack  contortions.  The  parameters  pushed  on  the

//  ring  3  stack  prior  to  the  VxDCall  now  need  to  be  copied  to  the

//  ring  0  stack.

POP  EAX //  Remove  return  address  from  stack  and  save  it

//  away  in  EAX.  (This  is  an  address  in  VMM.)

ESP  -=  cParam  *  4;  //  Make  space  on  the  stack  for  the  arguments,
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EDI  =  ESP;
//  Point  destination  register  to  the  space

//  we  made  on  the  stack  for  the  arguments.

PUSH  EBX

PUSH  EBP

PUSh  EAX

//  Push  current  VM  Handle.

//  Push  pointer  to  client  regs  struct.

//  Push  return  address  (saved  away  earlier).

//  If  this  service  takes  1 or  more  parameters,  copy  them  to  the

//  ring  0  stack  location  we  just  made.

if  (  cParams  )
REP  MOVSD  //  ECX  =  cParams,  ESI  =  pRing3StackFrame,  EDI=

//

//

//

//

//

//

At  this  point,  the  stack  looks  like  this:

Args  copied  by  REP  MOVSD  <-  ESP+0Ch

Current  VM  handle  <-  ESP+08h

Client  reg  struct  pointer  <-  ESP+04h

Return  address  from  this  PM  API  call  <-  ESP+00h

DS  =  SS  //  Ain't  the  flat  model  great?

//  Set  the  ring  3  ESP  upon  return  to  point  just  past  the  parameters

//  pushed  on  the  stack  by  the  call  to  VxDCall().

pClientRegs->Client_ESP  =  pRing3StackFrame  +  (cParams  * 4)

goto  pfnService  //  Jump  to  the  service  entry  point.

The VxDCall  handler  in VMM.VXD  is  complicated  (to  put  it  nicely).
However,  if you  study it  long  enough,  the  code  decomposes  into  a small

number  of  specific  tasks:

1.  Read  in important register  values  from the client  register  structure
pointed  to  by EBP. These  values  include  the  ring  3  EAX  (which contains
the service  ID),  and the  ring  3 ESP (which points  to  the  ring  3  stack

where  the  parameters were  pushed).

2.  Modify  the  CS and EIP register  values  in the client  register  structure  so
that  when  the  ring  0 code  returns,  control  continues  at the  instruction
after  the  call  to  the  KERNEL32 VxDCall  function.  Likewise,  the  code
changes  the  ring  3  ESP register  value  to  effectively  pop  the  parameters

that  were  pushed prior  to  the  call.
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3.  Take the Win32 VxD Service ID DWORD  and  break it down into its
components  (the 16-bit VxD ID and the 16-bit service ID within the VXD).
The code verifies whether  the VxD ID is one of the standard system
VxDs,  and whether the designated VxD actually provides Win32 VxD
services. If so, the code continues and checks to make sure the 16-bit service
ID is within the range of function  IDs that the VxD provides.

4.  Copy the parameters  pushed on the ring 3 stack over to the ring 0 stack.
5.  Look up the entry point  of the specified Win32 VxD service and JMP to

it.  Since the function  may need access to the current  VM handle  or the
client register  structure  values, the code  first pushes these values before
doing the JMP.

When the Win32 VxD service function  finishes  and returns,  control
transfers  back into VMM.VXD. VMM.VXD handles the work of returning
the CPU back to ring 3 with the registers  set to the values contained in the
client register structure.

WHERE CAN I FIND WIN32 VxD  SERVICES?

As I mentioned earlier,  Microsoft  hasn't formally documented Win32 VxD
services,  so the DDK isn't forthcoming with a list of VxDs that provide
Win32  VxD services.  Based on my browsing  around with the SoftIce/W
VXD command,  I've determined  that the following VxDs export Win32
VxD services  (although there  may be others):

VxD  ID  Services  Description

VMM  0001 h  41  Virtual Machine Manager

REBOOT  0009h  2  Reboot device

VNETBIOS  0014h  2  Virtual  NetBios device

VWIN32  002Ah  79  Virtual Win32  "device"

VCOMM  002Bh  27  Virtual COMM  device

V C O N D  0038h  53  Virtual Console device

As I've shown elsewhere throughout  this  book,  KERNEL32.DLL is a
heavy user of the VWIN32,  VMM and VCOND,  and VCOMM devices.  In
some cases, exported KERNEL32 functions  are just wrappers  around  a
Win32  VxD service. This  is even more the case in ADVAPI32.DLL.  The
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Win32  VxD  services provided  by VMM.VXD  include  registry  functions
that parallel  the  Win32  AP1 registry functions.  The exported  registry  func-
tions in ADVAPI32.DLL  are  very thin  layers wrappers  around  calls  to  the
VMM  Win32  VxD  services.

WIN32 VxD SERVICES PROVIDED BY VFAM

The  focus of this chapter  is Win32 VxD  services and VWIN32.VXD.
However,  I'd  be remiss  if I didn't  at  least  list the  VxD  services IDs  for the
Win32  VxD  services exported  by VMM.VXD:

00010000h  PageReserve  00010014h  RegDeleteKey
00010001h  PageCornmit  00010015h  RegSetValue
00010002h  PageDecommit  00010016h  RegDeleteValue
00010003h  PagerRegister  00010017h  RegQueryValue
00010004h  PagerQuery  00010018h  RegEnumKey
00010005h  HeapAllocate  00010019h  RegEnumValue
00010006h  ContextCreate  0001001Ah  RegQueryValueEx
00010007h  ContextDestroy  0001001Bh  RegSetValueEx
00010008h  PageAttach  0001001Ch  RegFlushKey
00010009h  PageFlush  0001001Eh  GetDemandPagelnfo
0001000Ah  PageFree  0001001Fh  BlockOnlD
0001000Bh  ContextSwitch  00010020h  SignallD
O001000Ch  HeapReAllocate  0001002Ih  RegLoadKey
0001000Dh  PageModifyPermissions  00010022h  RegUnLoadKey
0001000Eh  pageQuery  00010023h  RegSaveKey
0001000Fh  GetCurrentContext  00010024h  RegRemapPreDefKey
00010010h  HeapFree  00010025h  PageChangePager
00010011h  RegOpenKey  00010026h  RegQueryMultipleValues
00010012h  RegCreateKey  00010027h  RegReplaceKey
00010013h  RegCloseKey

I haven't  provided  information  on  the parameters  to  each  of these func-
tions  for the simple reason  that  I don't  know  them myself.  For the purposes
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of doing research for this  book,  simply knowing the names  of the VMM
Win32 VxD services was usually sufficient.  No  doubt,  as time goes by, these
parameters  to these services will  become known.  However,  the parameters
for  the registry-related services can be inferred  by examining  the documen-
tation for the Win32  function  corresponding  with the service.

In many other cases, the Win32 VxD service corresponds  exactly with a
regular  ring 0 VxD service that's  described in the documentation  for
VMM.VXD.  For example,  the Win32 VxD service listed  above with the
name _PagerQuery corresponds  exactly to the _PagerQuery  service
described  in VMM.HLP.  Connect the dots yourself.

The Win32 VxD services provided  by VMM.VXD can be broken down
into the following categories:

Category  Win32VxD services

Page-based  memory  m a n a g e m e n t  _GetDemandPagelnfo,  _PageAttach,  _PageCommit,
_PageDecommit,  _PageFlush,  _PageFree,
_PageModifyPermissions,  _PageQuery,
_PageReserve

Virtual  memory  paging  s u p p o r t  _PageChangePager,  _PagerRegister,  _PagerQuery

Ring  0  heap  management  _HeapAIJocate,
_HeapFree,  _HeapReAIIocate

Memory  context  m a n a g e m e n t  _ContextCreate,  _ContextDestroy,  _ContextSwitch,
_GetCurrentContext

Registry  functions  _RegCtoseKey,  _RegCreateKey,  _RegDeleteKey,
_RegDeleteValue,  _RegEnumKey,  _RegEnumValue,
_RegFlushKey,  _RegLoadKey,  _RegOpenKey,
_RegQueryMultipleVatues,  RegQueryValue,
_RegQueryValueEx,  _RegRemapPreDefKey,
_RegReplaceKey,  RegSaveKey,  RegSetVa)ue,
_RegSetValueEx,  _RegUnLoadKey

Synchronization  _BlockOnlD,  _SignalID

As you saw in Chapters 3 and 5, KERNEL32 definitely uses the page-based
memory-  and context-management  services. Other areas of KERNEL32.DLL
that  aren't  described in this  book  use the other categories of services.  The
registry services are an exception,  however. They're invoked by ADVAPI32.DLL
(through  the VxDCall  function in KERNEL32.DLL).
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CALLING WIN32 VxD SERVICES ON YOUR OWN

To my knowledge, the only Microsoft code that calls Win32 VxD services is
within the Windows 95 system DLLs. However, there's no reason that regu-
lar application  programs can't call Win32 VxD services too. To prove this, I
wrote the WIN95MEM program shown in Figure 6-1  (the complete  sources
are on the disk accompanying  this book).
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//=================================
// WIN95MEM - Matt Pietrek 1995
// FILE: WIN95MEM.C
//=================================
#include  <<windows.h>>
#include "win95mem.h"

// The DemandInfoStruc struct below is excerpted from the VMM.H file
// in the Windows 95 DDK

struct DemandInfoStruc {
    ULONG DILin_Total_Count;    ;    /* # pages in linear address space */
    ULONG DIPhys_Count;         ;         /* Count of phys pages */
    ULONG DIFree_Count;         ;         /* Count of free phys pages */
    ULONG DIUnlock_Count;       ;       /* Count of unlocked Phys Pages */
    ULONG DILinear_Base_Addr;   ;   /* Base of pageable address space */
    ULONG DILin_Total_Free;     ;     /* Total Count of free linear pages */

        /*
     *  The following 5 fields are all running totals, kept from the tim     *  The following 5 fields are all running totals, kept from the time
     *  the system was starte     *  the system was started
     */     */
    ULONG DIPage_Faults;        ;        /* total page faults */
    ULONG DIPage_Ins;           ;           /* calls to pagers to page in a page */
    ULONG DIPage_Outs;          ;          /* calls to pagers to page out a page*/
    ULONG DIPage_Discards;      ;      /* pages discarded w/o calling pager */
    ULONG DIInstance_Faults;    ;    /* instance page faults */

    ULONG DIPagingFileMax;      ;      /* maximum # of pages that could be in paging
file */file */
    ULONG DIPagingFileInUse;    ;    /* # of pages of paging file currently in use */

    ULONG DICommit_Count;       ;       /* Total committed memory, in pages */

    ULONG DIReserved[2];        ];        /* Reserved for expansion */
};

DWORD WINAPI VxDCall2( DWORD service_number, DWORD, DWORD );

void Handle_WM_TIMER(HWND hWndDlg, WPARAM wParam, LPARAM lParam)
{
    struct DemandInfoStruc dis;
    char szBuffer[256];

        // Demonstrate calling a Win32 VxD service (in this case, the
        // _GetDemandPageInfo service.
    VxDCall2( 0x0001001E, (DWORD))&&dis, 0 );
    
    wsprintf(szBuffer, "Comm: %uK", dis.DICommit_Count * 4);
    SetDlgItemText( hWndDlg, IDC_TEXT_commited, szBuffer );

    wsprintf(szBuffer, "Phys: %uK", dis.DIPhys_Count * 4);
    SetDlgItemText( hWndDlg, IDC_TEXT_physical, szBuffer );

    wsprintf(szBuffer, "%u%%",
                (dis.DICommit_Count * 100) ) // dis.DIPhys_Count);
    SetDlgItemText( hWndDlg, IDC_TEXT_percentage, szBuffer );
}

BOOL CALLBACK Win95MemDlgProc(HWND hWndDlg, UINT msg,
                              WPARAM wParam, LPARAM lParam)
{
    switch ( msg )
    {
        case WM_INITDIALOG:
            SetTimer( hWndDlg, 0, 1000, 0 ); return TRUE;
        case WM_TIMER:
            Handle_WM_TIMER(hWndDlg, wParam, lParam); return TRUE;
        case WM_CLOSE:
            KillTimer(hWndDlg, 0);
            EndDialog(hWndDlg, 0);
            return FALSE;



    }
    
    return FALSE;
}
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WIN95MEM uses the _GetDemandPageInfo Win32 VxD service provided
by VMM.VXD. This service is just a wrapper around a call to the regular ring
0 VxD service of the same name. As I mentioned in Chapter 5, the Win32
GlobalMemoryStatus  function uses this Win32 VxD service and simply
returns selected chunks of information returned by the _GetDemandPagelnfo
service. Why use GlobalMemoryStatus and get a filtered view of the system
information,  when you can go straight to same source it uses?

The _GetDemandPageInfo  service expects a parameter that's a pointer
to a DemandInfoStruc structure. The service fills in this structure, which has
the following fields:

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DILin_Total_Count
DIPhys_Count
DIFree_Count
DIUnlock_Count
DILinear_Base_Addr
DILin_Total_Free
DIPage_Faults
DIPage_Ins
DlPage_Outs
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DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DIPage_Discards
DIInstance_Faults
DIPagingFileMax
DIPagingFileInUse
DICommit_Count
DIReserved

I'm not going to describe all the fields listed here. If you're interested,
see the description of _GetDemandPageInfo in the VMM documentation
from the Windows 95 DDK. For the purposes of the WIN95MEM pro-
gram, we're interested in two fields, DICommit_Count and DIPhys_Count.
DICommit_Count is the total number of pages that have been allocated (or
committed) from the VMM memory manager. Note that a committed page
isn't necessarily mapped to actual RAM. Rather, it's more like a reservation
for a page to be used at some future date. The DIPhys_Count field contains
the number of pages of RAM under the control of the virtual memory man-
ager. This memory is all the memory that was available when the protected-
mode portion of Windows 95 started out. It doesn't count any memory allo-
cated via DPMI by TSRs and device drivers during the DOS load phase of
Windows 95.

Since Windows 95 supports virtual memory, it's common for the
amount of committed memory to exceed the amount of physical memory
under the control of the Windows 95 virtual memory manager. The
WIN95MEM program shows both the committed and physical memory (in
kilobytes) in a dialog box. These two figures (along with their ratio
expressed as a percentage) are updated once a second. Figure 6-2 shows the
WIN95MEM program in action. (Yes, the user interface isn't spectacular,
but it's a throwaway program, right?)

 Figure 6-2
The running WlN95MEM  program shows how to call  VxDCALL from an applicatian

program.
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The important part of the WIN95MEM code is the call to the VxDCall
function.  Since VxDCall is an undocumented function,  the WIN95MEM.C
file prototypes a function called VxDCalI2 (the 2 means two parameters).
Because there are actually three parameters when you add in the Win32
VxD service ID DWORD (0x0001001E), the compiler creates a reference to
an external  function called VxDCalI2@12. (There's an @12 at the end
because the function is prototyped as a stdcall  [WINAPI] function). The
K32LIB.LIB file that I created to let me call undocumented KERNEL32
functions  exports a function called VxDCalI2@12, so the linker is able to
resolve everything nicely. Appendix A describes the K32LIB.LIB file.

The actual call to the VxDCall function is almost anticlimactic:

VxDCall2(  0x0001001E,  (DWORD)&dis,  0  );

The first parameter is the DWORD service ID (the combination of the
VMM device ID and the _GetDemandPageInfo function ID). The second para-
meter is a pointer to a DemandInfoStruc declared locally on the stack. The
meaning of the final parameter is unknown. I passed 0 since GlobalMemory-
Status passes 0 when it calls this service. That's all there is to it!

EXAMINING VWlN32.VXD

Now that we've gone through our whirlwind tour of VxD interfaces, I'm
going to narrow the chapter's  focus and describe VWIN32.VXD.  This VxD
is new in Windows 95 (meaning it wasn't in Windows 3.1 and earlier). The
16-bit VxD ID for VWIN32.VXD is 0x002A (in case you missed it the
dozen times I've mentioned it already). The distinction  between what
VWIN32.VXD  does and what VMM.VXD does isn't clear (at least not out-
side the hallowed halls of Microsoft).  However, one generalization  that can
be made about VWIN32.VXD is that it contains the Win32 VxD services
that affect process and thread scheduling and synchronization.  I think of
VMM.VXD  and VWIN32.VXD  as a team that does the ring 0 work needed
to keep Windows 95 up and running.

VWIN32.VXD doesn't export a V86 mode APl. It does however, provide
ring 0 VxD services, 16-bit protected mode services, and Win32 VxD services.
Of all the VxDs in Windows 95, VWIN32 has (by far) the greatest number of
Win32 VxD services. If VWIN32.VXD didn't provide so many Win32 VxD
services, and if these services weren't so crucial to KERNEL32's operation, I
wouldn't have bothered to write the preceding sections on Win32 VxD ser-
vices. So, with that said, let's jump into the nitty-gritty of VWIN32.VXD!
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The VWIN32. VXD ring 0 VxD service APl
The first interface  to  VWIN32.VXD  we'll look at is the services  that  it pro-
vides  to  other VxDs.  Luckily,  Microsoft left a list of these  services  in the
VWIN32.H  and VWIN32.INC  files from the Windows  95  DDK.  For the
benefit  of readers who  don't  live their life parked  in front  of a keyboard  like
I do, I've provided a copy of the list in Figure  6-3.  Luckily,  the SoftIce/W
VxD command knows  about  these services,  so it's easy to  get a list of the
service names,  along with their function IDs.

:vxd  vwin32

VxD  Name  Address  Length  Seg  ID  DDB  Control  PM  V86  VxD  Win32

VWIN32  C0075654  0026FC  0001  002A  C0076DE0  C0075654  Y  N  29  79

...  some  output  omitted  for  brevity

 Figure  6-3
VWIN32  Ring 0 VxD services.



V W I N 3 2 _ M M G R _ R E S E R V E

446

In this output, the left column is the service ID within VWIN32.VXD.
The middle column is the address of the service function. The right column
is the name of the service, as given in VWIN32.INC.

The list of ring 0 VWIN32 services is a mixed bag. However, there's a
strong representation among functions in the thread synchronization category.
There's also a smattering of functions that imply that VWIN32.VXD has
specific knowledge of processes (the VWIN32_GetCurrentProcessHandle,
VWIN32_GetCurrentDirectory,  and VWIN32_TerminateApp services). This
is interesting primarily because VMM.VXD is only aware of threads, and
doesn't provide process-management-related functionality. VMM.VXD leaves
the process management to VWIN32.VXD.

The VWlN32. VXD  16-bit protected mode APl
Microsoft  doesn't document the functions in VWIN32.VXD's  16-bit pro-
tected  mode APl in the shipping Windows 95 DDK. However, a list of these
functions  originally appeared  in my August 1993 Microsoft Systems Journal
article,  "Stepping Up to 32 Bits: Chicago's Process, Thread, and Memory
Management."  At the time this article was written, these functions were
included in VWIN32.INC.  Therefore,  since the cat's already out of the bag,
I've listed the functions here.

VWIN32_GET_VER
VWIN32_THREAD_SWITCH
VWIN32_DPMI_FAULT
VWIN32_MMGR_FUNCTIONS

sub functions:
VWIN32_MMGR_RESERVE
VWIN32_MMGR_COMMIT
VWIN32_MMGR_DECOMMIT
VWIN32_MMGR_PAGEFREE

VWIN32_EVENT_CREATE
VWIN32_EVENT_DESTROY
VWIN32_EVENT_WAIT
VWIN32_EVENT_SET
VWIN32_PDB_INFO

AH = 0
AH=  1
AH = 2
AH = 3

AH
AH
AH
AH
AH
AH
AH
AH
AH

=3,  AL=0
= 3, AL = 1
= 3, AL = 2
= 3, AL = 3
=4
=5
=6
=7
=8
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VWIN32_THREAD_BOOST_PRI  AH = 9
VWIN32_WAIT_CRST  AH = 10
VWIN32_WAKE_CRST  AH = 11
VWIN32_SET_FAULT_INFO  AH = 12
VWIN32_EXIT_TIME  AH = 13
VWIN32_BOOST_THREAD_GROUP  AH = 14
VWIN32_BOOST_THREAD_STATIC  AH = 15
VWIN32_WAKE_IDLE_SYS  AH = 16
VWIN32_MAKE_IDLE_SYS  AH = 17
VWIN32_DELIVER_PENDING_KERNEL_APCS  AH = 18

So, what might be calling these particular functions? None other than
KRNL386 itself. These functions are how the ring 3 16-bit side of Windows
95 interfaces with the ring 0 VWIN32 component. Most of the functions in
this API fall into broad categories: thread scheduling, thread synchronization,
memory management, and fault handling.

One function in the previous list that bears special mention is the
VWIN32_MAKE_IDLE_SYS function. This function is invoked from the
ring 3 Win16 scheduler in KRNL386.EXE when there are no tasks to be
scheduled.  (See the Reschedule function, if you have my book  Windows
Internals.)  When the 16-bit KRNL386 scheduler falls into its idle loop,
KRNL386 calls the VWIN32_MAKE_IDLE_SYS function. Control doesn't
return to KRNL386 until some activity in a 16-bit application occurs.

Incidentally, the VWIN32_EXIT_TIME function in the previous table
falls into the category of fault handling. If you read  Undocumented
Windows, you may remember a function called Bunny_351. In Windows
3.1 and Windows 95, Bunny_351 is called when Windows shuts down. It's
sole purpose is to change the default unhandled exception handler's address.
In Windows 95, Bunny_351 is now just a wrapper around a call to the
VWIN32_EXIT_TIME function in VWIN32.VXD.

The VWlN32. VXD Win32 VxD service APl

In the two previous APIs for VWIN32.VXD, we were lucky: Microsoft has
documented their service names and IDs. Unfortunately, we're not so lucky
with the Win32 VxD service interface. Over time, though, I've managed to
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construct a list  of known  service entry points  for this  interface.  I'll say up
front that the list,  shown  in the  following  table,  isn't complete  and that  some
of the function names are guesses,  based  on  observations  of the KERNEL32

and VWIN32  code.

Service  ID  Purpose

0x002A0000
0x002A0001
0x002A0002
0x002A0003
0x002A0004
0x002A0005
0x002A0006
0x002A0007
0x002A0008
0x002A0009
0x002A000A
0x002A000B
0x002A000C
0x002A000D
0x002A000E
0x002A000F
0x002A0010
0x002A0011
0x002A0012
0x002A0013
0x002A0014
0x002A0015
0x002A0016
0x002A0017
0x002A0018
0x002A0019
0x002A001A
0x002A001B
0x002A001C
0x002A001D
0x002A001E
0x002A001F
0x002A0020
0x002A0021
0x002A0022
0x002A0023
0x002A0024
0x002A0025
0x002A0026
0x002A0027
0x002A0028
0x002A0029

GetVersion
Stuff V W I N 3 2  code  pointers  into caller-supplied  buffer
GetSystemTime
Stuff code  pointers from  KERNEL32  into VWIN32's  Data  area
Block  on  some  semaphore
Calls  Signal_Semaphore_No_Switch  on  some  semaphore
Calls  V M M Create_Semaphore,  and  stuffs  into global  var
Calls  V M M  DestroySemaphore  on  semaphore  created  by  0x002A0006
VWIN32_CreateThread  (including  allocating  TDBX)
VWIN32_sleep
WakeThread
Term inateThread
Some  sort of  initialization  function
_VWtN32_QueueUserApc
VWIN32_Initialize
_VWIN32_QueueKemelApc
VWIN32_Int21  Dispatch
Calls IFSMgr_Win32DupHandle
VWIN32_BlockThreadSetBit
Adjust_Thread_Exec_Priority

_VWIN32_Get_Thread_Context
_VWIN32_Set_Thread_Context

Read  process  memory  (used  by  ReadProcessMemory)
Write  process  memory  (used  by  WriteProcessMemory)
Calls  VMCPD_Get_CRO_State
Calls  VMCPD_Set_CRO_SIaIe
SuspendThread
ResumeThread
???  (unknown)
WaitCrst
WakeCrst
Something  to  do  with  loading/unloading  VxDs
VMCPD_Get_Version
Set_Thread_Win32_Pri
Calls  Boost_With_Decay
Calls  SeUInversion_Pri
Calls  Release_inversion_Pri ID
Calls  Release_lnversion_Pri
Calls  Attach_Thread_To_Group
Calls  Set_Thread_Static_Boost
CaNs  Set_GroupStatic_Boost
VWIN32_Int31Dispatch
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Service  ID  Purpose

Notes:
Crst  means  Critical  Section.

APC  means  Asynchronous  Procedure  Call.

V M C P D  is  the  Virtual  Math  Coprocessor  Device.

IFSMgr  is  the  Installable  File  System  Manager.
System_Control  is  the  V M M . V X D  ring  0  service  that  broadcasts  system control  messages  to  VxDs.
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As you can tell from looking at this table, VWIN32 provides numerous
Win32 VxD services --  so many, in fact, that I could probably write an
entire  book on them. Another book, though; not this one. In this book, I'd
like to focus on just three of the services listed in the previous table:

0x002A0010  --  VWIN32_Int21Dispatch  (the DOS interrupt)
0x002A0029  --  VWIN32_Int31Dispatch  (the DPMI interrupt)
0x002A002A  --  VWIN32_Int41Dispatch  (the debugger notification

interrupt)

Microsoft  has stated that Win32 isn't able to invoke interrupts like
Win16 code can. However, this doesn't mean that the need to use interrupts
has gone away. When Win32 code needs to invoke INT 21h, 31h, or 41h,
Win32 VxD services in VWIN32.VXD are available to do precisely what's
needed.  KERNEL32.DLL uses these interrupt dispatching functions all over
the place. Let's look at code for the VWIN32_Int31Dispatch  service function
in VWIN32.VXD to see how it works:

Pseudocode for VWIN32_Int31Dispatch

//  Parameters:

//  Client  Reg_Struct  *  pClientRegs

//  DWORD  ring3_EAX

//  DWORD  ring3_ECX

Debug_Flags_Service(  DFS_TEST_BLOCK  );

EAX  =  pClientRegs->Client_EAX  =  ring3_EAX

ECX  =  pClientRegs->Client_EAX  =  ring3_ECX

Exec_PM_Int(  £AX  =  0x31  );

if  (  carry  set  )

_Debug_Out_Service(  "VW32_Int31Dispatch:  Exec_PM_Int  Failed!\r\n"  );

There's  not much to these interrupt dispatching services in VWIN32.
The Win32 VxD services for dispatching interrupts  are just wrappers
around calls to the ring 0 Exec_PM_Int service. Much of the hype around
Windows 95 centers on the notion that DOS is supposedly gone.  Since
almost all of what used to be called DOS functionality  is now in VxDs,
these interrupt dispatching Win32 VxD services shouldn't  be used that
much,  right? Well, examine the pseudocode  for the KERNEL32.DLL
FindClose  function below and decide for yourself.
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Pseudocode for FindClose

//  Parameters:

//  HANDLE  hFile;

x_LogSomeKernelFunction(  function  number  for  FindClose  );

if  (  hFile  ==  HFILE_ERROR  )

goto  error;  Calls  SetLastError(ERROR_INVALID_HANDLE),

returns  FALSE  to  caller.

then

EAX  =  71A1h

EBX  =  hFile;

INT  21H  DISPATCH();

71Alh  ==  Long  Filename  FindClose  code

if  (  carry  flag  set

goto  error;  Calls  SetLastError(ERROR  INVALID_HANDLE

//  returns  FALSE  to  caller.

return  TRUE;

t•en

Pseudocode for INT 21h_DISPATCH

return  VxDCall(  0x002A0010,  EAX,  ECX  );

Truth be told,  KERNEL32 makes dozens of calls to the
VWIN32_Int21Dispatch  service. A search through KERNEL32.DLL
reveals  that KERNEL32.DLL makes the following INT 21h  (DOS) calls:
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DOS Subfunction  Purpose

OEOO

19OO

2AOO

2BOO

2C00

2DOO

3600

3DOO

3D02

3EOO

3FO0

4000

4200

42O1

Set  default  drive

G e t  current  drive

G e t  system  date

Set  system  date

G e t  system  time

Set  system  time

G e t  disk  free  space

O p e n  existing  file  - - read  only

O p e n  existing  file  - - read/write

Close  file

Read  file

Write  file

Set  current  file  position  - - relative  to  start  of  file

Set  current  file  position  - - relative  to  current  position
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DOS Subfunction  Purpose

4202

4400

4401

4408

4409

440D

4B00

4D00

5000

5700

5701

5704

5705

5706

5707

5900

5C00

5C01

5E00

5F32

5F33

5F34

5F35

5F36

5F37

5F38

5F3B

5F3C

5F4D

5F4F

5F52

6800

7139

7 1 3 A

713B

7 1 4 1

7143

7 1 4 7

7 1 4 E

714F

7156

7160

Set  current file  position  - - relative to  end  of  file

IOCTL  - - get  device  information

IOCTL  - - set  device  information

IOCTL  - - check  if  block device  removable

IOCTL  - - check  if  block device  remote

IOCTL  - - generic  block device  request

Exec  program

Get  return code

Set  current  PSP

Get  file date/time

Set  file date/time

Sel  extended  file attributes

???  (unknown)

???  (unknown)

???  (unknown)

Get  extended  error  info

Lock file  region

Unlock file  region

Network  functions

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

???  (unknown)

Commit file

LFN  create  directory

LFN  remove directory

LFN  change  directory

LFN  delete  file

LFN  get/set  file attributes

LFN  get  current  directory

LFN  find  first file

LFN  find  next file

LFN  rename  file

LFN  get  canonical  filename
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DOS Subfunction  Purpose

716C  LFN  Extended  open/create

71  A0  LFN  Get  Volume Information

71A1  LFN  Find Close

71  A3  ??? (unknown)

71  A4  ???  (unknown)

71  A5  ???  (unknown)

71A6  LFN  Get  File Info By  Handle

71A7  LFN  File Time To  DOS  Time

B400  ??? (unknown)

EA00  ???  (unknown)

Wow!  There are a lot of INT 21h calls  being made  by KERNEL32.DLL.
It looks like the memories  of INT 21h continue to haunt  us, even after DOS
was supposedly  killed off by Windows  95. The only thing that's  changed  is
that  the INT 21hs  are being called  by KERNEL32.DLL now, rather than
directly  from your own code.

Why would  Microsoft  go through  all the hassle  of performing these
INT 21h's?  Couldn't  they just directly call the low-level  operating-system
functions  directly and  bypass this  15-year-old  INT 21h interface?  The
answer  is that yes, they could.  However, device drivers and VxDs that  hook
INT 21h calls would  break  if Microsoft  were to  do this. These drivers  and
VxDs wouldn't  see the  basic operating  system actions that  they're  expecting
to  be able to watch.  Once again, Microsoft  is in the position  of putting in
less than pretty  code to retain  backward  compatibility  with old applications
and  device drivers.

Returning  now to our earlier discussion of VWIN32.VXD's  dispatching
of certain interrupts,  you're probably  familiar with INT 21h  (DOS) and INT
31h (the DPMI interrupt).  However,  INT 41h may not ring any bells. INT
41h is the interrupt  used by the operating system KERNEL to tell system-
level debuggers  (WDEB386,  SoftIce/W) of important  events in the system.
For example,  KERNEL32.DLL invokes the following INT 41h subfunctions
(which are listed in DEBUGSYS.INC from the DDK):

Define  a  32  bit  segment  for  Windows  32.

Notify  the  debugger  that  a  segment  has  been  freed.

Formatted  output  standard  "C"  printf  syntax.

Function  to  display  a  NUL  terminated  string.

Tell  debugger  which  INT  1's  &  3's  to  grab.

Checks  if  the  debugger  wants  control  on  the  fault.

Conditional  breakpoint.
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THE VWIN32 TDBX

In Chapter  3, I described  the process databases  and thread databases  that
KERNEL32  maintains.  Seeing as how VWIN32 is so intimately involved
with  the mechanics  of threads  and processes,  it's not surprising  that
VWIN32  also has its own data  structure for keeping track  of processes and
threads. This data  structure  is called a TDBX,  and was referenced  briefly in
Chapter  3.

There's  one TDBX data structure  for each thread in the system. As some
of you VxD hackers  have no doubt guessed by now, pointers to TDBXs are
kept in a thread local storage  (TLS) slot in the thread control block (THCB).
Thread control  blocks are the basic data  structure  that the VMM thread
manager  uses to keep track of all the threads it has created.  Other VxDs can
request  slots within the THCB for their own per-thread  storage. They do this
via the VMM _AllocateThreadDataSlot  function,  which returns an offset
inside the THCB where a pointer to the per-thread  data can be kept.  The
VWiN32  TDBX structure is allocated  in response to KERNEL32 calling
Win32  VxD Service 0x002A0008  (VWIN32_CreateThread).  The pointer to
the TDBX structure  is kept in the DWORD slot that's reserved for it in each
VMM thread control  block.

Without further ado, let's look at the contents  of a VWIN32 TDBX struc-
ture.  Unlike most of the other structures described in this book, the meaning
of many of the TDBX fields can only be guessed at, based on the name.

00h  DWORD  ptdb
A pointer to the ring 3 PROCESS_DATABASE structure associated  with
this thread.  The format  of this structure is given in  "The Windows  95
Process Database"  section in Chapter  3.

04h  DWORD  ppdb
A pointer to the ring 3 THREAD_DATABASE structure associated  with this
thread.  The format  of this structure is given in Chapter  3.

08h  DWORD  ContextHandle
A pointer to the memory context  structure for this thread's process.
Memory  contexts are described  in Chapter  5.

0Ch  DWORD  un1

Unknown.
1 Oh  DWORD

Unknown.
TimeOutHandle



14h  DWORD  WakeParam
Unknown.
18h  DWORD  BlockHandle
Unknown.
1Ch  DWORD  BlockState
Unknown.
20h  DWORD  SuspendCount
The number of times that the Win32 SuspendThread function has been
called for this particular thread.
24h  DWORD  SuspendHandle
Unknown.
28h  DWORD  MustCompleteCount
When this value is nonzero, this thread can't be interrupted. The
EnterMustComplete  and LeaveMustComplete functions mentioned in
Chapters 3 and 5 increment and decrement this value.
2Ch  DWORD  WaitExFlags
Flags for this thread. The following values are known:

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00040000

WAITEXBIT
WAITACKBIT
SUSPEND_APC_PENDING
SUSPEND_TERMINATED
BLOCKED_FOR_TERMINATION
EMULATE_NPX
WIN32_NPX
EXTENDED_HANDLES
FROZEN
DONT_FREEZE
DONT_UNFREEZE
DONT_TRACE
STOP_TRACING
WAITING_FOR_CRST_SAFE
CRST_SAFE
BLOCK_TERMINATE_APC
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30h  DWORD  SyncWaitCount
Unknown.
34h  DWORD  QueuedSyncFuncs
Unknown.
38h  DWORD
(APC means Asynchronous Procedure Call.)
3Ch  DWORD
(APC means Asynchronous Procedure Call.)
40h  DWORD  pPMPSPSelector
A pointer to the protected mode PSP selector.
44h  DWORD  BlockedOnlD
Unknown.
48h  DWORD  un2[7]
Unknown.
64h  DWORD
Unknown.
68h  DWORD  TraceCallBack
Unknown.
6Ch  DWORD  TraceEventHandle
Unknown.
70h  WORD
Unknown.
72h  WORD  K16TDB
The Winl6 Task Database (TDB) selector associated with this thread's
process.
74h  WORD  K16PDB
The Winl6 Program Segment Prefix (PSP) selector associated with this
thread's process.
76h  WORD  DosPDBSeg
The real mode segment value of the PSP associated with this thread's process.
78h  WORD  ExceptionCount
Unknown.
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The first two fields of the TDBX are the most interesting.  They provide
the ring 0  VWIN32.VXD  with pointers  to the process and thread data
structures that the ring 3 KERNEL32.DLL uses. (As you may recall from
Chapter  3, KERNEL32 keeps a pointer to the TDBX for each thread in the
ring 3 THREAD_DATABASE structure.  Putting two and two together, you
can see that the KERNEL32.DLL THREAD_DATABASE and the
VWIN32.VXD  TDBX structure circularly reference each other.)

A few other TDBX fields also bear closer examination.  At offset 8 is a
pointer  to the memory context for the thread (actually, for the thread's owner
process).  Also, as we saw in Chapters 3 and 5, the MustCompleteCount  field
is crucial to the lowest level of thread synchronization,  when a thread
absolutely  shouldn't  be interrupted.

Near its end, the TDBX structure contains a selector to the Win16 Task
Database  that every process gets (be it  16- or 32-bit). The last two fields are
protected and real mode pointers to the Program Segment Prefix for the
thread's owning process. Obviously, the ring 0 VWIN32.VXD needs to
know about DOS data structures as well as Win16 KRNL386  data struc-
tures. The main point is that all three Windows 95 kernel components  (the
16-bit KRNL386.EXE, the ring 3 KERNEL32.DLL, and the ring 0
VWIN32.VXD)  all have knowledge of one another. We'll look at these
interrelationships  next.

HOW THE THREE WINDOWS 95  KERNELS COMMUNICATE

After taking you on a long and winding tour through VWIN32.VXD, I've
finally laid sufficient groundwork to show how all three of the Windows 95
kernels communicate with each other. The extent of the communication and
interactions  between the three Windows 95 kernel components is surprising,
at least to me. Why is this? In my (admittedly  unrealistic) view of things, I
think of an operating system kernel as an independent entity, not reliant on
anything else. It's the foundation upon which everything else is built, so it
shouldn't  depend on outside components. Put another way, I'd like to think
that a kernel can be treated as a black box. Understanding the workings  of
the black box shouldn't require knowing anything about components out-
side the box. However, as I've shown throughout this book, these three ker-
nel black boxes aren't really so black. What I'll do next is show how each
kernel  has explicit knowledge of and interactions with the other kernels.
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The first indication that VWIN32.VXD knows about KRNL386  and its data
comes  near the end of the TDBX structure, where you'll  find the Win16 Task
Database  (TDB) selector for the process that the TDBX is associated with.
However,  a much more dramatic example of VWIN32's knowledge of
KRNL386  comes from the pseudocode for a routine in VWIN32.VXD that I
call ThreadSwitchCallback.

ThreadSwitchCallback  is called by VMM.VXD  whenever the thread
scheduler switches to  a new thread. The ThreadSwitchCallback function is
where the pre-emptive multithreading Win32  meets the non-preemptive
view of the Win16  KRNL386.EXE.  It's also where the multitasking Win32
joins up with the single tasking MS-DOS.  Make no mistake about it,
ThreadSwitchCallback  plays a starring role in making Windows  95  appear
as a full-blown  multitasking system to some parts of Windows  95,  and like
DOS/Windows  3.1  to  other parts.

Pseudocode  for ThreadSwitchCallback

//  Parameters:

//  THCB  *pCurrentTHCB,  *pOldTHCB;

//  Locals:

//  PTDBX  pNewTDBX,  pOldTDBX;

//  Pointer  to  Thread  Control  Blocks.

//  Pointers  to  TDBX  structures.

//  On  entry,  EAX  is  the  old  THCB  and  EDI  is  the  current  THCB

//  (THCB  -  thread  control  block).

pOldTBBX  =  pOldTHCB  ->TDBX_pointer;

if  (  !pOldTDBX  )

return;

//  Make  sure  the  parameter  that  points  to  the  old  thread  database

//  matches  what  VWIN32.VXD  has  saved  away  in  a  global  variable.  (cur_ptdb)

if  (  pOldTDBX  ->ptdb  !=  cur_ptdb  )

_Debug_Out_Service(  "VWin32:  invalid  current  Win32  thread\r\n"  );

//  Update  VWIN32  current  thread  global  var.

//  Update  VWIN32  current  process  global  var.

//  Update  VWIN32  current  TDBX  global  var.

458



C u r C o n t e x t

459

//  This  line  bashes  the  CurTDB  global  variable  in  KRNL386.EXE.

*pWin16CurTDB  =  pNewTDBX->K16TDB;

//  If  the  new  thread  differs  from  the  old  thread,  update  the  PSP

//  segment  down  in  DOS,  and  save  away  the  old  PSP  segment.

if  (  prevTDBX  !=  pNewTDBX  )

{

//  Save  away  the  current  PSP  segment  for  the  previous  thread.

prevTDBX->DosPDBSeg

=  Get_Set_Real_DOS_PSP(  ECX=0,  EBX  =  Get_Sys_VM_Handle()  );

prevTDBX  =  pNewTDBX; //  prevTDBX  is  a  VWIN32  global  variable.

//  Switch  the  memory  address  context.

if  (  pNewTDBX->ContextHandle  )

CurContext  =  pNewTDBX->ContextHandle; //  Update  VWIN32  global  var.

_ContextSwitch(  pNewTDBX->ContextHandle  );

After doing some preliminary sanity checking,  ThreadSwitchCallback
updates  the global variable pointers  that VWIN32  keeps to  the current ring
3 process  and thread databases.  At the same time,  it updates  the global vari-
able that VWIN32  uses to point at the current TDBX structure.  Next,
ThreadSwitchCallback  does  something that stunned me when I first saw it
happen in SoftIce/W. Seemingly out  of nowhere,  the ring 0 VWIN32.VXD
smashes  the CurTDB global variable in KRNL386.EXE.

Up until Windows  95  came along,  CurTDB was  sacred. The only way
that  CurTDB could change  was  for Windows  to call the core scheduling
routine in Windows  3.x  (that is, the Reschedule  function).  The nice orderly
world  of cooperative multitasking  in Windows  3.x collided head-on with
pre-emptive  multitasking  in Windows  95,  and pre-emptive  multitasking
won.  It's a sick,  sick world when something  as fundamental  as the current
task global variable in KRNL386  can  be bashed  by another component  that
few programmers  are even  aware of.  (Of course, you know about VWIN32
since you're reading this chapter, but my point is still valid.)
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The remaining chores of ThreadSwitchCallback  are housecleaning
related  to multitasking.  The PSP segment of the outgoing thread is saved
away in its TDBX structure. Next, the code takes the incoming thread's PSP
segment  and uses it to set the current PSP segment in the system VM. This
PSP switching isn't new to Windows 95. Windows 3.1 did something simi-
lar to this, albeit in ring 3 KRNL386 code. The last thing ThreadSwitch-
Callback does is to switch the current memory context to that of the incom-
ing thread.  As Chapter  5 describes, the switching of memory contexts  is
what  allows each process to have its own private address space. In
Windows 95, the process private address space is above 4MB and 2GB in
the linear address range.

VWIN32 knowledge of KERNEL32.DLL
The primary indication that VWIN32 knows about KERNEL32 is the pres-
ence of pointers to the THREAD_DATABASE and PROCESS_DATABASE in
the TDBX structures used by VWIN32. VWIN32 also keeps global variables
with pointers to the current process and thread structures as maintained by
KERNEL32.DLL.  Beyond processes and threads, VWIN32.VXD obtains a
list of pointers to routines in KERNEL32.DLL during KERNEL32's startup
phase. KERNEL32.DLL willingly serves up this information  by passing the
function addresses as parameters to Win32 VxD service 0x002A0003.

KERNEL32.DLL knowledge of VWIN32
By far, the biggest proof that KERNEL32 knows about VWIN32 is the fact
that KERNEL32 calls the Win32 VxD services provided  by VWIN32. This
has been shown throughout this book, especially in preceding sections of this
chapter. There's not much more to be said here on this particular topic.

Beyond Win32 VxD services, additional cooperation between KERNEL32
and VWIN32.VXD occurs when VWIN32.VXD hands over a list of function
addresses within VWIN32.VXD during a particular Win32 VxD service call.
The call in question is Win32 VxD service 0x002A0001, which is called by the
FInitPager  function in KERNEL32.DLL. Presumably, KERNEL32.DLL will
call back these VWIN32.VXD addresses during page fault handling. As  shown
in Unauthorized Windows 95, the VMM page fault handler calls (at ring 0!)
into KERNEL32.DLL's code. It's not a stretch, therefore, to believe that
VWIN32 would be passing the addresses of its routines to KERNEL32.DLL
during KERNEL32.DLL's paging initialization.
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KERNEL32.DLL knowledge  of KRNL386.EXE
(or, What Microsoft  isn't  telling you)
According  to  Microsoft's  Windows  95  technical  marketing  material,  the
32-bit  KERNEL32  doesn't  rely on  KRNL386  for  any of its  functionality.
(Contrast  this  to  the  USER and  GDI components,  where  Microsoft  will-
ingly  admits  that  32-bit  component's  code  thunks  down  to  the  Winl6
component.)  Unauthorized  Windows  95  completely  shredded  Microsoft's
claim that  KERNEL32.DLL  doesn't  call  the  16-bit  KRNL386.EXE.
However,  the  extent  to  which  KERNEL32  calls  KRNL386  hasn't  been
known  until  now.

I won't  attempt  to  duplicate  that  book's  excellent  explanation  of the
thunking  between KERNEL32  and KRNL386.EXE  in Windows  95.
However,  I can  offer something new - - a list of functions  in KRNL386.EXE
called  by KERNEL32.DLL.  If this isn't  interesting,  I don't know what  is.
This  list is especially relevant  in light of Microsoft's  claims that  calling any
KERNEL32  function can't  result in the calling thread  waiting  to  acquire  the
Win16Mutex.  As you can  see in the following  table,  there is a nontrivial  set
of KERNEL32  functions that  will in fact  block  on the Win16Mutex.

Lest you think that  these  functions  can't  cause  problems,  consider the
profile  functions  (for example,  GetPrivateProfileSection).  Typically,  they'll
access your hard  disk  and return quickly.  However,  what  if the file they're
looking  for is on  a CD-ROM  drive,  and there's  no  disk  in the drive? The
CD-ROM driver  may take many seconds to  time  out,  and  during this whole
time,  the Win16Mutex  is owned  by the calling task.  (This  exact  scenario
really  happened  to  me during the Windows  95  beta.)

A word of explanation on the following table is in order. The names in the
left column are the names that KERNEL32  uses internally.  If a special KER-
NEL32 internal flag is set, KERNEL32  emits these strings to the debug termi-
nal.  Some of these functions turn out to be regular, exported KERNEL32  func-
tions.  Other functions in the left column are undocumented,  or variations on
exported  KERNEL32 functions. It's doubtful that normal applications  will call
them.  For example, LoadLibrary16 calls the  16-bit LoadLibrary in KRNL386.
LoadLibrary16  is exported  from KERNEL32.DLL  with an export ordinal of
35,  but it is not the same as the regular KERNEL32.DLL LoadLibrary func-
tion. Likewise, the WritePrivateProfileSection32A  function is not the same as
the regular KERNEL32 WritePrivateProfileSectionA  function.  The names have
to match exactly.
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The smattering of function names in the right column of the following
table  are the set of functions  that the KERNEL32 to KRNL386  thunk calls
directly.  If a function name isn't provided  in this column,  the thunk doesn't
call the exported function directly. More often than not,  the thunk called
the internal version  of the function  in KRNL386,  rather than the exported,

wrapper  function.

KERNEL32.DLL  KRNL386.EXE
Internal Name  Exported Name

TerminateZombie
DiagOutput16
DispatchRITInput
GetFastQueue
SetVolumeLabel16
PK16FNF
CornmConfigThk
InitAtomTabJe
GetAtomNameA
DeleteAtom
FindAtomA
AddAtomA
GlobalLack16
IsDriveCDRom
ExecConsoleAgent
ThkOpenFile
GetErrorMode
SetErrorMode16
GetSystemDirectoryA
GetWindowsDirectoryA
GlobalGetAtomNameA
GlabalDeleteAtom
GlobalFindAtomA
GlobalAddAtomA
GetPrivateProfileSectionNames32A
WritePrivateProfileStruct32A
GetPrivateProfileStruct32A
WriteProfileSectionA
GetProfileSectionA
WritePrivateProfileSection32A
GetPrivateProfileSection32A
WritePrivateProfileString32A
GetPrivateProfileString32A

DiagOutput

KERNEL.625

GlabalLock

OpenFile

GetSystemDirectory
GetWindowsDirectory

GetPrivateProfileSectionNames
WritePrivateProfileStruct
GetPrivateProfileStruct
WriteProfileSection
GetProfileSection
WritePrivateProfileSection
GetPrivateProfileSection
WritePrivateProfileString



G e t P r o d u c t N a m e

463

KERNEL32.DLL  KRNL386.EXE
Internal Name  Exported Name

WriteProfileStringA  WriteProfileString

GetProfileStringA

GlobalHandle16

GlobalSize16

GlobalFlags16

GlabalUnlock16

GlobalFree16

GlobalReAIIoc16

GlobalAIIoc16

WinExecEnv

PrivateGetModuleFileName

GelProductName

GelWinFlags

GetModuleName16

GetTaskName16

SetTaskName16

ThkDeleteTask

ThkCreateTask

ThklnitWin32Task

FreeSelector16

ThunklnitLSWorker16

GetProcAddress16

FreeLibrary16

LoadLibrary16

GlobalUnWire16

GlabalWire16

GlobalUnfix16

GlobalFix16

GlobalNukeGroup

CheckHGHeap

SegCommonThunkDetach32

SegCommanThunkAttach32

GrowMBABIock

FakeThunkTheTemplateHandle

TCD_UnregisterPDB32

TCD_Enum

WOWGIobaJLockSize16

WOWGIobalUnlockFree16

WOWGIobalAIIocLock16

WOWGIobalUnlock16

WOWGIobalLock16

GlobalHandle

GlobalSize

GlobalFiags

GlobalUnlock

GlobalFree

GlobalRealloc

GlobalAIIoc

GetModuleFileName

GetProductName

GetWinFlags

FreeLibrary

LoadLibrary

GlobalUnwire

GlobalWire

GlobalUnfix

GbbalFix

GlobalUnlock

GlobalLock
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KERNEL32.DLL  KRNL386.EXE
Internal Name  Exported Name

WOWGIobalFree16
W O W G b b a l A I I o c 1 6
WOWDirectedYield16
W O W Y i e l d 1 6
Yield16
FreeLibrary16ByName
SSChk
UTThunkLSHelper
UTUnregisterlnt
UTRegisterlnt
UTProcessExit
FreeCB

GlobaIFree

DirectedYield
Yield

I've noticed that many Windows 95 programmers  are anxious to know
which KERNEL32 functions can block on the Win16Mutex during the
journey down to KRNL386.  Microsoft's claims that none of them block is
utterly  bogus. By studying the list in the next table, you can easily consoli-
date the functions into a few categories of KERNEL32 functions that can in
fact block while waiting for the Win16Mutex.

Function  Category  Function Names

Atom  functions

Directory  functions
Selected  W I N . I N I  file functions

AddAtomA,  DeleteAtom,  FindAtomA,  GetAtomNameA,
GlobalAddAtomA,  GlobalDeleteAtom,
GlobalFindAtomA,  GlobaJGetAtomNameA,
InitAtomTable
GetSystemDirecloryA,  GetWindowsDirectoryA

GetProfileSectionA,  GetProfileStringA,
WriteProfileSectionA,  WriteProfileStringA,

KERNEL32 also knows about specific global variables in KRNL386.EXE.
We saw earlier how VWIN32.VXD parties with a KRNL386.EXE global vari-
able (for example, CurTDB). In the case of KERNEL32, the most glaring example
of its use of KRNL386 global variables is the Win16Mutex. The Win16Mutex
is actually just a CRITICAL_SECTION structure that's kept in KRNL386.EXE's
DGROUP segment. How does KERNEL32 get hold of the address of the
Win16Mutex?  KRNL386.EXE passes it to KERNEL32.DLL as part of an
initialization  call that KRNL386 makes after loading KERNEL32.DLL.
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KRNL386 knowledge of KERNEL32.DLL
Just  as  KERNEL32  has  a  laundry  list  of functions  that  it  calls  in
KRNL386.EXE,  the  exact  opposite  is also true.  The  following table  lists
the  functions  that  KRNL386  calls  up  to  KERNEL32.DLL  for.

Function  Category  Function Names

Process management functions

Thread  management  functions

Module  management  functions

Directory  management  functions

File  I/O  functions

32-bit  heap  functions

Synchronization  functions

Fault  handling  functions

W I N O L D A P support  functions

Cleanup  functions

Miscellaneous  functions

CreateProcessFromWinExec,  IFatalAppExit,  NukeProcess,
RegisterServiceProcess,  ThunkExitProcess, ThunkMapProcessHandle,
ThunkCreateProcessWin16,  WinExecWait

IsThreadId,  ThunkCreateThread16,  ThunkTerminateThread,

GetModuleHandle32,  GetNEPEBuddyFromFileName32,
LoadLibraryEx32W,  ThunkFreeLibrary32  (free  a  Win32  DLL),
ThunkGetHModK16FromHModK32  (get the Win16  H M O D -
ULE  from  a  Win32  HMODULE),  ThunkGetModuleFileName,
ThunkLoadLibrary32  (load  a  Win32  DLL),

GetCurrentDirectory  (stored  in  the  KERNEL32  process data
base  for  each  process),  SetCurrentDirectory32,
ThunkGetCurrentDirectory

FindClose,  FindFirstFile,  FindNextFile  (16  bit  versions of  the
Win32  FindXXX  functions),  FileTimeToDosDateTime,
OpenFileEx16And32,  ThunkCIoseDOSHandles,
ThunkCIoseW32Handle,

LocalAIIoc32NG,  ThunkLocal32AIIoc,  ThunkLocal32Free,
ThunkLocal32Init,  ThunkLocal32ReAIIoc,
ThunkLocal32SizeThkHIp,  ThunkLocal32Translate,
ThunkLocal32ValidHandle

ThunkCreateW32Event,  ThunkResetW32Event,
ThunkSetW32Event,  WaitForMultipleObjects,
WaitForSingleObject

CreateFaultThread,  FaultRestore,  FaultSave,

WOAAbort,  WOACreateConsole,  WOADestroyConsole,
WOAFullScreen,  WOAGimmeTitle,  WOASpawnConApp,
WOATerminateProcesses

FreelnitResources32,  HGCleanupDepartingHTask,
NotifyDetachFromWin16,  ThunkDeallocOrphanedCrsts

CallProc32WFixHelper,  CallProc32WHelper,
FlatCommonThunkConnect16,  FullLoRes,  GetProcessDword,
GetVersionEx,  InitK32AfterSysDIIsLoaded,  ISetErrorModeEx,
InvalidateNLSCache,  LateBindWin32ThunkPartner,
SetProcessDword,  SmashEnvironment,
ThunkConvertToGIobalHandle,  ThunkGetProcAddress32,
ThunkTheTemplateHandle,  VirtualFree
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If you're wondering where the names in the previous  table come from,
they're  embedded in KERNEL32.DLL.  As I was  studying  my listings for
KERNEL32.DLL,  I noticed a consistent  pattern  in the code for the func-
tions  that  KRNL386 thunks  up to.  Part of that  pattern  included a pointer to
the  function name.  It was a simple matter  to write an editor macro to find
all the locations in KERNEL32.DLL  with this code pattern and copy the
function name strings out to a file.

KRNL386 knowledge of VWIN32
KRNL386.EXE's  knowledge of VWIN32.VXD  is embodied  by its calls to
the VWIN32 PM APl services. These are the services that  I described  in the
previous  section titled  "The VWIN32.VXD  16-bit protected  mode APl."

THE WIN32 VxD SERVICE SPY (W32SVSPY)

This chapter  wouldn't  be complete without a program  that  lets you explore
the areas I've been describing.  I wrote  the W32SVSPY program for monitor-
ing Win32 VxD Service calls. In some ways, it's like the APl spy program
from  Chapter  10 --  just not as complete.  However,  there were a couple of
technical  hurdles in writing W32SVSPY that  I think I solved in interesting,
nonobvious  ways.  Therefore, I'll take a little  bit of time to  show some tricks
to  be learned from W32SVSPY.

The complete sources  are on the disk that  accompanies this  book.  I'm
not going to  describe  all the inner workings of W32SVSPY because they're
fairly  complicated,  and probably  not of interest  to a great number  of peo-
ple. The output  from W32SVSPY, on the other hand,  should  be of interest
to the general  spelunking  population.

Figure  6-4 shows the initial  screen of W32SVSPY. The large listbox that
dominates  its window holds the output  from a spying session. To start
watching Win32 VxD service calls, click the Start  button.  Logging will com-
mence immediately,  and continue  until you click the Stop button,  or until
W32SVSPY's  buffer fills up.  (I arbitrarily chose  16K as the number  of calls
that can be saved. You can change this by recompiling  the W32SVSPY
source.)  The Save...  button  lets you save the results of a spying session out
to a text file.
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 Figure 6-4
The  initial W32SVSPY  screen

The Filter...  button brings up the dialog shown in Figure 6-5. This dialog
lets you filter out arbitrary Win32 VxD services from the session results --  as
you'll  see later, there can be quite a bit of noise in the Win32 VxD services, and
it can be useful to filter them out. The Filter dialog has two listboxes.  Selecting
a VxD in the left listbox updates the right listbox with the known Win32 VxD
services in that VxD. Services that have + (a plus sign) in front of them are
enabled  (will be shown}. By double-clicking  on a service line in the right list-
box, you can toggle its state between enabled  (+) and disabled  (-).  The default
is to have all services enabled. As provided, W32SVSPY knows only about the
VMM and VWIN32 services. It will log all Win32 VxD service calls, but can
only provide names for the Win32 VxD services that it knows about.  If you
want to add in knowledge of additional Win32 VxD services in other VxDs,
the W32SRVDB.C file is where the additions would go.

Any filtering you perform in this dialog is preserved  across  invocations
of W32SVSPY  by saving the filtered  service IDs  (in binary form)  out to  a
.FLT file.  If you want  to  turn  off filtering  (that  is, if you want  to  see every-
thing)  delete the  .FLT file  before starting  up W32SVSPY. Alternatively,  go
back  into  the Filter...  dialog and reenable  all  the functions.
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 Figure 6-5
The W32SVSPY  filter dialog.

The  format  of each line of W32SVSPY's  output  is as follows:

<CurrentTaskName>  <Service  Name>(<parameter  1 value>)

For example,  take the following  line:

Explorer  VWIN32_SetEvent(8154A230)

In this example,  the current  process  (that is, the one making the call)  is the
Explorer.  The  service  being called is VWIN32_SetEvent.  The value of the
first parameter  (in parentheses)  is  8154A230h.  W32SVSPY doesn't  show
the value of all the parameters  to  each Win32  VxD services  because  it
would  greatly  complicate  the logging process.  If you want  this feature,  you
can  add it as an exercise.

If the Win32 VxD service call is VWIN32_Int21Dispatch,  W32SVSPY
decodes  the first parameter  value to a string  describing  the DOS function
being invoked.  In this case, the DOS function name  string will  appear  after
the service name  (VWIN32_Int21Dispatch),  but  before  the first parameter
value;  for  example:

Calc  VWIN32_Int21Dispatch  LFN  File  Time  To  DOS Time(008071A7)

Occasionally,  you may see a line like this:

FFFF56F3  VWIN32_Int41Dispatch(00000150)

In this case, the first thing on the line is a process  ID. This  is because
W32SVSPY  couldn't  extract  the process  name from the Win16  Task
Database  (TDB) that Windows  95 creates  for each process.  This  usually
happens  only during application  startup,  before  KERNEL32.DLL  has
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bashed  the correct process  name into the  task  database.  It's  usually  not  hard
to  figure out  which process these IDs  refer to --  just search  through  the
entries  until  they stop.  The  next task  in the  list  of service calls whose  name
hasn't  appeared  previously  is likely to  be the  process  you're  looking for.

A sample W32SVSPY session
To show off what W32SVSPY can  do,  let's  watch  the Win32  VxD  services
that  occur when  starting  an  application  from  a shortcut  on  the desktop.  For
the  application  to  start  up,  choose  CALC.EXE  and  make  a shortcut to  it on
the desktop.  Then  start  up W32SVSPY  and  click the  Start  button.
Immediately  afterward,  double-click  on  the  CALC shortcut.  Finally,  click
the  Stop button  in W32SVSPY.  The  results  of the run  will  appear  in the
main  W32SVSPY  listbox,  which is shown  in Figure  6-6.  At this  point,  you
can  browse  through  the  services in the listbox,  or you  can save the  results  to
a file with  the  Save...  listbox.

 Figure 6-6
Running CALC under W32SVSPY.

I've  taken  the output  from a run performed  exactly as I've  described
above  and condensed  it to  eliminate  a  lot of noise  and  repeated  sequences.
I've  also  annotated  it a  bit.  Figure  6-7 shows the  result:
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...  Many  preliminary  calls  to DOS and the  registry  by the  Explorer  omitted

// Create  the memory  context  for the  new process.

Explorer  _ContextCreate(004463D8)

Explorer

Explorer

Explorer

Explorer

Explorer

// Create  the  initial  thread  for the new process.

Explorer  VWIN32_CreateThread(8154915C)

//  Set the  priority  of the  initial  thread  of the new process.

Explorer  Set_Thread_Win32Pri(C10464D8)

// Wake  up the  initial  thread  of the new process

// the new memory  context  to be  switched  to.

Explorer  WakeThread(C10464D8)

This  should  cause

Explorer  WakeCrst(&Winl6Mutex)

Explorer  dwBlockMultipleWnod(00000002)

// The  first  act of the  new  process  (take a nap!

FFFF56F3  VWIN32_Sleep(FFFFFFFF)

//  Reserve  and  commit  the memory to be used  by the  process.

FFFF56F3  _PageReserve(00000400)

FFFF56F3  _PageCommit(00000400)  < - repeat  similar  calls  11 times

FFFF56F3  _PageReserve(80000400)

FFFF56F3  PageCommit(00000420)

// Do file  I/O  (presumably  with  the  EXE file  of the  process),

FFFF56F3  VINW32_Int21Dispatch  set current  PSP(000050F7)

FFFF56F3  VINW32_Int21Dispatch  LFN get/set  file  attributes(00007143)

FFFF56F3  VWIN32_Sleep(00000001)

FFFF56F3  VINW32 Int21Dispatch  LFN get/set  file  attributes(00007143)

FFFF56F3  VINW32_Int21Dispatch  LFN get canonical  filename(00007160)

FFFF56F3  VINW32_Int21Dispatch  set current  PSP(000050B7)

FFFF56F3  VINW32_Int21Dispatch  LFN  Extended  open/create(0000716C)

FFFF56F3  VINW32_Int21Dispatch  read  file(828D3F60)

FFFF56F3  VINW32_Int21Dispatch  set  file position(00004200)

FFFF56F3  VINW32_Int21Dispatch  read  file(00003F01)

FFFF56F3  VINW32_Int21Dispatch  set  file position(00004200)

FFFF56F3  VINW32_Int21Dispatch  read  file(00003F01)

FFFF56F3  VINW32_Int21Dispatch  LFN get canonical  filename(00007160)
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The  output  starts  with  the Explorer  process  (executing  inside KER-
NEL32.DLL)  creating  a new memory  context.  However,  a  memory  context
does not  a process make.  There's  more  work  to  be done.  A few lines  later in
the output,  note  the creation  of an initial  thread  for the  new process,  as well
as the  setting  of the thread's  priority.  The next act  of KERNEL32  is to  call
WakeThread  on  the  new thread,  which  causes  the new thread  to  become the
currently executing  thread  a couple  of lines  later.  (This  is the  first  line where
the  process name  is given as FFFF56F3.)

Once  the new thread  wakes  up,  it starts  performing file I/O.  This  is pre-
sumably  where  the new process  is examining  its  EXE file and  loading  it into
memory.  Naturally,  loading the  EXE into  memory  requires  that  the process
use  the page-based  memory  management Win32  VxD  services to  reserve
and  commit  memory  within the process's  context.  An interesting  effect  that
shows  up  during  this  phase is that  the  system  realizes it can  share  certain
memory  pages  with  a  DLL that's  already loaded in the private  address  space
of another  process.  In this  case, the DLL is SHELL32.DLL.  When  the  sys-
tem realizes that  certain  pages  can  be shared  (primarily  code pages),  it uses
the VMM  _PageAttach  service to  start  sharing the pages  with  the  other
process  (or processes).

Technical  challenges  in  writing  W32SVSPY
When  I first conceived  of writing  W32SVSPY,  the first problem  that  sprang
to  mind was that  the KERNEL32  VxDCall  function is called  in the  memory
context  of all  applications  in the  system.  As I described  earlier,  Win32  VxD
services are invoked via calls  to  the VxDCall  function.  I therefore  had  to  put
the  code that  actually  handled  the redirected  service calls someplace  in
memory  that's  accessible  to  all processes  (in other words,  I had  to  put the
code  in shared memory).

Another problem with having Win32 VxD  service  calls  being invoked in
all memory contexts is that  I couldn't  use file I/O operations to  just log the
calls  as they occurred.  The reason I couldn't  do this is because  file handles
are valid only in the context  in which they were  opened.  Opening and clos-
ing a file handle each time a Win32 VxD service was invoked was also not
an option.  KERNEL32  uses Win32 VxD  services  for file I10,  so this would
clearly cause  a reentrancy  issue.  (Not to  mention that  opening  and closing
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file handles for each call would make performance grind to a halt.) Again,
the answer was to use shared memory accessible to all processes. W32SVSPY
saves away information about each Win32 VxD service call into a memory
buffer, and retrieves the information from the buffer for display when it's safe.

A third problem I encountered when writing W32SVSPY was intercept-
ing the Win32 VxD services. Earlier, I showed that the VxDCall function
looks like this:

VxDCall

MOV

POP

CALL

EAX,DWORD  PTR  [ESP+04]

DWORD  PTR  [ESP]

FWORD  PTR CS:[BFFC8004]

Intercepting  the calls to Win32 VxD services should be as simple as
plugging the address at BFFC8004 with an address in my code and in my
interception routine, chaining on to the original  address. In fact, this isn't
hard at all. What's tough is finding the address of the VxDCall function.  I
needed to find the address of VxDCall so that I could reach in and grab the
offset where the pointer to the INT 30h instruction  is located.

Why couldn't I just call GetProcAddress on VxDCall? This function is
undocumented,  and isn't exported by name. I couldn't  use GetProcAddress
with VxDCall's ordinal value, either. Chapter 3 shows how the GetProcAddress
specifically prevents applications from looking up KERNEL32.DLL functions
by ordinal.  Why did Microsoft  do this? No doubt to prevent applications
like W32SVSPY from being written.  As you know by now, Microsoft's
preventative efforts failed and W32SVSPY was able to circumvent the crude
anti-hacking  kludge.

Putting W32SVSPY into shared memory

The first part of getting W32SVSPY up and running was to get its code into
memory shared by all processes. In Chapter  3, I showed that the way to do
this is to put the code into DLLs. Therefore,  W32SVSPY has a DLL compo-
nent  (W32SPDLL.DLL) in addition to its EXE. However, simply putting my
spy code into a DLL isn't enough. The DLL needs to be loaded at a location
where memory is shared across all processes. In Windows 95, that means in
the memory range between 2GB and 3GB. This is where the system DLLs
like KERNEL32.DLL and USER32.DLL can be found. We need to somehow
make Windows 95 load W32SPDLL.DLL into this shared memory region.
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Now, your  first  tendency  might  be to tell the linker to  base
W32SPDLL.DLL  at  an address  between 2GB and  3GB. Although  you
can get the linker to  base a DLL at whatever  address you want,  this isn't
enough.  My first  attempt  at  basing W32SPDLL.DLL  at an address above
2GB and then loading  it failed.  Oh,  the DLL loaded  all right. The prob-
lem was, the operating  system relocated the DLL so that it was in the
application's  private  address  area.  Clearly, the Windows  95 loader  didn't
want  my DLL in the shared region  supposedly reserved for system DLLs
and shared memory.

After studying Microsoft-supplied DLLs that the loader will load above
2GB, a common pattern struck me. Every DLL that the Windows 95 loader
successfully loaded into shared memory above 2GB had all its writeable data
sections marked as shared. In retrospect, this seems obvious, since if the loader
were to load the DLL into the shared memory region above 2GB, Windows 95
certainly can't be providing per-process data in the data sections. It was the
per-process data sections of the DLL that were causing the problem.

By doing the following two things, I was finally able to get
W32SPDLL.DLL loaded above 2GB:

*  Have the linker base the DLL at an address above 2GB. I picked the
address  of where KERNEL32.DLL loads, since I know that the
Windows 95 loader will relocate DLLs that have overlapping  base
addresses.

*  Make the .data,  .bss, and .idata sections of the DLL shared.  I did this in
the W32SVSPY makefile  by using the /section: switch to the linker.

Both of these requirements  are implemented by the following lines in
the linker response file:

BASE:0xBFF70000

/section:.data,RWS

/section:.idata,RWS

/section:.bss,RWS

(Note that RWS means readable, writeable,  shared.)
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Finding  the address  of VxDCall

Earlier,  I mentioned that the Windows  95 KERNEL32.DLL goes to great
lengths to prevent applications  from getting the address  of undocumented
KERNEL32  functions  like VxDCalI.  GetProcAddress  simply won't work  for
these functions.  However,  if you can implicitly link to  a function,  you can
easily find the function's  address.  In  C or  C++, you can just use the function's
name without the  ()'s. Now, there has to  be a way to  implicitly link to these
undocumented  functions.  Otherwise,  why would Microsoft have bothered  to
export  them?

In Appendix A, I show how I built an  import  library for the  100 or  so
undocumented  functions  exported  by KERNEL32.  This  import  library  is set
up  so that  when you import  a function  in the library,  you're  importing it  by
the function's  ordinal value.  In W32SPDLL.C,  I had to  prototype  the
desired  function:

_ _declspec(dllimport)  int WINAPI  VxDCall0(void);

Then,  I had to  take its  address  by using the function name without  parens:

pfnVxDCall0 = VxDCall0;

Once  I know the address  of VxDCaIl0  within  KERNEL32.DLL,  it's  a
simple matter  to reach into the function's  code  and  pull  out the address
where  the  16:32  pointer to  the INT 30h instruction is kept:

ppfnOriginalVxDCall  =  (PBYTE)*(PDWORD)((DWORD)pfnVxDCall0  + 0xA);

This  line may look  unintelligible,  but it's  really not  so  bad.  It's  just grabbing
the DWORD that's  0xA bytes into  the code for the VxDCall  function,  and
then typecasting  that  DWORD  to  be a pointer.

Yes, it's rather  disgusting to  be relying  on a fixed offset within  the
VxDCall  functions to  find the pointer I'm after.  But when  you're writing
low-level  system-hacking  tools  like W32SVSPY, it's the nature  of the busi-
ness.  Microsoft could easily break W32SVSPY  by rearranging the code  for
VxDCall  so that the pointer I'm after isn't  0xA bytes into the code.  But
then,  they really have no reason to  muck with  the VxDCalI,  other  than  per-
haps  to  be malicious  and  break W32SVSPY. It will be interesting  to  see
what  happens  in future revisions  of Windows  95.
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SUMMARY

In this chapter, I've thrown a lot of undocumented functions and fairly tech-
nical material  at you. It's not necessary to remember or retain all this infor-
mation in one reading for the chapter to be of value. The important point
I've tried to convey is that Windows 95 has three separate pieces that could
be called kernels  (KRNL386.EXE, KERNEL32.DLL, and VWIN32.VXD).
Each of these kernels has detailed knowledge and extensive interaction with
the other two kernels.

Understanding any one of these components without knowing about
and understanding the other components is a difficult feat. You may find
yourself coming back and rereading this chapter from time to time to pick
up on some subtle point you missed the first time. I hope I've shown you the
scope of the interactions  between the three kernel components of Windows
95, and enabled you to do more exploring on your own. I know I have
quite a bit more spelunking ahead of me, too!



k sWin16 Modules
and Tasks

I
t  may seem a little odd to  include  a chapter on the core  16-bit
KERNEL data  structures  in a book that  focuses on the  32-bit

architecture  of Windows  95.  However,  as you'll  soon see, these
data  structures  play an  integral  role in the  overall  architecture
of Windows  95,  both  for  16- and  32-bit  applications.

In this chapter,  we'll  be taking  a tour  of the  16-bit modules
and tasks that KRNL386  maintains.  If you're  familiar  with mod-
ules and tasks  from Windows  3.1, at first glance they'll  appear
unchanged  in Windows  95. Why bother with these old  16-bit
concepts  when there's  new and exciting Win32  components to
explore?  If you  dig a little deeper,  you'll  see that the  16-bit
KRNL386.EXE,  the 32-bit KERNEL32.DLL,  and the VWIN32
VxD all know about  each other,  and are intertwined  in their
operations.  Therefore,  an examination of  16-bit modules  and
tasks  is an  important part  of learning about  the Windows  95
architecture.

We'll  start  out  by looking  at  modules,  which  are the mecha-
nism  by which  the  16-bit side of Windows  95  tracks all the
EXEs and DLLs that  are  loaded  in the  system.  Strange as it may
seem, Windows  95  creates  16-bit  modules  not  only for  16-bit
EXEs and DLLs,  but also for  32-bit  EXEs and DLLs.  Following
a description  of the specifics  of  16-bit  modules,  I'll  show some
pseudocode for some useful  16-bit  KRNL386  functions  that
demonstrate  the use of modules  in action.
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Next,  I'll  turn  to  the  subject  of  16-bit tasks  and the  data  structures  that
KRNL386  uses to  maintain  them.  (Tasks  are created  from modules,  so it's
only natural  to  describe modules  first, then tasks.)  As if the  fact that
Windows  95 creates  16-bit modules  for  32-bit  EXEs  and DLLs wasn't
enough,  you might  be surprised  to learn  that  Windows  95 maintains  a
16-bit  task  for  each Win32  process.  After  describing the  layout and charac-
teristics  of tasks,  I provide pseudocode  for  some KRNL386  functions  that
manipulate  and  use task  information.

In  "The  SHOW16  Program"  section at  the end of the chapter,  I've
included  a  discussion about  the  16-bit  SHOW16.EXE program I wrote that
allows you to easily browse  through  the  16-bit  modules  and tasks  in your
system.  While I could have used TOOLHELP  to  obtain  much of the  infor-
mation  for  SHOW16,  I chose to  get the data  fresh  from the modules  and
tasks themselves.  Doing it this way proves  that  modules  and tasks  aren't
some  magical  thing that  only the coders  at  Microsoft  are allowed  to  touch.
The  results  of a  little  browsing  with  SHOW16  may surprise  you!

Before plunging into  the details of modules  and tasks,  a minor point
needs  to  be explained.  Throughout  this  chapter,  I often refer  to global  mem-
ory  handles  and  CPU selectors  as if they were  the same thing.  In Windows
3.1  and Windows  95,  a  16-bit  FIXED global  heap  handle  is a  ring 3 selector
value.  A MOVEABLE handle  can easily  be converted  to  a selector  by turn-
ing on  the  bottommost  bit  of the handle value.  This is essentially all that
GlobalLock  does.  I'm  mentioning  this up  front  so that  I don't  have to  bog
down  the rest of the text with minor distinctions  between  selectors and
global  memory handles.  For the purposes  of the discussion in this  chapter,
they can  be considered  the same thing.

WHY HAVE 16-BIT REPRESENTATIONS OF 32-BIT
MODULES AND PROCESSES?

You may be wondering why Microsoft  bothered to go through the hassle of
representing  32-bit programs and DLLs in their old  16-bit equivalent.  The
answer is simple. Unlike Windows NT, Windows 95 doesn't wall off 16-bit
applications  in their own virtual machine(s),  separate from the 32-bit side of
the world.  Instead,  16- and 32-bit programs coexist within the same virtual
machine,  and even share address  spaces to some extent (see Chapter  5 for
details  on this). In addition, large portions of the code used by  all Windows 95
applications  resides in  16-bit DLLs (for example, USER, GDI, COMMDLG,
and,  yes, even KRNL386).
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16-BIT MODULES

In the  16-bit  world  of Windows  95, modules are the  data structures  used by
KRNL386  to represent  the code,  data,  and  resources  of anEXE or  .DLL file
that's  loaded  in memory.  Included  in the category of DLLs are  files with dif-
ferent  extensions,  such as  .DRV and  .FON.  Every module  is associated with
a disk file somewhere  on the system.

In this  section, I describe the  16-bit Windows  95 modules  that are
derived from the  16-bit modules of Windows  3.1.  Every loaded  EXE or DLL
in the system,  regardless of whether  it's  16- or  32-bit  based, has  a  16-bit
module.  However,  it's important to  be aware  that  32-bit  EXEs and DLLs are
also simultaneously  represented  as  32-bit modules  in 32-bit  land  by KER-
NEL32.DLL.  In general, the  16-bit  representation  of a module  is used by the
16-bit system DLLs (for example, KRNL386  and USER), while the 32-bit
representation  is used by the  32-bit  system DLLs (for example, KERNEL32).
For more  information  on 32-bit modules,  see Chapter 3.

All of a  16-bit  module's  data  is kept in a  segment allocated  from the
16-bit  global  heap via a call  to  GlobalAlloc.  This  segment with  module
information  is known  as a module database. The handle  of the global  heap
block  containing  a module  database  is known  as a module handle or,  more
familiarly, as an HMODULE. This is the handle  that  functions  such as
GetModuleHandle  refer to.

In Windows  3.1,  all modules  were created  inside the LoadModule  rou-
tine.  Calling  the  LoadLibrary or WinExec APl functions  ultimately  ended
up  in a call  to  LoadModule.  In Windows  95,  modules  for  16-bit  EXEs and
DLLs are  still created  within  the  LoadModule  function  in KRNL386,  while
the  16-bit  modules  that  represent  32-bit  EXEs and  DLLs are created  by
KERNEL32.DLL.  The selectors used for  32-bit-based  NE modules  aren't  in
the  global  heap's  list of handles,  so finding these HMODULEs  can  be tricky
(as we'll  see later).

The format of a  16-bit module database  is based on the  16-bit  executable
format used by Windows  and OS/2  1.x since their inception. This file format
is known as the New Executable (NE) format. In the remainder  of this chap-
ter, I refer to  16-bit modules in Windows  95 as NE modules to  distinguish
them from 32-bit modules  (which are based on the Portable  Executable for-
mat,  and known as PE modules). I won't  be describing the format of NE files
in this chapter  since they're  covered more than  adequately in the Microsoft
documentation  and elsewhere.  In the  following section  I go over the format of
the module database that's created from reading in an NE file. If you compare



the NE file format with  the NE module  database,  you'll  see that  although
they're similar, they have  several important differences.

Near  the  beginning  of each  NE  file is a  0x40-byte  data  structure  known
as the  NE  header.  The  structure  has  this  name  because  its  first WORD  con-
tains  the  value  0x454E,  which,  when viewed  in ASCII characters,  is NE
(short  for New  Executable).  Early  on in  the  LoadModule  code,  KRNL386
reads the  NE  header  from the  executable  file into  the  beginning  of the mod-
ule database  that  it's constructing.  Many  of the  fields  in  the  NE  file  are
therefore  identical  to  the  corresponding  offsets  in  the  NE module  in mem-
ory.  However,  KRNL386  recycles  some  of the  fields  that  are  meaningful
only  for  the NE  header  on  disk,  and  uses them  for  other  purposes.

Following  the  0x40  byte NE  header  in the  module  database  is the  seg-
ment  table.  The  segment  table  is an  array  of structures  that  contain  vital
information  (size, code or  data,  and  so  on)  for each  of the  module's  code
and  data  segments.  Following  the  segment  table  is the  resource  table,  which
contains  information  about  all the  resources  that  can  be found  in  the corre-
sponding NE file,  although  not  the  actual  resources  themselves.  Rather,  the
resource  table is a  sort  of table  of contents  that  tells  KRNL386  where  it can
look  in  the  NE  file for  the  actual  resource  data.

Following  the  segment and  resource  information,  you'll  find  informa-
tion  about  the  module's  imports  and  exports.  Calling functions  in  another
EXE or  DLL is known  as  importing  the functions.  For  example,  USER.EXE
calls  functions  in  KRNL386.EXE,  so USER.EXE imports  KRNL386  and its
functions.  Not  surprisingly,  the  opposite  of importing  a function  is export-
ing a function.  Exporting  a function  means  that  you're  making the  function
available  to  be called  by other  EXEs or  DLLs.  In the  example I just  men-
tioned,  KRNL386  exports  its functions  and  USER.EXE imports  them.

At  the  bits  and  bytes  level,  exporting  a function  means  that  you're
putting  its  address  in  a table  known  as an  entry  table.  When  you  load  an
NE  file  that  imports  functions  from  another  module,  the Windows  loader
(that  is,  the LoadModule  function)  uses  the  entry  table  to  look  up the
addresses  of the  exported  functions  in  the  target  module.  How  does  the
loader  know  which  slot  in the  entry  table to  use?  When  you  export  a  func-
tion,  the  linker  assigns it an  ordinal value  that  can  be thought  of as  an  index
into  the  module's  entry table.  Other  EXEs or  DLLs that  link  to  the  first
module  will  typically  carry  around  the  ordinal  entry  table  values  of the
functions  they  import.

It's  also possible  to  import  a function  by its name  rather  than  by its entry
table  ordinal.  This  is where the  resident  and  nonresident  names tables  come
into  play.  These two tables  associate  a function  name with  the  address  of a
function  exported  by the module.  A module database  segment contains  the
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entire  resident names table within  itself,  but only provides  a file offset to  the
nonresident  names table  (hence  the resident versus  nonresident  distinction).

Under  Windows  3.x,  KRNL386  maintains  the module databases  in  a
linked  list.  As new modules  are created  by LoadModule,  they  are  added to
the  end of the list.  At the head of the  list  is KRNL386,  which is the  first
module  brought  into the  system.  You can easily walk  the module  list your-
self (as my SHOW16 program  does),  or you  can  let the TOOLHELP
ModuleFirst  and ModuleNext  functions  do  the walking.  (Internally,  TOOL-
HELP does the  same thing  as SHOW16  does,  but  it's  officially sanctioned
by Microsoft,  whereas  walking  system data  structures  yourself  isn't.)

Under  Windows  95,  KRNL386  maintains  the NE modules  for  16-bit
EXEs  and DLLs in the same manner.  However,  the  16-bit  module  databases
that  represent  32-bit  PE files are  not  added  to  the list.  Instead,  they  just
hang out  in the global  heap,  disassociated  from the  16-bit  module  list and
from  each other.  With  16-bit code, I'm  not  aware  of any  elegant way to
enumerate through  the  32-bit  NE modules.  However,  a brute  force
approach  does work,  as  SHOW16  demonstrates.

Before  diving into  its  actual  format,  let's  do  a quick high-level  review of
the components  of the  16-bit module  database:  As Figure  7-1  shows,  the
0x40-byte NE header is at  the  beginning of the module database.  This is fol-
lowed  by the segment table  and the resource  table.  Bringing  up the  rear are
the  tables with  information  about  imported  modules  (the  imported  names
table  and the module  reference  table)  and exported  functions  (the entry
table  and the resident  names table).

Figure  7-  1
The various  components  of  the  16-bit module  database.
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THE NE HEADER

If you're  just  interested  in a quick review  of the  fields  in  a module  database,
refer  to  the  HMODULE.H  header  file  from  the  SHOW16  sample  program
(it's  on the  disk  that  comes  with  this  book).  Here,  I'm  going to  go  over the
fields  of the  0x40  byte  NE  header in  detail.  The  first  line  of each  field
description  gives its  offset  in the  module  database,  its type  (for example,
WORD  or DWORD),  and  a  short  description.
00h  WORD  Signature
This  WORD  always contains  the  value  0x454E,  which  when  represented  as
ASCII  characters  is NE  (for New  Executable).  Putting  a signature  WORD  at
or  near  the  beginning  of executable  files  is a tradition  of Microsoft  and IBM
operating  systems.  Other  signatures  used in executable  files  are PE (for the
Win32  Portable  Executable  format),  LE (Linear  Executables,  used  for
Windows  3.x  and  Windows  95  VxDs),  and  LX  (also meaning  Linear
Executable,  but  used  by 32-bit  OS/2  2.x  programs).
02h  WORD  module usage (reference) count
This  WORD  represents  the  number  of other  modules  that  are  using this
module.  For  example,  if a  DLL is being  used  by three  programs,  this  field
will contain  the  value  3.  If you  load  a DLL via  LoadLibrary,  this  field  in the
DLL's  module  database  will  be  1.  Each subsequent  call  to  LoadLibrary  or
LoadModule  for  the  DLL will  increment  this  value  by one,  and  each call  to
FreeLibrary  will  decrement the  value  by one.  The  rules  for  determining  the
value  of this  field  are not  always  so clear,  however.  For  example,  if a pro-
gram  uses  two  DLLs  (let's  say A and  B) that  both  use a third  DLL (C),  mod-
ule  C's  reference  count  will be  1, not  2.  My  May  1994  Microsoft Systems
Journal Q&A  column  (available  on  the  MSDN  CD-ROM)  describes
IncExeUsage  and  DecExeUsage,  which  are the KRNL386  internal  functions
responsible  for incrementing  and  decrementing  the  module  reference  count,
including  those tough  situations  with circularly  referencing  DLLs.
In NE  modules  created  for  PE files, the  module  reference  count  is set to  1
initially,  and  never  seems to  vary.

When  the  module  reference  count  drops  to  0,  KRNL386  frees up  the
module's  segments  and  resources,  calls  the  WEP routine  if the  module  is a
DLL module  (and if a WEP routine  is present),  and,  finally,  GlobalFree's  the
module  database  segment.
04h  WORD  near pointer to entry table
This  field  is a near  pointer  (relative to  the  HMODULE  segment)  to  the
module's  entry table.  The  entry table  is a  list  of functions  that  the  module
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exports  for  use  by other  modules.  Each module table  entry contains  the
function's  address,  its import  ordinal  value,  and  some flags.  See  "The  Entry
Table"  section  for more  details  about  the  entry table.  NE  modules  for
Win32  executables  don't  contain  an  entry table,  because  the  entry table
assumes  16-bit  far  addresses,  which  PE modules  don't  support.
06h  HMODULE  next module database
This  WORD-sized  field  holds  the  HMODULE  of the  next  module  in the
linked  list  of NE  modules.  The  KERNEL module  (KRNL386.EXE)  is
always  at  the  head of the  list.  There  are  two  ways  to  obtain  KERNEL's
HMODULE:  You can  either  call GetModuleHandle(KERNEL),  or  you can
call  GetModuleHandle  for any  other  module,  and  KERNEL's  HMODULE
will  be  in the  DX register  upon the  function's  return.  As new modules  are
loaded,  they're  appended  at  the end  of the  list.  The  last  module  in the  list
has  a 0 in  this  field.  NE modules  for Win32  files aren't  kept  in the  linked  list
of modules.  Instead,  they all  have  the  value  0  in this  location.
08h  WORD  near pointer to DGROUP segment entry

This  field  is a near  pointer  (relative to  the  HMODULE  segment)  to  the  seg-
ment  table  entry  for  the  module's  DGROUP  segment.  The  segment  table
format is described  in  a later  section,  called  (not  surprisingly)  "The  Segment
Table."  The  DGROUP  segment  is the  data  segment  that  all the  module's
regular  data  goes  into  by default.  The  DGROUP segment  usually  also con-
tains  a local  heap  and,  in EXE modules,  the  program's  stack.  For  16-bit
modules  created for Win32  EXEs and  DLLs,  this  field  contains  0.
0Ah  WORD  near pointer to modified OFSTR UCT with

file name
This  field  is a  near  pointer  (relative  to  the  HMODULE  segment)  to  a  data
structure  that's  very  similar  to  the  OFSTRUCT  given  in  the  Winl6
WINDOWS.H  file.  In  the Windows  95  DDK,  the  16-bit  WINDOWS.H  file
calls  this  structure  an  OFSTRUCTEX.

typedef  struct  tagOFSTRUCTEX {

WORD  cBytes;

BYTE  fFixedDisk;

UINT  nErrCode;

DWORD  fileDateTime;

char  szPathName[260];

} OFSTRUCTEX:

//  The  length  of  the  struct,  in  bytes.

//  TRUE  if  nonremoveable  media.

//  DOS  error  code  if  OpenFile  failed.

//  Date/Time  of  file  in  MS-DOS  format.

//  The  path  to  the  file.
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The  primary  difference  between  this  structure  and  a  regular  OFSTRUCT  is
that  the  cBytes  field  is  a  WORD,  rather  than  a  BYTE.  Why's  this?  Because
Windows  95  supports  long  filenames  (up to  260  characters).  Therefore,  a
single  BYTE in  the  structure  couldn't  contain  the  entire  length  of  the  struc-
ture.  In  addition,  the  end  of  the  structure  (which  contains  the  path  name),
is  260bytes  rather  than  the  128  bytes  of  an  OFSTRUCT.

0Ch  WORD  module  flags
This  WORD  contains  bitfield  flags  that  hold  information  about  the  module
in  memory.  The  meaning  of  many of  these  flags  is  different  from  the  flags
used  in  the  NE  file  on  the  accompanying  disk.  The  known  flags  for
Windows  95  NE  modules  are

Flag Name  and
Bit Value  Description

MODFLAGS_DLL
0 x 8 0 0 0

For  true  16-bit  NE  modules,  this  flag  indicates  that  the  module  is a  DLL,
rather  than  an  EXE. This  bit  appears  to  always  be  set  in  the  NE  module
databases  created  to  represent  W i n 3 2 modules.

MODFLAGS_CALL_WEP
0 x 4 0 0 0

This  flag,  which  is  valid  only  for  DLL  modules,  indicates  that  the
DLL's WEP  routine  should  be  called  when  the  DLL  is  unloaded.
This  flag  is  almost  always  set,  except  far  task  modules  and
W i n 3 2  modules.

MODFLAGS_SELF_LOADING
0 x 0 8 0 0

This  flag  indicates  that  the  module  uses  the  se!f-loading  mechanism.
In  this  scheme,  the  module  provides  its  own  segment  loader  that
LoadModule  calls  to  bring  the  module's  segments  into  memory.
Microsoft  strongly  discourages  the  use  of  self loading  programs,  and
barely  documents  their  use.  However,  in  the  past,  several  o f
Microsoft's  applications  (such  as  early  versions  of  Word  for  Windows
and  Microsoft  Fortran)  used  the  self-loading  feature.

Optlink  5.x  from  SLR systems  (now  owned  by  Symantec)  can
produce  EXEs that  use  self-loading  to  shrink  executable  file  size.
When  the  OPTLINK  linker  writes  the  segmenl  data  to  the  NE  file,  it
compresses  the  information.  When  the  module  is  loaded  into
memory,  the  bound  in  self-loading  code  uncompresses  the  segment
data  as  it  brings  the  segment  into  memory.

MODFLAGS_APPTYPE
a  0 x 0 3 0 0
( 0 x 0 2 0 0  I  0 x 0 1 0 0 )

These  two  bits  are  a  holdover  from  the  days  of  O S / 2  1.x,  in  which
program's  user  interface  could  be  one  of  three  possible  types.  The  bit
value  0 x 0 3 0 0 means  that  the  program  uses  the  operating  system's
GUI  windowing  APl.  The  bit  value  O x 0 2 0 0  means  thai  the
application  is  a  console  (text  mode)  application,  but  limits  its  screen
output  to  the  text  mode  output  functions  that  can  be  virtualized  to
display  in  a  GUI  window.  (An  example  of  this  would  be  running  an
MS-DOS  prompt  in  a  windowed  session).  The  bit  value  O x 0 1 0 0
means  that  the  application  directly  manipulates  the  video  buffer,  so  it
must  be  run  in  full  screen  mode.
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Flag  Name  and
Bit  Value  Description

Regular Windows  NE  modules always  have  the  value  0x0300  for
these flags,  meaning  they  use the GUI  APl.  In Windows  95,  the  NE
modules for  Win32  files don't  bother  to  set any  of  the  bits,  meaning
the  field's  value  is O,  which  is  undefined  according  to  the  NE

specification.

MODFLAGS_IMPLICIT_LOAD
0x0040

This flag  means that  the  module  is  in  memory  because  another
module  has an  implicit  link to  it.  Task modules won't  have  this flag,
nor  will  DEs  that are  loaded  via  LoadLibrary.  However,  if  a  DLL
loaded  via  LoadLibrary  implicitly  loads  other  DLLs, this flag  will  be  set

in  the  module  database  of  those  DEs.

MODFLAGS_WIN32
0x0010

This new Windows  95  flag  indicates  that  this NE  module  represents

a  Win32  PE file.

MODFLAGS_AUTODATA
0x0002

This flag  tells the  Win 16  loader  that  each  module  should  gel
a  separate  DGROUP  instance  far  each  user of  the  module.  This flag
is for  EXE modules,  in  which  each  running  instance of  a  program
needs  its own  DGROUP  segment.

MODFLAGS_SINGLEDATA
0x0001

This module  indicates  that a  single  DGROUP  should  be  used for  all
users of  the  module.  This flag  is  set only  in  DLL modules,  since  16-bit
DLLs always  use the  same  DGROUP  segment  no  matter which  task is

calling  them.

If  neither  the MODFLAGS_AUTODATA  or  MODFLAGS_SINGLEDATA
flags  are  set,  then the  module  doesn't  have  a  DGROUP  segment or  a
local  heap.  Interestingly,  the  SYSTEM module  (loaded  directly  after
KERNEL)  falls  into  this category.

NE  modules for  Win32  files always  contain  the  value  0x8010  for
the  flags  field  in  the  module  database.  This translates to
MODFLAGS_DLL and  MODFLAGS_WIN32.

0Eh  WORD segment  index of DGROUP segment
This  field  contains  the  1-based  index  in  the  segment  table  of  the  module's
DGROUP  segment.  This  field  is  somewhat  redundant  because  the  near
pointer  at  offset  08h  in  the  module  database  provides  the  same  information
(albeit  in  a  different  form).  In Win32  NE  modules,  this  field  is  always  0.

10h  WORD  initial local heap size
This  WORD  is the  initial  amount  of  memory  in the  module's  DGOUP  that
the Windows  loader  should  reserve  for the  local  heap.  If necessary,  the  local
heap  can  be grown  later.  If the  heap  is grown,  this  field  is  not  updated.  (It
wouldn't  make  sense  to  update  it,  since  this  heap  size  will  need  to  be  used  if
another instance  of  a  program  starts  up.)  Many  of  the  standard  16-bit  system
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DLLs have  0 for their initial  heap size. Interestingly,  in Windows  95, a couple
of the system DLLs had their initial  heap size shrunk down compared to the
same DLL in Windows  3.1.  This was probably  part  of the effort to  reduce
Windows 95's memory  footprint as much  as possible. In Win32  NE modules,
this field  is always  0.
12h  WORD  stack size
This  WORD  contains  the  size of the stack that the  loader  should reserve space
for in the module's  DGROUP  segment. The stack size has meaning only for
EXE modules,  since the code in DLLs runs  on the  stack of the calling applica-
tion.  The minimum stack  size for  16-bit applications  in Windows  3.x  and
Windows 95  is 5K.  If this field is less than  5K in the  EXE file, the  loader
increases  it to  5K when it creates the NE module.  In Win32  NE modules, this
field  is always 0.
14h  FARPROC  entry point of module
This  member  of the module  table  structure  contains  the  module's  entry
point.  For  EXE modules,  the  entry point  is where  program execution
begins.  In EXEs compiled as  C or  C++ programs,  the  entry point  is where
the compiler's  runtime  library startup  code  starts.  The  C/C++  startup code
eventually  calls  the  WinMain  procedure.  In DLL modules,  the  entry point  is
the  start  of the  runtime  library code that  eventually  calls  the  LibMain proce-
dure.  An EXE module  must  have  a nonzero  entry point,  whereas  DLL mod-
ules  (such as fonts)  can  have a NULL entry point,  in which case the  loader
doesn't  try to  call anything.

The  address  stored  in this  field  is a  logical  address.  A logical  address  is a
16:16  address,  but  the  segment  portion  isn't  a  real  selector  value.  Rather,
the  segment is an  index into  the  segment  table  that  follows  the  NE  header.
Thus,  if the  module's  entry  point was  0x017C  bytes  into  the  third  segment
in the  module,  the entry  point  is 0003:017C.  When  it comes  time for the
loader  to  call the  module's  entry point,  it needs  to  figure out  the  actual
selector  assigned  to  the  segment.  The  loader  uses the logical  segment value
as  an  index into  the  array  of segment  entries  that  follow the  NE  header.

In NE  modules  for Win32  files, the  entry point  is always  0.  This  makes
sense,  since  32-bit code uses  32-bit  offsets,  rather  than  16:16  far pointers.
18h  DWORD  initial stack pointer value
This  field  contains  the  initial  value  that  an  EXE module's  SS:SP should  con-
tain  when the  entry point  is called.  Like the  preceding  field,  this  address  is a
logical  address,  rather  than  an  actual  selector:offset.  The  logical  segment
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portion  of this  address  should  always  be identical  to  the  DGROUP segment
index  given in the WORD  at  offset 0Eh.  For  DLL modules  and  all Win32
NE modules,  this field always contains  0.
1Cb  WORD  number of segments in module
This WORD  holds the number of segments  (code  or data)  that  the module
contains.  Following the NE header in the module  table is an array  of  10-byte
segment table entries. The  number  of entries in the  array is given by the value
of this field.  It's possible  for a module  to  have 0 segments;  a  perfect example
of this is a  font module.  Font modules typically contain  only resources,  and
no  segments.  This  field is always 0 for PE-file-based NE modules.
1Eh  WORD  number of imported modules
This  field contains  the  number  of modules that  this  module  implicitly links
to.  For example,  if an  EXE calls  functions  in KERNEL,  USER, and  GDI,
this  field will  have  a value  of 3. This field  is used in conjunction with  the
module  reference  table  (see field 28h).  The  number  of entries  in the module
reference  table corresponds  to  the value  of this  field.  (In the  example  I just
mentioned,  there would  be three entries,  to  correspond  with  the  field value
of 3.)  Win32  NE modules  always contain 0 in this  field.
20h  WORD  size of nonresident names table
This  field contains  the  size of the  nonresident  names table  in the NE file.
The  nonresident  names table  (and  the resident  names table  referred  to  by
field  26h)  associate  an exported  symbol  (usually  a  function  name)  with  the
exported  ordinal  value.  To access the  nonresident  names table,  KERNEL
needs to  seek to  the  table's  starting offset  in the  NE file  (see field 2Ch),  and
read in the number  of bytes given  by this  field.  (See "The  Resident  and
Nonresident  Names Table"  section  for  more  details.)  In Win32  NE files,
this  field  is always  0.
22h  WORD  near pointer to segment table

This  field  is a near pointer  (relative  to  the HMODULE  segment)  to  the
module's  segment table.  The  segment table  is an  array  of  10 byte  structures,
one  for each code and  data  segment managed  by the  module.  (See the  fol-
lowing  section  for more  details.)  Since the segment table  always immedi-
ately  follows  the  0x40  byte  NE header,  this  field always contains  the value
0x40  for  normal NE modules.  For Win32  NE modules,  this field  always
holds  0x4C - - but this  is meaningless,  since Win32  files don't  have  16-bit
segments  or  a segment table.
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24h  WORD  near pointer to the resource table

This  field is a  near pointer  (relative  to  the HMODULE  segment)  to the
module's  resource  table.  The resource  table  is a sort  of  "table of contents"
to  the actual  resource  data,  which is stored  elsewhere in the executable file
(The format  of the resource  table  is described  in  "The Resource Table"  sec-
tion.)  Interestingly,  this field is actively used  by both  16- and  32-bit NE
modules.  This  suggest  that  the  16-bit code that  uses resources  is used to de
with  resources  in both  16-bit NE files and  32-bit  PE files.

26h  WORD  near pointer to resident names table

This  field is a near pointer (relative  to the HMODULE  segment)  to the mod-
ule's  resident names table.  The resident names table  is used to  associate  a
function  name exported  from the module  with its exported  ordinal value.
The resident names table  shares  the same format with the nonresident  names
table.  The key distinction  is that the resident names table is always in mem-
ory  (within the HMODULE  segment),  while the nonresident  names table is
loaded  from disk whenever  needed. The format of the two names tables is
described in "The Resident and Nonresident  Names Table"  section.

All NE  modules  have  a resident  names section,  regardless of whether
they're  created  from an NE file or a  PE file. The  reason  for this is that every
module  must  have  a  name  (for example,  KERNEL, USER, TOOLHELP,
and  so on). The module's  name is always the  first entry in the  resident
names  table.  Therefore,  when  KERNEL32  builds its  minimal NE module
database,  it always includes  a resident  names table  with  one entry - - the
module name itself.
28h  WORD  near pointer to the module reference table

This  field is a  near pointer  (relative  to  the HMODULE  segment)  to  the
module reference  table.  The  module  reference table  is a list of all modules
that  are used by  (that  is,  imported by)  this module.  The list is nothing more
than  an array of HMODULEs.  In the executable's  relocation  information,
you'll  find that  the relocation information for each  imported  function  con-
tains  an  index into this  module  table.  For example,  a program calls  SetPixel
in GDI.EXE.  SetPixel's  export  ordinal  from GDI.EXE is 31.  In the  pro-
gram's  module reference  table,  GDI is the fourth  module.  Therefore, the
relocation  information  for this call  to  SetPixel  will contain  both  the value 4
(the  module  reference  table  index for  GDI's  HMODULE),  and the value 31
(the export  ordinal  of SetPixel  within  GDI).
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2Ah  WORD  near pointer to the imported names table

This  field  is a  near  pointer  (relative to  the HMODULE  segment)  to  the
module's  imported  names table.  The  imported  names  table  is a  series  of
PASCAL-style  strings  that  are  the  module names  of all the  DLLs  imported
by this  module.  The  imported  names table can  also contain  the  names of
functions  that  are  imported  by name,  rather  than  by ordinal  value  (this  is
rarely  done,  however).  When  creating  the  module  database,  KRNL386  uses
the  module  names  in this  table to  look  up or  load the  other  modules  that
this  module  references  (imports).  As KRNL386  finds  or  loads  each
imported  module,  it  stores  the  loaded  module's  HMODULE  into  the  mod-
ule  reference  table  (field  28h).  Once a module  has  been created,  Windows
doesn't  have  any  real  use for  the  imported  names  table.  In Win32  NE  mod-
ules,  this  field  is a  nonzero  value.  The  value  is meaningless,  however,
because  there  is no  imported  names table  in these  module  databases.
2Ch  DWORD  file offset of the nonresident names table
This  field  contains  the  file  offset  (in  bytes)  of the  nonresident  names table  in
the  NE  file.  This  value  is used in conjunction with  field 20h  to  load the
table  into  memory when  necessary.  In Win32  NE  modules,  this  field  is
always  0.  See field  20h  and  the entry table  description  later  in the  chapter
for more  information.
30h  DWORD  number of moveable entries in the entry table
This  field  is effectively  obsolete  with  the  demise  of real  mode  Windows.  It
contains  the  number  of entries  in the  entry  table  that  have addresses  that
could change  because  of real  mode  segment  movement.  In protected  mode
windows,  selectors  and  descriptors  hide  the movement  of segments  within
memory,  so moveable  entries  are  no  longer  necessary.  Moveable  versus  fixed
entries  in the entry table  are  described  later  in  "The  Entry Table"  section.
32h  WORD  alignment shift
In an NE module,  the  file offsets to the raw  segment data  and  resources aren't
stored  as DWORD  offsets  (which is how you might expect them to  be
stored).  Instead,  the  locations  of segments and resources  in the NE file are
stored  in terms  of  "sector"  values.  A sector in NE  module  parlance  isn't  a disk
sector.  Rather,  the  size of a sector is always  a power of 2  (2, 4,  8,  16, 32, and
so forth).  To determine  the  sector size for a givcn NE module,  you  raise the
value 2 to  the power given by the value of this field.  Put another way, you can
take the  number  1, and  shift it left by the number given in this field.
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A typical  value  of this  field  for NE  modules  is 9.  (1  << 9)  == 2  ^  9 ==
512,  meaning  the  sector  size is 512  bytes.  If a  segment  started at  offset  153d
in the  file,  its location would  be given  as sector  3. Another  common value
for this  field is 4.  (1  << 4)  == 16  bytes.  You can configure  the  sector  sized
for  an  NE  file when  you  link the  file.  For NE  modules  created  for PE files,
the  alignment size is always  1.

In general,  it's  a good  idea to  use the  smallest  alignment  size that will
allow your  file to  be linked.  If you  use  a larger  alignment  than  necessary,
you'll  almost  always  waste  space  in the  file,  since the  linker  must  add  extra
padding  to  make  sure each  segment  and  resource  starts  at  a file offset that's
a  multiple  of the  sector  size.  Segment and  resource  sector  offsets  are stored
in WORDs,  so the  maximum  possible  file  size when  using  16-bit  sectors is
1MB  (65535  times  16  bytes/sector  ==  1MB).  If you're  using  512  byte align-
ment  (the default for most  linkers),  the  maximum  file  size is  32MB.
34h  WORD  unknown
In Windows  3.1,  this  field appeared  to  contain  the  value  2  if the  module
contained  TrueType  fonts.  In Windows  95,  this  field appears  to  be unused
and  is always  0.
36h  BYTE  intended operating system
This  WORD  contains  a value  representing  which  operating  system this
module  is intended  to  be  used with.  The  known  values  are the  following:

0
1

2
3

4

Unknown  (although  Window  1.0  files  used this  value)
OS/2
Windows
European  DOS 4  (a multitasking  version  of DOS not  released  in
the  U.S.).
Windows/386  (existed  only during the  time of Windows  2.x)

In general,  unless you work  with  16-bit  OS/2,  you'll  rarely encounter  any
value  other  than  2  in NE  files.  In Win32  NE  modules,  this  field  is always  0.

37h  BYTE  other module flags
This  BYTE contains  some additional  flags that  were  added to  the  module
database  format  after Windows  1.x.  (Otherwise,  they probably  would  have
appeared  in the  flags in the WORD  at  offset  0Ch,  or  the  0Ch  field  would
have  been  expanded  to  a DWORD.)
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In Windows 3.x, the bit values  0x02  and 0x04 were  used to  indicate
modules written  for Windows  2.x that were checked out as being okay to
run under Windows  3.x.  Since Windows  95 doesn't  support  running  any
2.x  or earlier  applications,  these flags are effectively  obsolete.

The flag value 0x08  indicates that the NE file has a gangload  (a.k.a.  fast-
load)  area.  The gangload  area is a collection of segments  and resources  that
have  been clustered together in  one section  of the file. The windows  loader
can bring these segments  into  memory  with  a single read,  rather than doing
individual  seeks and reads of each segment or resource.  The goal is to  save
time during the initial load  of the module.

In Windows  95,  a new bit flag (0x10)  has  appeared in some 16-bit
modules.  It appears that  if this flag is set,  KRNL386  doesn't  bother  to look
for and call the  DLLENTRYPOINT function  in  16-bit DLLs.  Win32  NE
modules  always have 0 in this  field. The new DLLENTRYPOINT function-
ality for Winl6  DLL under Windows  95 is described  in Microsoft's  docu-
mentation  for the thunk compiler  (THUNK.EXE).

38b  WORD  near pointer to imported names table

This  field always appears to point at the resident names table,  and is always
identical to the value in field 2Ah.

3Ah  WORD  near pointer to imported names table

This field  always appears  to point at the resident names table,  and is always
identical to the values  in fields 2Ah and  38h.  The one exception to this rule
is for the first module,  KERNEL. This exception  may be nothing more  than
a harmless oversight,  since KRNL386  is loaded  by a section  of code sepa-
rate  from the regular Windows  loader in Windows  3.1,  and this loader
behavior remains in Windows  95.
3Ch  WORD  unknown

The meaning of this value is unclear.  However,  it always seems to  be a mul-
tiple  of 0x10.  With  an occasional  exception,  its value rises in each subse-
quent  module  in the  list of 16-bit NE modules.  Win32  NE modules  always
have 0 in this  field.

3Eh  WORD  expected Windows version

This WORD contains  the minimum version  of Windows  required  for use
with  this module.  Common values are for Windows  3.0 (0x0300),
Windows  3.1  (0x0310),  Windows  95  (0x0400),  and Windows  "NT  3.5"
(Windows NT 3.5  == 0x0350).  The HIBYTE of this word  is the Windows
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major version  number,  and  the  LOBYTE is the  minor  version,  in decimal.
The  correct printf string  for  displaying  the  version  number is

%u.%02u
as demonstrated  in the  SHOW16  program on the  accompanying  disk.

New module database fields in Windows 95
The  next  three  fields  are  new in Windows  95,  and  they exist  only  in PE-
file-based  NE modules  (that  is, the  0x0010  bit is set  in the  flags field  of the
NE  header).  If the  module database  was created from an NE  file,  these
fields  don't  exist;  in their  place  is the  first  entry of the  segment  table.
40h  DWORD base  address of associated PE file
This DWORD  is a relative  virtual  address  (a flat  32-bit pointer)  to  the loca-
tion in memory where  the  32-bit  side  of Windows  95 loaded  the  PE file.
This  value is the  same as the  HMODULE  of the  32-bit  PE file  as  seen from
a  32-bit  program.
44h  DWORD  base address of associated PE file
This  field  appears  to  always  be identical  to  the  preceding  DWORD  (40h).
48h  DWORD  base address of resource section in

memory mapped PE file
This  DWORD  contains  the  32-bit  linear  address  of the  resource  section
(.rsrc)  in the  PE file that's  associated  with  this  16-bit  HMODULE.  As you'll
see later  in  "The  Resource  Table"  section,  the  16-bit  components  of
Windows  95 have  knowledge  of resources  in 32-bit PE files.

THE SEGMENT TABLE

Immediately  following  the  0x40  byte NE  header  in the  module  database  is
the  segment  table  (although  NE  modules  for Win32  files  don't  have a seg-
ment  table).  The  segment  table  is an array  of data  structures,  with  each
structure  describing  the  characteristics  of one code or  data  segment.  The
first  eight  bytes  of each  structure  correspond  identically  to  the  segment  table
structure  for  NE  files.  The  extra  WORD  in the  in-memory  representation is
for  holding  the  selector  that  the  16-bit  Windows  loader  has  assigned to  that



i t e r a t e d

493

segment.  This  is an  important  point:  KRNL386  is always  able to  associate
a  segment  in the  NE  file with  the  selector  used to  access the  segment  once
the  segment  is loaded  in memory,  and  vice versa.

The  format of each  segment  table  entry is as  follows:
00h  WORD  sector offset in NE file
This  WORD  holds  the  location in the NE  file where  the  raw data  for the
segment  can  be found.  Rather  than  a file offset  in  bytes,  the  offset  is given in
units  of sectors.  The  size of a  sector  varies  from file to  file,  and  is calculated
by the  align shift value  at  offset  32h  in the  NE  header.  Typical  values  for  a
sector  size are  16 bytes  and  512  bytes.  If the value  of this  field is 0,  this  is a
segment  for  uninitialized  data,  and  there's  no  raw  data  for that  segment
kept  in the NE  file.
02h  WORD  segment length in file
This  WORD  holds  the  size of the  segment's  data  in the  NE  file.  Note  that
this  isn't necessarily  the  size of the  memory  block  that  KRNL386  should
allocate  to  load  the  segment  into.  For  the size of segment  in memory,  see
field  06h.  Why would  the  two  segment  sizes  differ?  The most common rea-
son  would  be  for  data  segments  where you  put  uninitialized  data  (BSS) at
the  end  of the  segment.  For  example,  let's  say you  had  3K of actual  data,
but  also  needed  a 4K block  of uninitialized  data  (for an  array,  say).  In the
segment  table  entry  for this  segment,  you'd  have the value  3K in this  field,
and  7K in the  allocation size field  (06h).

04h  WORD  flags
This  WORD  contains  flags with  information  about  the  segment.  The  mean-
ing of the  flags listed in the  following  table  match  the flags as  given in the
NE  file  specification.  However,  if you  examine the flags in  an  in-memory
module  database,  you'll  find that  KRNL386  has turned  on  some additional
bits  not  in the NE  file specification.  The  known flags  are the  following:

i

Flag  and
Bit  Value  Description

DATA  The  segment  is  a  data  segment.  If  this  flag  is  not  set,  the  segment  is  a  code

0x0001  segment.
ITERATED  The segment  contains  iterated  (run length  encoded)  data.
0 x 0 0 0 8

MOVEABLE  The  segment  is  moveable  in  linear  memory
0 x 0 0 1 0  If  this  flag  is  not  set,  the  segment  is  FIXED.  The  Windows  loader  will  turn  off

this  bit  in  an  EXE  file  module,  because  EXE  files  rarely  need  fixed  memory.
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Flag  and
Bit  Value  Description

PRELOAD  The segment  should  be  loaded  when  the  module  is loaded,  rather  than
0x0040  being  loaded  when  first accessed.

RELOC  The segment  contains  relocation  information  immediately  following  the  raw
0x0100  segment  data  in  memory.

DISCARDABLE  The  segment  is discardable.  If memory  becomes  in  short  supply,  KRNL386
0x1000  can  mark the  segment's  descriptor as  not-present,  and  reassign  the  RAM to

something  else.

32BIT  The  segment  is a  32-bit  code  segment.  When  the  loader  allocates  the
0x2000  selector  for  this segment,  it  sets the  "big"  bit  in  the  descriptor  so this

segment  will  be  interpreted  as  32-bit  code.

06h  WORD  allocation size

This  is the  size  of the  memory  block  that  KRNL386  should  allocate when
loading  the  segment  into  memory.  This  size may  be larger  than  the
amount  of raw  data  for  the  segment  in the  NE file.  See field  02h  for  more
information.
08h  WORD  global memory handle
This  is the global heap memory  handle for the memory  block  that
KRNL386  has  allocated  to  hold the  segment's data  in memory.  If the handle
ends with  a  06h  or  0Eh (for example,  0476h  or  047Eh),  the segment is a
moveable  segment.  Otherwise,  the handle  ends in a 07h  or  0Fh, in which
case  it's  a FIXED segment.

The  order  of entries  in the  segment table  is significant  because it  pro-
vides  the  foundation  for  logical  addresses.  When programs such as linkers
and  debuggers need  to work with addresses in the module's  segments,  they
do so in terms  of logical  addresses,  rather than  with actual  selectors and off-
sets.  They can't  use actual  selector values,  since the selectors that Windows
uses to hold a  module's  segments will vary from load to  load.  Therefore,
instead  of using selector  values,  a logical  address  uses a  1-based index into
the  segment table  to  describe which  segment it's  referring  to.  The first  seg-
ment in the  segment table  array is logical segment  1, the second segment in
the array is logical segment 2,  and so on.  If you look at the addresses of
functions  in a linker-produced  .MAP file, you'll  be able to  see logical
addresses  in action:
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0001:5F46  _free
0001:5F5C  __GetSubAllocClientData
0002:0030  _errno
0002:0032  __protected

At most,  a module  can have 253  segments.  This is because the entry table
(described  later in its own section)  stores the addresses  of the exported  func-
tions as logical  addresses,  and  uses only one byte to  store  the logical  segment
number.  Logical segments  0, 0FEh, and 0FFh have special  meanings to the
Windows  loader,  so the maximum number of segments  in an NE module  is
253  rather than 256.

THE RESOURCE TABLE

In addition  to  segment information,  each module  database  also contains  the
locations  and  attributes  of all  the resources  (icons,  bitmaps,  and  so on)  that
are  bound  into  the executable.  Contrary to  some programmer's  belief,
resources  don't  count  as segments in the module's  segment table,  and you
can  certainly  have  more than 255  resources.

Usually,  the resource  table  immediately  follows the  segment table  in the
module  database.  Unlike the segment table,  the resource  table  isn't  an  array.
Instead,  it's  a  somewhat free-form  format,  and you must  do a fair  amount
of on-the-fly  calculations  to  find  a given resource.  The  format  of resources
in the module  database  closely mirrors  the resource  table in the associated
NE file.

The  first WORD  in the resource  table is the alignment  shift count  (sec-
tor  size) that  is used for calculating  the offsets  of resources  in the associated
NE file.  This sector  size is identical in meaning  to  the main  NE sector size
described  for  field  32h in the previous  section  on NE headers.  The sector
size in this WORD  should  match field  32h in that  same  section.  If it doesn't,
something  is wrong with  the NE file.

Following  the first WORD  is a series  of variable-length  sections.  Each
section  holds  the  information  about  one particular type of resource.  For
instance,  USER.EXE has sections for  cursors,  icons,  bitmaps,  menus,
dialogs,  string tables,  and version  information.  Within each  section  is an
array  of data  structures,  one data  structure  for  each particular resource
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instance.  For example,  if you have an NE  file with  five icons,  you'll  have a
icon  section that  includes  five  structures.

Each of these  sections  immediately  follows  the preceding  resource in
memory.  Therefore,  to  find a particular  instance  of a resource,  you need to
figure  out  how large  each  section is, based  on how many  instances of its
particular  resource  it contains.  The  SHOW16  program on the accompany-
ing disk  shows an  example  of traversing  the resource  table if this  is confus-
ing.  Each resource  type  section  (icons, bitmaps,  and  so  forth)  starts  with t
following  structure  (see HMODULE.H  for  a C-style  structure  definition):

00h  WORD  resource ID

This is the ID value  of the resource.  If the  high  bit  0x8000)  is set, it's a pre-
defined  resource.  Masking  off the high bit,  the type  of resource  is given by
the  following  values:

1  - -  Cursor
2  - -  Bitmap
3  - -  Icon
4  - -  Menu
5  - -  Dialog
6  - -  String table
7  - -  Font  directory
8  - -  Font
9  - -  Accelerator
10  - -  RC data  (user-defined  data)
11  - -  Error  table
12  - -  Group  cursor
13  - -  Unknown
14  - -  Group  icon
15  - -  Name  table  (went  away in Windows  3.1)
16  - -  Version  info

See the NE file format  specification  for a complete description  of the various
resource  types.
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If the high  bit  of the resource  ID isn't  set,  the resource  is a  user-defined
named resource.  In this case,  the ID value  is an offset  (relative to  the  start  of
the  resource  table  in the NE module)  to  the resource  type name.  This name
is a Pascal-style (length-prefixed)  string.

02h  WORD  number of resources of this type
This WORD  contains  the  number of instances of this  particular  type of
resource.  This field is essential  to determining  how long this  resource  type
section is, since the data  for the  individual resources  immediately  follows
this  structure.
04h  DWORD  resource handler function
This field contains  the handler  function  for  these resources. The handler
function  is apparently  responsible for locking the resource  into  memory
when required.  Since Iow-level resource  manipulation  is something Microsoft
doesn't  expect mere mortals  to  be able to handle,  the documentation  on
resource  handler  functions  is (as usual)  very sparse.  See the SDK documenta-
tion for SetResourceHandler  and  LoadProc  for what little  information
Microsoft provides.

The resource handler function for a particular resource type can  be
changed on a per-module  basis with the SetResourceHandler  function. What?
This function's documentation  says it requires an HINSTANCE,  and all
you've got is an HMODULE? Just pass it the HMODULE. This is yet another
example  of how Microsoft  has managed to get the meanings  of 16-bit
HINSTANCEs and HMODULEs confused. More on this later in the chapter.

Immediately following each resource type header is an array of structures.
For each instance  of that resource type, there is one structure; each structure is
12 bytes in length.  The number  of elements  in the array is given  by the
WORD  at offset 02h in the resource type header.  Each array element has the
following format  (see HMODULE.H for a  C-style structure  definition):

00h  WORD  offset in NE file
For NE file-based  modules,  this  field is the offset of this particular  resource
instance in the NE file. The units  are in sectors, not  bytes  (see the description
of offset 32h  for the details  on NE file sectors). For PE file-based  modules,
this  field is an offset  (relative  to the start  of the overall resource  section)  to  a
DWORD.  The value in this  DWORD is the offset (relative  to the  .rsrc sec-
tion)  of a PE file IMAGE_RESOURCE_DATA_ENTRY structure.  In the
IMAGE_RESOURCE_DATA_ENTRY  you'll  find the location  and size of the
raw resource  data  in the PE image.  See Chapter  8 for details on the PE file
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format.  If this  information  is going to  be of any  use to  the  16-bit components
of Windows  95,  they have to  know where the  PE file's  .rsrc section is locate
in memory.  How  can they  determine  the  base address  of the  .rsrc section?
Simple.  See field 48h  in the  NE module header of a PE file-based NE module
02h  WORD  length
For  NE  file-based  modules,  this  WORD  is  the  length  of  the  resource in
units  of  the  sector  size.  For  PE  file-based  modules,  this  field  is the  actual
size of  the  resource  data,  in  bytes.  This  field  identically  matches  the
IMAGE_RESOURCE_DATA_ENTRY. Size value  given  in  the  PE file's
.rsrc  section.
04h  WORD  flags
Contains  flags relating to this particular resource.  In general,  these flags are
identical to  the segment  flags  (see field  04h in  "The  Segment Table"  section
earlier  in this chapter).  However,  it  appears  that  KRNL386  is turning  on
some additional  bits whose  meaning  is unknown.  The known  flags are these:

Flag Name and
Bit Value  Description

LOADED  The  resource  is currently  loaded  in  memory.
0x0004

MOVEABLE  The  segment is moveable  in  linear  memory.
0x0010  If this flag  is  not  set,  the segment  is  FIXED.

READONLY  The  resource  shouldn't  be  modified  in  memory.
0x0020

PRELOAD  The segment should  be  loaded  when  the  module  is  loaded,
0x0040  rather than being  loaded  when  first accessed.

DISCARDABLE  The segment is discardable.  If memory  becomes  in  short supply,
0x1000  KRNL386  can  mark  the segment's  descriptor  as  not-present,

and  reassign  the  RAM to something  else.

06h  WORD  ID
This WORD  is the  ID  of the  resource  as  given by the resource  compiler.  If
the high  bit  (0x8000)  is set,  this  resource  is referred  to  by its  integer  ID
value.  Otherwise,  it's  a named  resource.  In this  case,  the  ID  is an  offset  (rel-
ative  to  the  start  of the  overall  resource  table)  to  the  resource's  name.  The
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name is in Pascal-style  (length-prefixed)  form.  A typical  example  of a named
resource  is a  dialog  box.  For example,  from an  .RC file

Show16Dlg  DIALOG  8,  18,  360,  280

The  ID for this  dialog will  be of the offset  of the  Pascal-style  string
Show16Dlg,  relative  to  the start  of the resource  table.
08h  WORD  handle

If the resource  has  been loaded  into  memory,  this  is the global  heap handle
that points  at  the resource's  data.  If the resource  hasn't  been loaded,  this
field  is  0.  This field correlates  with the  LOADED  flag in  the resource  flags
(field  04h).  If the LOADED  flag isn't set,  this field is 0.
0Ah  WORD  usage

This  WORD  holds  the usage count of the resource.  This field can  be incre-
mented  by calling LockResource,  and  decremented  by calling  FreeResource.

THE ENTRY TABLE

The  entry table  of an NE module  is the method  by which  modules  export
functions  for  use by other  modules.  In the days of real  mode windows,  the
entry table  also served as a central  thunking  location  for  all far  functions  in
MOVEABLE  segments.  Here,  I'm going to  ignore  that  aspect  of the entry
table,  and just pretend that  its  sole use is to  export  functions.

Unlike the segment and resource  tables,  an  entry table  in a  module  data-
base  bears  only a passing resemblance  to  its NE file equivalent.  While the
entry table  in the NE file is optimized  to  save space,  the in-memory entry
table  is optimized  for quick  scanning.  Like the resource  table,  at the  outer-
most  level,  the entry table  is composed  of variable-length  chunks  that
require  on-the-fly  calculation  in order  for you to  traverse  it.

Because the export ordinal  values of a module's  functions don't have to  be
contiguous  and start at the number  1, the entry table is composed  of a series
of  "bundles"  that describe  a range of contiguous exported  ordinals.  Looking
up a particular  function in the entry table is a matter  of scanning through  the
bundles  until  you find the  bundle containing the desired export ordinal.  Each
bundle of contiguous entries starts with a header of the following layout:
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00h  WORD  first export ordinal value in this bundle - 1

This  WORD  contains  a value  one less than  the  export  ordinal  of the  first
entry in this  bundle.  For instance,  if this  bundle  of entries  was  for  export
ordinals  3 through  14,  this WORD  would  contain  the  value  2.
02h  WORD  last export ordinal value in this bundle
This  field  contains  the  value  of the  last export  ordinal  described  within this
bundle.  For  example,  if this  bundle  of entries  was  for  export  ordinals  3
through  14,  this  field would  contain  the  value  14.  By subtracting the
WORD  at  offset  Oh from the  value  of this  field,  you  can calculate  how
many  elements  are  in the  array  of function entry-point  data  structures  that
follow. Returning to  the  previous example,  this  bundle  describes  (14 -  2 ==
12)  entry points  (entry  ordinals  3 through  14,  inclusive).

Immediately  following  the  bundle  header  is an  array  of data  structures,
one  structure  for  each  exported  function.  Each  exported  function  is
described  by the  information  in  its corresponding  structure.  The  structures
have the  following  layout:
00h  BYTE  segment type
If this  value  is 0FFh,  this  segment is MOVEABLE,  and  requires  a special
thunk  if the  program  is to  run  in real  mode.  In protected  mode,  a thunk
isn't  necessary  because  the  selector  values  of code  segments  don't  change if
the  segment's  data  moves  in the  linear  address  space.

If this field is 0FEh, this entry is a special entry.  Entries  of this type don't
have an actual  far address. Rather,  the offset field is used as a sort  of global
variable  in the code that links to this entry. The only known examples of this
type  of entry are the exported  values  from KRNL386:  __AHSHIFT,
__0000H,  and so on.  See Chapter  5 of  Undocumented  Windows  for a com-
plete list and description of these special entries.  If this field is not 0FFh or
0FEh,  then  it contains  the logical segment number of the exported function's
address. In this case, it should be identical to the BYTE at offset O2h in the
structure.
01 h  BYTE  flags
Flags for this  entry point.  The  following  flags are known:

Flag  Description

0x01  The  function  is  exported.  Except  in  programs  that  need  to  run  in  real  mode,
this  f lag  should  always  be  set.  If  it's  not  set,  it's  a  function  that  needs  a  real
mode  thunk,  but  that  shouldn't  be  exported  for  use  by  other  modules.
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Flog  Description

0x02 The function  uses a  common  data  segment  for  all  callers.  This should
happen  only  in  DLL moduJes.  By default,  this flag  is off  for  EXE modules,  and
on  for  DLL modules.  However,  you  can  force  this flag  off  for  a  DLL exported
function  with  the  NODATA  statement  on  the  appropriate  EXPORTS line  in
the  .DEF file.

02h  BYTE  logical segment number
This BYTE holds the logical  segment number portion  of the exported  func-
tion's address.  This segment number can  be used as an index into the NE
module's  segment table to determine the actual  selector value for the segment.
03h  WORD  offset
This WORD  is the starting offset of the exported function within the segment
given  by the preceding field  (02h).

To look  up  the address  of a given exported  function  (like KRNL386
does),  you  scan through  the  bundle headers,  looking  for  the  bundle that
contains  the exported  entry.  When you find  it,  you can then  determine  the
array  index  of the exported  function,  relative  to  the  first array entry  in the
bundle.  For example,  using our  usual  example  of a  bundle encompassing
entries  3 through  14,  the address  of exported  function  7 would  be found in
the  fifth array  element in the  bundle.

In all  this description  of the entry table,  nowhere  has the  subject  of
function  names come into play.  However,  the  GetProcAddress  function
allows you  to  look  up  the address  of an exported  function  in another  mod-
ule  by specifying the function's  name.  Therefore,  there  must  be some way to
associate  a function  name with  its export  ordinal,  which  brings  us to  the
subject  o f . . .

THE RESIDENT AND NONRESIDENT NAMES TABLES

The  resident  and  nonresident  names  tables  are  the means  by which  NE
modules  bind  a  function  name  to  an  export  ordinal.  Both  of  these  tables
share  the  identical  format.  Each entry  in  the  table  has  the  following
layout:
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Offset  Description

01  BYTE  Length  of  exported  name  to  follow.
?? char  The  name  of  the  exported  symbol  (function).  Not  null terminated.
?? WORD  The exported  ordinal  value  of  this symbol.

For example,  the  SetPixel  function  in  GDI has  an  export  ordinal  of 31.
Somewhere  in  GDI's  nonresident  names  table  exists  the  following  data  (8 is
the  string  length  of SetPixel,  and  31  is the  export  ordinal):

8,  'S',  'E',  'T',  'P',  ' I ' ,  'X',  'E',  'L',  31

The  first entry  of  both  the  resident  and  nonresident  names  table  has  a spe-
cial  meaning.  The  first  entry  also  has  an  export  ordinal  of  0  in  both  cases.
In  the  resident  names  table,  the  first  entry  is  the  module  name  (for
example,  KERNEL,  GDI,  TOOLHELP,  and  so  on).  This  string  is exactly
the  same  string  given  on  the  NAME  or  LIBRARY line  in  the  .DEF  file
used  to  create  the  NE  file.

In the  nonresident names  table,  the  first  is the  description  field.  This
string  is a short  description  of what  the  module  is supposed  to  do.  The
linker  determines  the  contents  of this  string  by copying whatever's  on the
DESCRIPTION  line  of the  .DEF  file used to  link the  NE  file.  If no
DESCRIPTION  line  is given,  the  linker  defaults  to  using the  name  of the
EXE or  DLL.  Typical  description  strings  from Windows  95's  KRNL386,
USER,  and  GDI modules  are as  follows:

KRNL386:  'Microsoft  Windows  Kernel  Interface  Version  4.00'

USER:  'Microsoft  Windows  User  Interface'

G D I :  'Microsoft  Windows  Graphics  Device  Interface'

Why  are  there  two  names  tables?  The  only reason  for  having  two
tables  is to  save  space.  Most  programs  and  DLLs  import  functions  by ordi-
nal  values  rather  than  by their  names.  Therefore,  in the  DLLs that  are
exporting  functions,  it  doesn't  make  sense to  have a whole  bunch  of names
sitting  around  in  the  module  database  in  memory when  they're  not  needed.
These  names  should  be put  in  the nonresident  names  table,  which  is loaded
from  disk  only when  needed  (such as during  a  GetProcAddress  call).
Names  that  you  need  to  be able  to  look  up quickly,  or  that  you'll  need  in
situations  where  you  don't  want  to  do  disk  I/O,  should  be  put  in  the
resident  names  table.
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You can use the .DEF file to control which name table an exported
function  goes into. If you export a function and explicitly give it an ordinal
value in the .DEF file, it will end up in the nonresident  names table.
However,  if you don't  specify an export ordinal value for the function in the
.DEF file, the linker will put the function name in the resident names table.
Alternatively, you can add the RESIDENTNAME to the exported  function's
line, and the linker will always put the name in the resident names table. In
general, if you have a DLL with many exported  functions, you should dump
out the file with a program like TDUMP or EXEHDR and then see which
table your exported functions names are in. Unless you have a good reason
for wanting the functions in the resident names table, you should do what-
ever's necessary to ensure that the nonresident  names table is used. That
way, you won't chew up potentially precious memory with the names of all
your DLL's functions.

HMODULEs VERSUS HINSTANCEs

One of the most confusing things in Winl6  programming  is differentiating
between a module handle  (an HMODULE) and an instance handle (an
HINSTANCE). As I just showed, an HMODULE represents a loaded EXE
or DLL in memory. And, as I describe in the next section, an HINSTANCE
is simply the global heap handle of the default data segment for a running
task  or a DLL. Conceptually, an HMODULE and an HINSTANCE are
quite different. An HMODULE can lead you to a wealth of information
about a loaded executable  (such as where its resources are located). An
HINSTANCE, on the other hand, doesn't give you anything of value other
than the data in the segment.

The confusion between HMODULEs and HINSTANCEs arises because
many of the Win16 APl functions specify an HINSTANCE parameter in
cases where the function actually needs an HMODULE.  For example, take
the DialogBox function.  Its first parameter is an HINSTANCE. However,
consider  for a moment what's  needed to create a dialog box. Specifically, the
DialogBox function needs to know where the dialog resource that describes
the dialog can be found.  Resources are kept in EXEs or DLLs, so it would
make sense that DialogBox would want the HMODULE of the NE file that
contains  the dialog resource. Passing an HINSTANCE to DialogBox doesn't
really make any sense, since the global heap handle of a data segment (an
HINSTANCE) won't help the function find the dialog resource.  However,
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as you probably  know, you can pass an HINSTANCE to  the DialogBox
function  and have the function succeed. Therefore,  something must be going
on under the surface.

The undocumented GetExePtr function provides a key to understanding
how DialogBox (and other API functions) can function with an HINSTANCE
value:

HMODULE  GetExePtr(  HANDLE  );

GetExePtr is a magical function that does just about everything in its
power  to return the HMODULE associated with the handle that was passed
in. If you pass in an HINSTANCE handle, GetExePtr scans through all the
DLLs and all the tasks, looking for one with an HINSTANCE that matches
what was passed to GetExePtr.  If a match is found,  GetExePtr returns the
HMODULE associated with that DLL or EXE. Passing an HMODULE to
GetExePtr causes GetExePtr to immediately return the same HMODULE
back to you. If you were to step into the DialogBox function,  you'd see that
the code calls GetExePtr, and subsequently uses the returned HMODULE to
locate the dialog resource. Thus, it turns out that you can pass either a valid
HMODULE or HINSTANCE to DialogBox and expect it to work. The
same is true for many other APl functions that are documented  as expecting
an HINSTANCE parameter.

Knowing what the HINSTANCE/HMODULE parameter is used for,
you can answer many of those often-asked questions like "I want to pop up
a dialog in my EXE, but the dialog resource is in my DLL. Which HIN-
STANCE should I pass to DialogBox?" The answer is, of course, to pass the
HINSTANCE or HMODULE or whichever NE file contains the resource. If
the Microsoft documentation was clearer about exactly what the parame-
ters to API functions are used for, things wouldn't be so confusing.

You may be wondering why numerous Windows APl functions are docu-
mented  as accepting an HINSTANCE when internally they're going to imme-
diately turn the HINSTANCE into an HMODULE. The best reason that I'm
aware of is that HINSTANCEs are much easier to come by in your program
than are HMODULEs. Normally, a program or DLL doesn't know its
HMODULE, and must look it up by calling GetModuleHandle.  In contrast,
both EXEs and DLLs are passed their HINSTANCE when they start up. You
can also easily retrieve the HINSTANCE of the main program by retrieving
the value of the SS register. This is true even when executing in DLL code.
When an EXE starts up, its SS register is set to the same value as the DS reg-
ister. Although the DS register will change when going between EXE code
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and DLL code,  the  SS register  retains  the  same value - - that  is, the value of
the  EXE's DS register.

In Win32  programs  (with the exception of Win32s), this blurring of the
meaning  of an HINSTANCE versus an HMODULE becomes complete.  In
Win32,  the HMODULE  and the HINSTANCE are the same thing;  specifically,
the HMODULE and HINSTANCE are both the  base address in memory
where the EXE or DLL was loaded.

MODULE-RELATED FUNCTIONS

Now  that  we've  looked  at  the  16-bit  module  database,  let's  look  at  some
functions  that  access  or  manipulate  the  information  in a module  database.
For this chapter,  I've chosen  a reasonable  set  of functions  that  I've  provided
pseudocode  for.  There  are other  functions  (like LoadModule)  that  I've cho-
sen not  to  cover  because  they're  extraordinarily  complex,  and  I wanted  to
finish this  book  before the  turn  of the  century.

The GetModuleHandle  function
When  you're  examining  module-database-related  functions,
GetModuleHandle  is a good  function  to  look  at  first.  That's  because  it
demonstrates  some of the  most  important  module  concepts  but  doesn't
require  huge  amounts  of pseudocode to  do  so.  GetModuleHandle  is docu-
mented  as accepting  the  name  of a module  in memory,  and  returning  the
global  heap  handle  of the  module's  database  segment  (that  is, its HMOD-
ULE).  However,  the  documentation  is unclear  on  exactly  what  the  module
name  means.  Does it mean  the  actual  module  name  (the  first entry in the
module's  resident  names table),  or  does  it mean  the  name  of the  module's
filename?  Also,  as  you'll  see in the  pseudocode  that  follows,  the  documenta-
tion  leaves out  some  other  goodies  in  GetModuleHandle's  behavior.

The  GetModuleHandle  code  starts  out  with  the  parameter-validation
layer  code.  The code tests  the  single parameter  to  ensure  that  it's  a valid
string  pointer.  If not,  the debug version  RIPs with  a code of 0x700A
(ERR_BAD_STRING_PTR),  and  the  function  returns  to  the caller.  If the
string parameter test  succeeds,  the  code jumps  to the  IGetModuleHandle
code  (leaving the  string parameter  on  the  stack).
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The  first  section  of IGetModuleHandle  is a  bit  surprising.  It  tests  for
a  0 value  in  the  HIWORD  of the  module  name  to  look  for.  If a  0  is
found,  the  code skips all the  normal  code  that  would  execute.  Instead,
IGetModuleHandle  passes  the  string parameter's  offset to  GetExePtr,  and
returns  whatever  GetExtPtr  finds  (GetExePtr,  which  is discussed  in the  fol-
lowing  section,  returns  the  HMODULE  associated with  a given  global  han-
dle).  The  ability  to  pass  0  as  the  HIWORD  of the  GetModuleHandle's
string  parameter  is undocumented.  You can  pass  almost  any  global  handle
associated with  a module  (such as its  HINSTANCE)  to  GetModuleHandle,
and  get  back  the  corresponding  HMODULE.  Just  remember  to  pass  0 in
the  HIWORD  of the  string  argument  to  GetModuleHandle,  and  your  han-
dle  as  the  LOWORD.  This  handle can  be  an  HINSTANCE,  a code  or  data
segment  from the  module,  or  any  other  handle  that  the  GetExePtr  function
knows  how  to  deal  with.

The main  body  of IGetModuleHandle  is for  searching  through  the  mod-
ule  list,  looking for  a module  database  with  the  same name  as the  string
parameter  to  GetModuleHandle.  It checks  three  different  possibilities,  in the
following  order:

*  P o s s i b i l i t y  1:  GetModuleHandle  was  passed  a module  name  that  exactly
matches  the  first  entry in the resident  names table  of some module.  The
function  that  iterates  through  each  of the  system's  module  databases
comparing  names  is FindExeInfo.  Pseudocode  for  FindExeInfo  follows
the  IGetModuleHandle  pseudocode  and  is simple  enough to  follow
without  additional  annotation.

*  P o s s i b i l i t y  2.  GetModuleHandle  was  passed  a module  name  that
matches  the  first entry in  the  resident  names table  of some module,  but
the  two  strings  differ  in case.  Checking  for  this  situation  is exactly  like
testing  for  the  first  possibility,  but IGetModuleHandle  first  uppercases
the  string parameter  before invoking  FindExelnfo.

*  Possibility  3-  The code was passed a filename.  There are two subcases
here:  a base filename alone  (for example,  KRNL386.EXE),  or a complete
pathname  (for example,  C:\WINDOWS\SYSTEM\KRNL386.EXE).
IGetModuleHandle  takes care of both cases by extracting just the  base file-
name portion  (for example,  KRNL386.EXE)  before calling FindExeFile.
FindExeFile  is very similar to  FindExeInfo, but it compares the module's
filenames to the input string rather than to the module name.
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The last section  of IGetModuleHandle  hides two more  undocumented
secrets.  In Windows  3.1,  there was a DLL called TIMER.DRV;  this DLL
went  away in Windows  95.  Presumably some applications were testing for
its presence  by calling  GetModuleHandle(TIMER).  It appears that
Microsoft  tried to  keep these applications functioning  by having
IGetModuleHandle  check for the string TIMER and returning  the value  1 if
the  string was  found.  Of course,  an application  that tries to  use this module
handle  won't  have much luck --  but whatever works,  right? The  second
undocumented  behavior of IGetModuleHandle  was mentioned  earlier.  Any
call to  GetModuleHandle  that makes it past the parameter  validation  code
will  return  the head  of the  module  list  (KERNEL)  in the DX register.

As a final note  on GetModuleHandle,  don't  bother  using it  to  try to
find the  16-bit module  databases for Win32  modules. These modules  aren't
inserted in the list  of HMODULEs.  The SHOW16  program  later in this
chapter  shows a brute-force method to  find these HMODULEs.

Pseudocode for GetModuleHandle

//  Parameters:

//  LPSTR  lpszModName

Verify  that  lpszModName  is either  a  valid  string  pointer,  or  has

a  0  in  its  HIWORD().  If  not,  RIP  in  the  debug  KERNEL  with  a  code

of  700A  (ERR_BAD_STRING_PTR).

goto  IGetModuleHandle

Pseudocode for IGetModuleHandle

//  Parameters:

//  LPSTR  lpszModName

//  Locals:

//  char  szBuffer[130];

//  WORD  len;

//  LPSTR  lpszBaseFilename;

if  (HIWORD(lpszModName)  ==  0  )

goto  global_handle_in_LOWORD:

//  First  let's  assume  that  the  user  passed  in  a  real  module  name  (such  as what

// you'd  put  in  the  NAME  or  LIBRARY  line  in  a  .DEF  file).
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//  Copy  the  string  into  a  local  buffer,  but  make  the  first  byte

//  be  the  length  of  the  copied  string  (that  is,  make  it  a  PASCAL  string).

//  0 as  the  last  parameter  means  copy  the  source  exactly.

//  Returns  the  length  of  the  copied  string.

len  = CopyName(  lpszModName,  szBuffer,  0  );

//  Scan  through  the  list  of  modules  in  the  system,  looking  for

//  one  with  a  module  name  that  exactly  matches  the  string  passed

//  to  FarFindExeInfo.  If  a match  is  found,  return  the  HMODULE  in AX.

//  The  len  parameter  lets  the  function  quickly  eliminate  modules  with

//  names  of  different  lengths  than  the  input  module.

//  This  particular  call  is  looking  for  the  module  name  exactly  as  it

//  was  passed  to  GetModuleHandle.

AX  -  FarFindExeInfo(  szBuffer+l,  len  );

if  (  AX  )

goto  return_AX;

//  Do  like  the  first  CopyName  call  above,  but  this  time  the  last

//  parameter  is  1,  meaning  uppercase  the  destination  string.

len  =  CopyName(  lpszModName,  szBuffer,  1  );

//  Do  like  the  previous  call  to  FarFindExeInfo,  but  this  time  we're

//  searching  for  the  uppercased  version  of  the  module  name  passed

//  to  GetModuleHandle.

AX  =  FarFindExeInfo(  szBuffer+l,  len  );

if  ( AX  )

goto  return  AX;

//  If we  get  here,  we  didn't  find  a  real  module  name,  so  let's  try

//  looking  for  modules  that  have  a  filename  matching  what  was

//  passed  to  GetModuleHandle.

//  NResGetPureName  scans  backward  from  the  end  of  the  string  param

//  until  it  finds  a  :,  a  \\,  a  /,  or  the  start  of  the  string.  It

//  returns  a  pointer  to  the  next  character.  Essentially,  this

//  function  returns  a  pointer  to  the  base  filename  portion  of  a

//  complete  path.  This  allows  you  to  pass  names  like

//  C::\\WINDOWS\\SYSTEM\\KRNL386.EXE  to  GetModuleFileName

lpszBaseFilename  =  NResGetPureName(  &szBuffer+1  );

//  This  function  is  essentially  like  FarFindExeInfo  (above),  but

//  instead  of  comparing  module  names  in  the  resident  names  table,

//  it  compares  the  base  filenames.

AX  -  FindExeFile(  lpszBaseFilename  );

if  ( AX  )

goto  return  AX;
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//  If we  get  here,  we  didn't  find  a  matching  real  module  name  or  a

//  matching  filename.  Do  one  last  check  to  see  if  the  string  passed

//  to  GetModuleFileName  was  TIMER.  In Windows  3.1,  there  was  a

//  TIMER.DRV,  but  that  DLL  doesn't  exist  in  Windows  95.  Perhaps  this

//  special  case  code  is  to  keep  applications  that  look  for  the  TIMER

//  module  from  failing.

if  (  0 ==  strcmp(szBuffer+1,  "TIMER")

{

AX  =  1;

goto  return  AX;

global_handle_in_LOWORD:

AX  =  GetExePtr(LOWORD(lpszModName)  )

return_AX:  //  Return  whatever  value  is  in  the  AX  register.

DX  =  hExeHead;  //  Also  return  the  head  of  module  list  in  DX.

//  Seems  to  always  be  KERNEL  (KRNL386.EXE).

Pseudocode for FindExelnfo  (Called by FarFindExeInfo, with same params)

//  Parameters:
//  LPSTR  lpszSearchName;

//  WORD  len;

//  Locals:

//  LPMODULE  lpModule;

//  LPBYTE  lpResNames

if  (  !hExeHead  )

return  0;

lpModule:MAKELP(hExeHead,0);

while  (  lpModule  )  //  Iterate  through  the  list  of  modules.

{
//  Get  a  pointer  to  the  current  module's  name  (the  first  entry  in

//  the  resident  names  table).  The  module  name  is  prefixed  by

//  a  length  byte.

lpResNames  = MAKELP(SELECTOROF(lpModule),  lpModule->n_ resNamesTab);

//  If  the  length  of  the  current  module's  name  is  the  same  as  the

//  module  name  we're  searching  for,  compare  the  two  strings.  If

//  they  match,  we  found  the  right  module,  so  return  its  global

//  memory  handle  (its  HMODULE).  If  the  two  strings  differ  in

//  length,  don't  bother  to  compare  the  strings.

if  (  *lpResNames  ==  len  )
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if  (  0  = =  strcmp(lpResNames+1,  lpszSearchName) )

return  SELECTOROF(lpModule);

//  A match  was  not  found.  Try  the  next  module  in  the  module  list.

lpModule  = MAKELP(  lpModule  ->ne_npNextExe,  0  );

}

return  0;

The GetExePtr  function
GetExePtr  is arguably  the  most useful  undocumented  16-bit  function  in
Windows  95.  Its interface  is simple and  unlikely to  change,  so it's  a  mystery
why  Microsoft  has  chosen to  hide this  wonderful  function.  Examining
GetExePtr  is a great way  to  see the  interconnectedness  of modules,  tasks,
instances,  and  global  memory handles.  Essentially,  looking  at  GetExePtr  is
tantamount  to  taking  a mini-tour  of the  16-bit  KERNEL data  structures!

GetExePtr's  job is to  take  an  input global  heap handle  and  somehow find
the  HMODULE  associated  with  that  handle.  Typically,  GetExePtr  is used
internally  by KRNL386  to convert HINSTANCEs  to HMODULEs.  If you
look  at  almost  any Windows function  that  takes an HINSTANCE  parame-
ter,  that  function  internally  calls  GetExePtr  to  get an  HMODULE.  However,
GetExePtr  isn't limited to  instance handles.  The  input handle  can be almost
any type of global  memory handle.  Besides HINSTANCEs,  GetExePtr  also
accepts  HTASK parameters  and  returns  the HMODULE  that  the task was
created  from.  Likewise, you  can pass a code or  data  selector  belonging to an
in-memory  module,  and  GetExePtr  returns  the  owning  HMODULE.  You can
even pass in a handle  allocated  by GlobalAlloc.  GetExePtr  will return  the
HMODULE  associated  with the task that  owns the allocated  block.  In short,
GetExePtr  is a do-it-all  function  that  doesn't  give up easily.

Although  I haven't  formally described tasks and  task databases  (TDBs),
they  are prominently featured  in the  GetExePtr  code.  Tasks  aren't  described
until  the  next major  section in the chapter,  so I'll  have to jump the gun a lit-
tle  bit and  show tasks in the  GetExePtr  pseudocode.

The GetExePtr code begins by converting the input handle to  a selector.
Basically this means ensuring that the bottom bit of the handle is turned  on.
Next,  GetExePtr checks for the best possible scenario:  that it was passed an
HMODULE.  This test consists  of looking for the NE signature in the segment's
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first WORD.  If the test succeeds,  GetExePtr's  work  is done, and  it simply
returns  the HMODULE.  If the input handle wasn't  an HMODULE,  GetExePtr
has  some searching to do. The first thing it checks is to  see if the input parame-
ter is the HINSTANCE of a running task. The code checks this  by running
through  the task list, looking for a task with  an HINSTANCE that matches the
input  parameter.  If GetExePtr finds a matching HINSTANCE,  it returns the
HMODULE  that was used to create the task with the matching HINSTANCE.

If the  input  handle was  neither  an  HMODULE  nor  a task's HIN-
STANCE,  GetExePtr  passes the  input  handle  to  a helper  function  that  does
a more  exhaustive  job  of searching through  system  data  structures.  In the
pseudocode,  I've called this  function  GetExePtrHelper.  GetExePtrHelper
first verifies that  the  input  handle  is a valid  ring 3  selector  with the  CPU's
LAR instruction.  If it's  not  a valid  selector,  GetExePtrHelper  returns  0.

Assuming  that  a valid  handle  parameter  was  passed,  GetExePtrHelper's
next  course  of action  is to  find the  owner  of the  input  handle.  The  owners
of most  global  heap  blocks are typically  either  HMODULEs  or  PDB seg-
ments  (PDB segments  are similar  to  DOS  PSPs). A good  example  of a  block
owned  by an  HMODULE  is a code  segment  in an  EXE or  DLL file.
Memory  blocks  allocated  via  GlobalAlloc  without  the  GMEM_SHARE  flag
are  owned  by the  PDB of the  current  task  at  the  time  of the  allocation.  After
retrieving  the  owner  of the  input handle,  GetExePtrHelper  tests  the  handle
to  see if it's  an  HMODULE.  If so,  GetExePtrHelper  is done,  and  returns  the
owning HMODULE.

If the  owner  wasn't  an  HMODULE,  GetExePtrHelper  next  determines
if the  input  handle was  an  HTASK  by looking for  the TD  signature  in the
task  database  (described  later  in  "The  Task  Database  [TDB]"  section).  If the
input  handle  isn't  an  HTASK,  then  the  input  handle's  owner  might  be the
PDB segment of an  active  task.  To check  this  possibility,  GetExePtrHelper
scans  through  the task  list,  retrieves  the  PDB selector  of each  task,  and  com-
pares it  to  the  input  handle.  If a  match  is found,  GetExePtrHelper  returns
the  HMODULE  associated  with the  task  that  it  found  the  matching  PDB
segment  in.

One way or  another,  GetExePtrHelper  returns  control  to  GetExePtr.  If
GetExePtrHelper found  an HMODULE,  GetExePtr  returns  that  HMODULE
to  its caller.  Otherwise,  GetExePtrHelper  returns  0,  so GetExePtr  knows that
it was passed  a bogus  input handle.  In the  debug version  of KRNL386,  the
code  will  RIP with the message

wn  K16  GetExePtr(#ax)  invalid  parameter

in which #ax  is replaced  by the  value  passed  to  GetExePtr.
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GetExePtr's  implementation  has changed somewhat from Windows  3.1.
In Windows  3.1, GetExePtr would choke if you passed in an HTASK parame-
ter, even though that seems like a perfectly reasonable thing to do, given the
great lengths GetExePtr goes to find an HMODULE. In Windows  95,
GetExePtr works fine if you pass in an HTASK. This change may in part be
due to my complaining  about the implementation  of the Windows  3.1  version
in  Windows Internals.

Pseudocode for GetExePtr

//  Parameters:

//  HANDLE  handle;

//  Locals:

//  LPMODULE  lpModule;

//  LPTDB  lpTDB;  //  Far  pointer  to  Task  Database.

//  WORD  temp;

if  (  !(handle  &  1)  )  //  If  a MOVEABLE  handle  (bit  0  off),  convert

{  //  to  a selector.

handle  = MYLOCK(  handle  );  //  MYLOCK  is  similar  to  GlobalLock.

if  (  !handle  )

goto  invalid  param;
}

//  Try  the  obvious  first:  Were  we  passed  an  HMODULE?

lpModule  =  MAKELP(  handle,  0  );

if  (  lpModule->ne_signature  ==  'NE'  )
{

AX  =  handle;

goto  return  AX;
}

//  Okay.  It's  not  a  module.  Perhaps  it's  the  HINSTANCE  of  a  task.

//  Or  perhaps  it's  an  HTASK.  Walk  through  the  list  of  tasks,  checking

//  for  this.

lpTDB  =  MAKELP(  HeadTDB,  0  );

while  (  lpTDB  )  //  While  not  at  the  end  of  the  task  list...
{

//  Does  this  TDB  match  the  handle  passed  in?

if  (SELECTOROF(lpTDB)  :=  handle  )

goto  call  GetExePtrHelper  //  Why  not  just  return  the  HMODULE

//  here,  rather  than  calling

//  GetExePtrHelper???



//  Does  the  HINSIANCE  of  this  task  match  the  handle  passed  in?

if  (  handle  ==  lpTDB->TDB_HInstance  )
{

AX  =  lpTDB  ->TDB_HMODULE;  //  Yes!  Return  the  HMODULE  stored

goto  return_AX;  //  in  this  task's  TDB.
}

else

lpTDB  = MAKELP(  lpTDB->TDB_next,  0  );  //  Go  on  to  next  task.

call_GetExePtrHelper;

//  Bring  out  the  big  guns  by  checking  the  PDBs  in  the  task  list  in  addition

to  looking  for  the  owning  HMODULE  in  the  Burgermaster  arenas.

//  GetExePtrHelper  returns  an  HMODULE,  or  0.

temp  =  GetExePtrHelper(  handle  );

if  (  temp  )

return  temp;

//  Hmmm ....  We  still  didn't  find  anything.  Complain  in  the  debug  KERNEL.

AX  = handle

_KRDEBUGTEST(  "wn  K16  GetExePtr(#ax)  invalid  parameter"  );

_AX  = O;  //  Return  0 to  the  caller.

returnAX:

CX  = AX //  Return  value  both  in  AX  and  CX  (good  for  JCXZ  tests).
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Pseudocode for GetExePtrHelper

//  Parameters:

//  WORD  handle;

//  Locals:

//  LPMODULE  lpModule;

//  LPTDB  lpTDB;

//  WORD  owner;

LAR  handle  //  LAR  instruction  ->  Load  Access  Rights  (of  selector).

if  (  LAR  instruction  returns  failure  code  )  //  Not  a  valid  selector?

return  0;

if  (  present  bit  not  set  in  access  rights  )
{

owner  :  low  16-bits  of  handle's  limit  in  the  LDT
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//  In  a  not  present  segment  under  Windows,  the  low  16  bits  of

//  the  offset  in  the  segment's  descriptor  hold  the  HMODULE

//  that  owns  that  segment  (if  it's  code/data  segment  belonging

//  to  the  module),

else
{

owner  =  GetOwner(  handle  );  //  Retrieve  the  owner  out  of  the

if  (  !owner  )  //  appropriate  arena  in  the

return  0;  //  Burgermaster  segment.
}

//  See  if  the  owner  of  the  block  is  an  HMODULE.  If  so,  return  it.

lpModule  = MAKELP(  owner,  0  );

if  (  lpModule->ne_signature  ==  'NE'  )

return  SELECTOROF(  lpModule  );

//  The  owner  wasn't  an  HMODULE.  Is  the  handle  parameter  an  HTASK?

//  If  so,  return  it.

LSL  handle  //  Get  size  of  handle's  segment.

if  (  size  of  segment  > 0xFB  )

lpTDB  = MAKELP(  handle,  0  );

if  (  lpTDB->TDB_sig  ==  'TD'  )

return  lpTDB->TDB_HMODULE;

/ Global  memory  blocks  allocated  without  GMEM_SHARE  are  owned  by

//  the  PDB  of  the  task  that  allocated  the  memory.  Walk  the  list

//  of  tasks  looking  for  a  task  whose  PDB  matches  the  handle's  owner.

//  If  a match  is  found,  return  the  HMODULE  associated  with  that  task.

if  (  HeadTDB  ==  0  )  //  If  no  tasks,  there  is  nothing  more  we  can  do  to

return  0;  //  try  to  find  additional  modules.

lpTDB  =  MAKELP(  HeadTDB,  0  )

while  (  lpTDB  )

{
if  (  owner  ==  lpTDB->TDB_PSP  )

return  lpTDB->TDB_HMODULE;

lpTDB  = MAKELP(  lpTDB->TDB_next,  0  );

}
return  0;
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The GetProcAddress  function
I've  included  GetProcAddress  in this list of  16-bit module-related  functions
for  several reasons.  First, this function  provides  a  very good example  of
how the module's  entry table and  its resident/nonresident  names  tables are
connected.  Second,  an examination of GetProcAddress  will  help you under-
stand  how the Windows  loader  resolves fixups  to  other  modules.  And third,
you  can use GetProcAddress  to peer inside  the Windows  dynamic  linking
mechanism,  which  is one of Window's  most powerful  features.

GetProcAddress  (like many other Windows  API functions)  starts  out
with a  short  block of code that  validates the  input parameters.  In the case of
GetProcAddress,  the validation  code ensures that  you've passed some sort
of valid  selector  (or 0 or -1)  for the HINSTANCE parameter.  For the  sec-
ond parameter  (the name of the function to  find),  the validation  code tests  if
you passed a valid  LPSTR or  a MAKEINTATOM type string:  0 in the
HIWORD,  and  a nonzero value  in the  LOWORD.  GetProcAddress  uses the
latter  case to  mean that  you know the export  ordinal  of the  function  you're
looking  for,  and have  put the ordinal in the low WORD of the LPSTR para-
meter.  If either of these two parameter tests fail,  GetProcAddress  returns
immediately  to the caller.  The exception  is if you're  running  the debug
KRNL386,  in which case you'll  RIP with  either error  code  0x6002  or
0x700A.  If both parameters  are okay,  GetProcAddress  jumps to  the
IGetProcAddress  code,  where the real  meat of the code resides.

The  first  thing  IGetProcAddress  does  is to  use  the  trusty  GetExePtr
function  to  convert  what  you  passed  as  the  HINSTANCE  parameter  to
an  HMODULE.  As I described  earlier,  GetExePtr  will  convert  just  about
any handle  to  an  HMODULE,  so you're  not  really  limited  to  passing  an
HINSTANCE  to  GetProcAddress.  Any  global  handle  that  GetExePtr  can
associate  with  a  module  database  will  do.  Once  IGetProcAddress  has  the
HMODULE  that  it  will  be  looking  for  the  function  in,  it  checks  to  make
sure  that  the  HMODULE  belongs  to  a  DLL;  if it's  not  a  DLL,
IGetProcAddress  fails  the  call.  If you're  running  the  debug  KRNL386
when  this  happens,  you'll  get  a  message  that  says:

Can  not  GetProcAddress  a  task.

Why is this? The Windows coders put in this check to prevent programs
from calling GetProcAddress for functions in EXE files. Code in EXE files
expects to  be called  only in the EXE program's  task context,  and with the
stack register  (SS) set to the program's  DGROUP.  By making it difficult to get
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the  address  of an exported function in an  EXE file, KRNL386  prevents  prob-
lems caused  by programmers  who call functions  in EXE files while executing
in the wrong task context and  on the wrong  stack.  The one exception  to this
rule is if you pass 0 as the HINSTANCE parameter  to  GetProcAddress.  In this
scenario,  IGetProcAddress  uses the HMODULE that your task was created
from.  Put another way, you can use GetProcAddress  on your own EXE and
with  DLLs,  but not with  other  EXEs.

Once  IGetProcAddress  knows which HMODULE  it will be searching in,
the  next  step is to  figure out  the entry table  ordinal  of the  desired function.  If
you  passed  in an  LPSTR parameter  with  0 as the  high WORD,  the  export
ordinal  is in the  low WORD,  so IGetProcAddress  can jump immediately  to
the  code  that  looks  up the export  ordinal  in the module's  entry table.  More
often than  not,  however,  GetProcAddress  is passed  an ASCII string.
Therefore,  IGetProcAddress  must  convert  that  string into  the appropriate
export  ordinal  in the  target  module.

Converting  the  LPSTR parameter  into  an  export  ordinal  is the  job  of
the  FarFindOrdinal  function.  I haven't  provided  pseudocode  for
FarFindOrdinal  because  it's  not  that  difficult  to  visualize what  it  does.
FarFindOrdinal  calls  FindOrdinal,  which  simply  scans through  the  resident
and  nonresident names  table,  comparing  each  string  to  the  GetProcAddress
input  string.  When  a match  is found,  the  export  ordinal  is the  WORD  that
immediately follows  the  matching string  in the  resident  or  nonresident
names  table.  Another  undocumented  use  of GetProcAddress  that's  taken
care  of  by FindOrdinal  is converting  strings  like #97  to  ordinal  values.  In
this  case,  FindOrdinal  just  strips  off the  # and  converts  the string  into  its
binary value  (which is  97).

The  ability  to  pass  ordinal  values  as  #-prefixed  strings  means  that  there
are three  different  ways  of achieving the  same result  with  GetProcAddress.
For  example,  let's  say you  wanted  to find the address  of  GetMessage
(export  ordinal  108  from  USER.EXE).  Any  of the  following  three  lines
would  work:

GetProcAddress(GetModuleHandle("USER"),  "GetMessage"  );
GetProcAddress(GetModuleHandle("USER"),  MAKELONG(108,  0)  );
GetProcAddress(GetModuleHandle("USER"),  "#108"  );

One way or another,  IGetProcAddress gets hold of an HMODULE and an
export ordinal  of a function within that HMODULE.  It then scans through  the
entry table  of the module,  looking for the entry that  belongs to the specified
export ordinal.  The export entry will then contain  the information  necessary to
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calculate  the address of the desired  function in memory.  This job of scanning
the  entry table  and  retrieving  the  function  address  is the job  of the  FarEnt-
ProcAddress  function,  which is just  a wrapper  around  the  EntProcAddress
function.

Immediately  after  the  IGetProcAddress  pseudocode  that  follows,  you'll
find pseudocode  for  EntProcAddress.  EntProcAddress  scans  through  the  list
of entry table  bundles  that  I described  earlier  in  "The  Entry Table"  section.
To quickly  refresh  your  memory,  an  entry  table  bundle  is a  collection  of
entry table  records  for exported  functions  with  contiguous export  ordinals.
At each  bundle,  EntProcAddress  checks  to  see if the  export  ordinal  it's
searching  for  is contained  within  the  bundle's  array  of records.  When
EntProcAddress  finds  the  correct  bundle,  it  makes  a pointer  to  the  appropri-
ate  entry table  record within  the  bundle.  This particular  record can  now  be
used to  calculate  the  actual  address  of the  exported  function  in memory.

If you  flip  back  to  "The  Entry Table"  section  and look  at  the  format  of
an entry table  record,  you'll  see that  each  entry contains  the  offset  of the
function  within  its segment,  but  not  an  actual  selector  value.  Instead,  an
entry table  record contains  a logical  segment  number.  Therefore,
EntProcAddress  needs  to  convert  this  logical  segment number  to  the selector
assigned  to  that  segment in  memory by the Windows  loader.

How  can  EntProcAddress  convert  the  logical  segment  number  to  a
selector?  Simple.  Each module  database contains  a segment table  array
(described  earlier  in  "The  Segment Table"  section).  The  logical  segment
index  from the  entry table  record is used  as an  index into  the  array  of seg-
ment  table entries.  The  selector  value  for  the  function that  we're  looking  for
can  easily be plucked  from  the  last WORD  of the  appropriate  segment  table
entry.  All that  remains  is for  EntProcAddress  to  combine  the  selector  value
with  the  function's  offset  to  make  a far  pointer.  EntProcAddress  returns  this
far  pointer  to  FarEntProcAddress,  which in turn  returns  the  far address  to
IGetProcAddress,  which  finally returns  the  address  of the function to the
caller  of GetProcAddress.

Pseudocode for GetProcAddress

/ /  Parameters:

//  HINSTANCE  hinst;

//  LPSTR  lpszProcName

Validate  the  hinst  parameter.  The  Following  rules  apply:

If  hinst  is  0,  it's  okay.

If  LDT  bit  (bit  2)  is  not  set  in  selector,  it's  bad.
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If  hinst  is  -1,  it's  okay.

If  LAR  hints  fails,  it's  bad.

If  any  of  these  tests  fail,  RIP  in  the  debug  KERNEL  with  code  6022

(ERR  BAD  GLOBAL_HANDLE).

Validate  the  lpszProcName  parameter.  The  following  rules  apply:

If  lpszProcName  is  NULL,  it's  bad.

If  HIWORD(lpszProcName)  is  0,  it's  okay  (unless  LOWORD  is  also  0).

 If  lpszProcName  is  an  invalid  pointer,  it's  bad,

If  lpszProcName  is  >  0x100  bytes  long,  it's  bad.

If any  of  these  tests  fail,  RIP  in  the  debug  KERNEL  with  code  700A

(ERR_BAD_STRING_PTR).

goto  IGetProcAddress

IGetProcAddress proc

//  Parameters:

//  HINSTANCE  hinst;

//  LPSTR  lpszProcName

//  Locals:

//  char  szBuffer[130];

//  WORD  hModule;

//  WORD  exportOrdinal;

//  LPMODULE  lpModule;

if  (  hinst  )

{
hModule  = GetExePtr(hinst)

if  (  !hModule  )

return  0;

lpModule  = MAKELP(hModule,  0);

if  (  lpModule->ne_flags  & MODFLAGS_DLL )

goto  have_HMODULE;

FarKernelError(  "Can  not  GetProcAddress  a  task." );

return  0;

}
else  //  hinst  parameter  was  0.

I
hModule  =  CurTDB->TDB_HMODULE;

}

have_MODULE:
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//  Make  a  pointer  to  the  module's  entry  table.

lpBundle  = MAKELP(  hModule,  lpModule->ne_npEntryTable  );

//  Walk  through  the  list  of  bundles.  Look  for  the  bundle  whose  starting

//  and  ending  ordinals  encompass  the  exportedOrdinal  that  was  passed.

while  (  lpBundle  ->firstEntry  < exportOrdinal  )

if ( lpBundle  ->lastEntry  > exportOrdinal  )

//  Each  bundle  is  immediately  followed  by  an  array  of  ENTRY

//  structures.

lpEntry  =  address  of  the  appropriate  slot  in  the  array

of  ENTRY  structures  following  the  bundle  header.

goto  have_entry_pointer;

//  Go  on  to  the  next  bundle.

lpBundle  = MAKELP(  hModule,  lpBundle->nextBundle  );

invalid  ordinal:

//  Something  went  wrong...

if  (  !fComplain  )
{

//  RIP  in  the  debug  KERNEL  with  code  0x5004.

BX  =  exportOrdinal

KRDEBUGTEST("wn  K16  Invalid  ordinal  reference  (##BX)  to  %ESl");
}

return  0;

have  entry_pointer:

//  At  this  point  we've  found  the  correct  entry  in  the  entry  table.

//  Now  we  have  to  decode  the  entry  information  to  an  address  that  we

//  can  pass  back  to  the  caller.

//  If  this  entry  is  from  segment  0xFE,  it's  one  of  the  special

//  entries  (for  example,  __F000H). Return  the  entry's  offset.

if  (  lpEntry  ->segType ==  0xFE  )

return  MAKELP(  0xFFFF,  lpEntry->offset  );

//  There  are  two  types  of  entries:  MOVEABLE  or  FIXED,

//  FIXED  entries  have  segment  numbers  between  1  and  253.

//  MOVEABLE  entries  are  indicated  by  a  segment  number  of

//  OxFF.  Take  special  action  if  it's  a  FIXED  entry.
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if(
{

lpEntry  ->segType  !=  0xFF  )

//  The  entry  is  in  a  FIXED  segment.  Make  sure  that  segment

//  loaded  in  memory.

if  (  !LoadSegment(hModule,  lpEntry  ->segNumber,  1,  1)  )

goto  invalid_ordinal;

is

//  Point  at  the  appropriate  segment  structure  in  the  segment  table.

//  We  need  to  do  this  in  order  to  look  up  the  handle/selector  assigned

//  to  the  segment  by  the  Windows  loader.

lpSeg  =  lpModule->ne_segtab[lpEntry->segNumber  - 1];

if  (  lpSeg  ->handle  ==  0  )  //  Make  sure  there's  a  handle  for  this  segment.

return  0;

//  Combine  the  segment  and  the  offset  to  create  the  entry  point  address.

return  MAKELP(  lpSeg->handle  &  1,  lpEntry  ->offset  );

16-BIT  TASKS

If Windows  modules  are envisioned  as representing  the components  of a
lifeless  body, then tasks can  be thought  of as the  sparks that  bring that  body
to  life.  Before I describe  how tasks manage  that  feat,  however,  I need to
mention a couple  of issues  about  terminology.  Tasks  are  sometimes  referred
to  as programs,  but in  16-bit Windows  the correct term is  tasks,  not pro-
grams.  On the Win32  side of things,  the term  process  replaces the word
task,  even though conceptually  16~bit tasks and  32-bit  processes mean  the
same thing.  In this  section, we're  going to  look at  tasks in the  16-bit  side of
Windows  95.

Tasks represent  two things in Windows  95.  First,  a task represents  exe-
cution of code.  In Windows  3.x  and earlier,  tasks were  the fundamental  unit
of scheduling.  At any given time,  only one task  is executing.  The second
thing  a task represents  is ownership.  Each task  owns  its own  set of file han-
dles,  the windows  it creates,  the memory  it allocates,  and  so forth.  I'll  come
back  to  both  of these  points  later in this  section.

Every time Windows  95  starts a program, KRNL386 creates a  new task.
If you start  up two copies of CALC.EXE,  Windows  95 adds two tasks to
KRNL386's  list of tasks.  Even for Win32  processes, Windows  95 creates a
16-bit task representation.  This may be to  keep the  16-bit components  happy
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by representing the existence of the Win32 process in a form that the old
16-bit code recognizes.

The primary indicator of a task's existence is a data structure  known as
a Task Database  (or TDB for short). The task database contains informa-
tion specific to one particular  instance of a program.  The individual TDB
fields are described in the next section; this section focuses on more general,
task-related  TDB concepts.

The TDB is a collection of fields in a segment allocated from the 16-bit
global heap. The global heap handle for this segment is known as an
HTASK. Knowing that an HTASK is just a selector, you can directly read
the fields in the TDB. In this way, a task database and its HTASK is similar
to the module database and its HMODULE. GetCurrentTask  returns an
HTASK, and you pass HTASKs to functions like PostAppMessage and
EnumTaskWindows.

In some ways, a Windows task is similar to a DOS program. In DOS,
each running program has its own Program Segment Prefix (PSP) area, which
contains a file handle table and additional information,  such as the pro-
gram's command line. Since Windows was originally an extension to DOS, a
Windows task has always carried around a DOS PSP in its HTASK segment.
In versions of Windows prior to Windows 95, Windows actually used the
PSP area in the task's TDB when performing real mode DOS operations like
file I/O. In Windows parlance, the PSP area in a TDB is called a PDB (for
"Process Database");  this should not be confused with a Win32 process
database. Thus, the Windows function that returns the PSP of the current
task is called GetCurrentPDB, rather than GetCurrentPSP. Rest assured, a
PSP and a PDB mean the same thing in Windows. The point here is that a
Windows TDB contains a mixture of old real mode DOS things, and newer
things that are only meaningful in the 16-bit protected mode environment.
Adding to the mixture, in Windows 95, a TDB contains a pointer to a
Win32 Thread database, so a Windows 95 Task Database is really a com-
pendium  of DOS, Winl6 and Win32 information.

Just as a body is necessary to maintain  life (theological  arguments
notwithstanding),  a task cannot exist without a module.  Every task is asso-
ciated with a MODULE,  but the converse is not true.  When you start a
program for the first time, Windows 95 creates a  16-bit module database
and then creates a task database  for the new task.  If you then start up a
new copy of the program (while leaving the original instance running),
Windows  95 creates another task database,  but doesn't make a new mod-
ule database.  Instead,  both tasks are associated with the same module
database  (HMODULE). Modules represent  items such as code and
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resources  that  are  common  between multiple  running  copies  of a  program.
Tasks  represent  information  that  will  differ  between  multiple  copies  of a
program.  Examples  of this  are stack  segments  and  the  current  working
directory.

Forgetting  about  32-bit processes  and  threading issues  for the  moment,
at  any given time Windows  95  is executing  one and  only  one task.  All
threads  other  than  the  currently  executing  tasks  are  blocked,  and  will  not
run  until  the  running task  voluntarily  gives  up control  of the  CPU.  This  is
known  as  cooperative  multitasking.  Each task  runs  for  as  long  as it  needs
to,  and  then gives up control  of the  CPU so that  another  task  can run.

How  does  a task  give up control,  (or  yield,  in Windows  terminology)?
Usually,  tasks yield control  by using functions  such  as GetMessage,
PeekMessage,  SendMessage,  and WaitMessage.  If these  functions  determine
that there's  no need for the task to continue running  (for example,  if there  are
no messages  waiting to  be processed),  they'll  call  into the  16-bit  scheduler.
If the  16-bit  scheduler  sees that  another  task  has  something  to  do,  it suspends
the  first task  and  switches  to  the task  with  something to  do.  Most  of the
time,  the  need to  yield is hidden  from the programmer,  because  functions
like  GetMessage transparently  handle  the  cooperative  multitasking.

Windows  95  keeps  track  of the  task  list  in  a  manner  similar  to  the
16-bit  module  database  list.  A WORD  field  in  each  TDB  contains  the
selector  of  the  next  task  in  the  list.  The  linked  list  of tasks  isn't  static  like
the  module  list  described  earlier.  Instead,  the  ordering  of tasks  changes
constantly  to  facilitate  16-bit  scheduling.  Interestingly,  the  TDBs  created
to  represent  Win32  processes  in  16-bit  land  don't  appear  to  have  their
order  shifted  by the  actions  of the  16-bit  scheduler.  Instead,  it  looks  as  if
the  TDBs  created  for  Win32  processes  are  planted  at  the  head  of  the  list,
and  don't  move  until  the  task/process  exits.  See the  description  of  offset  8
in  "The  Task  Database  (TDB)"  section  later  on  for  more  details.

The Microsoft-approved  method  of walking the  task  list  is to  use the
TOOLHELP  TaskFirst  and  TaskNext  functions.  If you  want  to  walk the  list
directly  (like the  SHOW16  program does),  you  can  find the  head  of the  list
of tasks  in the  DX register  after  GetCurrentTask  is called.  Alternatively,  you
can find the  first  TDB in the  list  by reading  the WORD  0xE  bytes  past  the
THHOOK  symbol  exported  by KRNL386.  (That  is, call  GetProcAddress
for THHOOK,  add  0xE to  the  offset  portion  of the  returned address,  and
then read  in the WORD  at  that  location).  The  memory  around  THHOOK
contains  several  other  useful  KRNL3g6  global  variables:
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THHOOK+0  hGlobalHeap
This  is the handle  (selector -1)  to  the  Burgermaster  data  structure  that
maintains  the information  about  the  16-bit global  heap.  See Chapter  2 of
Windows Internals for more  information on  this.  This  value is also returned
in the AX register  after calling the undocumented  KRNL386
GlobalMasterHandle  function.
THHOOK+ 2  pGlobalHeap
This  is the selector that  points  to the Burgermaster  segment,  and is essen-
tially the same thing that's  returned  by the hGlobalHeap  field.  This value is
in the DX register  after calling GlobalMasterHandle.
THHOOK+4  bExeHead
This WORD  holds the  HMODULE  of the  first  module  in  the  list  of  16-bit
modules.  The  first  module  is  always  KERNEL  (KRNL386.EXE).  This
value  can  also  be found  in the  DX  register  after  a  successful  call  to
GetModuleHandle.  See the  description  of offset  06h  in the  module  data-
base  (in  "The  NE Header"  section  earlier  in  the  chapter)  for  additional
information.
THHOOK+8  topPDB
The  selector  of KRNL386.EXE's  PSP (a.k.a.  PDB) segment.  This  is the PSP
that  KRNL386  was  loaded from as a real  mode  DOS executable.  This value
is returned  by GetCurrentPDB  in the DX register.
THHOOK+0Ah  beadPDB
The  PDB/PSP selector of the first PDB in the list  of PDBs.
THOOK+0Eh  HeadTDB
The  first TDB in the list of TDBs. This value is returned  by GetCurrentTask
in the DX  register.
THHOOK+ 1 0h  CurTDB
The TDB selector of the currently executing task. This is almost always the last
task in the list. This value is returned  by GetCurrentTask in the AX register.
THHOOK+12h  LoadTDB
This field is set to 0, except when a new task is in the process of being created.
In this case, it contains the value of the TDB selector that the new task will use.
THHOOK+ 1 6  SelTableLen
This  WORD  is the length  of the selector table  (an array  of DWORDs)  in the
Burgermaster  segment.  See Chapter 2  of Windows Internals for  details.
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THHOOK+18  SelTableStart

This  DWORD  is the starting  offset of the  selector table  (an array of
DWORDs)  in the Burgermaster  segment.  See Chapter 2  of  Windows
Internals  for  details.

Unlike module databases,  Windows  95 is good about  keeping  all the
task  databases - - whether  they're  for  16- or  32-hit  applications  - - in the
task  list.  You can therefore use the  16-bit TOOLHELP. DLUs TaskFirst  and
TaskNext  functions  to walk the list of all running  programs,  regardless  of
whether they're  16- or  32-bit-based.  Also,  unlike  16-bit  modules,  all tasks
have  a corresponding  representation  in the  32-bit  side of Windows  95.
Specifically,  each Windows  95  task database  contains  a  32-bit  flat pointer to
a Win32  thread  database.  This  is true  even for  16-bit programs.  To summa-
rize:  Every program  (whether  it's a  16-bit NE program  or  a  32-bit  PE pro-
gram)  has both  a  16-bit task database  and  a  32-bit  thread  database  (as well
as a corresponding  32-bit  process).

525

SOME COMMON MISCONCEPTIONS ABOUT TASKS

Tasks can sometimes  be difficult to understand,  so it's  not  surprising that
programmers  often have misconceptions  about them.  This section describes
and clarifies  a couple  of misconceptions I encounter  frequently.

One  of the most common  misconceptions  about  tasks is that  every task
has  a window.  Although  a window on the  screen is the most visible  indica-
tor of a task's  existence,  tasks and windows are completely  unrelated  and
shouldn't  be confused  with one another.  A task represents  execution,  and
nothing else.  The  decision about whether  or  not the task displays a window
is completely  up to  you.  It's  certainly  easy to  create a  task that  never creates
a window, yet does  useful work.  This  is an important  point to  remember
when  you look at the  "task  list"  in Windows  95.  That  list  shows the top-
level windows,  and is completely  different  from the true  task  list maintained
by KRNL386.  If you run  the  SHOW16  program on the  disk that  accompa-
nies this  book,  it's  likely that  you'll  see tasks that  don't  show up  in the
Explorer window list.

Another  common  misconception  some programmers  have  is thinking
that  DLLs have  task-like qualities.  These  programmers  say things  such as,
"I  want  my DLL to  create  a window that  will  be  used  for  all the client
programs  of the  DLL."  Another  example:  "My DLL will  open a  file handle
that  will  be  used  by several  different  programs  that  use the  DLL."  These
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statements  indicate that the programmers  have the mistaken  idea that the
DLL owns the window or the file handle.  As I mentioned  earlier,  tasks - - not
DLLs - - own file handles  and windows.  A DLL is nothing more  than  addi-
tional  code that  a task  uses. The fact that the  DLL's code is in a file separate
from the EXE's is irrelevant when it comes to ownership  of system resources.

A DLL that  creates  a window  or  opens a file handle is doing so  on
behalf of the  task that  has  called into  the  DLL.  The  DLL itself has  no  power
to  own these  things.  Therefore  if you call  CreateWindow  from within  a
DLL,  it's  the  currently executing  task  that  owns  the window,  not  the  DLL. If
the  task  goes away,  so will the window,  even  if the  DLL remains  in memory.
Likewise,  if a  DLL opens  a file handle,  that  handle  belongs  to  the current
task.  If another  task calls  into  the  DLL and  the  DLL attempts  to  use the  file
handle  opened  for  the  first  task,  an  error  will result - - or  worse,  the  wrong
file  will  be used.  Why?  Because the  file  handle  is only valid when the  first
task  (the task  that  opened  the  file)  is executing.

THE TASK DATABASE (TDB)
The  preceding  sections  have  used  broad  strokes to  describe  some task-
related  issues  that  were rather  general  in  scope.  In this  section,  however,  I
provide  the  gritty details  about  the contents  of the  task  database  (TDB).
Each  field  in a Windows TDB is listed and  described  here;  if you'd  prefer  to
see just  a  quick  overview of the TDB's fields,  refer to  the  TDB.H  header  file
in  the  SHOW16  code on the  accompanying  disk.  As in previous  sections of
this  chapter,  the three  items  in the first  line of each  field  description  are the
field's  offset  in the  module  database,  the  field's  type  (for example,  WORD
or  DWORD),  and  a short  description.
00h  WORD  next TDB

This  WORD  is the  HTASK of the next  task  in the  list of Winl6  tasks.  The
head  of the  list  is given  by the  HeadTDB  KRNL386  global  variable
(returned  in the  DX register  after  calling GetCurrentTask).  The  end of the
list  is indicated  by a 0 in this  field.
02h  DWORD  task SS:SP

This  DWORD  is the  SS:SP of the  task  when  the  task  is parked  inside the
16-bit  scheduler.  At fixed  offsets  from this  address  you  can  find the  register
values  that  will  be restored to  the  CPU register  when  this  task  is scheduled.



T D B

527

In fact,  the TOOLHELP TaskSwitch and TaskSetCSIP  rely on this  to per-
form  their magic.  This  field is meaningless in the TDB of the currently  exe-
cuting  task,  since the  task  is not  blocked  inside  the  16-bit  scheduler.

06h  WORD  number of events
This  WORD holds  the number  of events waiting  for the  task to  process.
Usually,  the topic  of events doesn't come  up  in the course  of Windows  pro-
gramming.  When an event  does come up,  it usually represents  a waiting
window message  for  the task to  handle.  For example,  if you  post a  message
to  an  application,  the message  is written to  the task's  message  queue,  and
the  task's  event count  field is incremented.  However,  events  are not  synony-
mous with  window messages,  and  a task  can have waiting events without  a
corresponding  waiting window message.  Events  are the measure  by which
the  16-bit  task  scheduler  decides  if a task  should  be awakened  to  start  exe-
cuting.  The  scheduler  only restarts  tasks that  have  a nonzero event count.
08h  BYTE  priority
This  BYTE holds the relative scheduling priority  of the task.  However, this
field  doesn't  appear  to  be used by any Windows  applications,  and the  appli-
cations  all end up running  at the same relative priority.  In theory, the value of
this field can range  between -32  and  15, and is set with the undocumented
SetPriority  function  in KRNL386.  KRNL386  keeps the task  in priority-
sorted  order,  with  lower values coming first in the  list. Because of the Win16
scheduler  algorithm,  tasks with a lower priority  value are the first to  be
checked  for waiting events.  However, adjusting your task's  priority  typically
won't  buy you anything,  since the scheduler will only schedule a task that
has an event waiting for it. You can give your task a priority value of-32,
but if it doesn't  have any waiting events,  it still won't  be scheduled.

09h  BYTE
This  field is apparently unused.

0Ah, 0Eh, 10h, 12h  WORD  unused fields
These  fields in the TDB may have  been used for thread information  by OS/2
1.x programs  back  in the  days when  OS/2  1.x and Windows  shared  a lot of
code.  In Windows  3.x and Windows  95,  these fields  appear to  be unused,
and  are always set to  0.

0Ch  WORD  this TDB
This  WORD  holds  the TDB of this TDB (that  is, it references  itself).
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14h  WORD  floating-point control word

In Windows  3.x,  this WORD held the floating-point  control  word  of the
task  when the  task was switched away from.  The  floating-point  control
word  contains  state flags  for the  80x87 math coprocessor,  and is saved and
restored  with  the FLDCW and FSTCW CPU instructions.  In Windows  95,
this field appears to  be unused.  This may be because Windows  95 task
switches  also  involve Win32 thread  switches,  and the  floating-point  control
word  may be saved  and restored  at the ring 0 thread  switching level.
16h  WORD  task flags
This WORD  holds the following  bitfield  flags:

Flag Name  and
Bit Value  Description

TDBF_WIN32  If set,  this task is a  Win32  program.  This bit  is also  set  in  the TDBs
0x0010h  created  for Win32  applications  running  under  Win32s.

TDBF_NEWTASK  This flag  is set when  a  Win 16  task is created.  It's cleared  the first time
0x0008  the task goes through the  16-bit  scheduler  (the Reschedule function).

TDBF_WINOLDAP
0x0001  h

This task  is WINOA386.MOD  (module  name:  WINOLDAP).  The
WINOLDAP  task is used for  running  DOS  programs  in  their  own  virtual
machine  under Windows  95.  WINOLDAP  acts as a  sort of wrapper
around  the  DOS  program.  In the task  list, you'll  see the  name
WINOLDAP,  rather than the  name  of  the  DOS  program.

18h  WORD  error mode

This WORD contains  a set of bitfields  that customize Windows  95's
response  to certain  errors that occur in the task.  These flags can  be set with
the  SetErrorMode  API functions.  The documented  flags  are the  following:

Flag Name  and
Bit Value  Description

SEM_FAILCRITICALERRORS
0x0001

Silently  return failure  from  DOS  function  calls  that  have
encountered  a  critical  error  (indicated  by  the  "Abort,  Retry,
Ignore?"  error  message).  If this flag  is  not set,  Windows  95
pops  up a  dialog  box  asking  for  directions  on  how to
proceed.
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Flag  Name  and
Bit  Value  Description

SEM_NOGPFAULTERRORBOX
0x0002

When  a  GP fault occurs,  do  not display the normal GP fault
dialog  box.  in Windows  3.x,  this flag was  primarily  used by
debuggers  that wanted  to terminate the application  being
debugged.  The debugger sets this flag  in the debuggee,  and
then  modifies the debuggee  so that when  it resumes execution,
it GP faults and  Windows  terminates the application  (without
showing  a GP fault dialog).  Also  refer to the TOOLHELP
TerminateApp  documentation,  because TerminateApp
can optionally set this flag.

SEM _NOOPENFILEERRORBOX
0x8000

Do  not display  the dialog  box  when  a  file  cannot  be  found.
This flag  is  most often  set when  you  want  failing  calls  to
LoadLibrary  to fail  silently  instead  of  by displaying  the  File
Not  Found  dialog.

1Ah  WORD  expected windows version
This WORD holds the minimum version of Windows required  to run this
program.  This field is a copy of the expected Windows version at offset
0x3E in the module database of the executable that this task was created
from.  See the 06h entry in "The NE Header"  section  for more information.

1Ch  WORD  HINSTANCE of this task
This WORD holds the HINSTANCE of this task. The HINSTANCE is
nothing  more than the global heap handle of the task's default data segment
(a.k.a., the DGROUP segment). This HINSTANCE value is passed as the
first parameter to the WinMain function. The HINSTANCE/DGROUP seg-
ment is also the same as the task's stack segment. Each copy of a task has its
own HINSTANCE value, and HINSTANCEs are often used to distinguish
between running programs  (although TDBs are equally good for this job).
For Win32 tasks, the HINSTANCE value in the TDB is the same as the
HMODULE  field (offset 1Eh, described next).

1Eh  WORD  module handle of this task
This WORD holds the HMODULE of the loaded EXE file that this task
was created from. This handle can be passed to GetModuleFileName to
retrieve the name of the EXE file associated with this task.
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20h  WORD  message queue

This  field contains  the selector of the task's  message  queue.  The  message
queue  is where  messages  that  are posted  to  a  task's  windows  reside.  Unlike
earlier  versions of Windows,  in Windows  95 there's  no  fixed  limit on the
number  of messages  that  can be held in each  queue.  Chapter  4  describes  this
in more  detail.
22h  WORD  parent TDB
This WORD  is the TDB selector  of the task that  WinExec'ed  this  task.  For
instance,  if you're  debugging a program, that  task's  parent  will  be the
debugger  task's TDB. Typically,  the  parents  of applications  are
EXPLORER.EXE  if you launched  the program  from the  Explorer,  or
MSGSRV32.EXE if you  started  the program  from the  DOS command  line.
For Win32  applications,  the parent  TDB is always  0.
24h  WORD  application signal action
In Windows  3.1,  the  value  of this WORD  affected  what  the task's  applica-
tion  signal  procedure  did,  although  the exact meaning  was  unknown.  In
Windows  95,  the  application  signal  procedure  address  (offset 26h)  appears
to  be unused.
26h  DWORD  Windows 3.1 application signal procedure
In Windows  3.x,  this  field held the  pointer to the  application's  signal  proce-
dure.  The  application  signal  procedure was  a means  by which  a program
could get called  back when  Ctrl-Break  was pressed.  The signal  procedure
was  set  by calling the  undocumented  SetSigHandler  function.  In Windows
95,  SetSigHandler  is no  more,  and this  field  appears  to  always  be 0.
2Ah  DWORD  USER signal procedure
This  field holds  a pointer to  the USER signal  procedure.  The  USER signal
procedure  is called when  a  DLL is loaded  or  unloaded.  This gives USER the
opportunity  to clean up any  system resources  that  were left  around.  During
the  unload  callback,  USER also calls the  GDI  SignalProc function,  giving
GDI  a chance  to  clean up  (or mark  for  future cleanup)  any unfreed  GDI
resources.

You can change the signal handler in the TDB by calling the undocumented
SetTaskSignalProc  (KERNEL.38).  The function is prototyped  as follows:

FARPROC  SetTaskSignalProc(  HTASK  hTask,  FARPROC  lpfnNewSignalProc  );

The  return  value  is the old  signal  procedure  address.
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The USER signal procedure  callback  function  is as follows:

void FAR  PASCAL  UserSignalProc(

HMODULE  hModule,  //  Module  under  consideration.

WORD  actionCode,  //  See  actionCode  values,  below.

WORD  unknown,

HISNTANCE  hInstance,

WORD  hQueue);

actionCode  values:

0x0040  DLL  Load

0x0080  DLL Unload

0x0100  ???  (task  exit?)

In Windows  3.1,  TOOLHELP. DLL replaced  the USER signal proc with  its
own handler.  In TOOLHELP's  handler,  TOOLHELP unhooked any
installed interrupt  or notification  handlers  for the task that was exiting.  In
Windows  95, TOOLHELP no longer fudges with the  signal procedure.
Instead,  TOOLHELP  uses the new DLLENTRYPOINT mechanism
described  in the Windows  95 thunk compiler documentation.
2Ch  DWORD  GlobalNotify callback
This DWORD hold  a pointer to the task's  GlobalNotify  callback  procedure.
KRNL386  calls this procedure  when it's  about to  discard a DISCARDABLE
global heap  block.  The callback function can allow KRNL386  to discard
the  block, or prevent it from discarding the  block,  based  on the value that
the callback  function  returns.  This field is initialized  to  0 (no callback)  when
a new task  is created.
30  DWORD [7]  task interrupt handlers (INTs O, 2, 4, 6,  7,

3Eh, 75h)
For most  interrupts,  Windows  95 has  a global  handler that's  used  for  all
tasks.  However,  Windows  95  allows tasks  to  install  their  own  handlers
for  certain  interrupt  handlers  (via an  INT  21h,  function  25h).  When one
of these  interrupts  occurs,  Windows  95 looks  up the  interrupt handler  in
the  TDB of the  current task  and calls that  function.  In the  TDB is an  array
of seven  DWORDs,  with  each  DWORD  holding the  interrupt  handler  for
a specific  interrupt number.  The interrupts  that  are  handled  on  a per-task
basis  are these:
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0  --  Divide  by Zero
2  --  NMI
4  --  INTO
6  --  Invalid Opcode
7  --  Coprocessor Not Available
3Eh  --  80x87 emulator
75h  --  80x87 error

Default  handler  procedures  are  provided  in the TDB of each  task  as it's
created.  A good example  of a task that  changes  the  interrupt vectors is
CALC.EXE.  The  SHOW16 program on  the  accompanying  disk  is a good
way to  see which interrupt  handlers  a task  has  installed.
4Eh  DWORD  compatibility flags
This field,  which was  introduced  in Windows  3.1,  tells Windows  to retain
the  behavior of previous versions  of Windows  for programs  that rely on
behavior that was changed in Windows  3.1.  When Windows  sees that it's
running  one of these tasks,  it checks these flags, and adjusts what  it does
accordingly.  If you look in the  [Compatibility]  section of the WIN.INI  file,
you'll  see the module  name of the programs  that  need these compatibility
hacks.  Somewhat  surprisingly,  many of the  applications  listed are Microsoft
programs.  Chapter  5 of Undocumented Windows contains  a list of the bit-
fields  and their meanings in Windows  3.1.  It appears that  additional  flags
have been added in Windows  95. You can retrieve  the compatibility  flags of
a particular  task with  the  undocumented  GetAppCompatFlags  function:

DWORD  FAR  PASCAL  GetAppCompatFlags(HTASK  hTask);

52h  WORD  TIB selector
This is the value of the FS register  used  by the Win32  threading  code to
access the TIB (thread information  block)  structure.  All tasks  (even 16-bit
tasks)  have Win32  processes  and threads  maintained  for them.  A copy of
the pointers and selectors  used to access the task's Win32  thread  informa-
tion  is kept in each task's TDB segment.

The thread  information  block contains per-thread information,  including
the following fields:
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00h  DWORD

04h  DWORD

08h  DWORD

2Ch  DWORD

pvExcept  //  Head  of  exception  record  list.

pvStackUserTop  //  Top  of  thread's  stack.

pvStackUserBase  //  Base  of  thread's  stack.
pvTLSArray  //  Pointer  to  Thread  Local  Storage  array.

The  TIB structure  starts  0x10  bytes  inside  the  thread  database.  The  flat
32-bit  address  of  the  thread  database  is  given  in  the  next  field  of  the  TDB
(offset  54h).  See  Chapter  3  for  more  detailed  information  on  the  TIB.
54h  DWORD  linear address of the task's

This  DWORD  holds  the  flat  32-bit  linear  address  of  the  ring  3  thread
database  associated  with  this  task.  The  thread  database  encompasses  the
Thread  Information  Block  (see  field  52h),  and  starts  0x10  bytes  before
the  Thread  Information  Block.  See  Chapter  3  for  more  detail  on  the
THREAD_DATABASE.
58h  WORD DGROUP  handle of task
For  16-bit-based tasks, this WORD  is the global  heap handle  of the DGROUP
segment.  Based on error messages in the debug version  of KRNL386,  this field
may be used during 16-/32-bit thunking to  obtain the handle  of the task's atom
table  segment  (that is, its DGROUP).  For Win32-based  tasks, this field is
always  0.
5Ah  BYTE[6]  unused
These  six  bytes  don't  appear  to  be used in Windows  95.
60h  WORD  PDB of task
This  WORD  is the  selector  of the task's  PDB  (a.k.a.  PSP) segment.  The
PDB/PSP contains the  task's file handle  table,  its command line, and other
assorted  fields  that  are  documented  in  numerous  DOS programming  books.
In Win16  tasks,  the  PDB for  each  task  is  stored  at  the  tail  end  of  the  mem-
ory accessible  by the  HTASK  selector.  Specifically,  the  base  address  of the
PDB selector  is  always  0x210  bytes  greater  than  the  base  address  of  the
HTASK  selector.  For Win32  tasks,  the  PDB is always  at  a  linear  address
below  1MB, while  the TDB  segment  is usually  up  above  2GB.

The  GetCurrentPDB  function  returns  the value  of this  field for the
current  TDB.
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62h  DWORD  DOS Disk Transfer Area

This  DWORD  points  to  the  MS-DOS  Disk  Transfer Area  (DTA).  Refer to
DOS programming  books  for details  on the  DTA.  For Win16  tasks,  the ini-
tial  value  of the  DTA is  80h  bytes  into  the PDB segment  (that  is, the  selector
portion  of this  field  matches the WORD  at  offset  60h).  All Win32  tasks
share  a common  DTA value.
66h  BYTE  current drive
This  BYTE contains the  drive portion  of the task's  current  directory.  This
value  is biased  by  0x80,  so you  have  to  subtract  0x80  to get the  drive  num-
ber.  (0x80  = drive A,  0x81  = drive B,  and  so forth).  In Windows  3.x,  the
directory portion  of the current  directory  was  stored  immediately following
this  field,  but  in Windows  95  the  path  has  moved  to  offset  0x100.  See
0x100  for more  information.
67h  char[65]  unused
In Windows  3.x,  this  array  of characters  held  the  path  portion  of the  task's
current  directory.  In Windows  3.x,  the  maximum  directory size was  limited
to  65  characters.  With  the  advent  of long  filenames  in Windows  95,  this  size
became too  small  to  hold  the  maximum possible  path;  the  current directory
is now  stored at  offset  0x100  in the  TDB.
A8h  WORD  initial task validity check
Under  Windows  3.x,  this WORD  is set  to  the  initial  value  that  AX will
contain  when  the  task  starts  up.  However,  there  doesn't  appear  to  be  any
startup  code  that  tests  this  value,  so it is essentially  an  unused  field.
AAh  WORD  next task to schedule (DirectedYield)

If nonzero,  this WORD  holds  the  HTASK value  that  the Winl6  scheduler
should  wake  up when  the  scheduler  is called.  This  value  is always  0,  except
when you call  DirectedYield  to  specify a particular  task  to  run  next.
DirectedYield  stores  the  HTASK parameter  into  this  field,  and  then  calls  the
Winl6  scheduler  (Reschedule).  Near  the  beginning  of the  Reschedule  func-
tion,  it checks the value  of this  field  and,  if nonzero,  bypasses  its regular
search  for the  next  task to  schedule.  Reschedule  zeroes  out  this  field, so the
field  is rarely seen with  a nonzero value.
ACh  DWORD  selector:offset to list of DLLs to initialize

At application  startup,  this  DWORD  holds  a pointer  to  a  O-terminated
array  of DLL module  handles.  All of these  DLLs  are  being loaded  into
memory for the  first  time,  so they each need  to  have their  LibMain  entry
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point called. If an implicitly referenced  DLL was  already  in memory when
this task  started,  its  HMODULE  is not  in this  list.  The InitTask  function
iterates  through  this  array  of HMODULEs,  calling their  LibMain  entry
points.  Afterward,  InitTask  frees the memory containing  the  HMODULE
list and  sets this  DWORD  to  0.  Note:  The  far pointer  in this  field  has its
selector  and  offset fields reversed from a normal  far pointer.  In this  field,
the selector  is in the  low WORD and the offset  in the  high WORD.

B0h  WORD  code segment alias for this TDB
Windows  95  initially creates  MakeProclnstance  thunks  in the TDB itself
(see field BAh). Since the  CPU cannot execute  code  using a  data  selector
(and the TDB is a  data  selector),  KRNL386 creates  an  alias  selector that's  a
code selector and  stores  it in this field.  The alias  selector  is identical  in base
address  and  length to  the TDB selector; the  only difference  is that  the  alias
is set up as a  code  selector rather than  as a  data  selector.  The address  of the
first  seven MakeProclnstance thunks  you create  will  have a  selector portion
that's  the  same as this  field.
B2h  WORD  selector of segment with additional thunks
If more  than  seven MakeProclnstance  thunks are created,  KRNL386  allo-
cates another  code segment to  hold  another  seven  thunks.  This  segment has
the  same  format  as field  B0h through  Flh  (inclusive)  of the TDB. If even
more thunks are  needed,  additional  segments are allocated;  the  segments  are
put  at  the end  of the linked  list, with  this field  acting as the  "next"  pointer
for each  node in the list.
B4h  WORD  PT signature (5450h)
This  field contains  the value 5450h,  which  when  expressed  in ASCII charac-
ters  is PT. The term  "PT"  is presumably  short  for  something  like Procedure
Thunks  or  Proclnstanc  Thunk.

B6h  WORD  unused
This  WORD  does  not  appear to  be used and  is set to  0.

B8h  WORD  offset of next available thunk slot + 6
By subtracting  6 from the value of this  field,  you'll  obtain the offset in the
TDB where the  next MakeProcInstance  thunk  will  be created.  As each
thunk  is created,  this value goes up  by 8.



BAh  [38h]  MakeProclnstance thunk area
This  region holds  up  to  seven MakeProcInstance  thunks.  Each  thunk  is  8
bytes  long  and  is of the  following  form:

MOV  AX,  hInstance

JMP  FAR  PTR  lpfn?roc

; hInstance  ==  parameter  2  to  MakeProcInstance

; lpfnProc  ==  parameter  1  to  MakeProcInstance

F2h  char[8]  module name for task
This  field holds  the  module  name  of the  task.  This  name  is simply copied
from  the  module  database  (HMODULE)  that  this  task  was  created  with.  If
the  module  name  is a  full  8 characters,  there  is no NULL terminator.
FAh  TD  signature
This  WORD  contains  0x4454,  which when  expressed  as ASCII characters  is
TD  (short  for Task  Database).  The IsTask  functions  and  other  KRNL386
routines  use this  signature  to guarantee  that  they're  working  with  a valid
task  database.
FCh  DWORD  unused
This  DWORD  does  not  appear  to  be used,  and  is set  to  0.
l00h  char[1 10h]  current directory of task
Since Windows  95  supports  long  filenames,  the  current  working  directory
of the  task  no  longer  fits in the  space at  offset  67h.  Therefore,  the  current
directory  (minus the  drive portion)  is stored  in this character  array.
210h  char[110h]  PDB/PSP of task (Win16 tasks only)
For Win16-based  tasks,  this region  holds  the  PDB/PSP of the  task.  This
region  is also  pointed  at  by the  selector  at  offset  60h  in the  TDB.  It's  some-
what  strange  that  this  field  is  110h  bytes  in  size,  since prior  to  Windows
95/DOS  7, the  PSP has  always  been only  100h  bytes  long.

TASK-RELATED FUNCTIONS

Now  that  we've  seen what  a Windows  95  16-bit TDB looks  like,  let's  look
at  some functions  that  access and  manipulate  the TDB structure.  The func-
tions  I've  chosen  are mostly  simple functions,  primarily  because  a function
like the  core Windows  scheduler  (the  Reschedule  function)  could  easily take
a  chapter  all  by itself.

536
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The GetCurrentTask() function
GetCurrentTask  is the  most basic of the task-related  functions.  The docu-
mented  return  value of this  function  is placed  in the  AX register,  and the
head of the task list is put  in the  DX register.  Both the current  task and the
head task  list are kept in KRNL386  global  variables.  Since KRNL386's  data
segment is FIXED and  pagelocked,  the two variables  that  the  function
retrieves  will  always  be physically present  in memory.  Therefore,
GetCurrentTask  is completely  safe to  call from within  an  interrupt handler.
This  directly contradicts  Microsoft's  stern  warnings  that  the  only safe func-
tion to  call  from within  an  interrupt handler  is PostMessage.  Who are you
going to  believe?  Look at the evidence and  decide for  yourself.

Since  GetCurrentTask  is such  a  simple  function,  it's clearer  to  present
the  few assembler instructions  it uses than  to  show the  function  in C
pseudocode.

Code for GetCurrentTask

PUSH  DS

MOV  DS,WORD  PTR  CS:[MYCSDS]

MOV  AX,[CurTDB]

MOV  DX,WORD  PTR  [HeadTDB]

Save  caller's  DS.

MyCSDS  is  a  global  var  kept  in  the

code  segment  that  holds  the  selector

of  KRNL386's  data  segment  (segment  4).

Load  documented  return  value  into  AX.

Undocumented  head  of  task  list.

POP  DS

RETF

Restore  caller's  DS.

The IsTask() function
IsTask  is a handy function you can  use to  verify that  you've got  a valid  task
handle.  It's  not entirely  rigorous,  as the  only test  is to  see if there's a WORD
with the value 0x4454  (TD)  at  offset  0xFA in the  passed-in  segment.  (In
fact,  you can easily construct a  segment that  passes  this  test  but  is not  a
valid HTASK segment.)

One  interesting thing to  note  in IsTask  is that  there don't  appear to  be
any tests to make  sure the handle  is in fact a valid global  memory handle.
You might think that  passing in a  bogus  selector  value would therefore
cause  a  GP fault,  causing Windows  to  terminate  your application.  As it
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turns out,  a  GP fault  does occur  in this  situation  but KRNL386  is prepared
for this possibility.

To handle  code sequences where  GP faults are  a possibility,  KRNL386
has a  table  of address ranges  where  a  GP fault  might  occur.  Associated with
each  address range  is a safe recovery  address.  If the KRNL386  GP fault
handler  sees a  GP fault  occur  in one of these ranges,  it transfers  control to
the recovery  address.  In the case of IsTask,  the  recovery  address simply puts
0  (that  is, FALSE) in the  AX register and returns  to  the code that called
IsTask.  If this  mechanism  sounds  suspiciously like Win32-structured  excep-
tion handling,  it essentially  is, although there  are  some important differences.
For  more  information  on  KRNL386's  version  of  structured  exception
handling,  see the entries  for  __GP and HasGPHandler  in  Undocumented
Windows.

Pseudocode  for GetCurrentTask

/ /  Parameters:
//  HTASK  hTask

//  Locals:

//  TDB  far  *  lpTDB //  Pointer  to  TDB  structure.

if  (  hTask  ==  0  )

return  FALSE;

lpTDB  =  MAKELP(  hTask,  0  );

BX  =  *(LPWORD)MAKELP(  hTask,  0x202  ); //  ???  Offset  0x202  in  the  TDB

/ /  is  near  the  end  of  the  current
//  directory  area.

if  (  lpTDB->TDB_sig  ==  0x4454  )

return  TRUE;

else

return  FALSE;

//  Look  for  the  TD  signature.

//  (0x4454)

The GetTaskQueue()  function
GetTaskQueue  is an undocumented  function  that  returns  the message queue
handle  associated with the  HTASK parameter passed in.  If the HTASK
parameter  is 0,  GetTaskQueue  returns  the queue  handle  for the current
task.  Chapter 4  describes the message  queue  in more detail.
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GetTaskQueue  is  a  useful  function  for  determining  if  a task  is  able to
receive  window  messages  yet  (a  message  queue  is  necessary  to  receive  posted
or  sent messages).  The  application's  message  queue  isn't  created  until  the
application  calls  the  InitApp  function  in  its  startup  code.  The  call  to  InitApp
doesn't  occur  until  after  the  LibMain's  of  implicitly  loaded  DLLs  are called,
so  a significant  portion  of  a  task's  life  can  be  spent without  a message
queue.  Windows-hosted  debuggers  in  particular  need  to  know  if  the  task
they're  debugging  has  a message  queue;  this  information  makes  a difference
in  how  they  handle  the  debuggee  process  and  its window  messages  when  the

debuggee  is  stopped.
The  GetTaskQueue  function  doesn't  do  rigorous checking  of  its  input

parameters.  If you  pass  a nonzero  value  that's  not  a  valid  selector,  you'll
receive  a GP fault  inside  KRNL386.

Pseudocode for GetTaskQueue

//  Parameters:

//  HTASK  hTask

//  Locals:

//  TDB  far  *  lpTDB //  Pointer  to  TDB  structure.

lpTDB  = GetATaskSomehow(  hTask  );  //  See  following  pseudocode.

if  (  lpTDB->TDB_Queue  )

return  lpTDB->TDB  Queue;

else

return  -1;

//  Return  message  queue.

//  Windows  3.1  didn't  do  this,  and

//  returned  whatever  was  in  the  TDB.

Pseudocode for GetATaskSomehow

//  Parameters:

//  HTASK  hTask

if  (  hTask  )

return  hTask;

else

return  CurTDB;

//  If  any  nonzero  hTask  passed  in,  return  it;

//  otherwise,  return  the  current  task,
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The MakeProclnstance()  function
Although much  of the need  for  MakeProcInstance  has gone  away with
newer compilers,  this function is usually  required  in cases where  you  want
callback functions  in your  EXE's  code  rather  than  in  a DLL.  For  example,
you  might  want  to  use TOOLHELP NotifyRegister  or  InterruptRegister
callbacks  in your  EXE's  code.  If you  use the __loadds  function modifier,
you'll  end  up  limiting  the  program  to  a single  instance.  MakeProcInstance
thunks  come to the  rescue  in such situations.

The  job  of the  MakeProclnstance  thunk  is simple: Jump to  a specified
address  after  setting the AX register  to  the  DS register  value  that  the  func-
tion should  use.  It's expected  that  the  function's  prologue  code will  take the
AX register  value  and  put  it  into  DS.

MakeProclnstance  has parameter validation layer code that first makes
sure that a valid target address and HINSTANCE were passed.  The
pseudocode  for ValidateHInstance and ValidateCodePtr  (shown later in this
section)  lists the parameters  that MakeProcInstance  considers to  be valid:
HANDLE  for ValidateHInstance  and FARPROC  for ValidateCodePtr.  If either
of these parameters  is invalid,  MakeProcInstance  returns without creating a
thunk.  If you're running the debug version of KRNL386,  MakeProcInstance
RIPs with an appropriate  error code, telling you of your bad programming.

After  validating  the  parameters,  MakeProcInstance  jumps  to  the
IMakeProcInstance  code,  which is where  the  thunk  is actually  created.
IMakeProcInstance  starts  out  by doing some  additional  tests  of its  own
before  committing  to  making  a thunk.  If the  HINSTANCE  parameter  isn't
the  same as the  DS register  in the calling code,  you'll  get  a message  to the
effect  of  "MakeProcInstance  only for current  instance."  This  means  that
you  can't  make  a thunk  for  an  EXE module  other  than  your  own.  (That  is,
unless  you get sneaky  and  change  your  DS to the  right  value  before calling
MakeProcInstance.)

Another  important  check  MakeProcInstance  makes  is  to  see  if
you're  requesting  a thunk  for  a  function  in  a DLL.  DLLs  don't  need
MakeProcInstance  thunks,  since they  can  use  the  exported  function
prologue  code  that  uses  a  hard-coded  DS value.  For  example:

MOV AX,17C7h
MOV  DS,AX

If you  do pass the  address  of a  routine in  a DLL,  MakeProcInstance  silently
returns  to  you the  address  you  passed  in,  unmodified.
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The  next  major portion  of  IMakeProcInstance  is to  determine  where  it
will  create  the  new  thunk.  If you've  created  less  than  seven  thunks  so  far,
the  thunk  will  come  from  a region within  the  TDB  segment  of  the  current
task.  Otherwise,  IMakeProcInstance  looks  in  the  additional  segments  that  it
creates  for  storing  additional  thunks.  If there's  no  open  slot  in these  seg-
ments,  IMakeProclnstance  allocates  another  segment  (with  GlobalAlloc),
initializes  the  segment,  and  adds  it  to  the  linked  list  of  thunk  segments.

Once  IMakeProcInstance  knows  where the new thunk will  be created,  the
actual  creation is amazingly  simple.  A MakeProcInstance  stub looks  like this:

MOV  AX,  hlnstance

JMP  FAR  PTR  lpfnProc

Creating  the thunk is just a matter of creating  the completed  instructions.
Bytes  0  and  3  are  filled  with  constant  values  (the  opcodes  0xB8  and  0xEA).
The  WORD  at  offset  1  is  set  to  the  value  of  the  hinstance  parameter  to
MakeProclnstance,  and  the  D W O R D  at  offset  4  is  set  to  the  lpProc

parameter  value.

Pseudocode  for MakeProclnstance

//  Parameters:

//  FARPROC  lpProc

//  HINSTANCE  hinst

ValidateCodePtr(  lpfnProc  );

ValidateHInstance(  hinst  );

goto  IMakeProcInstance

//  If  either  of  these  functions  faiT,

//  the  function  returns  without  JMP'ing

//  to  IMakeProcInstance.

Pseudocode  for ValidateHInstance()

//  Parameters  (in  AX):

//  HANDLE  handle

if  (  handle  ==  0  )

return;

//  Make  sure  the  LDT  bit  is  on.  Win16  code  only  deals  with  LDT

//  selectors,  and  not  with  GDT  selectors.

if  (  (handle  & 0x0004)  ==  0  )

RIP  in  the  debug  KERNEL  (code  6022  ERR  BAD  GLOBALHANDLE)

if  (  handle  ==  -1  )  //  Apparently  -1 is  allowed.

return;
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LAR  handle  //  Get  access  rights  WORD.

if  (  LAR  instruction  fails  )

RIP  in  the  debug  KERNEL  (code  6022  -  ERR  BAD  GLOBAL  HANDLE)

return

Pseudocode for ValidateCodePtr()

//  Parameters  (  in  CX:AX  ):

//  FARPROC  lpfn;

//  Locals:

//  WORD  opcode

LAR  SELECTOROF(  lpfn  )

if  (  LAR  instruction  fails  )

RIP  in  the  debug  KERNEL  (code  7088)

//  Get  access  rights  WORD.

if  (  Code  bit  (0x0008)  not  set  in  access  rights  )

RIP  in  the  debug  KERNEL  (code  7088)

AL  =  *(LPBYTE)lpfn  //  Test  to  see  if  the  memory  can  be  read.  If  it

//  GP  faults,  the  KERNEL  GP  handler  will  catch  it.

opcode  =  *(LPWORD)(lpfn+2);  //  Grab  the  opcode  bytes  2 bytes  into  the  PROC.

//  Verify  that  the  code  pointer  passed  to  us  has  an  export  prologue

//  in  it.  0x581E  ==  PUSH  DS  /  POP  AX,  0xD88C  ==  MOV  AX,DS.

if  (  (opcode  != 0x581E)  &&  (opcode  != 0xD88C)  )

RIP  in  the  debug  KERNEL  (code  7088);

return;

Pseudocode for IMakeProclnstance()

typedef  struct

{
BYTE  mov_ax_opcode

WORD  hinstValue;

BYTE  imp_far_opcode;

DWORD  lpfn;

} MAKEPROCINSTANCE_THUNK;

//  Parameters:
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//  FARPROC  lpProc

//  HINSTANCE  hinst

//  Locals:

//  LPMODULE  lpModule;

//  MAKEPROCINSTANCE_THUNK  far  *  lpThunk;

//  WORD  newThunkSegment;  //  If  additional  thunk  slots  are  needed.

if  (  hInstance  )

if  (HIWORD(GlobalHandle(hinst))  !- Calling  application's  DS.  )

_KRDebugTest("fatl  K16  %dx2  MakeProcInstance  only  for"

"current  instance.");
}

//  Get  the  owner  of  the  hinst  segment,  which  should  be  an  HMODULE,

//  and  make  a  far  pointer  out  of  it.

lpModule  =  MAKELP(FarGetOwner(hinst),  0  );

//  Check  if  the  owning  segment  is  a  valid  HMODULE  by  looking  for

//  the  NE  signature.  If  HMODULE  isn't  valid,  something  is  seriously  wrong,

//  so  pop  into  a debugger  with  an  INT  3.

if  (  'NE'  !=  lpModule->ne_signature  )

INT  3

//  If the  owning  module  is  a  DLL,  just  return  the  FARPROC  passed  in.

//  MakeProcInstance  thunks  aren't  necessary  for  DLLs

if  ( lpModule->ne_flags  & MODFLAGS  DLL  )

return  lpProc;

if  ( spaces  left  in  TDB  for  thunk  )

lpThunk  = MAKELP(  TDB,  TDB->TDB_next_MPI_thunk  )

goto  InsertThunk

space  in  the  add  on  thunk  segment  (offset  B2h  in  TDB)  )

lpThunk  = MAKELP(  segment  & offset  of  next  free  slot  in

add  on  segment  );

goto  InsertThunk

// Allocate  memory  for  a  new  thunk  segment  (0x40  bytes  in  size).

newThunkSegment  = GlobalAlloc(  GMEM_ZEROINIT,  0x40  );

if  (  newThunkSegment  ==  0  )

goto  ReturnFailure;
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Use  AllocSelector  and  PrestoChangoSelector  to  make  a new  code  segment

alias  for  the  thunk  segment.

if  (  AllocSelector  fails  )

goto  ReturnFailure;

Initialize  fields  of  new  thunk  segment  to  be  the  same  format  as  offsets

BOH  through  Flh  of  the  Task  Database.  Link  this  new  segment  into

the  linked  list  of  thunk  segments.  The  head  of  this  list  is  the

WORD  at  offset  OxB2  in  the  current  TDB.

lpThunk  =  first  slot  in  newly  created  thunk  segment

goto  InsertThunk;

ReturnFailure:

KRDEBUGTEST(  "err  K16  MakeProcInstance  failed.  Did  you  check  return"

"values?"  );

return  0;

InsertThunk:

Update  the  nextThunk  field  to  point  at  the  next  available  slot  in

whatever  segment  we're  putting  the  new  thunk  into.

lpThunk->mov_ax_opcode  = 0xB8;

lpThunk->hinstValue  =  hinst;

lpThunk->imp_far_opcode  =  0xEA;

lpThunk->lpfn  =  lpProc;

//  Return  a  far  pointer  that's  a  callable  code  address.

return  MAKELP(  code  alias  selector,  OFFSETOF(lpThunk)  );

The TaskFindHandle()  function
I chose to  include  the TOOLHELP TaskFindHandle  function  in this chapter
since  many programmers are under the impression that the TOOLHELP
functions  are somehow  magic.  As you  can see in the pseudocode,

TaskFindHandle  is merely a convenient way to  access  selected fields in a task
database.  A downside to TaskFindHandle  is that you'll  get a whole collection
of information,  even  if you  only need to know  one particular  value.  If you
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have time-critical  code that's  called  many times a second, you might want to
forego  TaskFindHandle  and read  the information  out  of the Task Database
directly.  Some might  argue that you sacrifice portability,  but at this stage in
the game, the  fields in the TDB that TaskFindHandle  collects  aren't  going to
change;  too  many applications would break.

Like  almost  all  the  TOOLHELP  functions,  TaskFindHandle  first
checks  to  make  sure  that  you've  passed  reasonable  parameters.  This
means  that  you've  passed  a valid  pointer  to  a TASKENTRY  structure,
and  that  the  first  field  (dwSize)  is initialized  to  the  size of a TASKENTRY
structure.  After  these  tests,  TaskFindHandle  calls  an  internal  routine  that
does the  real  work  of copying the  information  out  of the  TDB and  into
the  TASKENTRY  struct.  I've  called  this  function  CopyTasklnformation
in the  pseudocode.

The  only test that  CopyTasklnformation  makes to ensure you've  passed
a valid HTASK is to  look for the TD signature WORD  at offset 0xFA in the
TDB. You could easily construct  a dummy segment that  passes this very lax
test.  In its defense,  the IsTask APl function isn't  any more  stringent.
Assuming  that  the TD signature test succeeds, the  majority  of
CopyTasklnformation  consists  of copying fields in the TDB segment into
the TASKENTRY structure.  At the very end of the routine,  the code makes
a brief excursion into  the task's stack segment in order  to copy the  stack's
top,  bottom, and minimum values  into the TASKENTRY structure.

The  code for CopyTasklnformation has two changes  from the
Windows  3.1  version  of TOOLHELP;  both changes  are related  to  32-bit
tasks.  The first change was  made  because  the pseudo  tasks created  for
Win32  processes  don't  have  an  HINSTANCE segment. For these  tasks,
TOOLHELP  fills in the TASKENTRY. hlnst  field with  the task's TDB seg-
ment.  The  second change involves  the  stack  boundary  fields  (wStackTop,
and so on).  The TDBs of Win32  processes  have  0 in the  fields where  the
SS:SP would normally go. Therefore,  CopyTasklnformation doesn't  bother
to  fill in the wStackTop,  wStackMinimum,  and wStackBottom  fields  for
Win32  tasks.

Pseudocode for TaskFindHandle

//  Parameters:

//  TASKENTRY  far  *  IpTask

//  HTASK  hTask

//  Verify  that  TOOLHELP  has  been  initialized,  that  a  nonzero  LPTASKENTRY

//  has  been  passed,  and  that  the  dwSize  field  of  the  TASKENTRY  struct



//  has  been  filled  in.

if  (  (ToolhelpInitialized  ==  FALSE)

II  (  lpTask  ==  NULL  )

II  (lpTask->dwSize  != sizeof(TASKENTRY))  )

return  FALSE;

//  Internal  function  that  fills  in  the  TASKENTRY  struct.

CopyTaskInformation(  lpTask,  hTask  );

Pseudocode for Copy Tasklnformation

/ /  Parameters:
//  TASKENTRY  far  *  lpTask

//  HTASK  hTask

//  Locals:

//  LPTDB

hTask  l =  1;

Make  sure  the  segment  referenced  by  the  hTask  segment  is  at  least

8x204  bytes  long.  If  not,  return  FALSE.

]pTDB  = MAKELP(  hTask,  0  );  //  Make  a  pointer  to  the  TDB  segment.

if  (  lpTDB->tdb_sig  != 0x4454  )  //  Verify  TD  signature  is  present.

return  FALSE:

lpTDB;

//  If  a MOVEABLE  handle  was  passed,  convert  to  a  selector.

lpTask->hNext  =  lpTDB->TDB_next;

lpTask->hTask  =  hTask;

lpTask->hTaskParent  =  lpTDB->TDB_Parent:

lpTask->wSS  =  ]pTDB->TDB_taskSS;

lpTask->wSP  =  lpTDB->TDB_taskSP;

lpTask->wcEvents  =  lpTDB->TDB_nEvents;

lpTask->hQueue  =  lpTDB  )TDB_Queue;

lpTask->wPSPOffset  =  ]pTDB->TDB_PSP;

if  (  lpTOB->TDB_flags  &  TDB_FLAGS_WIN32  )

lpTask->hInst  =  hTask;

//  Next  task.

//  Current  task.

//  Parent  task.

//  Task's  SS:SP.

//  Number  of waiting  events.

//  Message  queue  handle.

//  PSP/PDB  of  task.

// Win32  programs  don't  have  real  HINST's.

//  Start  filling  in  fields  in  the  TASKENTRY  struct,  copying  the  data

//  from  the  TDB  segment.

546
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else

lpTask->hInst  =  lpTDB->TDB_HInstance;  //  HINSTANCE  of  task.

lpTask->hModule  =  lpTDB->TDB_HMODULE; //  HMODULE  of  task.

//  Copy  the  module  name  from  the  TDB  over  into  the  TASKENTRY  struct.

memcpy(  &lpTask->szModule,  lpTDB->TDB_ModName,  8  )

lpTask->szModule[8]  = 0;  //  Null  terminate  the  string.

//  If  it's  a Win32  program,  don't  bother  to  try  and  retrieve  the

//  stack  Pounds  values  listed  below.  Just  return  TRUE.

if  (  lpTDB->TDB_flags  & TDB_FLAGS_WIN32  )

return  TRUE;

if  ( VERR  lpTDB->wSS  fails  )

return  TRUE;

//  Make  sure  the  task's  stack  segment

//  is  accessible.

//  Copy  the  stack  boundary  fields:

lpTtask->wStackTop  = WORD  at  offset  0x0A  in  lpTask->wSS  segment;

lpTtask->wStackMinimum  = WORD  at  offset  0x0C  in  lpTask->wSS  segment;

lpTtask->wStackBottom  =  WORD  at  offset  0x0E  in  lpTask->wSS  segment;

return  TRUE;

THE SHOW16  PROGRAM

I wrote  the  SHOW16  program to illustrate  the concepts  I've  described  in
this  chapter.  (The source code for SHOW16  is on  the accompanying  disk.)
This program shows  the task list,  the  module  list,  and details  about the cur-
rently  selected task  or module.  In addition,  you can double-click  certain
lines  in the  details  window  to  access  even more  in-depth  information  about

that particular  line.
SHOW16  is a Windows  95-specific  application,  and is almost  guaran-

teed  to  not work  properly on  other Win16 environments  such as Windows
3.1,  NT,  or OS/2  2.x.  The goal  of SHOW16  is to  show as  much  as possible

about  Windows  95  tasks and modules,  not  to  be portable.
When  you first start up SHOW16,  it looks  something  like the  screen-

shot  in Figure 7-2.  The listbox  on  the  left shows  either the task list (the
default  when  starting  up)  or the module  list.  Clicking on the two  radio but-
tons  in the top  left of this  listbox toggles  between the two  lists.  Each time
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you  click on  a radio  button,  the  appropriate  list is updated  from scratch, so
this  is a  handy way to  force  a refresh  of either  list.

Figure  7-2
The opening  screen  o f  the  SHOW  16 program  contains  two  listboxes  that provide
information  about the  currently  selected  task  or  module.  The listbox  on  the  left  lets you
view  either  the  task  list or  the  module  list,  and  the  listbox  on  the  right  shows  details  about
items  in  those  lists.

The  listbox  on the  right  (the  details window)  shows details  on whatever
item  is selected in the  left listbox.  These details  are  made  up  of information
extracted  from the Task Database  or  Module  Database  directly, rather than
from  TOOLHELP  functions.  Items in the  details window  preceded  by a +
(plus)  symbol  can  be double-clicked  to  change  the  details  window.  If the  line
is a TDB or HMODULE  line,  the  details  window  changes  to  show the
details  for the TDB or  HMODULE  you  double-clicked.  Otherwise,  the
details  window  changes  to  a more  detailed  report  on  the  specific line  you
double-clicked.

The  task view in  Figure  7-2  has  several  items  of note.  In the  task  list in
the  left listbox,  task  names  that  are  followed  by  (Win32)  are  32-bit
processes.  In the  right  listbox,  the  second  line  down  shows  the  HMODULE
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associated  with  the  task,  and  has  a  + at the  beginning.  The  HMODULE
value  has  been passed to  GetModuleFileName  to  retrieve  the  path  of the
associated  EXE or  DLL,  which  is also displayed.  If you  double-click  this
line,  the details  window  will  change  to  the  module  database  details  view for
this  HMODULE.  (The module  database  detail  view is described  a  bit later
in  this  section.}  The  other  line that  you  can  double-click  in  the  task  details
window  is the parent  task.  This  changes  the  details  view to  the  details  view
of the  parent  task.

The  task  details  window  shows  all the  fields  in  a task  database that
might  be  of even remote  interest.  Fields  in the  TDB that  don't  provide  any
useful  information  are not  shown.  In  addition,  fields  that  are  described  as
unused  in the  earlier  TDB description  receive  special  treatment.  At the  end
of the code  that  displays  the  task details  is a  series of assert  statements.  Each
of the  assert  lines checks  to  make  sure  that  an  unused  field is set to  0. If  any
of these  asserts  fails,  it  indicates  that  the  field  is probably  used for some-
thing  that  I haven't  uncovered.

Figure  7-3  shows  the  other  major  display  given  by  SHOW16.  This  is
the  module  list,  which  is obtained  by selecting the  Modules  radio  button.
The  first  set  of modules  in the  left  listbox  are  regular  module  databases
from  16-bit  EXEs  and  DLLs.  These  modules  are  found  by walking the
module  database  list  using the  linked  list fields  described  earlier.  At  the  end
of the  list of  modules  are  the  pseudo  module  databases  created  for Win32
EXEs  and  DLLs  (you  may  have to  scroll  down  to  see them).  These  modules
all  have  (Win32)  appended  to  the  end  of the  module  name.  Since these
modules  aren't  in the  regular  module  database  list,  SHOW16  takes  a  brute
force  approach  to  finding  them.  At  the  end  of the  UpdateModuleList  func-
tion  in  SHOW16.C,  the  code  examines  every  possible  ring  3 LDT  selector,
looking  for  segments  that  are  module  databases.  For  each  module  database
it  finds,  the  code  looks  for  the  MODFLAGS_WIN32  flag  at  offset  0xC  in
the  module  database;  if this  flag  is set,  the  code adds  the  module  to  the  end
of the  window's  list.

Figure  7-3  shows the  module  details  window,  which  has  many  interest-
ing things  to  click on.  For  starters,  look  at  the  "imported  modules"  line.
Each  of the  indented  lines  below it is a DLL that  the  module  implicitly links
to.  Double-clicking  on  one of these  indented  lines  causes  the  module  details
window  to  show details  about  the  selected  module.  There  are also numerous
more  specialized details views available  at  the top  of this view.  Specifically,
you  can switch to  a details view of the  following  module-database  items:
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*  Segment  table
*  Entry table
*  Resources
*  Resident  names
*  Nonresident  names

Figure  7-3
The  module  list in  the  left  listbox  shows  the  regular  module  databases  and  the pseudo
module  databases.  The right  listbox  shows  the  details  of  the  currently  highlighted  module.

A typical  segment table  is shown  in Figure  7-4.  For  each  segment in the
module's  segment  table,  the  details  view shows  the  segment's  ordinal  num-
ber  (the  segment  portion  of a  logical  address),  global  heap handle,  type
(either  code  or  data),  and  size.  An ambitious  programmer  could  modify the
SHOW16  source  to  bring  up  a hex dump  window  when  one  of these  lines  is
double-clicked.  Incidentally,  font  modules  don't  have  segment  tables,  so
double-clicking  on  the  segments,  entry table,  resident  names,  or  nonresident
names  table  lines  won't  change  the  details  view.
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Figure  7-4
The details  window  for this segment  window  table  shows  each  segment's  ordinal  number,
global  heap  handle,  type,  and size.

Figure  7-5  shows  a resource  view details  window.  As you  can  see,  the
information  in this  window  is presented  in  a  format  similar  to  the  layout
of the  resource  table  in  the  module  database.  Each  section  starts  out  with
the  type  of the  resources  that  will  follow  (for  example,  Version  Info,  Icon,
and  so  on).  Immediately  following  the  resource-type  line  is  a  series  of
indented  lines,  each  representing  one  resource  instance  (that  is,  one
bitmap,  one  cursor,  and  so  on).  Each  of the  indented  lines  provides  the
following  information  about  that  resource:  the  offset  of the  resource  in
the  file  (in  sectors  for Winl6  modules),  the  size of  the  resource  (in sec-
tors),  the  ASCII  name  or  ID  of the  resource,  and  the  resource's  global
heap  handle  (if loaded  in  memory).  An expanded  version  of  SHOW16
would  let  you  double-click  on  each  of these  lines  and  see the  resource
graphically.
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Figure  7-5
The resource  view  details  window  presents  information  in  a  format similar  to  the  layout of
a  resource  table  in  the  module  database.

Figure 7-6  shows a  resident names  details view. This  view shares the
same format  as  the nonresident names  detail view.  In the  SHOW16  code,
the  main difference  between  the  two views  is that  nonresident  names  have
to  be read  in from the disk file, whereas  resident names  can  be processed
straight  out  of the module  database.  Each  line in the resident/nonresident
names  detail  view starts  with  an export  ordinal  and  is followed  by the name
of the exported  function  or variable.  The  first line in the resident  names
view has an export  ordinal  of 0 and  is the module  name  (for example,
USER).  The first line  in the nonresident  names  view has an export  ordinal
of 0 and is the module  description  (for example,  Microsoft Windows  User
Interface).



D L L ,

553

Figure  7-6
The resident names  detail  view,  showing  exported  functions  and  their  ordinal  value.  It has
the same  format as  the  nonresident  names  detail  view.

Figure  7-7 shows the last details  view, which is the entry table.  Each line
represents  one slot in the module's entry table,  and starts  with the export
ordinal  and logical address for the entry. The remainder of the line contains the
flags for the entry. Every entry is either MOVEABLE or FIXED,  and usually
is EXPORTED.  It would have  been really nice to  display the function  name
of the entry.  However, this  would have required  a  significant  amount of time
to  do,  since most  of a module's  names are usually found in the nonresident
names  table,  which requires a  disk read to get at.  In addition,  there's no way
to  quickly  find the name for a given export  ordinal  in a resident/nonresident
names tables.  The overhead  of displaying  the entry names wouldn't  be bad
for a  small  DLL, but for something like USER (which  has several  hundred
entries), you could  tie up the system for quite a while.
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Figure  7-7
The entry table  view  shows  the  export  ordinal,  the  logical  address,  and  the  flags  for  the  entry.

SUMMARY

Although Windows  95  is marketed  as a  32-bit operating  system,  there  are
still  many parts  of it that  rely on  16-bit  code.  In  addition,  until  most  appli-
cation  development  becomes  32-bit  based,  Windows  95  will primarily  be
used  to  run  16-bit  programs.  Therefore,  it's  useful to  have an  understanding
of how  the  16-bit  components  of Windows  95 work.  In  this  chapter,  we've
looked  at  two  of the  key  16-bit  data  structures  (the module  and  task  data-
bases).  I've  shown  in some  places how these  16-bit  data  structures  run  par-
allel  to  their  32-bit  equivalents  (which I discussed  in  Chapter  3).  Although  I
haven't  covered all  aspects  of Windows  95's  support  for  16-bit  modules  and
tasks,  the  information  I've  presented  in this  chapter  should  be sufficient  for
all but  the  most  hard-core  spelunker.
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T he format of an operating system's executable file is in many
ways a mirror  of the  operating  system s built-in assumptions

and  behaviors.  Although  studying  the  ins  and  outs  of an  exe-
cutable  file  format  isn't  something  that  usually  appears  high
on most programmers'  list of things to  do,  a great  deal  of useful
knowledge  about  the  operating  system  can  be  gleaned  from
doing  this.  Dynamic  linking,  loader  behavior,  and  memory
management  are  just  three  examples  of  operating  system
specifics  that can be inferred by studying the executable format.

In this chapter,  I'll  provide a real-world  tour  of the  Portable
Executable  (PE) file format that Microsoft  has designed  for use  by
all its Win32  operating  systems  (Windows  NT, Windows  95,
and Win32s).

You may  be wondering why  I cover the  PE format  in this
book,  since  there  are  several  descriptions  of the  format on the
Microsoft  Developer  Network  CD-ROM.  The  primary  reason
I describe  PE format executables  here  is because  the  structures
used in PE files  are  also key data  structures  within  Windows  95
itself.  For  example,  Windows  95  maps  the  header  section of a
PE file  into  memory and  uses  it to  represent  a  loaded  module.
To understand  how the Windows  95  kernel  works,  you  need to
understand  the  PE format:  It's  that  simple.
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Another  reason  I discuss  PE files in this  book  is that,  like almost  all
specifications  from Microsoft,  Microsoft's  PE documentation  assumes that
you  live and  breathe  this executable  file format.  Calling the Microsoft docu-
mentation  terse would  be an  understatement.  My goal  in  this chapter  is to
flesh  out that  documentation  and correlate  it to  things you  experience  every
day.  Along the way I've  shown a variety  of ways  in which  the PE format
affects the  operating  system implementation  and vice versa.

The  PE format  plays  a key role in all  of Microsoft's  operating  systems
for  the foreseeable  future,  including  Cairo.  Even if you're  programming  for
Windows  3.1  using Visual  C++, you're  still  using PE files (the 32-bit  DOS
extended components  of Visual  C++ use this  format).  If you're  going to  do
almost  any  sort  of low-level system programming  in Windows  95,  a work-
ing knowledge  of PE files is essential.

In discussing the PE format,  I won't  be laboriously going over endless hex
dumps  and explaining the significance of individual  bits for pages on end.
Instead,  I'll  present the concepts embedded in the PE file format and relate
them to things you encounter  everyday as part of your Win32 programming.
For example, the notion of thread local  variables  (•  la  "declspec(thread))
drove  me crazy until I saw how it was implemented with elegant simplicity in
the executable file. Since many Win32  programmers  are coming from a
Win16  background,  I'll correlate the constructs  of the PE file format back to
their  16-bit  file-format equivalents.

At the  same time that Microsoft introduced  a different  executable for-
mat,  it also introduced  new object module  and library  formats  that  its com-
pilers  and assemblers  produce.  (The new LIB file format is essentially  just a
bunch  of OBJ files strung together  along with  an index,  so when  I refer to
OBJ files from here  on out,  I'm  referring to  both  COFF  OBJ and LIB files.)
These new OBJ and LIB file formats  share many concepts with the PE format.
Until  recently,  there was no publicly available  information  on Microsoft's  OBJ
and LIB files - - and even at the time of this writing, information  is scant.
Therefore,  it's worthwhile  to cover the  OBJ and LIB file formats  as well.

It's common knowledge that Windows NT (the first of the Win32 operating
systems) has a VAX VMS and UNIX heritage.  Many of the key NT developers
designed and coded for those platforms  before coming to Microsoft. When it
came time to design NT, it was only natural that they tried to minimize their
bootstrap  time by using previously written and tested tools.  The executable and
object module format that these tools produced and worked with is called
COFF (Common Object File Format).
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The  relatively  old  (in computer  years)  nature  of COFF  can  be seen in
the  fact that  certain  fields  in  the  files  are  specified in  octal  format.  The
COFF format  by itself was  a good  starting point,  but  needed  to  be extended
to  meet  all the  needs  of a modern  operating  system  such  as Windows  NT  or
Windows  95.  The result  of this  updating is the  PE (remember,  this stands  for
Portable  Executable)  format.  It's called  portable  because  all  the  implementa-
tions  of NT  on various  platforms  (Intel  386,  MIPS,  Alpha,  Power  PC,  and
so  on)  use the  same executable  format.  Sure,  there  are differences  in things
such  as the  binary encodings  of CPU instructions.  You can't  run  a MIPS
compiled PE executable  on  an  Intel  system.  However,  the important  thing  is
that  the  operating  system  loader  and  programming  tools  don't  have  to  be
completely rewritten  for  each new  CPU that  arrives  on  the  scene.

The  strength  of Microsoft's  commitment  to  get Windows  NT  up  and
running  quickly  is evidenced  by the  fact that  it  abandoned  existing
Microsoft  32-bit  tools  and  file formats.  Virtual  device drivers  written  for
Windows  3.x were  using a different  32•bit  file layout  (the  LE format)  long
before  NT  appeared  on  the  scene.  In  a testimonial  to  the  "if it  ain't  broke,
don't  fix it"  nature  of Windows,  Windows  95  uses  both  the  PE format  and
the  LE format.  This  allowed Microsoft  to  use existing Windows  3.x  code in
a  big way.

Although  it's reasonable  to expect  a completely  new operating  system
(Windows  NT, that is) to  have  a completely  different executable  format,  it's  a
different  story when it comes to object module  (.OBJ and LIB) formats.
Before  Visual  C++ 32-bit edition  1.0,  all Microsoft compilers  used the Intel
OMF  (Object Module  Format)  specification. The Microsoft compilers  for
Win32  implementations  produce COFF format  OBJ files.  Some Microsoft
competitors  such as Borland have chosen to forego  the  COFF format  OBJs
and stick with  the Intel  OMF format.  The result of this  is that companies  pro-
ducing OBJs or  LIBs for use with multiple  compilers  will need to go  back to
distributing  separate  versions of their products  for different compilers  (if they
weren't  already).

Those  of you  who  like to  read conspiracy  into  Microsoft's  actions  might
see the  decision  to change  OBJ formats  as  evidence  of Microsoft  trying  to
hinder  its competitors.  To claim true  Microsoft  "compatibility"  down  to the
OBJ level,  other  vendors will  need to  convert  all their  32-bit tools  over to
the  COFF  OBJ and LIB formats.  In  short,  the  OBJ and  LIB file format  can
be viewed as yet another example  of Microsoft abandoning existing standards
in favor  of something that  suits it  better.
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The  PE format  is documented  (in the  loosest  sense of the  word)  in the
WINNT. H header  file,  along  with  certain  structure  definitions  for  COFF
format  OBJs.  (I'll  be using the  field  names  from WINNT. H  later  in the
chapter.)  About  midway  through  WINNT. H  is a section  titled  "Image
Format."  This  section  of the  file  starts  out  with  small  tidbits  from the  old
familiar  DOS  MZ  format  and  NE  format  headers  before  moving  into the
newer  PE information.  WINNT. H provides definitions  of the  raw  data
structures  used  by PE files,  but  contains  only  the  barest  hint  of useful
comments  to  explain  what  the  structures  and  flags  mean.  The  author  of
the  header  file  for the  PE format  (a certain  Michael  J.  O'Leary)  is certainly
a  believer in  long,  descriptive  names,  along with  deeply  nested  structures
and  macros.  When  coding  with  WINNT. H,  it's  not  uncommon  to have
expressions  like this:

pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;

Besides  just reading about  what  PE files  are composed  of,  you'll  also
want  to  dump  out  some PE files  to  see for  yourself the  concepts  presented
here.  If you  use Microsoft  tools  for Win32  development,  the  DUMPBIN
program  from Visual  C++  and  the  Win32  SDK can  dissect  and  output  PE
files  and  COFF  OBJ/LIB files  in  human-readable  form.  DUMPBIN  even  has
a  nifty  option  to  disassemble  the code  sections  in the  file  it's taking  apart.  In
light  of Microsoft's  claims  that  you're  not  allowed to  disassemble  its prod-
ucts,  it's pretty  interesting  that  it would  provide  a tool  that  makes  it so easy
to  disassemble  its programs  and  DLLs.  If the  ability  to  disassemble  EXEs
and  OBJs wasn't  useful,  why  would  Microsoft  have  bothered to  add  this
feature  to  DUMPBIN?  It sure  sounds  like another  case  of  "Do  as we say,
not  as we do."

Borland  users can use TDUMP  to view PE files,  but TDUMP  doesn't
understand  the  COFF  style OBJ files. This isn't a huge issue since the  Borland
compiler  doesn't produce COFF format  OBJs in the first place. Throwing my
own  hat  into the  ring,  I've written  a PE and  COFF  OBJ/LIB file dumping pro-
gram  (PEDUMP)  that  I think  provides  more understandable  output  than
DUMPBIN.  Although  it doesn't  have a disassembler,  it is otherwise  function-
ally equivalent to  DUMPBIN,  and adds  a few new features  to make  it worth
considering.  The source code for PEDUMP is on the disk included with this
book,  so I won't  list it here in its entirety.  Instead,  I'll provide  sample output
from  PEDUMP to  illustrate the concepts  as I describe them.
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THE PEDUMP PROGRAM

The  PEDUMP program  is a command-line  utility for  dumping  PE files and
COFF  OBJ/LIB format  files.  It  uses the Win32  console  capabilities to  elimi-
nate the need for  extensive  user-interface  work.  The  syntax for  PEDUMP is
as  follows:

PEDUMP  [switches]  filename

The switches can be seen by running PEDUMP with no arguments.
PEDUMP  uses the following switches:

/A
/H

/I

/L

/R

/S

include  everything  in dump  (essentially,  enable  all  the  switches)

include  a  hex  dump  of each  section  at the  end  of  the  dump

include  Import  Address  Table  thunk  addresses

include  line number  information  (both  PE  and  COFF  OBJ  files)

show  base  relocations  (PE  files  only)

show  symbol  table  (both  PE and  COFF  OBJ  files)

By default,  none  of the  switches  are  enabled.  That  way,  most  of the
information  you  need  will  be  available,  but  you  won't  create  a  huge
amount  of output.

PEDUMP sends its output to the standard  output file (for example, the
screen),  so its output can be redirected  to a file with an > (greater-than  sign) on
the command line.

The sources for PEDUMP are included with it. PEDUMP was built with
the Microsoft Visual C++ 2.0 compiler, although I have also compiled it with
Borland C++ 4.x throughout  its development.

BASIC WIN32 AND PE CONCEPTS

Before jumping  into  a  discussion of the layout of a PE file, I need to  go over
a few fundamental ideas that  permeate  its design.  For this discussion,  I'll  use
the  term module to mean  the code,  data,  and resources  of an executable  file
or  DLL that  has  been loaded  into  memory.  Besides code and data  that  your
program  uses directly, a module is also composed of the supporting  data
used  by Windows  to  determine  where  the code and  data  is located  in mem-
ory. In Win16,  the  supporting  data structures  are  in the  module  database
(the segment referred  to  by an HMODULE).  In Win32,  this  information  is
kept in the PE header (the IMAGE_NT_HEADERS  structure),  which  I'll
explain  in detail  shortly.
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The  most  important  thing  to  know  about  PE files  is that  the  executable
file  on  disk  is very  similar  to  what  the  module  will look like  after Windows
has  loaded  it.  That's  because  the  Windows  loader  doesn't  need  to  work
extremely  hard  to  create  a process  from the  disk file.  Rather,  the  loader  can
take  it  easy  and  use Win32  memory  mapped  files  to  load  the  appropriate
pieces  of the  PE file  into  a program's  address  space.  To  use  a construction
analogy,  a  PE file  is like  a prefabricated  house:  There  are  relatively  few
pieces,  and  each  piece can  be  snapped  into  place  with  just  a  small  amount
of work.  And,  just  as  it's  fairly  easy to  hook  up  the  electricity  and  water
connections  in  a prefab  house,  it's  also  a  simple  matter  to  wire  a PE file up
to  the  rest  of the world  (that  is,  connect  it  to  its  DLLs,  and  so  on).

This  same  ease  of loading  applies  to  DLLs  as well.  Once  an  EXE or
.DLL  module  has  been  loaded,  Windows  can  effectively  treat  it  like any
other  memory  mapped  file.  This  is in  marked  contrast  to  the  situation in
16-bit  Windows.  The  16-bit  NE  file  loader  reads  in  portions  of the  file  and
creates  separate  data  structures  to  represent  the  module  in memory.  When
a  code  or  data  segment  needs  to  be loaded,  the  loader  has  to  allocate  a new
segment  from the  global  heap,  find  where  the  raw  data  is stored  in  the  exe-
cutable  file,  seek to  that  location,  read  in the  raw  data,  and  apply  any
applicable  fixups.  In  addition,  each  16-bit  module  is responsible  for
remembering  all  the  selectors  it's  currently  using,  whether  the  segment has
been  discarded,  and  so  on.

For Win32,  however,  all the memory used  by the  module  for  code,  data,
resources,  import  tables,  export  tables,  and  other  things  is in  one contiguous
range  of linear  address  space.  All you  need to  know in this  situation  is the
address  where  the  loader  mapped  the  executable file  into  memory.  You can
then easily find all the  various pieces of the  module  by following  pointers
stored  as part  of the  image.

Another  idea  you  should  be  acquainted  with  before  we  start  is the
Relative  Virtual  Address,  or  RVA. Many  fields  in  PE files  are  specified  in
terms  of RVAs. An RVA is  simply  the  offset  of some item, relative  to  where
the  file  is memory mapped  to.  For  example,  let's  say the  Windows  loader
mapped  a  PE file  into  memory  starting  at  address  0x400000  in  the  virtual
address  space.  If a certain  table  in the  image  starts  at  address  0x401464,
the  table's  RVA is  0x1464:

(virtual  address  0x401464)-  (base  address  0x400000)  = RVA 0x1464
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To convert  an  RVA into  a usable  pointer to  memory, simply add the
RVA to  the  base address  where the module was loaded into.  The term
base address  is another  important  concept to  remember.  A base address
describes  the  starting address  of a memory mapped  EXE or DLL. For
convenience, Windows NT and Windows 95 use the  base address  of a
module  as the  module's instance  handle  (HINSTANCE).  In Win32, call-
ing the  base address  of a module an HINSTANCE is somewhat  confus-
ing, because  the term  instance  handle  comes from  16-bit Windows.  Each
copy of an application  in Winl6  gets its own separate data  segment  (and
an associated global  handle) that  distinguishes  it from other copies of the
application;  hence the term,  instance  handle.

In Win32,  applications don't  need to  be distinguished  from one
another  because  they don't  share  the same address space.  Still, the term
HINSTANCE  persists  to  keep at least the  appearance  of continuity
between Winl6  and Win32.  What's  important  for Win32  is that you can
call  GetModuleHandle()  for any DLL that your process uses,  and get a
pointer  that you can use to  access the module's components.  By compo-
nents,  I mean its  imported  and exported  functions,  its relocations,  its
code and data  sections,  and so on.

Another  concept to  be familiar with when investigating  PE files and
COFF OBJs is the  section.  A section  in a PE file or COFF OBJ file is
roughly  equivalent to  a segment  or the resources in a  16-bit NE file.
Sections  contain either code or data.  Some sections  contain  code or data
that  your program  declared and uses directly,  while  other  data  sections
are created  for you by the  linker and librarian,  and contain  information
vital  to the  operating  system.  In some of Microsoft's  descriptions  of the
PE format,  sections  are also referred to as  objects.  This term has so many
possibly  conflicting meanings,  however, that I'll  stick to calling  the code
and data  areas  sections.  I'll  discuss sections  more thoroughly  in the
"Commonly Encountered  Sections"  part  of this chapter;  for  now, it's just
important  for you to  know what a section is.

Before jumping into the details  of the  PE file, examine Figure  8-1,
which shows the  overall  layout  of a PE file. I'll  be explaining the pieces
individually,  but  it's  helpful  to  see them all together  in one place.
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F i g u r e  8-  1
The  overall  layout of a  PE file.

THE PE HEADER
The  first  stop  on  our tour  of the  PE format  is the  PE header.  Like all other
Microsoft  executable  file  formats,  the  PE file has  a collection  of fields  at  a
known  (or easy-to-find)  location that  define what  the  rest  of the  file looks
like.  The  PE header  contains  vital  pieces of information  such as the  location
and  size of the  code and  data  areas,  what  operating  system  the  file  is
intended  to  be used with,  and  the  initial  stack size.

As with  other executable formats  from Microsoft,  the PE header isn't at
the very beginning of the file. Instead, the first few hundred  bytes of the typical
PE file are taken up by the DOS stub. This  stub is a minimal DOS program
that prints out  something to the effect of "This  program cannot be run in DOS
mode."  The intent is that if you run a Win32  program in an environment  that
doesn't  support Win32, you'll  get an informative  (and frustrating)  error  mes-
sage.  When the Win32  loader  memory maps a PE file, the first byte of the file
mapping corresponds  to the first byte of the DOS stub. That's  right.  With every
Win32  program you start up, you get a complimentary  DOS program loaded
for free!  (In Win16,  the DOS stub isn't loaded into memory.)
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As in other  Microsoft  executable  formats,  you  find  the  real  header  by
looking up  its  starting  offset,  which  is stored  in the  DOS header.  The
WINNT. H file includes a structure definition  for the DOS stub header that
makes it very easy to look up where the PE header starts.  The e_lfanew field is
a relative offset (or RVA, if you prefer)  to the actual  PE header. To get a pointer
to the PE header in memory, just add the field's value to the image base:

//  Ignoring  typecasts  and  pointer  conversion  issues  for  clarity...

pNTHeader  = dosHeader  + dosHeader->e_lfanew;

Once you  have a pointer to the  main  PE header,  the  real  fun  begins.  The
main  PE header is a  structure  of type IMAGE_NT_HEADERS,  defined  in
WINNT. H.  The  IMAGE_NT_HEADERS  structure  in memory  is what
Windows  95  uses as its  in-memory  module database.  Each  loaded  EXE or
DLL in Windows  95 is represented  by an IMAGE_NT_HEADERS  structure.
This  structure  is composed of a DWORD  and  two  substructures,  and  is laid
out  as follows:

DWORD  Signature;

IMAGE_FILE_HEADER  FileHeader;

IMAGE_OPTIONAL_HEADER  OptionalHeader;

The  Signature  field viewed as ASCII text  is PE\0\0  (PE followed  by two
0 bytes).  If the e_lfanew field in the  DOS header pointed to  an NE signature
at  this  location  instead  of a  PE signature,  you'd  be working with  a Win16
NE file.  Likewise,  an LE in the  signature  field would  indicate  a Virtual
Device Driver  (VxD)  file. An LX here would  be the  mark  of a  file for
Windows  95's  arch  rival,  OS/2.

Following  the PE signature DWORD in the PE header is a structure of type
IMAGE_FILE_HEADER. The fields of this  structure contain  only the most
basic information  about the file. The structure appears to  be unmodified from
its original COFF implementations.  Besides being part  of the PE header,  it also
appears  at the very beginning  of the  COFF OBJs produced  by the Microsoft
Win32  compilers.  The fields of the IMAGE_FILE_HEADER follow.

WORD  Machine
The  CPU that  this  file is intended  for.  The  following  CPU IDs are  defined:

Intel I386  0x14C
Intel i860  0x14D
MIPS R3000  0x162
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MIPS R4000
DEC Alpha  AXP
Power PC
Motorola  68000
PA RISC

0x166
0x184
0x1F0(little endian)
0x268
0x290(Precision  Architecture)

WORD  NumberOfSections
The  number  of sections  in the  EXE or  OBJ.
DWORD        TimeDateStamp
The  time that  the  linker  (or compiler for an  OBJ file) produced this  file. This
field holds  the  number  of seconds since December  31,  1969,  at 4:00  P.M.

DWORD       PointerToSymbolTable

The file offset of the COFF symbol table.  This field is used only in OBJ files and
PE files with COFF debug information.  PE files support  multiple  debug formats,
so debuggers  should  refer  to  the  IMAGE_DIRECTORY_ENTRY_DEBUG
entry in  the  data  directory  (defined  later).
DWORD  NumberOfSymbols
The  number  of symbols  in the  COFF  symbol  table.  See the  preceding  field.
WORD        SizeOfOptionalHeader
The  size of an  optional  header  that  can  follow this  structure.  In  executables,
it  is the  size of the  IMAGE_OPTIONAL_HEADER  structure  that  follows
this  structure.  In  OBJs, Microsoft  says this  field  is supposed to  always be 0.
However,  in  dumping  out  the  KERNEL32.LIB  import  library,  there's  an
OBJ in there  with  a nonzero  value  in this  field, so take  their  advice with  a
grain  of salt.
WORD       Characteristics
Flags with  information  about  the file.  Some important  fields are  described
here  (other  fields  are defined  in WINNT. H):

0x0001
0x0002
0x2000

There  are  no  relocations  in this  file.
File  is an  executable  image  (that is,  not  a  OBJ or  LIB).
File is a  dynamic link library,  not  a program.
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The  third  component  of the  PE header is a  structure  of type IMAGE_
OPTIONAL_HEADER.  For  PE files,  this  portion  certainly  isn't  optional.
The  COFF  format  allows  individual  implementations  to  define  a structure
of additional  information  beyond  the  standard  IMAGE_FILE  HEADER.
The  fields  in  the  IMAGE_OPTIONAL_HEADER  are  what  the  PE designers
felt was  critical  information  beyond  the  basic  information  in  the
IMAGE_FILE_HEADER.

All  the  fields  of the  IMAGE_OPTIONAL_HEADERS  aren't  necessarily
critical  for you  to  know.  The  more  important  ones  are the  ImageBase  and
the  Subsystem  fields.  If you  want,  you can  skim  over or  skip the  following
description  of the  fields.
WORD  Magic
A signature  WORD  that  identifies the  state  of the  image  file. The  following
values  are defined:

0x0107
0x010B

A ROM  image.
A normal  executable  image.  (Most  files  contain  this  value.)

BYTE  MajorL ink erVersion
BYTE  MinorLinkerVersion
The  version  of the  linker that  produced  this file. The numbers  should  be dis-
played as decimal values,  rather  than  as hex.  A typical  linker version is 2.23.

DWORD  SizeOfCode
The  combined  and  rounded-up  size of all the  code  sections.  Usually,  most
files  have  only  one code section,  so this  field  typically  matches  the  size of
the  .text  section.
DWORD  SizeOfinitializedData
This  is supposedly  the  total  size of all the  sections  that  are  composed  of ini-
tialized  data  (not including  code  segments.)  However,  it  doesn't  seem to  be
consistent  with  the  size of the  initialized data  sections  in the  file.

DWORD  SizeOfUninitializedData
The  size of the  sections  that  the  loader commits  space  for  in the  virtual
address  space,  but  that  don't  take  up  any  space  in  the  disk file.  These  sec-
tions  don't  need to  have  specific values  at  program  startup,  hence the  term
uninitialized data. Uninitialized  data  usually  goes  into  a  section called  .bss.
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DWORD       AddressOfEntry 
The address  where  the  image  begins  execution.  This  is an  RVA, and  usually
can  be found in the  .text  section. This  field  is valid for both  EXEs and DLLs.

DWORD     BaseOfCode
The  RVA where  the  file's  code sections  begin.  The  code  sections  typically
come  before the  data  sections,  and  after  the  PE header  in memory.  This  RVA
is usually  0x1000  in Microsoft  Link produced  EXEs.  Borland's  TLINK32
typically  has  a value  of 0x10000  in this  field  because  it defaults  to  aligning
objects  on  64K  boundaries,  rather  than  4K like the  Microsoft  linker.
DWORD   BaseOfData 
The  RVA where the  file's  data  sections  begin.  The  data  sections  typically
come  last  in  memory,  after the  PE header  and  the  code  sections.
DWORD      ImageBase
When the linker creates an  executable,  it assumes that  the file will  be memory
mapped  to  a specific location  in memory.  That address  is stored in this field.
Assuming a load address  allows linker  optimizations  to  take place. If the file
really is memory mapped  to that  address  by the loader,  the code doesn't  need
any patching  before  it can be run.  I'll talk  more  about  this  in the discussion  of
the  base relocations.  In NT  3.1  executables,  the  default  image base was
0x10000.  For DLLs, the default was 0x400000.  In Windows 95, the address
0x10000 can't  be used to  load  32-bit EXEs  because it lies within  a linear
address  region that's  shared  by all processes.  Therefore,  in Windows  NT  3.5,
Microsoft changed the  default  base address  for Win32  Executables  to
0x400000.  Older programs that were linked assuming a base address  of
0x10000  will take longer  to load  under Windows  95  because the loader  needs
to  apply the base relocations.  I'll  describe  base relocations  in detail later.
DWORD     SectionAlignment
When mapped  into  memory, each  section is guaranteed to  start  at  a virtual
address  that's  a multiple  of this value.  For paging  reasons,  the minimum  sec-
tion  alignment  is 0x1000, which is what  the  Microsoft  linker  uses  by default.
Borland  C++'s TLINK defaults  to  0x10000  (64KB).
DWORD      FileAlignment
In the PE file, the raw data  that comprises each section is guaranteed to  start at
a multiple of this value. The default value is 0x200  bytes, probably to ensure
that  sections always start at the  beginning  of a disk sector  (which are also
0x200  bytes in length).  This  field is equivalent to the segment/resource align-
ment size in NE files. Unlike NE files, PE files typically don't  have hundreds of
sections,  so the space wasted  by aligning the file sections is usually very small.
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WORD  Subsystem
The type of subsystem that  this  executable  uses for its user interface.
WINNT. H defines  the following values:

NATIVE = 1

WINDOWS_GUI  = 2
WINDOWS_CUI  = 3

OS2_CUI = 5

POSIX_CUI = 7

Doesn't  require  a subsystem  (for example,
a device  driver)
Runs  in the Windows  GUI subsystem
Runs  in the Windows  character  subsystem
(a console  application)
Runs  in the  OS/2 character subsystem
(OS/2  1.x applications  only)
Runs in the  Posix character subsystem

WORD  DllCharacteristics (marked as obsolete in NT 3.5)
A set of flags indicating which circumstances  a DLL's initialization  function
(for  example,  DllMain())  will  be called  for. This value appears  to  always be
set to  0, yet the  operating  system still calls  the DLL initialization  function
for  all  four  events.

The  following values are  defined:

1 - - Call when DLL is first loaded  into  a process's  address  space.
2 - - Call when  a thread  terminates.
4 - - Call when a  thread  starts  up.
8 - - Call  when DLL exits.

DWORD  SizeOfStackReserve
The amount of virtual memory to reserve  for the initial  thread's  stack.  Not all
of this memory is committed,  however  (see the next field). This field defaults
to  0x100000  (1MB). If you specify 0 as the stack size to CreateThread(),  the
resulting thread will also have a stack of this  same size.

DWORD  SizeOfStackCommit
The  amount  of memory that's  initially committed  for the initial  thread's
stack.  This  field  defaults to  0x1000  bytes  (1 page)  in Microsoft  Linkers,
while  TLINK32  sets  it to  0x2000  bytes  (2 pages).
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DWORD      SizeOfHeapReserve
The amount  of virtual  memory to reserve  for the  initial  process  heap.  This
heap's  handle  can  be obtained  by calling  GetProcessHeap().  Not  all  of this
memory is committed  (see the  next  field).
DWORD       SizeOfHeapCommit
The  amount  of memory initially committed  in the  process  heap.  The  linker
defaults  to  putting  0x1000  bytes  in this  field.
DWORD        LoaderFlags (marked as obsolete in NT 3.5)
From WINNT. H,  these  appear  to  be fields  related to  debugging  support.  I've
never  seen an  executable  with  either of these  bits enabled,  nor  is it clear how
to  get the  linker to  set them.  The following  values  are defined:

1 - - Invoke  a breakpoint  instruction  before  starting  the  process?
2 - - Invoke  a debugger  on the  process  after  it's  been  loaded?

569

DWORD    NumberOfRvaAndSizes
The  number  of entries  in the  DataDirectory  array  (see the  following  field
description).  This  value  is always set to  16  by the  current  tools.
IMAGE_DATA_DIRECTORY  DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]
An array of IMAGEDATA_DIRECTORY structures.  The initial array elements
contain  the  starting  RVA and  sizes  of important  portions  of the  executable
file.  Some elements  at  the  end  of the array  are currently  unused.  The  first
element  of the  array  is always the  address  and  size of the  exported  function
table  (if present).  The second array entry is the address and size of the imported
function  table,  and  so on.  For a complete list of defined array  entries,  see the
IMAGE_DIRECTORY_ENTRY_xxx  #define's  in WINNT. H.

The  intent  of this  array  is to  allow the  loader  to  quickly  find  a particu-
lar  section  of the  image  (for example,  the imported  function  table),  without
needing  to  iterate  through  each of the  image's  sections,  comparing  names  as
it goes  along.

Most  array  entries  describe  an  entire  section's  data.  However,  the
IMAGE_DIRECTORY_ENTRY_DEBUG  element  encompasses  only a small
portion  of the  bytes  in the  .rdata  section.  There's  more  information  on this
in  "The  .rdata  section"  portion  of this chapter.
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THE SECTION TABLE

Between the  PE header and the raw data  for  the image's  sections lies the
section  table.  The section  table contains  information  about  each  section in
the  image.  The  sections in the  image are  sorted  by their  starting  address
rather  than  alphabetically.

At this point, it would  be worthwhile to clarify what a section is. In an NE
file,  your program's  code and data  are stored  in distinct segments in the file.
Part  of an NE header  is an array of structures,  one for each segment your
program uses.  Each structure  in the array contains  information  about one
segment.  The stored  information  includes  the  segment's  type  (code or data),
its size, and its location  elsewhere in the file. In a PE file, the section table is
analogous  to  the  segment table in the NE file.

Unlike an NE file segment table though, a PE section table doesn't  store a
selector  value for each code or data chunk.  Instead,  each section table entry
stores  an address where the file's raw data has been mapped into memory.
Although sections are analogous to 32-bit  segments,  they really aren't  individ-
ual segments. Instead,  a section simply corresponds to a memory range in a
process's  virtual address space.

Another  way in which PE files diverge from NE files is how they manage
the supporting data that your program doesn't use, but that the operating sys-
tem does. Two examples  are the list of DLLs that the executable uses and the
location of the fixup table.  In an NE file, resources aren't considered to be seg-
ments.  Even though they have selectors assigned to them, information  about
resources  isn't stored in the NE header's  segment table.  Instead,  resources  are
relegated  to a separate table toward the end of the NE header.  Information
about imported and exported  functions  also doesn't warrant its own segment,
but is instead crammed into the confines of the NE header.

The story with PE files is different.  Anything that might be considered vital
code or data is stored in a full-fledged section. Thus, information  about
imported  functions is stored in its own section, as is the table of functions that
the module exports.  The same is true for the relocation data.  Any code or data
that might be needed by either the program or the operating system gets its
own section.

I'll discuss specific sections in just a bit, but first I need to describe the data
that the operating system manages the sections with.  Immediately following
the PE header in memory is an array of IMAGE_SECTION_HEADERs.  The
number  of elements in this array is given in the PE header (the IMAGE  NT
HEADER.FileHeader.NumberOfSections field). The PEDUMP program out-
puts the section table and all of the section's fields and attributes.  Figure 8-2
shows  the PEDUMP output of a section table for a typical  EXE file. Figure 8-3
shows  the output of a section table in an OBJ file.
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01  .text  VirtSize:  00005AFA  VirtAddr:  00001000

raw  data  offs:  00000400  raw  data  size:  00005C00

relocation  offs:  00000000  relocations:  00000000

line  # offs:  00009220  line #'s:  0000020C

characteristics:  60000020

CODE  MEM_EXECUTE  MEM_READ

02  .bss  VirtSize:  00001438  VirtAddr:  00007000

raw data  offs:  00000000  raw data  size:  00001600

relocation  offs:  00000000  relocations:  00000000

line # offs:  00000000  line #'s:  00000000

characteristics:  C0000080

UNINITIALIZED_DATA  MEM_READ  MEM_WRITE

03  .rdata  VirtSize:  0000015C  VirtAddr:  00009000

raw data  offs:  00006000  raw data  size:  00000200

relocation  offs:  00000000  relocations:  00000000

line # offs:  00000000  line #'s:  00000000

characteristics:  40000040

INITIALIZED_DATA  MEM_READ

04  .data  VirtSize:  0000239C  VirtAddr:  0000A000

raw data  offs:  00006200  raw data  size:  00002400

relocation  offs:  00000000  relocations:  00000000

line #  offs:  00000000  line #'s:  00000000

characteristics:  C0000048

INITIALIZED_DATA  MEM_READ  MEM_WRITE

05  .idata  VirtSize:  0000033E  VirtAddr:  0000D000

raw data  offs:  00008600  raw data  size:  00000400

relocation  offs:  00000000  relocations:  00000000

line # offs:  00000000  line  #'s:  00000000

characteristics:  C0000040

INITIALIZED  DATA  MEN_READ  MEM_WRITE

06  .reloc  VirtSize:  000006CE  VirtAddr:  0000E000

raw data  offs:  00008A00  raw data  size:  00000800

relocation  offs:  00000000  relocations:  00000000

line # offs:  00000000  line  #'s:  00000000

characteristics:  42000040

INITIALIZED  DATA  MEM_DISCARDABLE  MEM_READ

Figure  8-2
A  typical section table from an EXE file.
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01  .drectve  PhysAddr:  00000000  VirtAddr:  00000000

raw  data  offs:  000000DC  raw  data  size:  00000026

relocation  offs:  00000000  relocations:  00000000

line  #  offs:  00000080  line  #'s:  00000000

characteristics:  00100A00

LNK_INFO  LNK_REMOVE

08  .debug$S  PhysAddr:  00000026  VirtAddr:  00000000

raw  data  offs:  00000102  raw  data  size:  000016D0

relocation  offs:  000017D2  relocations:  00000032

line  #  offs:  00000080  line  #'s:  00000000

characteristics:  42100048

INITIALIZED_DATA  MEM_DISCARDABLE  MEM_READ

03  .data  PhysAddr:  000016F6  VirtAddr:  00000000

raw  data  offs:  000019C6  raw  data  size:  00000D87

relocation  offs:  0000274P  relocations:  00000045

line  #  offs:  00000000  line  #'s:  00000000

characteristics:  C0480048

INITIALIZED_DATA  MEM_READ  MEM_WRITE

04  .text  PhysAddr:  0000247D  VirtAddr:  00000000

raw  data  offs:  000029FF  raw  data  size:  000010DA

relocation  offs:  00003AD9  relocations:  000000E9

line  #  offs:  000043F3  line  #'s:  000000D9

characteristics:  60500020

CODE  MEM_EXECUTE  MEM_READ

85  .debug$T  PhysAddr:  00003557  VirtAddr:  00000000

raw  data  offs:  00004909  raw  data  size:  00000030

relocation  offs:  00000008  relocations:  00000000

line  #  offs:  00000000  line  #'s:  00000000

characteristics:  42]00048

INITIALIZED_DATA  MEM_DISCARDABLE  MEM_READ

Figure  8-3
A  typical  section  table  fram an  OBJ file.

Each IMAGE_SECTION_HEADER  is a complete  database  of informa-
tion  about one section  in the EXE or OBJ file,  and has the following  format:

BYTE  Name[IMAGE_SIZEOF_SHORT_NAME]
This  is an  8-byte  ANSI  name  (not Unicode)  that names  the  section.  Most
section  names  start with  a .  (a  period;  for example,  .text),  but  this  is not a
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requirement,  in spite of what  some PE documentation  would  have you  believe.
You can name your own sections with either the segment directive  in assembly
language, or with #pragma data_seg and #pragma code_seg in the Microsoft
C/C++ compiler.  (Borland  C++ users should use #pragma codeseg.)  It's impor-
tant to note that if the section name takes up the full 8 bytes, there is no NULL
terminator  byte.  (TDUMP from Borland C++ 4.0x  overlooked  this fact, and
would  spew forth garbage  on certain PE EXEs.) If you're a printf()  devotee,
you can use  "%.8s"  to  avoid having to copy the name string to another  buffer
to  null terminate  it.

union {
DWORD  PhysicalAddress
DWORD  VirtualSize
} Misc;
This  field  has  different  meanings,  depending  on whether  it  occurs  in  an  EXE
or  an  OBJ. In  an  EXE,  it holds  the  virtual  size of the code  or  data  section.
This  is the  size before rounding up  to the  nearest file-alignment  multiple.
The  SizeOfRawData  field  later  on in the  structure  holds  this rounded-up
value.  Interestingly,  Borland's  TLINK32  reverses  the meaning of this  field
and  the  SizeOfRawData  field,  and  appears  to  be the  correct  linker.  For  OBJ
files,  this  field  indicates  the  physical  address  of the  section.  The  first  section
starts  at  address  0. To find the  physical  address  of the  next  section,  add  the
SizeOfRawData  value  to  the  physical  address  of the  current  section.

DWORD  VirtualAddress
In  EXEs,  this  field  holds  the RVA for where  the  loader  should  map the  sec-
tion to.  To calculate  the  real  starting  address  of a  given section  in memory,
add  the  base  address  of the  image  to the  section's  VirtualAddress  stored in
this  field.  With  Microsoft  tools,  the  first  section  defaults  to  an  RVA of
0xl000.  In  OBJs,  this  field is meaningless  and  is set to  0.

DWORD    SizeOfRawData
In EXEs,  this field contains  the  size of the  section after  it's  been rounded up to
the  file-alignment size. For example,  assume  a file-alignment  size of 0x200.  If
the VirtualSize  field says that the  section is 0x35A bytes in length, this field
will say that the section is 0x400  bytes long. In  OBJs, this  field contains  the
exact  size of the  section emitted by the compiler  or  assembler.  In other words,
for  OBJs,  it's equivalent  to the VirtualSize  field in EXEs.
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DWORD     PointerToRawData
This is the file-based offset to where the raw data  for the section can be found.
If you memory map a PE or COFF file yourself (rather than letting the operat-
ing system load it), this field is more important than the VirtualAddress  field.
That's  because in this situation you'll  have a completely linear mapping of the
entire file, so you'll  find the data  for the sections at this offset rather than at the
RVA specified in the VirtualAddress  field.
DWORD    PointerToRelocations
In OBJs, this  is the  file-based offset to  the relocation  information  for this
section.  The relocation  information  for  each  OBJ section  immediately  fol-
lows the  raw  data  for that  section.  In EXEs,  this  field  (and the  subsequent
field)  are meaningless,  and  are  set to  0. When  the  linker creates  the  EXE, it
resolves most  of the  fixups,  leaving  only base address  relocations  and
imported  functions  to  be resolved  at  load time.  The  information  about
base relocations  and  imported  functions  is kept  in the  base relocation and
imported  functions sections,  so there's no need for an EXE to have per-section
relocation data  following the raw section  data.
DWORD    PointerToLinenumbers
The  file-based offset  of the line number  table.  A line number table  correlates
source-file  line numbers to  the  addresses where  the code generated  for a
given line can  be found.  In modern  debug formats  like the  CodeView format,
line number  information  is stored  as part  of the  debug  information.  In the
COFF  debug  format,  however,  the line number  information  is conceptually
distinct from the symbolic name/type information.  Usually, only code sections
(for  example,  .text  or  CODE)  have line numbers.  In EXE files,  the line num-
bers are collected toward the end of the file, after the raw data  for the sections.
In OBJ files, the line number  table for a  section  comes  after  the raw section
data  and the relocation  table  for that  section.  I'll  discuss  the  format  of line
number  tables  in  "The COFF Debug Information"  section  later in the chapter.

WORD  NumberOfRelocations
The  number  of relocations  in the relocation  table  for this  section  (the
PointerToRelocations  field listed previously).  This  field appears  to  be used
only in OBJ files.
WORD  NumberOfLinenumbers
The  number  of line numbers  in the line number  table  for this  section  (the
PointerToLinenumbers  field  listed previously).
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DWORD  Characteristics
What  most programmers  call  flags,  the  COFF/PE  format  refers  to  as  charac-
teristics.  This  field is a  set  of flags that  indicate  the  section's  attributes
(code/data,  readable,  writeable,  and  so on).  For  a complete list of all  possible
section  attributes,  see the IMAGE_SCN_XXX  XXX  #defines  in WINNT. H.
Some of the  more  important  flags are listed  in Table  8-1:

Table  8-1
COFF section flags

0x00000020  This section  contains  code.  It is  usually set  in  conjunction  with  the
executable  flag  (0x80000000).

0x00000040  This section  contains  initialized  data.  Almost  all  sections  except executable
and  the  .bss section  have  this flag  set.

0x00000080  This section  contains  uninitialized  data  (for example,  the  .bss section).

0x00000200  This section  contains  comments or  some other  type  of  information.  A  typical
use of this section  is the  .drectve  section  emitted  by  the compiler,  which
contains  commands  for the  linker.

0x00000800  This section's  contents shouldn't  be  put  in  the final  EXE file.  This section  is
used by  the compiler/assembler  lo  pass information  to  the  linker

0x02000000  This section  can  be discarded,  since  it's  not  needed  by the  process
once  it's been  loaded.  The most common  discardable  section  is the
base  relocations  section  (.reloc).

0x10000000  This section  is shareable.  When  used with  a  DLL, the data  in  this section  is
shared  among  all  processes  using the  DLL. The default  is for  data  sections to
be  nonshared,  meaning  that  each  process  using a  DLL gets  ils  own  separate
copy  of  this section's  data.

In  more technical  terms,  a  shared  section  tells the  memory  manager
to set the  page  mappings  for  this section  so that  all  processes  using
the DLL refer  to  the same  physical  page  in  memory.  To make a  section
shareable,  use the SHARED attribute  at  link time.  For example:

LINK/SECTION:MYDATA,  RWS  ...
tells the  linker that  the section  called  MYDATA  should  be  readable,  write
able,  and  shared.  By default,  Borland  C++  DLL data  segments have  the
shared  attribute.

0x20000000  This section  is executable.  This flag  is  usually set whenever  the Contains
Code  flag  (0x00000020) is  set.

0x40000000  This section is readable.  This flag  is almost always  set for sections in  EXE flies.

0x80000000  The section  is writeable.  If this flag  isn't  set  in  an  EXE's section,  the loader
should  mark the memory  mapped  pages  as  read-only  or  execute-only.
Typical  sections with  this attribute  are  .data  and  .bss.

Flag  Usage
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It's  interesting  to  note  what's  missing  from the  information  stored  for
each  section.  First,  notice  there's  no indication  of any  PRELOAD  attributes.
The  NE  file format  lets you  specify a PRELOAD  attribute  for  segments that
should  be loaded  immediately  at  module load  time.  The  OS/2 2.0  LX format
has  something similar,  allowing  you  to  specify that  up to  8 pages  should  be
preloaded.  The  PE format,  on the  other  hand,  has  nothing like this.  Based
on  this,  we have  to  assume that  Microsoft  is confident  in the  performance
of the  demand-paged  loading of their  Win32  implementations.

Also missing  from the  PE format  is an  intermediate  page  lookup  table.
The  equivalent  of an  IMAGE_SECTION_HEADER  in the  OS/2  LX format
doesn't  point  directly  to  where  the  code or  data  for  a section  can  be found
in the  file.  Instead,  an  OS/2  LX file contains  a page  lookup  table  that  speci-
fies  attributes  and  the  location  in the  file of  specific ranges  of pages within  a
section.  The PE format  dispenses  with  all that  and  guarantees  that  a  sec-
tion's  data  will  be stored  contiguously  in  the  file.  Of the  two  formats,  the
LX method  may  allow more  flexibility,  but  the  PE style is significantly  sim-
pler  and  easier  to  work  with.  Having  written  file dumpers  and  disassemblers
for  both  formats,  I can  personally vouch  for this!

Another  welcome change  in the  PE format  from the  older NE  format  is
that  the  locations  of items  are  stored  as simple  DWORD  offsets.  In the  NE
format,  the location  of almost everything was stored  as a sector  value.  To find
the  real  file offset,  you  need to  first look  up the  alignment  unit  size in the NE
header,  and  convert  it  to  a  sector  size  (typically,  16 or  512  bytes).  You then
need  to  multiply the  sector  size by the  specified  sector  offset  to  get an  actual
file  offset.  If by chance  something isn't  stored as  a  sector  offset  in an  NE
file,  it's  probably  stored as  an  offset  relative  to  the  NE  header.  Since  the NE
header  isn't  at  the  beginning  of the  file,  you  need  to  drag  around  the  file off-
set of the  NE  header  in your  code.  In contrast,  PE files  specify the  location
of various  items  by using simple  offsets relative  to  where the  file was  mem-
ory mapped  to.  All  in all, the  PE format  is much  easier  to  work  with  than
the  NE,  LX,  or  LE formats  (assuming  you  can  use  memory  mapped  files).

COMMONLY ENCOUNTERED SECTIONS

Now  that  you've  got  an  overall  picture  of what  sections  are  and  how  they're
located,  you  can  learn  more  about  the  common  sections you'll  find  in EXE
and  OBJ files.  Although this  list  of sections  is by no  means  complete,  it  does
include  the  sections  you  encounter  every  day  (even if you're  not  aware of it).
The  sections are presented  in order  of their  importance  and by how frequently
they're  likely to  be encountered.
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The  .text  section
The  .text  section  is where  all general-purpose  code  emitted  by the  compiler
or  assembler  ends  up.  Since PE files  run  in  32-bit  mode  and  aren't  restricted
to  16-bit  segments,  there's  no  reason to  break  up  the  code  from separate
source  files into  separate  sections.  Instead,  the  linker  concatenates  all the
.text  sections  from the  various  OBJs into  one  big  .text  section  in the  EXE.  If
you  use  Borland  C++ the compiler  emits  its code to  a segment  named
CODE.  Thus,  PE files  produced  with  Borland  C++ have  a section  named
CODE,  rather  than  a  .text  section.  See the  section  of this chapter  called
"The  Borland  CODE  and  .icode  sections"  for  details.

I was surprised to find out that there was additional code in the  .text section
beyond what  I created with the compiler or used from the runtime libraries.  In a
PE file, when you call a function in another  module  (for example,  GetMessage()
in USER32.DLL),  the CALL instruction  emitted by the compiler doesn't transfer
control  directly to the function in the DLL. Instead, the call instruction  transfers
control  to a JMP DWORD  PTR [XXXXXXXX]  instruction that's  also in the
.text section.  The JMP instruction  jumps to an address stored in a DWORD  in
the .idata  section.  This .idata section DWORD contains the real address of the
operating  system function entry point,  as shown in Figure  8-4.

After contemplating this for awhile,  I came to  understand  why calls to
DLLs  are implemented  this way.  By funneling  all calls  to  a given DLL func-
tion  through one  location,  there's  no  longer  any  need for the  loader  to  patch
every instruction that calls a DLL. All the PE loader  has to  do is put the cor-
rect  address  of the target  function  into  the DWORD  in the  .idata  section.  No
CALL instructions  need to  be patched.  This  is markedly  different  from NE
files, where  each segment  contains  a list of fixups  that  need to  be applied  to
the  segment.  If the  segment  calls  a given DLL function  20  times,  the  loader
must  copy the function's  address  into  that  segment 20  times.  The downside
to the  PE method  is that  you can't  initialize  a variable  with  the  true  address
of a DLL function.  For  example,  you'd  think  that  something  like:

FARPROC  pfnGetMessage  =  GetMessage;

would  put  the  address  of GetMessage into  the  variable pfnGetMessage.  In
Win16,  this works,  but  in Win32  it doesn't.  In Win32,  the  variable
pfnGetMessage  ends  up  holding  the  address  of the JMP  DWORD  PTR
[XXXXXXXX]  thunk  in the  .text  section that  I mentioned  earlier.  If you
wanted  to  call through  the  function  pointer,  things  would  work  as you'd
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expect.  If you want  to  read the  bytes at  the  beginning of  GetMessage(),
however,  you're  out  of luck  (unless  you do  additional  work  to  follow the
.idata  "pointer"  yourself).  I'll come  back  to  this topic later,  in the  "PE File
Imports"  section.

Figure  8-4
APE  file  calling  imported  functions.

After  I wrote  the  original  version  of this chapter,  Visual  C++ 2.0 was
released;  this version  introduced a  new twist  to  calling imported  functions.
If you  look  in the system header files from Visual  C++ 2.0  (for example,
WINBASE.H),  you'll  see a difference  from the Visual  C++  1.0 headers.  In
Visual  C++ 2.0,  the operating system function prototypes  in the system
DLLs include  a __declspec(dllimport)  as part  of their  definition.  The
__ declspec(dllimport)  turns  out to  have quite  a useful  effect when calling
imported  functions.  When you call  an  imported  function  prototyped  with
__ declspec(dllimport),  the compiler doesn't generate a call to a JMP DWORD
PTR  [XXXXXXXX]  instruction  elsewhere  in the module.  Instead,  the com-
piler  generates  the function  call as CALL DWORD  PTR  [XXXXXXXX].
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The  [XXXXXXXX]  address is in the  .idata  section.  It's the same address
that  would have  been used had the old JMP DWORD PTR  [XXXXXXXX]
form  been used.  To my knowledge,  up to  and including version 4.5,  Borland
C++ doesn't  have this feature.

The Borland CODE and .icode sections
The Borland C++ compiler  and linker don't work  with COFF format  OBJs.
Instead,  Borland has chosen to  stick with the  32-bit  version of Intel  OMF
format.  Although  Borland could  have  had the compiler emit segments  with
a name of .text,  it chose a default  segment name of CODE. To determine a
section name in the PE file, the  Borland linker  (TLINK32.EXE)  takes the
segment name from the  OBJ file and truncates  it to  8 characters  (if neces-
sary).  Because of this,  PE files with  Borland C++ will have a CODE section,
not a  .text section.

The  difference in the section names is a small  matter,  But there's a more
important difference  in how Borland PE files link to other modules.  As I
mentioned  previously in the  .text description, all calls to  OBJs go through a
JMP DWORD PTR [XXXXXXXX]  thunk.  Under the Microsoft  system,
this  thunk comes  to the  EXE from the  .text section  of an import library.  The
library  manager creates  the import  library  (and the thunk)  when you link
the  external  DLL. As a result,  the  linker  doesn't  have to  "know"  to  generate
these  thunks  itself.  The import library is really just some more code and
data  to link into  the PE file.

The Borland system of dealing with  imported  functions  is different,  and
is simply an  extension  of the way things  were done for  16~bit NE files. The
import libraries  that the  Borland linker uses are really just a list  of function
names  and the DLL they're  in.  TLINK32  is therefore  responsible  for deter-
mining which fixups are to external DLLs, and for generating  an appropri-
ate JMP DWORD PTR  [XXXXXXXX]  thunk  for it.  In Borland C++ 4.0,
TLINK32  stored the thunks it creates  in a section named  .icode.  In  Borland
C++ 4.02,  TLINK32 was changed to incorporate  all the JMP DWORD PTR
[XXXXXXXX]  thunks  into  the  CODE section.

The .data section
Just  as  .text  is the  default  section  for code,  the  .data  section  is where your
initialized  data  goes.  Initialized  data  consists  of global  and  static  variables
that  are  initialized  at  compile  time.  It also  includes  string  literals  (for
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example,  the  string  "Hello  World"  in  a  C/C++  program).  The  linker  com-
bines  all the .data  sections  from the  OBJ and LIB files into  one  .data section
in the  EXE.  Local  variables  are  located  on a  thread's  stack  and  take  no
room  in  the  .data  or  .bss  sections.

The  DATA section
Borland  C++  uses  the  name  DATA for  its  default  data  section.  This  is
equivalent  to  the  .data  section  for  Microsoft's  compiler  (see the  previous
section,  "The  .data  section").

The  .bss section
The  .bss  section  is  where  any  uninitialized  static  and  global  variables  are
stored.  The  linker  combines  all  the  .bss  sections  in  the  OBJ  and  LIB files
into  one  .bss  section  in  the  EXE.  In  the  section  table,  the  RawDataOffset
field  for  the  .bss  section  is set  to  0,  indicating  that  this  section  doesn't
take  up  any  space  in the  file.  TLINK32  doesn't  emit  a  .bss  section.
Instead,  it  extends  the  virtual  size  of the  DATA  section  to  account  for
uninitialized  data.

The .CRT section
The  .CRT section  is another  initialized data  section  used by the Microsoft
C/C++  runtime  libraries  (hence  the name .CRT).  The  data  in this  section is
used  for things  such as calling the constructors  of static C++ classes  before
main or WinMain  is invoked.

The .rsrc section
The  .rsrc  section  contains  the  resources  for  the  module.  In the early days  of
NT,  the  .RES file  output  of the  16-bit  RC.EXE  wasn't  in a format  that  the
Microsoft  linker  could  understand.  The  CVTRES program converted these
.RES files into  a  COFF  format  OBJ,  placing  the resource  data  into  a  .rsrc
section  within the  OBJ. The  linker  could then  treat  the resource  OBJ as just
another  OBJ to  link  in,  which meant the  linker  didn't  have  to  "know"  any-
thing  special  about  resources.  More  recent linkers  from Microsoft  appear
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to  be able to  process  the  .RES files  directly.  I'll  cover  the  format  of the
resource  section  in  the  "PE  File  Resources"  section  later  in  this  chapter.

The  section
The .idata  section contains  information  about functions  (and data)  that  the
module  imports  from other  DLLs.  This section  is equivalent to  an NE file's
module  reference  table. A key difference  is that each function that a PE file
imports  is specifically listed in this section.  To find the equivalent information
in an NE file, you'd have to go digging through the relocations at the end of
the raw data for each of the segments.  I'll cover the format of the imports  table
in detail  in the  "PE File Imports"  section later in this chapter.

The .edata section
The  .edata  section  is a  list of the  functions  and  data  that  the  PE file exports
for  use  by other  modules.  Its NE  file equivalent  is the  combination  of the
entry  table,  the  resident  names  table,  and  the  nonresident names table.
Unlike  in Winl6,  there's  seldom a reason  to  export  anything  from  an  EXE
file,  so you  usually  see only  .edata  sections  in  DLLs.  The  exception to  this  is
EXEs produced  by Borland  C++,  which  always  appear  to  export  a  function
(__GetExceptDLLinfo)  for  internal  use  by the  runtime  library.

The  format  of the  exports  table  is discussed in  the  "PE File Exports"
section  later  in  this  chapter.  When  using Microsoft  tools,  the  data  in the
.edata  section  comes  to  the  PE file via  the  .EXP file.  Put another  way, the
linker  doesn't  generate  this  information  on  its  own.  Instead,  it  relies  on the
library  manager  (LIB32)  to  scan the  OBJ  files and  create  the  .EXP  file that
the  linker  adds  to  its list  of modules  to  link.  Yes, that's  right!  Those pesky
.EXP files are really  just  OBJ files with  a different  extension.  You can  see
the  functions  exported  via  an  .EXP  by  using  the  PEDUMP  program
(presented  later  in  this  chapter)  with  the/S  (show  symbol  table)  option.

The  .reloc  section
The  .reloc  section  holds  a table  of  base relocations.  A base relocation  is an
adjustment  to  an  instruction  or  initialized variable value;  an  EXE or  a DLL
needs this  adjustment  if the  loader  couldn't  load the  file at  the  address  where
the  linker  assumed  it  would  be.  If the  loader  can  load  the  image  at  the
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linker's  preferred  base  address,  the  loader  ignores  the  relocation information
in this  section.

If you want  to take a chance and hope that the loader  can always  load the
image  at the  assumed  base address, you can use the/FIXED  option to tell the
linker  to strip this information.  Although this might save space in the executable
file,  it might  also cause the executable to  not work on  other Win32  platforms.
For example,  let's say you built an EXE for NT and based the EXE at 0x10000.
If you told  the linker to  strip the relocations,  the EXE wouldn't  run  under
Windows 95, where  the  address  0x10000 isn't  available  (the minimum load
address  in Windows  95  is 0x400000;  that  is, 4MB).

It's  important  to  note  that  the JMP  and  CALL instructions  generated  by
a compiler  use  offsets relative  to  the  instructions,  rather  than  actual  offsets
in the  32-bit  fiat segment.  If the  image  needs  to  be loaded  somewhere  other
than  the  location the  linker  assumed  was  a base address,  these  instructions
don't  need  to  change,  since they use  relative  addressing.  As a result,  there
are not  as  many relocations  as  you  might  think.  Relocations  are  usually
needed  only for  instructions  that  use  a  32-bit  offset  to  some data.  For
example,  let's  say you  had  the  following  global  variable  declarations:

int  i;

int  *ptr  =  &i;

If the  linker  assumed  an image  base  of 0x10000,  the  address  of the vari-
able  i will end  up  containing something like 0x12004.  At the  memory  used
to  hold  the  pointer  ptr, the  linker will  have written  out  0x12004,  since that's
the  address  of the variable  i.  If the  loader  (for whatever  reason)  decided to
load the  file at  a  base  address  of 0x70000,  the  address  of i would  then  be
0x72004.  However,  the  pre-initialized  value  of the  ptr  variable would  then
be incorrect  because  i is now  0x60000  bytes  higher  in memory.

This  is where  the  relocation  information  comes  into  play.  The  .reloc
section  is a list of places  in the  image where  the  difference  between the
linker-assumed  load  address  and  the  actual  load address  needs  to  be taken
into  account.  I'll  talk  more  about  relocations  in the  "PE File Base
Relocations"  section.

The  .tls  section
When  you  use the  compiler  directive  "__declspec(thread)",  the  data  that
you  define doesn't  go  into  either  the  .data  or  .bss  sections.  Rather,  a copy  of
it ends  up  in the  .tls  section.  The  .tls  section  derives  its  name  from  the  term
thread local storage,  and  is related  to the  TlsAlloc()  family  of functions.
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To briefly  summarize thread  local  storage,  think  of it  as  a way  to  have
global variables  on  a per-thread  basis.  That  is, each  thread  can have  its set
of static  data  values,  yet the code  that  uses the  data  does  so without  regard
to  which thread  is executing.  Consider  a program that  has  several  threads
working  on  the  same task,  and  thereby executing  through  the  same code.  If
you  declared  a thread  local  storage  variable,  for  instance:

__declspec  (thread)  int  i  =  0:  /  This  is  a  global  variable  declaration.

each  thread  would  transparently  have its own  copy  of the  variable  i.
It's  also  possible  to  explicitly  ask  for  and  use thread  local  storage  at  run-

time by using the TlsAlloc,  TlsSetValue, and TlsGetValue  functions.  (Chapter  3
describes  the TlsXXX  functions  in detail.)  In most cases,  it's  much  easier  to
declare  your  data  in your  program with  __declspec  (thread)  than  it is to
allocate  memory  on  a per-thread  basis  and  store  a pointer  to  the  memory in
a TlsAlloc()'ed  slot.

There's  one  unfortunate  note  that  must  be  added about  the  .tls  section
and __declspec(thread)  variables.  In  NT  and Windows  95,  this  thread  local
storage mechanism  won't  work  in a DLL if the  DLL is loaded  dynamically
by LoadLibrary().  In  an  EXE or  an  implicitly  loaded  DLL,  everything  works
fine.  If you can't  implicitly  link to  the  DLL,  but  need per-thread  data,  you'll
have to  fall  back  to  using TlsAlloc()  and  TlsGetValue()  with  dynamically
allocated  memory.  It's  important  to  note  that  the  actual  per-thread  memory
blocks  aren't  stored in the  .tls  section  at  runtime.  That  is, when  switching
threads,  the  memory  manager  doesn't  change the  physical  memory  page
that's  mapped  to  the  module's  .tls  section.  Instead,  the  .tls  section  is merely
the  data  used  to  initialize the  actual  per-thread  data  blocks.  The  initializa-
tion  of per-thread  data  areas is a cooperative  effort  between  the  operating
system  and  the  compiler  runtime  libraries.  This  requires  additional  data  - -
the  TLS directory - - that's  stored  in the  .rdata  section.

The .rdata  section
The  .rdata  section is used for at least four things.  First,  in EXEs produced  by
Microsoft  Link, the  .rdata section holds the debug directory  (there is no debug
directory  in OBJ files). In TLINK32  EXEs,  the  debug directory  is in a section
named  .debug. The debug directory is an  array of IMAGE_DEBUG_DIREC-
TORY structures. These structures hold information  about the type, size, and
location  of the various  types of debug information stored in the  file. Three
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main types of debug information  can appear:  CodeView,  COFF, and FPO.
Figure  8-5 shows the PEDUMP output for a typical debug directory.

Type  Size  Address  FilePtr  Charactr TimeData  Version

COFF  000065C5  00000000  00009200 00000000  2CF8CF3D  0.00
(unknown)  00000114  00000000  0000F7C8 00000000  2CFSCF3D  0.00
FPO  000004B0  00000000  0000F8DC 00000000  2CF8CF3D  0.00
CODEVIEW  0000B0B4  00000000  0000FD8C  00000000  2CFBCF3D  0.00

Figure  8-5
A typical debug directory.

The debug directory  isn't necessarily  found at the  beginning of the  .rdata
section.  Instead,  to find the start  of the debug directory,  you have to  use the
RVA found  in the seventh entry  (IMAGE_DIRECTORY_ENTRY_DEBUG)
of the data  directory.  (The data  directory is at the end of the PE header portion
of the file.)  To determine the number of entries in a Microsoft  Link debug
directory,  divide the size of the debug directory  (found  in the size field of the
data  directory  entry)  by the size of an IMAGE_DEBUG_DIRECTORY  struc-
ture.  In contrast,  TLINK32 emits an actual  count of the debug directories in
the  size field,  not the total  length in  bytes.  The  PEDUMP sample program
handles  either situation.

The second useful  portion of an  .rdata  section is the description string.  If
you specified  a DESCRIPTION entry in your program's  .DEF file, the speci-
fied description string appears  in the .rdata  section.  In the NE format,  the
description  string is always  the first entry of the nonresident  names table.  The
description  string is intended to  hold a  useful  text string describing  the file.
Unfortunately,  I haven't  discovered an easy way to find it.  I've seen PE files
that  had the description string before the debug directory, and other files that
had  it after the debug directory. I'm not aware of any consistent method  of
finding the description string  (or even to determine if it's present at  all).

A third  use of the  .rdata  section  is for GUIDs used in OLE programming.
The UUID.LIB import library contains a collection of  16-byte GUIDs that are
used  for things  such as interface IDs. These GUIDs end up in the EXE or
DLL's .rdata  section.

The final use of the  .rdata  section that I'm aware of is as a place to put the
TLS (Thread Local Storage) directory.  The TLS directory is a special data
structure used by the compiler runtime library to transparently provide thread
local  storage for variables declared in program code. The format of the TLS
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directory  is found on the MSDN (Microsoft Developer Network)  CD-ROM
under Specs: Portable Executable  and Common Object File Format.  Of primary
interest in the TLS directory  are pointers to the start  and end of a copy of the
data  to be used to initialize each thread  local  storage block.  An RVA for the
TLS directory can be found in the IMAGE_DIRECTORY_ENTRY_TLS  entry
in the PE header's  data  directory. The  actual  data  to  be used for TLS block
initialization  is found  in the  .tls section  (described  earlier).

The .debug$S  and  .debug$T sections
The .debug$S and .debug$T sections appear  only in COFF OBJs, and contain
the CodeView symbol and type information.  The section names are derived
from the segment names used for this purpose  by previous Microsoft  compilers
($$SYMBOLS and $$TYPES). The sole purpose  of the .debug$T section is to
hold the pathname  to the .PDB file that holds the CodeView type information
for all the OBJs in the project. The linker uses the  .PDB file to create certain
portions  of the CodeView information  for the generated EXE file.

The .drective  section
This  section appears  only in  OBJ files.  It contains  textual  representations  of
commands  for the linker. For example,  in any OBJ I compile with the Microsoft
Visual  C++ compiler,  the  following  strings  appear  in the  .drectve  section:

-defaultlib:LIBC  -defaultlib:OLDNAMES.

When  you  use __ declspec(export)  in your  code,  the compiler  simply
emits  the command-line  equivalent  into the  .drectve  section  (for instance,
export:MyFunction).

Sections containing  $  (OBJs/LIBs only)
In OBJ files,  sections with  names  containing  $ (for example,  .idata$2)  are
treated  specially  by the  linker.  The  linker combines  all  sections that  have the
same name  up to the  $ character.  The name  of the finished  section  is every-
thing  up to  the  $ character.  Thus,  if the  linker encountered  two  sections,
.idata$2  and  .idata$6,  it would  combine  them into  a section called  .idata.
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The  ordering  of  sections  to  be  combined  is  governed  by  the  charac-
ters  after  the  $.  The  linker  sorts  in  lexical  order,  so  .idata$2  will  come
before  .idata$6. .dataSA will  likewise  come  before  .data$B.

So what  is  this  $ convention  used  for?  The  most  prevalent  use  is  by
import  libraries,  which  use  .idata$x  sections  to  hold  various  portions  of
a  final  .idata  (import)  section.  This  is  rather  interesting.  The  linker  itself
doesn't  have  to  generate  the  .idata  section  from  scratch.  Rather,  the  final
.idata  section  is  built  primarily  from  sections  in  OBJ  and  LIB files  that
the  linker  treats  just  like  any  other  section  to  be  linked  in.

Miscellaneous  sections
In  playing  around  with  PEDUMP,  I've  encountered  other  sections  from
time  to  time.  For  instance,  the  Windows  95  GDI32.DLL  contains  a  data
section  named  _GPFIX,  which  presumably  has  something  to  do  with  GP
fault  handling.

The points  to  be drawn  from this  are twofold.  First,  don't  feel constrained
to  use  only the  standard  sections provided  by the  compiler  or  assembler.  If
you  need  a separate  section,  don't  hesitate  to  use one.  In the  Microsoft
C/C++ compiler,  use the  #pragma  code_seg and  #pragma  data_seg.  Borland
users  can  use #pragma  codeseg  and #pragma  dataseg.  In assembly  language,
just create  a 32-bit  segment  with  a name that  is different  from the  standard
sections.  TLINK32  combines code segments  of the  same class,  so you'll
need  to  either  give each  of your  code segments  a unique  class  name  or  turn
off code  segment  packing.  The  other  thing  to  take  away  from this  discussion
is that  unusual  section names can  often give a deeper  insight into  the  purpose
and  implementation  of a  particular  PE file.

PE  FILE IMPORTS

Earlier,  I described  how  function calls  to  outside  DLLs  don't  call the  DLL
directlyl.  Instead,  the  CALL instruction  goes to  a JMP DWORD  PTR
[XXXXXXXX]  instruction  somewhere  in  the  executable's  .text  section
(or  .icode section  if you're  using Borland  C++ 4.0).  Alternatively,  if _ _
declspec(dllimport)  was  used  in Visual  C++, the  function  call  becomes a
"CALL  DWORD  PTR  [XXXXXXXX]".  In either  case,  the  address  that  the
JMP  or  CALL instruction  looks  up  is stored  in the  .idata  section.  The JMP
or  CALL instruction transfers  control  to  that  address,  which is the  intended
target  address.  If you're  still  unclear  on  this,  refer  back  to  Figure  8-4.



Before it's loaded into memory, the information stored in a PE file's
.idata  section  contains  the  information  necessary  for  the  loader  to  deter-
mine  the  addresses  of the  target  functions  and  patch  them  into  the  exe-
cutable  image.  After  the  .idata  section  has  been  loaded,  it  contains  point-
ers  to  the  functions  that  the  EXE/DLL  imports.  Note  that  all  the  arrays
and structures I'm discussing in this section are contained in the .idata
section.

The  .idata  section  (or  import  table,  as  I prefer  to  call  it)  begins  with
an  array  of  IMAGE_IMPORT_DESCRIPTOR's.  There  is  one  IMAGE_
IMPORT_DESCRIPTOR  for  each  DLL  that  the  PE file  implicitly  links
to.  No  count  is  kept  to  indicate  the  number  of  structures  in  this  array.
Instead,  the  last  element  of the  array  is  indicated  by  a  final  IMAGE_
IMPORT_DESCRIPTOR  that  has  fields  filled  with  NULLs.  The  format
of  an  IMAGE_IMPORT_DESCRIPTOR  is  as  follows:
DWORD    Charachteristics/OriginalFirstThunk

This  field  is an  offset  (an  RVA) to  an  array  of DWORDs.  Each  of these
DWORDs  is actually  an  IMAGE_THUNK_DATA  union.  Each IMAGE_
THUNK_DATA  DWORD  corresponds  to  one function  imported  by this
EXE/DLL.  I'll  describe  the  format  of an  IMAGE_THUNK_DATA  DWORD
a bit  later  in this  section.  If you run  the  BIND utility,  this  array  of DWORDS
is left alone,  whereas  the FirstThunk  DWORD  array  (described  momentarily)
is modified.
DWORD  TimeDateStamp

The  time/date  stamp indicating  when the  file  was  built.  This  field  normally
contains  0.  However,  the Microsoft  BIND  utility  updates  this  field  with  the
time/date  stamp  of the  DLL that  this  IMAGE_IMPORT_DESCRIPTOR
refers  to.
DWORD  ForwarderChain

This  field  relates  to  forwarding,  which  involves  one  DLL forwarding refer-
ences to  one of its  functions  to  another  DLL.  For example,  in Windows  NT,
KERNEL32.DLL  forwards  some  of its exported  functions  to  NTDLL.DLL.
An  application  may think  it's calling a function  in KERNEL32.DLL,  but  it
actually ends  up calling into  NTDLL.DLL.  This  field  contains  an  index into
the  FirstThunk  array  (described momentarily).  The  function  indexed  by this
field  will  be forwarded  to  another  DLL.  Unfortunately,  the  format of how  a
function  is forwarded is just  barely described in the Microsoft documentation.
For more  information  on  forwarding,  see the  "Export  forwarding"  section
presented  later  in  this  chapter.

587
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DWORD  Name
This is an RVA to  a null-terminated  ASCII string containing the  imported
DLL's name  (for example, KERNEL32.DLL or USER32.DLL).
PIMAGE_THUNK_DATA   FirstThunk;
This field is an  offset  (an RVA) to  an array  of IMAGE_THUNK_DATA
DWORDs.  In most cases,  the DWORD is interpreted  as a pointer to an
IMAGE_IMPORT_BY_NAME structure.  However,  it's  also possible to
import  a function  by ordinal value.

The  important parts  of an IMAGE_IMPORT_DESCRIPTOR are the
imported  DLL name and the two arrays  of IMAGE_THUNK_DATA
DWORDs.  Each IMAGE_THUNK_DATA  DWORD  corresponds  to  one
imported  function.  In the EXE file, the two arrays  (pointed to  by the
Characteristics  and  FirstThunk  fields)  run parallel  to  each other,  and are
terminated  by a NULL pointer entry at the end of each array.

Why are there two parallel arrays  of pointers  to  the IMAGE_THUNK_
DATA structures? The first array (the one pointed  to  by the  Characteristics
field)  is left alone and is never modified.  It's  sometimes called  the hint-name
table.  The second array (pointed to  by the  FirstThunk  field in the IMAGE_
IMPORT_DESCRIPTOR)  is overwritten  by the PE loader. The loader iterates
through  each IMAGE_THUNK_DATA  and finds the address  of the function
that  it refers to. The  loader then  overwrites  the IMAGE_THUNK_DATA
DWORD with  the address of the imported  function.

Earlier,  I mentioned  that  CALLs to  DLL functions  go through  a  "JMP
DWORD PTR [XXXXXXXX]"  thunk.  The  [XXXXXXXX]  portion  of the
thunk  refers to  one  of the  entries  in the FirstThunk  array.  Since the  array of
IMAGE_THUNK_DATAs  that's  overwritten  by the  loader  eventually holds
the  addresses  of all the imported  functions,  it's called  the  "Import Address
Table."  Figure  8-6 shows these two arrays.

For  you Borland  users,  there's  a slight twist to this description.  APE file
produced  by TLINK32  is missing  one of the arrays.  In such an executable,
the  Characteristics field in the IMAGE_IMPORT_DESCRIPTOR  (a.k.a.  the
hint-name  array)  is 0 (apparently the Win32  loaders  don't  need this array).
Therefore,  only the array pointed  to by the  FirstThunk  field  (the Import
Address  Table) is guaranteed  to  exist in all  PE files.

The  story would end here,  except that I ran into  an interesting problem
when writing PEDUMP. In the never-ending search for optimizations,  Microsoft
"optimized"  the IMAGE_THUNK_DATA  arrays in the Windows NT system
DLLs (for example,  KERNEL32.DLL).  In this optimization,  the IMAGE_
THUNK_DATAs don't contain the information to find the imported function.
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Instead, the IMAGE_THUNK_DATA  DWORDs  already contain  the addresses
of the  imported  function.  In  other  words,  the  loader  doesn't  need to  look  up
function  addresses  and overwrite  the thunk array with  the  imported function's
addresses.  The  array  already  contains  the  imported  function's  addresses even
before  it was  loaded.  (The  BIND utility  program  from  the Win32  SDK per-
forms this optimization.)  Unfortunately, this causes  a problem for PE dumping
programs  that  are  expecting  the  array  to contain  RVAs to IMAGE_THUNK_
DATAs.  You might  be thinking,  "But Matt,  why  don't  you  just  use the  hint-
name table  array?"  That would  be an ideal solution, except that the hint-name
table array  doesn't  exist  in  Borland  files.  The PEDUMP program  handles
both  of these  situations,  but  the  code  is understandably  messy.

Additional
IMAGE  IMPORT_DESCRIPTORs

for other DLLs, as necessary...

Figure  8-6
How a PE file imports functions.

Since the import address table is usually in a writeable section,  it's relatively
easy  to  intercept  calls  that  an  EXE or  a DLL makes  to  another  DLL.  You
simply  patch  the  appropriate  import  address  table  entry to  point  to  the
desired  interception  function.  There's  no need to modify any code in either the
caller  or  callee images.  This  capability can  be very  useful.  In  fact,  in Chapter
10,  I build  a Win32  APl  spy program  that  relies  heavily  on this  trick.

It's  interesting  to  note  that  in  Microsoft-produced  PE files,  the  import
table  isn't  wholly  synthesized  by  the  linker.  Instead,  all  the  pieces  neces-
sary  to  call  a  function  in  another  DLL  reside  in  an  import  library.  When
you  link  a  DLL,  the  library  manager  (LIB.EXE)  scans  the  OBJ  files  being
linked  and  creates  an  import  library.  This  import  library  is  different  from
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the  import  libraries  used  by  16-bit  NE  file linkers.  The  import  library that
the  32-bit  LIB produces  has  a  .text  section  and  several  .idata$  sections.
The  .text  section  in the  import  library  contains  the JMP  DWORD  PTR
[XXXXXXXX]  thunk  that  I mentioned  earlier.  That  thunk  has  a name
stored  for  it in the  OBJ's symbol  table.  The  name of the symbol is identical
to  the  name  of the  function  being  exported  by the  DLL  (for  example,
_DispatchMessage@4).

One  of the  .idata$  sections  in the import  library contains  the DWORD
that  the thunk dereferences  through.  Another  of the  .idata$  sections  has a
space for the  "hint  ordinal"  followed by the  imported  function's  name.
These two fields  make  up an IMAGE_IMPORT_BY_NAME structure.
When you later  link a PE file that uses the  import  library,  the import
library's  sections  are added to  the list of sections  from your  OBJs that the
linker needs to  process.  Since the thunk in the import  library has the same
name  as the function  being imported,  the  linker thinks  the thunk is really
the  imported  function,  and  fixes up calls to the imported  function  to point
at  the thunk.  The thunk  in the  import  library is essentially seen as the
imported  function.

Besides providing the code portion of an imported function thunk, the
import library provides the pieces of the PE file's .idata section (or import
table). These pieces come from the various  .idata$  sections that librarian put
into the import library. In short, the linker doesn't really know the differences
between imported functions  and functions that appear in a different OBJ file.
The linker just follows its preset rules for building and combining sections, and
everything  falls into place naturally.

The IMAGE_THUNK_DATA DWORD
As I mentioned earlier, each IMAGE_THUNK_DATA  DWORD corresponds
to  an imported  function.  The interpretation  of the DWORD varies depend-
ing on whether the  file has  been loaded  into  memory yet and whether  the
function  was imported  by name or by ordinal  (importing  by name is much
more  common).

When a function is imported by its ordinal value (the rare case), the high
bit (0x80000000)  is set in the EXE file's IMAGE_THUNK_DATA DWORD.
For example, consider an IMAGE_THUNK_DATA with the value 0x80000112
in the GDI32.DLL array. This IMAGE_THUNK_DATA is importing the  112'th
exported function from GDI32.DLL. The problem with importing by ordinal
is that Microsoft didn't  bother to keep the export ordinals of the Win32 API
functions  consistent between Windows NT, Windows 95, and Win32s.
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If a function is imported by name, its IMAGE_THUNK_DATA DWORD
contains  an RVA for an IMAGE_IMPORT_BY_NAME  structure.  An
IMAGE_IMPORT_BY_NAME  structure  is very simple, and looks like this:
WORD  Hint
The  best guess as to  what the export  ordinal  for the  imported  function  is.
Unlike  with NE files, this value doesn't  have to be correct.  Instead, the
loader  uses it as a suggested starting value for its  binary  search  for the
exported  function.

BYTE[?]
An ASCIIZ string with the name of the imported  function.  The final interpreta-
tion of the IMAGE_THUNK_DATA DWORD is after the PE file has been
loaded by the Win32 loader. The Win32 loader uses the initial information in
the IMAGE  THUNK_DATA DWORD to look up the address of the imported
function (either by name or by ordinal).  The loader then overwrites the
IMAGE_THUNK_DATA DWORD with the address of the imported  function.
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Putting IMAGE_IMPORT DESCRIPTORs and
IMAGE_THUNK_DATAs together
Now that you've seen both the IMAGE_IMPORT_DESCRIPTOR  and
IMAGE_THUNK_DATA  structures,  it's easy to construct a report on all the
imported functions  that an EXE or a DLL uses. Simply iterate through the
array of IMAGE_IMPORT  DESCRIPTORs (each of which corresponds to
one imported DLL). For each IMAGE_IMPORT_DESCRIPTOR,  locate the
array of IMAGE_THUNK_DATA DWORDs and interpret  them appropri-
ately. Figure 8-7 shows the PEDUMP output for this operation.  (Functions
with no name are imported  by ordinal.)

Imports  Table:

USER32.dll

Hint/Name  Table:  0001F50C

TimeDateStamp:  2EB9CE9B

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0001FC24

Ordn  Name

268  GetScrollInfo
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133  DispatchMessageA

333  IsRectEmpty

431  SendMessageCallbackA

255  GetMessagePos

//  Rest  of  table  omitted...

GDI32.dll

Hint/Name  Table:  0001F178

TimeDateStamp:  2EB9CE9B

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0001F890

Ordn  Name

31  CreateCompatibleDC

389  SetTextColor

276  SetBkColor

99  ExtTextOutA

9  BitBlt

//  Rest  of  table  omitted...

MPR.dll

Hint/Name  Table:  0001F2F8

TimeDateStamp:  2EAF4824

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0001FA08

Ordn  Name

26

35

34

33

55

//  Rest  of  table  omitted...

KERNEL32.dll

Hint/Name  Table:  0001F1CC

TimeDateStamp:  2EB9DA61

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0001F8E4

Ordn  Name

636  SetEvent

348  GetTimeFormatA

375  GlobalGetAtomNameA

301  GetProcAddress

572  RtlZeroMemory

//  Rest  of table  omitted...

COMCTL32.dll

Hint/Name  Table:  0801FODC

TimeDateStamp:  2EAD4AE5



ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0001F7F4

Ordn  Name

152

21  ImageList  Draw

354

352

28  ImageList_GetIconSize

//  Rest  of  table  omitted...

ADVAPI32.dll

Hint/Name  Table:  0001F0A0

TimeDateStamp:  2EA8A148

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0001F7B8

Ordn  Name

149  RegQueryValueA

119  RegCloseKey

142  RegOpenKeyExA

13]  RegEnumKeyExA

126  RegDeleteKeyA

//  Rest  of  table  omitted...

Figure  8-7
A typical impart table fram an EXE file (EXPLORER. EXE).

PE  FILE EXPORTS

The opposite  of  importing a function is exporting  a function  for use by
EXEs  or other DLLs.  APE  file stores  information  about  its exported func-
tions  in the  .edata  section.  Generally,  Microsoft  LINK-produced PE EXE
files  don't export  anything,  so they don't  have an  .edata  section.  TLINK32
EXEs,  on the other hand,  usually  export  one  symbol,  so they do have an
.edata  section.  Most  DLLs export  functions  and have  an  .edata  section. The
primary  components  of an .edata  section  (a.k.a.  the export  table)  are tables
of  function  names,  entry point  addresses,  and export  ordinal values. In  an
NE  file, the  equivalents of  an export table are the entry table, the  resident
names table,  and the  nonresident names table.  In the NE  file,  these tables
are stored as part of  the NE  header rather than in segments  or resources.
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At  the  beginning  of  an  .edata  section  is  an  IMAGE_EXPORT_
DIRECTORY  structure.  This  structure  is immediately  followed  by the  data
pointed to  by fields  in  the IMAGE_EXPORT_DIRECTORY  structure.  An
IMAGE_EXPORT_DIRECTORY  looks  like this:
DWORD  Characteristics
This  field  appears  to  be unused  and  is always  set to  0.
DWORD  TimeDateStamp

The  time/date  stamp  indicating  when this  file was  created.
WORD  MajorVersion
WORD  MinorVersion
These  fields  appear  to  be unused  and  are  set to  0.
DWORD    Name
The  RVA of an  ASCIIZ string with  the  name  of this  DLL  (for example,
MYDLL.DLL).
DWORD  Base

The  starting  export  ordinal  number  for functions  exported  by this  module.
For  example,  if the  file exported  functions  with  ordinal  values  of  10,  11,
and  12,  this  field  would  contain  10.
DWORD        NumberOfFunctions

The  number  of elements  in the  AddressOfFunctions  array.  This  value  is also
the  number  of functions  exported  by this  module.  Usually  this  value  is the
same  as the  NumberOfNames  field  (see the  next  description),  but  they can
be different.
DWORD             NumberOfNames
The  number  of elements  in the  AddressOfNames  array.  This  value  contains
the  number  of functions  exported  by name,  which  usually  (but  not  always)
matches  the  total  number  of exported  functions.
PDWORD  *AddressOfFunctions

This field is an RVA and points  to an array of function addresses.  The function
addresses are the entry-point  RVAs for each exported  function in this module.
PDWORD  *AddressOfNames
This  field  is an  RVA and  points  to  an  array  of string pointers.  The  strings
contain  the  names  of the  functions  exported  by name  from this  module.
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PWORD      *NumberOfNameOrdinals
This field  is an  RVA, and  points  to  an  array  of WORDs.  The  WORDs  are
essentially  the export  ordinals of all the  functions  exported  by name from this
module.  However,  don't  forget to  add the starting  ordinal  number  specified  in
the Base  field  (described  a few fields back).

The layout  of the export table  is somewhat  odd.  As I mentioned earlier, the
requirements  for exporting  a function are an address and  an export  ordinal.
Optionally,  if you export the function by name,  there will be a function name.
You'd  think that the designers of the PE format would  have put all three of
these  items into  a structure  and then have an array of these  structures.  Instead,
you have to look up the various pieces in three  separate arrays.

The  most  important  of the  arrays pointed  to  by the  IMAGE_EXPORT_
DIRECTORY  is the  array  pointed  to  by the  AddressOfFunctions  field.  This
is an  array  of DWORDs,  each DWORD  containing the  address  (RVA) of an
imported  function. The export ordinal  for each exported  function corresponds
to  its position  in the  array.  For  instance  (assuming  ordinals  start  at  1), the
address  of the  function  with  export  ordinal  1 would  have  its  address  in the
first  element  of the  array.  The  function with  export  ordinal  2 would  have its
address  in the  second  element  of the  array,  and  so  on.

There  are two  important  things  to  remember  about  the  AddressOf-
Functions  array.  First,  the  export  ordinal  needs to  be  biased  by the  value  in
the  Base  field  of the  IMAGE_EXPORT_DIRECTORY.  If the  Base field  con-
tains  the  value  10, then  the  first  DWORD  in the  AddressOfFunctions  array
corresponds  to  export  ordinal  10,  the  second  entry to  export  ordinal  1 1,
and  so forth.  The-other  thing to  remember  is that  the  export  ordinals  can
have  gaps.  Let's  say that  you  explicitly  export  two  functions  in a DLL,  with
ordinal  values  1  and  3.  Even  though  you  exported  only  two  functions,
the  AddressOfFunctions  array  has  to  contain  three  elements.  Any  entries
in  the  array  that  don't  correspond  to  an  exported  function  contain  the
value  0.

When  the  Win32  loader  fixes  up  a call  to  a  function  that's  imported  by
ordinal,  it  has  very  little work  to  do.  The  loader  simply  uses the  function's
ordinal  value  as  an  index  into  the  target  module's  AddressOfFunctions
array.  Of course,  the  loader  also  has  to  take  into  account  that  the  lowest
export  ordinal  may  not  be  1, and  must  adjust  its  indexing  appropriately.

More  often  than  not,  Win32  EXEs  and  DLLs  import  functions  by
name  rather  than  by  ordinal.  This  is  where  the  other  two  arrays  pointed
to  in  the  IMAGE_EXPORT_DIRECTORY  structure  come  into  play.  The
AddressOfNames  and  AddressOfNameOrdinals  arrays  exist  to  allow  the
loader  to  quickly  find the  export  ordinal  corresponding  to  a given function
name.  The  AddressOfNames  and  AddressOfNameOrdinals  arrays  both



A d d r e s s O f N a m e O r d i n a l s [

596

contain  the  same number  of elements  (given  by the  NumberOfNames  field
of the  IMAGE_EXPORT_DIRECTORY).  The  AddressOfNames  array  is an
array  of pointers to  function  names,  and  the  AddressOfNameOrdinals  array
is an  array  of indexes  into  the  AddressOfFunctions  array.

Let's  see  how  the  Win32  loader  would  fix  up  a call  to  a  function
that's  imported  by  name.  First,  the  loader  would  search  the  strings
pointed  to  in  the  AddressOfNames  array.  Let's  say  it  finds  the  string  it's
looking  for  in  the  third  element.  Next,  the  loader  would  use  the  index  it
found  to  look  up  the  corresponding  element  in  the
AddressOfNameOrdinals  array  (in  this  case,  the  third  element).  This
array  is just  a  collection  of WORDs,  with  each WORD  acting  as  an
index  into  the  AddressOfFunctions  array.  The  final  step  is to  take  the
value  in  the  AddressOfNameOrdinals  array  and  use  it  as  an  index  into
the  AddressOfFunctions  array.

In  C code,  finding  a  function  address  that's  imported  by  name  would
look  something  like  this:

WORD  namelndex  =  FindIndexOfString(  AddressOfNames,  "GetMessageA"  );

NORD  functionIndex  =  AddressOfNameOrdinals[  nameIndex  ];

DWORD  functionAddress  =  AddressOfFunctions[  functionIndex  OrdinalBase  ];

Figure  8-8  shows the  format of the  export  section  and  its three arrays.

Figure  8-8
A  typical  exports  table  from  an  EXE file.
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Name:  KERNEL32.dll

Characteristics:  00000000

TimeDateStamp:  2C4857D3

Version:  0.00
Ordinal  base:  00000001

#  of  functions:  0000021F

#  of  Names:  0000021F

Entry  Pt  Ordn  Name

00005090  1  AddAtomA

00005100  2  AddAtomW

00025540  3  AddConsoleAliasA

00025500  4  AddConsoleAliasW

00026AC0  5  AllocConsole

00001000  6  BackupRead

00001E90  7  BackupSeek

00002100  8  BackupWrite

0002520C  9  BaseAttachCompleteThunk

00024C50  10  BasepDebugDump

//  Rest  of  table  omitted...

Figure  8-9
The PEDUMP output for the KERNEL32.DLL export sect/an.

Incidentally,  if you  dump  out  the  exports  from  the  system  DLLs (for
example,  KERNEL32.DLL  and USER32.DLL),  you'll  see  that  in  many
cases  two  functions  differ  only  by  one  character  at  the  end  of  the  name,
for  instance,  CreateWindowExA and  CreateWindowExW.  This  is  how
Unicode  support  is  implemented  "transparently."  The functions  that  end
with  A  are the  ASCII (or  ANSI)  compatible  functions;  those  ending  in  W
are the  Unicode  version  of  the  function.  In your  code,  you  don't  explic-
itly  specify  which  function  to  call.  Instead,  the  appropriate  function  is
selected  in WINDOWS.H  with  preprocessor  #ifdefs.  The  following
excerpt  from  the NT  WINDOWS.H  is  an example  of  how  this  works:

#ifdef  UNICODE

#define  DefWindowProc  DefWindowProcW

#else
#define  DefWindowProc  DefWindowProcA

#endif  //  !UNICODE
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Export forwarding
Sometimes  it  can  be useful  for  a DLL to  export  a  function,  but  to  have
the  actual  code  exist  in  another  DLL.  In  this  scenario,  a DLL can  for-
ward  a  function  to  another  DLL.  When the  Win32  loader  encounters  a
call  to  a  forwarded  function,  it  resolves  the  fixup to  the  function  to  point
at  the  function  in the  DLL containing the  actual  code.

An example  will  make  this  clearer.  Consider  the  following excerpted
PEDUMP  output  for  the  Windows NT  3.5  KERNEL32.DLL:

00043FC3  335  HeapAlloc  (forwarder  ->  NTDLL.RtlAllocateHeap)

00044005  339  HeapFree  (forwarder  ->  NTDLL.RtlFreeHeap)

0004402C  341  HeapReAlloc  (forwarder  ->  NTDLL.RtlReAllocateHeap)

0004404D  342  HeapSize  (forwarder  ->  NTDLL.RtlSizeHeap)

0004466F  442  RtlFillMemory  (forwarder  ->  NTDLL,RtlFillMemory)

00044691  443  RtlMoveMemory  (forwarder  ->  NTDLL.RtlMoveMemory)

000446AF  444  RtlUnwind  (forwarder  ->  NTDLL.RtlUnwind)

000446CD  445  RtlZeroMemory  (forwarder ->  NTDLL.RtlZeroMemory)

Each  function  in  this  output  is  forwarded  to  a  function  in  NTDLL.
Thus,  a program  that  calls  HeapAlloc  is really  calling  the  RtlAllocateHeap
function  in  NTDLL.DLL.  Likewise,  4 call  to  HeapFree  is really  a call  to
NTDLL's  RtlHeapFree  function.

So how  do you  tell  if a function  is forwarded?  The  only  indication  that
a  function  is forwarded is that  the  function's  address  falls  within  the  export
table  (the  .edata  section).  If this  is the case,  the so-called  function  address
is really  an  RVA to  a string  containing  the  forwarded  DLL and  function
name.  For example,  in the previous output,  HeapAlloc's  RVA is 0x43FC3.
Offset  0x43FC3  in KERNEL32.DLL  is inside  the  .edata  section.  At offset
0x43FC3  in KERNEL32.DLL  is the string  NTDLL.RtlAllocateHeap.  The
DumpExportsSection  function  in the  PEDUMP program  shows  how
forwarded  functions  can  be identified.

Although  export  forwarding  looks like a really nifty feature,  Microsoft
doesn't describe how you can use forwarding in your own DLLs. Also, to date,
I've seen forwarding used by only one DLL (the aforementioned Windows NT
KERNEL32.DLL).  Even though I haven't  seen any DLLs with  forwarders  in
Windows  95,  the Windows  95 loader  does  support  this functionality,  as I
showed  in Chapter  3.
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PE  FILE RESOURCES

Compared  to  their  NE  file equivalents,  finding  resources  in  a  PE  file  is
more  complicated.  The  formats  of the  individual  resources  (for  example,
a  menu)  haven't  changed  significantly  from  their  NE  siblings,  but  you
need  to  traverse  a  complex  hierarchy  to  find  them.

Navigating  the  resource  directory  hierarchy  is  like  navigating  on  a
hard  disk.  There's  a  master  directory  (the  root  directory)  which  has  sub-
directories.  The  subdirectories  have  subdirectories  of their  own.  In  those
subdirectories  you  can  find  files.  The  files are  analogous  to  the  raw
resource  data  containing  things  such  as  dialog  templates.  In  the  PE file,
both  the  root  directory  and  all  its  subdirectories  are  structures  of  type
IMAGE_RESOURCE_
DIRECTORY.  The  IMAGERESOURCE_DIRECTORY  structure  has  the
following  format:
DWORD  Characteristics
Theoretically,  this  field could  hold  flags  for  the  resource,  but  it  appears
to  always  be  0.

/

DWORD  TimeDateStamp
The  time/date  stamp  describing the  creation  time  of  the  resource.
WORD  MajorVersion
WORD  MinorVersion
Theoretically, these fields would hold a version number  for the resource. These
field appear to  always be set to 0.
WORD  NumberOfNamedEntries
The number of array elements  (described later)  that use names,  and that follow
this  structure.  See the  description  for  the  DirectoryEntries  field  for  more
information.

WORD  NumberOfIdEntries
The  number  of array  elements  that  use integer  IDs,  and  that  follow this
structure  and  any named  entries.  See the  following  description  for  the
DirectoryEntries  field  for  more  information.
IMAGE_RESOURCE_DIRECTORY_ENTRY  DirectoryEntries[]
This  field  isn't  formally  part  of  the  IMAGE_RESOURCE_DIRECTORY
structure.  Rather,  it's  an  array  of  IMAGERESOURCE_DIRECTORY_
ENTRY  structures  that  immediately  follow  it.  The  number  of  elements  in  the
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array  is  the  sum  of  the  NumberOfNamedEntries  and  NumberOfldEntries
fields.  The  directory  entry  elements  that  have  name  identifiers  (rather  than
integer IDs) come first in the  array.

A directory entry can either point to  a subdirectory  (that is, to  another
IMAGE_RESOURCE_DIRECTORY)  or to an IMAGE_RESOURCE_
DATA_ENTRY,  which describes  where the resource's  raw data can be found in
the file. Generally,  there are at least three directory levels before you get to the
IMAGE_RESOURCEDATA_ENTRY for a given resource. The top-level
directory  (of which there's only one) is always found at the beginning of the
resource section (.rsrc). The subdirectories of the top-level directory correspond
to the various types of resources found in the file. For example,  if a PE file
includes  dialogs,  string tables, and menus, these three  subdirectories would be
a dialog directory,  a string table directory,  and a menu directory.  Each of these
"type"  subdirectories will in turn have  "ID"  subdirectories.  There will be one
ID subdirectory  for each instance of a given resource type.  In the above
example,  if there are four dialog boxes,  the dialog directory will have four ID
subdirectories.  Each ID  subdirectory will  have either  a  string  name  (for
example,  MyDialog)  or  the  integer  ID  used to  identify  the  resource  in the
.RC  file.  Figure  8-10  shows  the  resource  directory hierarchy in a more
understandable  visual  form.

Figure  8-10
A  typical PE file resource hierarchy.
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Figure  8-11  shows  the  PEDUMP  output  for  the  resources  in the
Windows  NT  3.5  CLOCK.EXE.  Looking  at  the  second  level  of indenta-
tion,  you  can  see  there  are  icons,  menus,  dialogs,  stringtables,  group
icons,  and  version  resources.  On the  third  level,  there  are two  icons  (with
IDs  1  and  2),  two  menus  (with  names  CLOCK and  GENERICMENU),
two  dialogs  (one  named  ABOUTBOX,  and  the  other  with  integer  ID
0x64),  and  so  forth.  And  at the  fourth  level  of  indentation,  the  data  for
icon  1  is  at  RVA 0x9754  and  is  0x130  bytes  long.  Likewise,  the  data  for
the  CLOCK menu  is  at  offset  0x952C  and takes  up 0xEA  bytes.

Resources
ResDir  (0)  Named:00  ID:06  TimeDate:2E601E3C  Vers:0.00  Char:0

ResDir  (ICON)  Named:00  ID:02  TimeDate:2E601E3C  Vers:0.00  Char:0
ResDir  (1)  Named:00  ID:01  TimeDate:2E601E3C  Vers:0.00  Char:0

ID:  0000409  DataEntryOffs:  000001E0
Offset:  09754  Size:  00130  CodePage:  0

ResDir  (2)  Named:00  iD:01  TimeDate:2E601E3C  Vers:0.00  Char:0
ID:  00000409  DataEntryOffs:  000001F0
Offset:  09884  Size:  002E8  CodePage:  0

ResDir  (MENU)  Named:02  ID:00 TimeDate:2E601E3C  Vers:0.00  Char:0
ResDir  (CLOCK)  Named:00  ID:01  TimeDate:2E601E3C  Vers:0.00  Char:0

ID:  00000409  DataEntryOffs:  00000200
Offset:  0952C  Size:  000EA  CodePage:  0

ResDir  (GENERICMENU)  Named:00  ID:01  TimeDate:2E601E3C  Vets:O,00  Char:0

ID:  00000409  DataEntryOffs:  00000210
Offset:  09618  Size:  0003A  CodePage:  0

ResDir  (DIALOG)  Named:01  IO:01  TimeDate:2E601E3C  Vets:O,00  Char:0
ResDir  (ABOUTBOX)  Named:00  ID:01  TimeDate:2E601E3C  Vets:O,00  Char:0

ID:  00000409  DataEntryOffs:  00000220

Offset:  09654  Size:  000FE  CodePage:  0
ResDir  (64)  Named:00  ID:01  TimeDate:2E601E3C  Vers:0.00  Char:0

ID:  00000409  DataEntryOffs:  00000230
Offset:  092C0  Size:  0026A  CodePage:  0

ResDir  (STRING)  Named:00  ID:02  TimeDate:2E601E3C  Vers:0.00  Char:0

ResDir  (1)  Named:00  ID:01  TimeDate:2E681E3C  Vers:0.00  Char:0

ID:  00000409  DataEntryOffs:  00000240

Offset:  09EA8  Size:  000F2  CodePage:  0
ResDir  (2)  Named:00  ID:O1  TimeDate:2E601E3C  Vers:O.00  Char:O

ID:  00000409  DataEntryOffs:  00000250

Offset:  09F9C  Size:  00046  CodePage:  0
ResDir  (GROUP  ICON)  Named:01  ID:00  TimeDate:2E601E3C  Vers:0.00  Char:0

ResDir  (CCKK)  Named:00  ID:01  TimeDate:2E601E3C  Vers:0.00  Char:0

ID:  00000409  DataEntryOffs:  00000260
Offset:  09B6C  Size:  00022  CodePage:  0

ResDir  (VERSION)  Named:0  ID:01  TimeDate:2E601E3C  Vers:0,00  Char:0
ResDir  (1)  Named:00  ID:01  TimeDate:2E601E3C  Vers:0.00  Char:0

ID:  00000409  DataEntryOffs:  00000270
Offset:  09B90  Size:  00318  CodePage:  0

Figure  8-1  1
Resources  hierarchy  forCLOCK.EXE.



Each resource directory entry is a structure of type IMAGE_RESOURCE_
DIRECTORY_ENTRY  (boy, these names are  getting long!).  Each IMAGE_
RESOURCE_DIRECTORY_ENTRY  has the  following format:

DWORD  Name
This  field contains either an integer ID or a pointer to a  structure  that contains
a string name.  If the high  bit  (0x80000000)  is 0,  this  field  is interpreted  as
an  integer  ID.  If the  high  bit  is  nonzero,  the  lower  31  bits  are  an  offset
(relative  to  the  start  of the resource  section)  to  an IMAGE_RESOURCE_
DIR_STRING_U  structure.  This structure  contains  a WORD character count,
followed  by a Unicode  string with the resource  name. Yes, even PE files
intended  for non-Unicode  Win32 implementations  use Unicode here. To con-
vert the Unicode  string to an ANSI string, see the WideCharToMultiByte()
function.

DWORD  OffsetToData
This  field  is either  an  offset to  another resource  directory  or  a pointer  to
information  about  a  specific resource  instance.  If the  high  bit  (0xS0000000)
is set,  this directory  entry refers  to  a  subdirectory.  The  lower  31  bits  are  an
offset (relative to the start of the resources)  to  another  IMAGE_RESOURCE_
DIRECTORY.  If the high bit isn't  set, the lower  31  bits are an offset  (relative
to the resource  section) to  an IMAGE_RESOURCE_DATA  ENTRY structure.
The  IMAGE_RESOURCE_DATA_ENTRY  structure  contains  the  location  of
the  resource's raw data,  its  size,  and its  code page.

To go further  into  the resource  formats,  I'd  need  to  discuss  the  format  of
the  individual  resource  types  (dialogs,  menus,  and so on).  Covering  these
topics  could  easily  fill  an  entire chapter;  and  besides,  I'd  like to  save  some
trees.  If you're  interested,  read the RESFMT. TXT file from the Win32  SDK,
which  has a  detailed  description  of all  the resource  type  formats.  The
PEDUMP program  shows the  resource  hierarchy,  but doesn't decompose
individual  resources  instances.

PE  FILE BASE RELOCATIONS

When the linker creates  an EXE file, it  makes  an  assumption  about  where
the  file will  be mapped  into  memory and  then  puts  the  assumed  addresses  of
code  and  data  items into  the  executable  file.  If the  executable  ends up  being
loaded  somewhere  else in the  virtual  address  space,  the  addresses  the  linker

602



plugged into the image were incorrect. The information stored in the .reloc
section  allows  the  PE loader  to  correct  these  addresses  in  the  loaded  mod-
ule.  If the loader  was  able to  load  the  file at  the  base  address  assumed  by the
linker,  the  .reloc section  data  isn't needed,  and  is ignored.  The  entries  ill  the
.reloc section  are called  base  relocations  since  their  usage depends  on  the
base  address  of the  loaded image.

Unlike  relocations  in the  NE file format,  PE file  base relocations  are
extremely  simple.  They don't refer to  external  DLLs or even  to other sections
in  the  module.  Instead,  the  base relocations  boil  down  to  a  list  of locations
in the  image  that  need  a value  added  to  them.

Here's  an  example  to  show how  base  relocations  work:  Let's  say an  exe-
cutable  file is linked assuming  a base address  of 0x400000.  At offset  0x2134
within  the  image is a pointer  containing  the  address  of a  string.  The string
starts  at physical  address  0x404002,  so the  pointer  contains  the  value
0x404002.  You then  load  the  file,  but  the  loader  decides  that  it  needs  to
map  the  image  starting at  physical  address  0x600000.  The  difference
between  the  linker-assumed  base load  address  and  the  actual  load  address  is
called  the  delta. In this  case,  the  delta  is 0x200000  (0x600000 -  0x400000).
Since  the  entire  image  is 0x200000  bytes  higher  in memory,  so is the  string
(now  at  address  0x604002).  The pointer  to  the  string  is now  incorrect.  It
needs  to  have  the  value  of the  delta  (0x200000  in  this case)  added  to  it to
make  it correct  again.

To let the Windows  loader  do this  adjustment,  the  executable  file con-
tains  a  base relocation for the  memory location where  the  pointer  resides  (at
offset  0x2134  in the  image).  To resolve a  base relocation,  the  loader  adds
the  delta  value  to  the  original  value  at  the  base relocation  address.  In  this
case,  the  loader  would  add  0x200000  to  the  original  pointer  value
(0x404002),  and  store the result  (0x604002)  back  into  the  pointer's  mem-
ory.  Since the  string really  is at  0x604002,  everything  is once  again  correct.
Figure  8-12  shows  what  this  process  looks  like.

The formation  of the  base relocation  data  is somewhat quirky.  The relo-
cations  are packaged in a series  of contiguous  chunks  of variable length.  Each
chunk describes  the relocations  for one 4K page  in the image,  and  starts  out
with  an  IMAGE_BASE_RELOCATION  structure  that looks  like this:
DWORD  VirtualAddress

This  field contains  the  starting RVA for this  chunk  of relocations.  The  offset
of  each  relocation that  follows  is added to  this  value  to  form  the  actual  RVA
where the  relocation needs  to  be applied.
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Figure  8-12
PE file  base  relocations.

DWORD  SizeOfBlock
The  size of this  structure,  plus  all the WORD  relocations  that  follow. To
determine the  number  of relocations  in this  block,  subtract  the  size of an
IMAGE_BASE_RELOCATION  (8  bytes)  from  the  value  of this  field,  and
then  divide by 2  (the  size of a WORD).  For example,  if this  field contains  44,
there  are  18 relocations that  immediately follow:

(  44 -  sizeof(IMAGE  BASE  RELOCATION)  )  /  sizeof(WORD)  =  18

WORD  TypeOffset
This  isn't  just  a  single WORD  but  rather  an  array  of WORDs,  the  number
of which  is calculated  by the  formula  in the  previous DWORD  description.
The  bottom  12  bits  of each WORD  are a relocation offset,  and  need to  be
added to  the  value  of the Virtual  Address  field  from this  relocation  block's
header.  The  high 4  bits  of each WORD  are  a relocation type.  For  PE files
that  run  on  Intel  CPUs, you'll  see only two  types  of relocations:



*  0  (IMAGE_REL_BASED_ABSOLUTE):  This  relocation  is  meaning-
less,  and  is  used  only  as  a placeholder  to  round  the  relocation  infor-
mation  up  to  a  DWORD  multiple  size.

*  3  (IMAGE_REL_BASED_HIGHLOW):  Relocation  means  add  both
the  high  and  low  16  bits  of  the  delta  to  the  DWORD  specified  by the
calculated  RVA.

There  are  other  relocations  defined  in WINNT. H,  most  of  which  are
specific  to  architectures  other  than  the  i386.

Figure  8-13  depicts  some  base  relocations  as shown  by  PEDUMP.
Note  that the  RVA values  shown  in the  figure  have  already  been  biased
by the VirtualAddress  in the  IMAGE_BASE_RELOCATION  field.

Virtual  Address:  00001000  size:  0000012C

00001032  HIGHLOW

0000106D  HIGHLOW

000010AF  HIGHLOW

000010C5  HIGHLOW

//  Rest  of  chunk  omitted.. .

Virtual  Address:  00002000  size:  0000009C

000020A6  HIGHLOW

00002110  HIGHLOW

00002136  HIGHLOW

00002156  HIGHLOW

//  Rest  of  chunk  omitted...

Virtual  Address:  00003000  size:  00000114

0000300A  HIGHLOW

0000301E  HIGHLOW

0000303B  HIGHLOW

0000306A  HIGHLOW

//  Rest  of  relocations  omitted,..

 Figure  8-13
 The base  relocations  from  an  EXE file.

THE COFF SYMBOL TABLE

If you're  just  interested  in the  actual  portions  of the  PE file  used  by the
operating  system,  you  can  skip this  section  and  the  section  that  follows
(The  "COFF  Debug  Information").  You can continue  reading again  at
the  section  called  "Differences  Between  PE Files  and  COFF  OBJ Files."
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In any COFF-style  OBJ file produced  by a Microsoft compiler, you'll
find  a symbol table.  Unlike  CodeView information,  this symbol table
isn't  just extra  baggage that's  only used if you link the executable  file
with debugging  information.  Rather,  this symbol  table  holds  the informa-
tion about  all public and external  symbols  referenced by the module. The
fixup  information  emitted by the compiler refers to  specific entries  in this
symbol  table.  The format  of the COFF symbol table is surprisingly  sim-
ple --  in fact,  it's so simple that it puts the Microsoft/Intel  OMF format
scheme with  its  LNAMEs,  PUBDEFs, and EXTDEFs to  shame.

If you compile  without  debugging  information  enabled, you'll get
only the bare minimum number of symbols  in the  OBJ's symbol table. If
you turn debugging information  on  (with/Zi),  the compiler adds addi-
tional  information  about  the beginning,  length,  and end of each function
in the module.  If you then link with either/DEBUGTYPE:COFF  or
/DEBUGTYPE:BOTH,  the linker  will output a COFF-style  symbol table
into  the resulting EXE.

Why would you want  COFF information  when there's the much-
more-complete  CodeView information  available?  If you intend to  use the
NT system debugger (NTSD) or the NT Kernel debugger  (KD), COFF is
the only game in town.  In addition,  if your  PE program crashes  under
Windows NT, DRWTSN32 can use this  information  to produce a useful
symbolic  postmortem dump.

For  both EXE and  OBJ files, you find the location and size of the
COFF symbol table by looking in the IMAGE_FILE_HEADER  (see "The
PE Header"  section that is presented earlier in this chapter  if you need a
refresher on this structure). The symbol  table  is reasonably simple in
structure,  and is composed  of an array of IMAGE_SYMBOL structures.
The number of elements  in the array is given by the NumberOfSymbols
field in the IMAGE_FILE_HEADER structure.  Figure 8-14 shows a sampling
of symbols output by the PEDUMP program.

Symbol  Table  - 433  entries  (* = auxiliary  symbol)

Indx  Name  Value  Section  cAux  Type  Storage

0000  .file  0000005B  sect:DEBUG  aux:I  type:00  st:FILE

* EXEDUMP.c
0002  .debug$S  0001B457  sect:7  aux:l  type:00  st:STATIC

* Section:  0000  Len:  017C8  Relocs:  002C  LineNums:  0000

0004  .data  0000B040  sect:4  aux:l  type:00  st:STATIC

* Section:  0000  Len:  006CA  Relocs:  0020  LineNums:  0000

0006  _SzRelocTypes  0000B1E0  sect:4  aux:0  type:00  st:EXTERNAL

0007  _SzResourceTypes  0000B148  sect:4  aux:0  type:00  st:EXTERNAL
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0008  _SzDebugFormats  0000B088  sect:4  aux:0  type:00  st:EXTERNAL

0009  _PCOFFDebugInfo  0000B040  sect:4  aux:0  type:00  st:EXTERNAL

000A  .text  000026A0  sect:1  aux:1  type:00  st:STATIC

*  Section:  0000  Len:  00CE0  Relocs:  00A3  LineNums:  00D0

000C  _DumpDebugDirectory  000026A0  sect:1  aux:1  type:20  st:EXTERNAL

*  tag:  000E  size:  01A4  Line

000E  .bf  00000000

0010  .lf  0000001A

0011  .ef  000001A4

0013  _GetResourceTypeName  00002844

* tag:  0015  size:  004A  Line

0015  .bf  000001A4

0017  .lf  00000006

0018  .ef  000001EE

//  Rest  of  symbols  omitted...

#'s:  00009220  next  fn:  0013

sect:4  aux:1  type:00  st:FUNCTION

sect:4  aux:0  type:00  st:FUNCTION

sect:4  aux:1  type:00  st:FUNCTION

sect:1  aux:1  type:20  st:EXTERNAL

#'s:  000092BC  next  fn:  001A

sect:4  aux:1  type:00  st:FUNCTION

sect:4  aux:0  type:00  st:FUNCTION

sect:4  aux:1  type:00  st:FUNCTION

Figure  8-14
A fypical COFF symbol table

Each IMAGE_SYMBOL  structure  has  the  following  format:

typedef  struct  _IMAGE_SYMBOL  {

union  {

BYTE  ShortName[8];

struct  {

DWORD  Short;

DWORD  Long;

/ Name:

PBYTE  LongName[2];

//  If  0,  use  LongName.

//  Offset  into  string  table.

}  N:
DWORD  Value;

SHORT  SectionNumber;

WORD  Type;

BYTE  StorageClass;

BYTE  NumberOfAuxSymbols;

}  IMAGE  SYMBOL;

typedef  IMAGE_SYMBOL  UNALIGNED  *PIMAGE_SYMBOL;

Let's  examine  each  of  these  fields  in  detail:

union N  (Symbol name union)

The symbol  name can be represented in two  ways,  depending on  its length.  If
the  symbol  name has  8 characters  or less,  the ShortName member of the  union
contains the ASCIIZ symbol  name.  Be careful  if the symbol  name is exactly  8
characters long;  if it is,  the string isn't  null terminated.  If the Name. Short field
is nonzero,  you  have to  use the ShortName member  of the union.
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The second  way to  represent  a  symbol  name  occurs  when the Name. Short
field is 0.  In this  situation,  the Name. Long  field is a  byte  offset into  the
string table.  The  string table  is nothing  more than  an  array  of ASCIIZ
strings  one after the  other  in memory.  The table  starts  immediately  after  the
symbol  table  in memory.  To find the  string table's  starting  address,  multiply
by the number  of symbols  by the  size of an IMAGE_SYMBOL.  Add that
result  to  the  beginning address  of the  symbol  table.  The  length  of the  string
table  is specified  in  bytes via a  DWORD  at  offset  0 in the  string table.

DWORD  Value
This  field contains  the value  associated with  the  symbol.  For normal  and
data  symbols  (that  is,  functions  and global  variables),  the Value  field con-
tains  the  RVA of the item that  the symbol  refers  to.  The  value is interpreted
differently  for  some  other  symbols.  Table  8-2 provides  a short  list of some
meanings  for the Value  field  of special  symbols.

Table  8-2
Special  Symbols  in  COFF  Symbol  Tables

Symbol Name  Usage

.file  The  symbol  table  index  of  the  next  .fiLe symbol.  You  can  use
this  index  to  quickly  traverse  the  list  of  all  files  in  the  EXE.

.data  The  starting  RVA for  a  region  of  data.  l-his  region  is  defined
by  the  source  file  given  by  the  preceding  Jile  symbol.

.text  The  starting  RVA for  a  region  of  code.  This  region  is  defined  by
the  source  file  given  by  the  preceding  .file  symbol.

.If  The  number  of  entries  in  the  line  number  table  for  a  function.  The
function  is  specified  by  the  preceding  symbol  that  defines  the  function.

SHORT  SectionNumber
The  SectionNumber  field contains  the  section  number that  the symbol
belongs  in.  For  example,  symbols  for global  variables  will  typically  have the
section  number  of the  .data  section.  Besides the  standard  sections in  a PE
file,  three  other  special  section values are  defined:

0  (IMAGE_SYM_UNDEFINED):  The  symbol  is undefined.  This  section
number  is used  in OBJ files to  represent  symbols  outside  the  module,  for
instance,  external  functions  and  external  global  variables.
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*  -1  (IMAGE_SYM_ABSOLUTE):  The  symbol  is an  absolute  value  and  is
not  associated with any given section.  Examples  include  local  and  register
variables.

*  -2  (IMAGE_SYM_DEBUG):  The  symbol  is used  only by the  debugger,
and  isn't  visible to  the  program.  The  .file  symbols  that  give  the  name  of
a  source  file  are examples  of this  symbol  section.

WORD  Type
The  type  of the  symbol.  The  WINNT. H  file  defines  a fairly  rich  set of sym-
bol  types  (int,  struct,  enum,  and  so on).  (See the  IMAGE_SYM_TYPE_xxx
#defines  for  the  complete  list.)  Unfortunately,  the  Microsoft  tools  don't
seem to  generate  all the  various  symbol  types.  Instead,  all global  variables
and  functions  are, either  of type  NULL or  of type  function returning  NULL.
BYTE  StorageClass
The storage  class  of the symbol.  As with  the symbol  types, WINNT. H defines
a rich set of storage  classes  (automatic,  static, register,  label, and  so on).  (See
the IMAGE_SYM_CLASS_xxx  #defines for a complete  list.) Again, as with
types,  the Microsoft tools  appear to  generate  only the  bare minimum of infor-
mation. All global  variables  and functions  are of storage class external.  There
doesn't  seem to  be a way to get symbols  for local variables,  register variables,
and  so on.
BYTE  NumberOfAuxSymbols
Okay, I lied.  The  symbol  table  isn't  precisely  an  array  of IMAGE_SYMBOL
structures.  If a  symbol  has  a nonzero  value  in its  NumberOfAuxSymbols
record,  the  symbol  is followed by that  same number  of IMAGE_AUX_
SYMBOL  structures.  For example,  a  .file  symbol  is followed  by as many
IMAGE_AUX_SYMBOL  structures  as  it  takes  to  contain  the  entire
pathname  for  a  source  file.

Luckily,  the  size of an  IMAGE_AUX_SYMBOL is the  same as an
IMAGE_SYMBOL,  so you  can  still  treat  the  symbol  table  as  an  array  of
IMAGE_SYMBOLs.  Remember  that  a  symbol  index  should  be treated  as an
array  index,  even though  some of the  elements  may  be auxiliary records.  To
calculate  the  index  of the  next  regular  symbol,  you  need  to  add  in the  num-
ber  of auxiliary structures  that the  symbol  uses.  For  example,  let's  say you
have  a symbol with  index  1. If it  uses  3  auxiliary  symbols,  the  next regular
symbol  index will  be 4.
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An IMAGE_AUX_SYMBOL is a messy union of fields. To determine which
union members to use, you need to know the type of the regular symbol associ-
ated with the auxiliary symbol.  Although I haven't figured out which auxiliary
union fields should be used in each case, I was able to figure out these two:

*  Symbols  of storage class  IMAGE_SYM_CLASS_FILE  use  the  File union
member  in the  IMAGE_AUX_SYMBOL  structure.

*  Symbols  of storage class  IMAGE_SYM_CLASS_STATIC  use the
Section union  member  in the  IMAGE_AUX_SYMBOL  structure.

The  sum total  of my knowledge  of how to  interpret the  auxiliary sym-
bols  is contained  in the  DumpAuxSymbols()  routine  in the  COMMON.C
source  file from PEDUMP. If you  figure more  out  on your  own,  feel  free to
add  to this  routine.

If you  examine  the  information  within  the  symbols  section,  you'll  see
that  the  symbols  aren't  ordered  randomly.  Instead, they're  grouped  by the
object module  (or  source  file,  if you  prefer)  that  they came from.  The  first
record  in the  COFF  symbol  table  is a  .file record.  The  value  of a  .file  record
is a  symbol  table  index  to  the  next  .file  record.  By following  the  .file record
value  chain,  you  can  iterate  through  each of the  object  modules  in the EXE.
Immediately  following  each  .file record are other  records  that  are  associated
with  the  source  file.  For example,  all the  public  symbols  (global  variables
and  functions)  that  are declared  in a source  file  follow the  .file record repre-
senting  that  source  file.  For  a regular  source  module,  the  "hierarchy"  of
symbol  records  looks  like this:

Source  File  record  //  Name  of the  source  file.
Data  Section  record  (e.g.,  ".data")  //  Data  declared  in file.

GlobalVariablel  record  //  Information  about  variable.

GlobalVariable2  record
//  Rest  of  global  variable  records

Code  Section  record  (e.g.,  ".text")  //  Code  declared  in  file.
Function1  record  //  Information  about  function.

.BF  record  //  Function  begin  info.

.LF  record  //  Function  length  info.

.EF  record  //  Function  end  info.

Function2  record
.BF  record

.LF  record

.EF  record
//  Rest  of  function  records
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THE COFF DEBUG INFORMATION

To the  average  PC programmer, the term  debug information  includes  both
symbol  and line-number information.  In the  COFF format,  the symbol and
line-number records are in separate regions of the  file.  (In the  Borland  or
CodeView  symbol  table formats,  line numbers  and symbol information
come from the  same part  of the file.) I discussed  the  COFF symbol  table
portion  first because  it appears in both  the OBJ and  EXE files. Also, very
early in the process  of learning the  PE format,  you come across  the
PointerToSymbolTable  field in the  IMAGE_FILE_HEADER.  For  these
reasons  I chose  to  describe the  symbol  table  as a  separate  entity.

The entire COFF symbol table in an  EXE file is composed  of three
parts:  a header,  the line-number information,  and the  symbol  table.  They
don't  have to  be contiguous  in memory,  but the  Microsoft  linker  lays them
out this way.  A complete  COFF symbol  table looks  like this:

IMAGE_COFF_SYMBOLS_HEADER  structure
Line Number tables
Symbol  Table  (previously  discussed)

The  IMAGE  COFF_SYMBOLS_HEADER  structure  is intended to
allow debuggers  to get a quick fix on the important  information  they need
to  know. This structure contains  pointers  to  the line number  and symbol
tables,  as well as information  that can  be found elsewhere  in the file.

To find the IMAGE_COFF_SYMBOLS  HEADER structure,  look in the
array  of IMAGE_DEBUG_DIRECTORY  structures  in the  .rdata  section  of
the file. The IMAGE_DEBUG_DIRECTORY  that has a Type field contain-
ing the value  1  (IMAGE_DEBUG_TYPE_COFF)  contains  a pointer  to  the
COFF symbol table.  To quickly recap this process:  The data  directory  (at the
end of the PE header)  contains an RVA to an  array  of IMAGE_DEBUG_
DIRECTORYs.  There is one IMAGE_DEBUG_DIRECTORY  for each type
of debug information  present in the file. If one of these IMAGE_DEBUG_
DIRECTORYs  refers to  COFF style debug information,  then it contains an
RVA to  a IMAGE_COFF_SYMBOLS_HEADER  structure.  The IMAGE_
COFF_SYMBOLS_HEADER  structure  in turn contains pointers  to the COFF
symbol table and line-number information.  The IMAGE_COFF_SYMBOLS_
HEADER structure has the following format:
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Let's  look  at  the  fields of the IMAGE_COFF_SYMBOLS_HEADER  in
detail:
DWORD  NumberOfSymbols
The  number  of symbols  in the COFF symbol  table.  This  field contains  the
same  value  as the IMAGE_FILE_HEADER.NumberOfSymbols  field, as
discussed in  "The  PE Header"  section earlier  in this chapter.
DWORD  LvaToFirstSymbol
The byte offset to the COFF symbol table, relative to the start of this structure.
Adding  this value to  the  RVA of this IMAGE_COFF_SYMBOLS_HEADER
will  yield the same result  as the IMAGE_FILE_HEADER.PointerToSymbol-
Table  field.
DWORD  NumberOfLinenumbers
The number  of entries in the line number table  (see Figure  8-15).
DWORD  LvaToFirstLinenumber
The byte  offset to  the  COFF  line number table,  relative to  the start of this
structure.
DWORD  RvaToFirstByteOfCode
The RVA of the first byte of executable code in the image.  This field is usually
the same as the RVA of the  .text  section.  This value could also  be found  by
scanning  the executable's  section table.
DWORD  RvaToLastByteOfCode
The  RVA of the last  byte  of executable  code in the image.  Assuming  you
only  have  one code  section  (.text),  this  field will  be equal  to the  section's
RVA plus its raw  data  size.  This value could also  be found  by scanning the
section  table.

typedef  struct  _IMAGE_COFF  SYMBOLS_HEADER  {
DWORD  NumberOfSymbols;

DWORD  LvaToFirstSymbol;

DWORD  NumberOfLinenumbers;
DWORD  LvaToFirstLinenumber;
DWORD  RvaToFirstByteOfCode;
DWORD  RvaToLastByteOfCode;

DWORD  RvaToFirstByteOfData;

DWORD  RvaToLastByteOfData;
} IMAGE_COFF_SYMBOLS_HEADER,  *PIMAGE_COFF_SYMBOLS_HEADER;
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Line  Numbers

SymIndex: C (DumpDebugDirectory)
Addr:  016A9  Line:  0008

Addr:  016B5  Line:  0009

Addr:  016BF  Line:  000A

Addr:  016C4  Line:  000E

//  Rest  of  line  number  for  function  omitted.,.

SymIndex: ,13  (GetResourceTypeName)

Addr:  0184A  Line:  0001

Addr:  01854  Line:  0002

Addr:  0186F  Line:  0003

Addr:  01874  Line:  0004

//  Rest  of  line  number  for  function  omitted,..

SymIndex:  1A  (GetResourceNameFromLd)

Addr:  01897  Line:  0004

Addr:  018A1  Line:  0006

Addr:  018B6  Line:  0007

Addr:  018BB  Line:  000A

//  Rest  of  line  numbers  omitted...

Figure  8-1 5
Typical  COFF line-number informatian  in  an  EXE file.

DWORD      ToFirstByteOfData

The RVA of the first byte of data in the image.  This  field is usually  the same
as the RVA of the  .bss section.

DWORD          RvaToLastByteOfData

The RVA of the last byte of program accessible  data in the image.  The region
encompassed  by the FirstByteOfData  and the LastByteOfData  fields may
span  several sections  (for instance,  .bss,  .rdata,  and  .data).

THE COFF LINE-NUMBER TABLE

The  COFF line-number  table pointed  to  by the IMAGE_COFF_SYMBOLS_
HEADER structure is very simple:  It's just an array of IMAGE_LINENUM-
BER structures.  Each structure correlates  one line of source code to its RVA
in the executable image.  Figure 8-15  shows  a sample  line-number  table as
shown  by PEDUMP. The format of an IMAGE_LINENUMBER  has two
fields,  a union and word.
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union {
DWORD  SymbolTablelndex
DWORD
} Type
If the  Linenumber  field  (below)  is nonzero,  this  field should  be treated  as;
RVA for  a line  of code.  If the  Linenumber  field  is 0,  this  field contains  an
index into  the  symbol  table.  The symbol  record referred  to  by this index
identifies  a function.  All the  line-number  records for that  function  follow
this  special  record.  From  looking at the  PEDUMP output,  you can see that
the  line-number  table  is comprised  of a symbol  table  index record,  followei
by regular  line-number records,  followed  by another  symbol  table  index
record,  and  so on.
WORD  Linenumber
Contains  a line number,  relative  to  the  start  of the  function.  This  field is not
a  line number  in  the  file.  To convert  this  field  to  a usable  line number  in the
file,  look  up  the  starting  line  number  for  the  associated  function in the sym-
bol  table.  The  associated  function  is the  function  with  a  0 in  this  field  in the
most recent  line-number record.  See the  PEDUMP output  in  Figure  8-15 if
this  is unclear.

If you  want  to  access only the  line numbers  for a given code  section,  you
can look  up just  the  relevant  range of line-number  entries  from the  section
table.  A section's  IMAGE_SECTION_HEADER  contains  a file offset  and  a
count  for its line numbers within  the  table.  COFF format  OBJs  also contain
line-number  information  in the  format  I've just described.  Since there  is no
IMAGE_COFF_SYMBOLS_HEADER  structure  in an  OBJ file, you'll  need
to  find the line-number  records  through  the IMAGE_SECTION_HEADER
structures.

DIFFERENCES BETWEEN PE FILES AND COFF OBJ  FILES

At many  points  throughout  the preceding  discussion,  I've  noted  that  many
structures  and  tables  are  the  same in  both  a COFF  OBJ  file  and  the  PE file
that's  created  from  it.  Both COFF  OBJ  and  PE files  have  an  IMAGE_FILE_
HEADER  at  or  near  their  beginning.  This  header  is followed  by a  section
table  that  contains  information  about  all  the  sections  in  the file.  The  two
formats  also  share  the  same line  number  and  symbol  table  formats,
although  the  PE file can  have  additional  non-COFF  symbol  tables  as  well.
The  amount  of commonality  between  the  two  formats  can  be  seen in the
PEDUMP  source  code.  The  largest  file  in  the  program  is  COMMON.C.
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This  source  file  contains  all the  routines  that  can  be used  by both  the  PE-
and  OB J-dumping  portions  of the  program.

This  similarity  between  the two  file formats  isn't happenstance.  The goal
of this design is to  make  the linker's  job as easy as possible.  Theoretically,
creating  an  EXE file from a single  OBJ should  be just a matter  of inserting a
few tables  and  modifying  a couple  of file offsets within  the  image.  With  this
in mind,  you  can think  of a  COFF  file as an  embryonic PE file.  Only a few
things  are missing or  different,  so I'll  list them here.

*  COFF  OBJ files  start  immediately  with  an  IMAGE_FILE_HEADER.
There's  no  DOS  stub preceding  the  header,  nor  is there  a PE signature
preceding  the  IMAGE_FILE  HEADER.

*  OBJ files  don't  have  the IMAGE_OPTIONAL_HEADER.  In  a PE file,
this  structure  immediately follows  the  IMAGE_FILE_HEADER.
Interestingly,  some  OBJs inside  COFF  LIB files  do  have  an
IMAGE_OPTIONAL_HEADER.

*  OBJ files don't  have  base relocations.  Instead,  they  have regular  symbol-
based  fixups.  I haven't  gone  into  the  format of the  COFF  OBJ file relo-
cations  because  they're  fairly  obscure.  If you  want  to  dig into this  par-
ticular  area,  the  PointerToRelocations  and  NumberOfRelocations  fields
in the  section table  entries  point  to  the  relocations  for each  section.  The
relocations  are  an  array  of IMAGE_RELOCATION  structures,  which  is
defined  in WINNT. H.  The PEDUMP program can  show  OBJ file reloca-
tions  if you  enable  the proper  switch.

*  The  CodeView  information  in  an  OBJ file is stored  in two  sections
(.debug$S  and  .debug$T).  When the  linker  processes  the  OBJ files,  it
doesn't  put  these  sections  in  the  PE file.  Instead,  it  collects  all  these  sec-
tions  and  builds  a  single  symbol table  that's  stored  at  the  end  of the  file.
This  symbol  table  isn't  a  formal  section  (that  is, there's  no  entry for it  in
the  PE's section  table).
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COFF  LIB  FILES

Once you understand  COFF  OBJ files, using COFF LIB files isn't much harder.
COFF LIB files are essentially just  a collection  of COFF OBJ files,  along with
some  initial  sections  that  let you quickly look up the  location  of a desired OBJ
file embedded  within the library.  The sparse documentation  for the  COFF LIB
format refers  to  LIB files as  archives,  so I'll  do  so here  to  remain  consistent.
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All  LIB files  start  out  the  same  8-byte  signature.  This  signature  is
defined  in WINNT. H:

#define  IMAGE_ARCHIVE_START "!<arch>\n"

The  remainder  of the  file is a  series  of variable-length  records,  with each]
record starting with  an IMAGE_ARCHIVE_MEMBER_HEADER structure,s]

typedef  struct  _IMAGE_ARCHIVE_MEMBER_HEADER  {

BYTE  Name[16];

BYTE  Date[12];

BYTE  UserID[6];

BYTE  GroupID[6];

BYTE  Mode[8];

BYTE  Size[18];

BYTE  EndHeader[2];

} IMAGE_ARCHIVE_MEMBER_HEADER, *PIMAGE_ARCHIVE_MEMBER_HEADER;

Each  IMAGE_ARCHIVE_MEMBER_HEADER  corresponds  to either
an  OBJ file within  the  library  or  to  one of a  small  collection  of special
records.  These  special records come at  the  beginning  of the  library,  and exist
to  let the  linker  quickly  look  up  OBJ files  later  in the  file.  The  raw data for
the  archive  member  immediately  follows  the  IMAGEARCHIVE_MEM-
BER_HEADER that  starts  each  record.  For most  archive  member  records,
the  raw  data  is exactly  the  same file as  an  OBJ file would  contain.  In fact,
when  dumping  out  LIB files,  the  PEDUMP program calls  the  same  OBJ
dumping  routines  that  PEDUMP  would  use if it were processing  an  OBJ
file.  Figure  8-16  shows the  format of LIB files.

Let's  look  at the  fields  of the IMAGE_ARCHIVE_MEMBER_HEADER:
BYTE  Name[16]
The  name  of the  archive  member.  If a / appears  after  an  ASCII string  (for
example,  FOO.OBJ/), then  the  string preceding  the / is the  member  name. If
the  name  starts  with  a / followed  by a decimal  number  (for example,/104),
the  number  is the offset  of the  archive  member  name  within  the  Longnames
member  of the  LIB file.  In the  previous  example,  the  member  name would
start  104  bytes  into  the  Longname  area.

There  are  also special  names  that  identify  the  special  archive  members:

#define  IMAGE_ARCHIVE_LINKER_MEMBER  "/

#define  IMAGE_ARCHIVE_LONGNAMES_MEMBER  "//
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Figure  8-16
The layout of  COFF  format LIB files.

For OBJ files within  an import library,  this field  is the name of the  DLL
containing  the functions  to  be imported.
BYTE  Date[12]
The date/time that this member was created.  This number  is stored  in ASCII
decimal  form.
BYTE  UserID[6]
ASCII  decimal  representation  of the  user  ID.  Appears  to  always  be a
NULL string.
BYTE  GroupID[6]
ASCII decimal  representation  of the group  ID. Appears  to always  be a
NULL string.
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BYTE  Mode[8]
ASCII decimal representation  of the  file's  mode.  Appears  to  always  be 0.
BYTE  Size[10]
The size of the member data  to follow, represented in ASCII decimal form.
The format of the data  depends on what type it is (indicated  in the previously
described  Name field).
BYTE  EndHeader[ 2 ]
The ASCII string \n.

Linker members
Every LIB file has two  Linker member  sections  that  act as a table of contents
for the rest  of the file.  Both members have the name/,  and are differentiated
by the  order in which they appear in the file.  The first Linker member is the
first archive member  with the name/,  while the second Linker member  is the
second  archive member  with the name/.

Both  Linker  members  are  essentially  lists  of the public  symbols in the
LIB file,  along  with  the file offsets  to  the  OBJ members  that  contains  the
public  symbol.  The  two  Linker  members  have  different  formats.  Why two
copies  of the  same information?  The first  Linker  member stores its informa-
tion  sorted  by the  order  in which  the  OBJs appear later  in the  LIB file.  This
leads  to  non-optimal  searching.  The second  Linker  member has its  symbols
sorted  in alphabetical  order,  thereby making  it much  more  useful to  the
linker.  According  to  the Microsoft  documentation,  the  linker ignores the
first  Linker  member,  and always  uses the  second  Linker  member.

The  first  Linker  member has  the  following  format:
DWORD  NumberOfSymbols
This is the number of public  symbols in this library.  This number is in big-
endian format (reflecting COFF's  heritage in machines  other than the i386).
The ConvertBigEndian  function in PEDUMP's  LIBDUMP. C file can handle
switching  from big-ending format to the little-endian  format that the i386 uses.
DWORD  Offsets[ NumberOfSymbols ]
This  is an  array  of file offsets to  other  archive members.  The offsets are in
big-endian  format.  Each  of these  members  is an  OBJ-type  member.  Each
element  of this array  corresponds  to  the equivalently  ordered  symbol  name
in the list  of ASCII  strings  that  immediately  follows.
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BYTE  StringTable[?]
This  is an  unbroken  series of C-style  strings  in  memory.

Essentially,  each element  in the  Offsets  array corresponds  to  one public
symbol  whose name  appears  in the  StringTable area.  For example,  the third
element  of the  Offsets array  is associated  with  the third  string in the
StringTable area.  The  PEDUMP output  makes this clearer:

First  Linker  Member:

Symbols:  00000006
MbrOffs  Name

00000180  _DumpCAP@0

00000180  _StartCAP@0
00000180  _StopCAP@0

The  format  of the second Linker  member is more  complex  because of
the addition  of an array  necessary for  fast  symbol  lookup.  The format  of the
second  Linker  member is as follows:
DWORD        NumberOfMembers
This  DWORD  contains  the number  of OBJ file archive  members  that
appear  later  in  the  file.
DWORD  Offsets[NumberOfSymbols]
This  is an array  of file offsets to  other  archive members.  Unlike the  first
Linker  member,  these offsets are in the native  format of the machine  (that  is,
in  little-endian  format  for  i386  machines).
DWORD  NumberOfSymbols
This  is the number of public  symbols in the  StringTable array  (and hence,
the number  of public  symbols  in the library).  This  field  also contains  the
number  of elements  in the Indices  array  that  immediately  follows.
WORD  Indices[ NumberOfSymbols ]
This  array  holds  1-based indexes into  the  Offsets array  (described two  fields
up).  This  array runs  parallel  to the  strings  in the  StringTable array.
BYTE  StringTable[ NumberOfSymbols ]
This  is an unbroken  series  of C-style strings  in memory.



O B J

620

To find the  OBJ file  that  corresponds to  a given symbol  using the  second
Linker  member,  the  linker  first searches  the  StringTable  array  and calculates
the  relative  index  of the  string  in the  array.  Next,  the  linker  uses  the  index
to  look  up a WORD  in the Indices array.  Finally,  the  linker  subtracts  1 from
this  Indices array  WORD  and  uses  the  result  as  an  index into the  Offsets
array.  The  Offsets  array  DWORD  that's  looked  up  is the  file offset  of the
OBJ  file  that  contains  the  public  symbol.  The  DumpSecondLinkerMember
function  in  PEDUMP's  LIBDUMP. C shows this  process  in action.

The Longnames member
The  data  in the  Longnames  archive  member  section  is simply  a collection of
C-style  strings,  one after  the  other. A string  is placed  into the  Longnames
section  if its too  big to  fit  into  the  16  bytes  reserved  in the  Name  field  of an
IMAGE_ARCHIVE_MEMBER_HEADER  structure.  In this  case,  the  Name
field  contains  a/,  followed  by an  ASCII decimal  representation  of the
string's  offset  in the  Longnames  section.

SUMMARY

With  the  advent  of Win32,  Microsoft  made  a sweeping  change  in the  OBJ
and  executable  file formats.  This  change  allowed  Microsoft  to  save time  by
building  on work  previously  done  for  other  operating  systems.  A primary
goal  of these  revamped  file  formats  is to  enhance  portability  across  different
platforms.  The  COFF OBJ format  existed  before  Win32  was  created.  The
PE format  is an  extension  to  the  COFF  format  and  was  designed  for use
with  Win32  platforms.

The  useful  part  of both  the  OBJ and  executable  files  begins with  an
IMAGEFILEHEADER  structure.  Following  that  structure  (and possibly
an  additional  optional  structure)  is a  section  table.  The  section table  con-
tains  the  location and  attributes  of all  the  sections  in the  file.  A section  is a
collection  of code or  data  that  logically belongs  together.  To facilitate  find-
ing information  quickly,  the  PE file contains  a data  directory  that  points  to
useful  locations  in the  file  (for example,  the  location  of the  file's  export
table).  Besides  the  header(s),  section tables,  and  raw  section  data,  COFF
OBJ  files and  PE files can  also contain  information  regarding symbolic
names  and  line  numbers.  This  information  is stored  at  the  end  of the file,
after  all  the  headers  and  section  data.
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U nlike  the rest of this  book,  this chapter  doesn't  focus  on
the  workings  or  architecture  of Windows  95.  Instead,  it

describes  some of the more  basic elements  of exploring code on
your  own.  Consider  the adage  "Give someone  a fish and they'll
eat for a day. Teach someone  to fish and they'll  eat for a lifetime."
The  other  chapters  in  this  book  give  you  fish.  This  chapter
teaches  you  how  to  fish  for  Windows  secrets  on  your  own.

Of course, what you'll  learn here can also  be applied to other
situations, such as to device drivers and end-user applications.

In the ideal world,  you would  be able to  find all the operat-
ing system information  you needed in the documentation,  allow-
ing you to treat the operating  system components as  a black  box.
You  wouldn't  need  to  understand  the  internal  behaviors  and
data  structures  of such an operating  system because understand-
ing and using the  documented  interfaces would  be sufficient  to
write  your program,  library, or device driver.

In  the  absence  of complete  documentation  (ah,  that  perfect
world  is starting to crumble...  ), the operating system's source
code can  act  as  a  surrogate  source  of information.  Although
you  have  to  look  at  other  people's  code  (shudder!),  the  answer
to  almost  every  operating  system question can  be  found  with
enough  digging  through  the  operating  system sources.  In  fact,
Eric  S.  Raymond's  The New Hacker's Dictionary contains  an
entry  for UTSL,  an  acronym  for  Use the  Source  Luke.
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In the  UNIX world,  access to  the  operating  system  sources  is fairly com-
mon.  Unfortunately  for  us programmers  who  work  with Windows,  source
code  isn't  available.  Granted,  some  actual  Windows  95  code  appears  in the
DDK.  For the  most part  though,  the  majority  of programming  questions
concern  topics  that  neither  the  SDK nor  the  DDK provide  source  code for.
Microsoft's  documentation  in these  areas has  improved  markedly  in  recent
years,  but  there  are  still many holes  in the  Windows  SDK documentation
that  real  source  code  would  fill.

Insufficient  documentation  and  source code  unavailability  aren't  the
only  problems  you can  encounter when working  with  the  operating  system.
Your  application  may  need  to  interact  with  another  application  whose
exact  behavior  is unknown  to  you.  The  prototypical  example  of this  is the
programmer who  is forced  to  spend  a great  deal  of time  trying to  pin  down
what  DDE  messages  Microsoft  Excel  sends,  and  in  what  order.  Another
example  from  Windows  3.1  is  the  program  that,  when  run,  causes  other
programs  to  be unable  to  run.  The problem  in this case is that  some program
is sucking  up  all the  memory  below  1MB in  the  address  space.

In  this  chapter  I discuss the  following  methods  of spelunking  used by
Windows  programmers:

*  File-dumping  utilities
*  API and message  spy programs  (such as APISPY32  from  Chapter  10)
*  Disassembly

In each section I describe the commonly  available tools  and give examples
of  how  to  use  these  tools  to  find useful  information.  The  final  section  on
disassembly  techniques is especially detailed because disassembly is considered
to be a form of  "black magic"  and  is rarely covered  in print.  A lot of the art
of reading assembler listings  and stepping through code in a debugger  is just
knowing common compiler  code-generation  patterns.  There's  also a certain
amount  of real-world  experience involved,  but  I'll  save a full discussion of
that  for later.

Most  of this chapter describes  general  spelunking concepts  that  beginning
and intermediate  programmers  will find helpful. But the  final  section of this
chapter  is a collection of advanced tips and tricks  for the  serious spelunker.
After  all, I've learned a lot of lessons the  hard  way, and those of you who are
interested might  as well  benefit from my hard-won knowledge.
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Although Windows  95  is a Win32  operating  system,  vital  parts  of it  still
use  16-bit  code  and  the  16-bit  NE  file format.  Describing  Winl6  spelunking
techniques  is therefore a must  for this  chapter.  Although  some spelunking
techniques  carry  over  from  Winl6  to Win32,  there  are  significant  differ-
ences.  Therefore,  I'll  cover  tools  and  techniques  for  Win32  programs  as
well.

SPELUNKING OVERVIEW

The easiest and most readily available method of learning the details  of a piece
of code is to  use file-display programs such as Borland's TDUMP, Microsoft's
EXEHDR  and DUMPBIN,  or the PEDUMP program  from Chapter  8. These
programs  can tell you such things  as what  DLLs and APl functions  a program
uses,  but  won't  be  able  to  provide  you  with  information  about  internal
algorithms  and  data  structures.  Think  of it  this  way:  File  dumping  is  to
spelunking rather what  looking out your front window is to  conducting a full-
scale surveillance  operation  on the house across the street.  It's relatively  easy,
but you may not  be able to  get all the information  you need.

For  more  sophisticated  snooping  into the  internals of a program,  you can
use a spy program.  Programs such as SPY from the  Microsoft Windows  SDK
and WinSight from Borland  C++ show the window messages that  a program
sends  and receives.  Recently,  programs  such as Nu-Mega's  BoundsChecker
products  and Periscope's WinScope added the  capability  to  see your program's
calls  to  the operating  system APl functions.  And  Chapter  10 offers an extensi-
ble Win32  APl  spy program that  you  can  use.  With  all  this  information  and
a  little bit of work,  you can figure  out  how almost any nifty piece of code  is
implemented.  I'll give an  example  of spelunking with  a spy program  later  in
this chapter.  Returning  to our spying-on-the-house  analogy,  spy programs  can
be thought  of as intercepting  the mail  and phone conversations  going into  and
out  of the house.

Finally,  when you need  to know a program  or  DLL's  internal  algorithms
or data  structures,  you can pull out all the stops by using disassembly.  Although
you can do limited disassembly work with just a good debugger, you'll  probably
want  to  use  a file-based disassembler  such as V-Communications'  Sourcer or
Win2Asm  from Eclectic  Software.  The capability  to  add  your  own comments
and  formatting  to  the  listing file makes  file-based  disassemblers  a  far  better
choice than your favorite debugger for serious  disassembly.  To carry our house
surveillance  analogy one  step further,  disassembly  is like breaking down  the
front door  and rifling through the contents  of the house. I'll  describe disassem-
bly tools  and techniques in the  "Spelunking Using Disassembly"  section.
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SPELUNKING WITH FILE-DUMPING TOOLS

The usual first step in spelunking  a program is to dump out the file's contents.
This is a quick and easy way to get a handle on what type of file you're dealing
with and what the file might be used for. Table 9-1 lists the capabilities of
some well-known tools that are expressly written to dissect a file's contents.

Table  9-1
Capabilities  of  common  file-dissection  tools

Notes:
DUMPBIN is from Microsoft Win32 SDK and Visual C++.
DUMPEXE is from Symantec C++
EXEHDR is from Microsoft Visual C++
TDUMP is from Borland C++

If you develop with Borland C++, try out TDUMP. EXE from the BIN
subdirectory.  If you  develop  with  16-bit  Microsoft  C/C++, EXEHDR  is
probably  your tool of choice. If you use Visual C++ or the Win32 SDK, the
DUMPBIN program in the BIN directory works with Portable Executables
(PEs) and the COFF format OBJs produced by the Microsoft 32-bit compilers.
As Table 9-1  shows,  no one program does everything,  so it's a good idea
to have at least a couple of programs on hand. The combination  of TDUMP
and DUMPBIN is a good one that should cover most bases.

The most useful information you get from a file-dumping program is
usually the names of the DLLs and functions that a program or DLL imports.
Often just knowing that a program uses a certain  function is enough to get
you going when you're  stuck.  For example,  in Windows  3.0 there was no
documented  way to change the desktop wallpaper,  yet the Control Panel
application was able to change the wallpaper. The capability had to exist some-
where in Windows. By running TDUMP or EXEHDR on the Windows 3.0
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control  panel  program, you would have seen that the program made use
of the undocumented  SetDeskWallPaper function.  (In Windows 3.1  the
documented SystemParameterslnfo  APl took over this functionality.)

Finding the functions that a 16-bit New Executable (NE) program or DLL
uses is a two-step process.  The NE file doesn't contain a simple list of all
functions imported from other DLLs. Therefore, the  first step in this process
is to find the fixup data for the executable's segments. If you use EXEHDR,
you'll have to use the /VERBOSE switch to get the fixup information. This
output shows the TDUMP version of a typical sequence of  that occurs
in the Windows 3.1  CALC.EXE:

PTR  OAD9h  GDI.91

PTR  0121h  GDI.93

PTR  OOEAh  USER.89

PTR  0223h  USER.90

PTR  04ADh  USER.91

PTR  1DCAh  USER.92

The important information in this output is the module name and import
ordinal at the end of each line. In this case, the program is importing  six
functions,  two from GDI and four from USER. Function  names such as
GDI.91 aren't  particularly  useful by themselves,  so the second step of the
process  is to convert the module name  (GDI) and ordinal  (91) to a real
function name.

When an EXE or a DLL exports functions, the function names and their
associated export ordinal values are stored in the executable file, as well as
in an import library. Since there's no easy way for Microsoft  users to dump
the contents  of a  16-bit import library, I'll show you how to get the function
name from the DLL directly. But back to our second step: We have to figure
out what GDI.91 is. That means dumping out GDI.EXE to see what exported
function 91 is. The output that follows shows a fragment of the Non-Resident
Name Table section produced by running TDUMP on GDI.EXE. If you use
EXEHDR, you'll find similar information in the section titled "Exports":

Looking at the TDUMP output for GDI.EXE, notice that the function
GetTextExtent  corresponds  to GDI.91. Putting two and two together, it's

Non-Resident  Name  Table  offset:  OC41h

Module  Description:  'Microsoft  Windows  Graphics  Device  Interface'

Name:  GETWINDOWEXTEX  Entry:  474

Name:  GETTEXTEXTENT  Entry:  91
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evident that  CALC.EXE calls  GetTextExtent  (GDI.91).  The names  of the other
imported  functions can be determined by repeating the two-step  process I just
described.  Bear in mind that this method  won't find functions that a program
links to at runtime by calling  GetProcAddress.  In that particular case,  you'll
have to resort to disassembly to  find these calls.

Finding the  functions  that  a 32-bit  PE file imports  is  much  simpler.
Running  DUMPBIN  or  PEDUMP  from  Chapter  10  on  a Win32  program
shows  that  a PE file  contains  a  simple  list  of  all  the  functions  it  imports.
(The  list  looks  simple  in the  dump.  Inside  the  file,  the  imports  section  is
fairly  complex.  For  a complete  description  of  the  exports  section  and the
PE format  in general,  see  Chapter  8.)  The  list  of  imported  functions  is  even
sorted  by module.  This  output contains  fragments  of  the  imports  section
emitted  by running DUMPBIN  on  the Windows  NT  3.5  USER32.DLL:

ntdll.dll

Hint/Name  Table:  0002F31C

TimeDateStamp:  2E67E68D

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0002F050

Ordn  Name

78  NtCreateSection

226  NtUnmapViewOfSection

503  RtlUnwind

901  strrchr

890  sscanf

...  rest of  functions  omitted

KERNEL32.dll

Hint/Name  Table:  0002F3CC

TimeDateStamp:  2E67E68D

ForwarderChain:  FFFFFFFF

First  thunk  RVA:  0002F100

Ordn  Name

119  FindClose

150  GetAtomNameW

378  LocalReAlloc

368  LoadLibraryW

236  GetModuleFileNameW

...  rest of  functions  omitted

In this  output,  the  first  number  on  each  line  containing  a function  name
is the  hint  ordinal.  Win32  operating  systems  import  functions  by name,  but
the  hint  ordinal  can  speed  up the  process.  It gives  the  loader  a  hint  of where
it  should  start its  binary search  for the APl  name  in the  DLL that  exports
the  functions.



By looking at USER32.DLL's import table (in the output), we can see that
it calls KERNEL32 functions such as GetAtomNameW and LocalReAlloc. It's
interesting to note that when the NT USER32.DLL has a choice of calling
either  an ASCII or  a Unicode API, it calls the Unicode version  (GetAtom-
NameW, LoadLibraryW,  and so on).  This is consistent  with Microsoft's
claim that Windows NT uses Unicode strings internally.

This output also shows that NT's USER32.DLL uses many functions
from NTDLL.DLL. NTDLL.DLL is an entire DLL of undocumented func-
tions! Interestingly,  in  NT, KERNEL32.DLL relies  heavily  on functions
in NTDLL.DLL.  In contrast,  NTDLL.DLL  still exists  in Windows 95,
but  KERNEL32.DLL doesn't  appear to  use it  for  anything.  In  fact,  the
Windows  95 NTDLL.DLL  is the  opposite  of the  NT version,  and relies
heavily  on  KERNEL32 functions.

Although  it's useful to know what APIs an EXE or a DLL uses, the flip
side is equally important.  File-dumping programs can show you what APIs
a DLL exports for use by other programs and DLLs. The exported functions
are  often  a dead giveaway to  the purpose  and capabilities  of the  DLL.
Sometimes  a name by itself is enough information to guess what the para-
meters are to an undocumented function.  Other times you'll need to use the
disassembly techniques  along with the exported API names to figure out
how to call an undocumented DLL function.

The next output shows the TDUMP output of the exports from a 16-bit
NE file, SPELL.DLL. This DLL comes with Microsoft Word for Windows 2.0,
but its APIs aren't documented.

Non Resident  Name  Table  offset:  02A8h

Module  Description:  'Word  for  Windows  v.  2.0  Spell  Checker  DLL'

Name:  SPELLOPENUDR  Entry:  8

Name:  SPELLGETSIZEUDR  Entry:  13

Name:  SPELLADDUDR  Entry:  9

Name:  SPELLOPTIONS  Entry:  3

Name:  SPELLDELUDR  Entry:  11

Name:  SPELLTERMINATE  Entry:  5

Name:  SPELLADDCHANGEUDR  Entry:  10

Name:  SPELLINIT  Entry:  2

Name:  SPELLVER  Entry:  1

Name:  SPELLCLOSEMDR  Entry:  15

Name:  SPELLCHECK  Entry:  4

Name:  SPELLVERIFYMDR  Entry:  6

Name:  SPELLOPENMDR  Entry:  7

Name:  SPELLCLOSEUDR  Entry:  16

Name:  SPELLCLEARUDR  Entry:  12

Name:  SPELLGETLISTUDR  Entry:  14

627
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Some of the function  names give obvious  clues as to  what the DLL does,
as  well  as  an  idea  of how  you  might  call  that  function.  For  example,  the
SpellVer()  function  probably  doesn't  take  any  parameters,  and  probably
returns  a  version  number  in the  AX or  DX:AX registers.  It's  very  easy to
write  a  small  program  that  tests  this  theory.  Just  do  a  LoadLibrary  on
SPELL.DLL,  call  GetProcAddress  to  get the  address  of  SpellVer(),  and
then  call  it.

News  flash:  Having written a small  program to  test this,  I discovered
that  the  function always  returns  0 when called  in this manner.  Resorting to
disassembly,  I discovered  that  the SpellVer function  actually takes  three  far
pointers  to WORDs  (LPWORD) that  it fills in.  The  lesson here:  Although
file-dumping  is the easiest form of spelunking,  it can't  give you  adequate
information  in all cases.

Returning  to  the  other functions  exported  from SPELL.DLL, note that
there are Spelllnit(),  SpellCheck(),  and  SpellTerminate  functions  - - so the
DLL probably  expects  to  be initialized, called to  check some text,  and then
shut down. What we don't know is what sort of parameters these APIs expect.
Again,  this  is where  disassembly comes into play.

If you want to see what new and exciting things changed between different
versions  of a product,  a good way to  start is to  compare  the exports  of two
corresponding  DLLs. Table  9-2  shows the  difference  between  the functions
exported  by KRNL386  in Windows  3.1  and Windows  95. To obtain this
information,  I used EXEHDR to dump the  exports of the Windows  3.1
KRNL386.EXE  and the Windows 95 KRNL386.EXE to separate files. Next, I
sorted the list of functions in each file alphabetically.  Finally, I ran a DIFF pro-
gram to show the differences.

As Table  9-2 shows,  some obsolete  functions  were  deleted  and a whole
bunch of intriguing  new functions  were  added.  Some of the  new functions
are  documented  (for example,  GetPrivateProfileStruct),  but  many  are
undocumented  (for instance,  Piglet_361  and  GetVDMPointer32W).
Noticeably missing  from the table  are numerous  new exported KRNL386
functions  that  are  exported  by ordinal  only, and that  don't  have names in
KRNL386's resident  or  nonresident  names  tables.

In Table  9-2, notice  that  some function  names  are hidden  by referring to
them as,  for  example,  K209  and K210.  If we knew the names  of these func-
tions,  it would  sure  make  it easier to  guess what their purpose  is. As it turns
out,  some of the new Kxxx functions  (such  as K209)  are for allocating or
freeing memory in a Win32  heap from a  16-bit application.  A good example
of code that  uses the Kxxx functions  is USER.EXE,  which  stores the WND
structures  in the  upper part  of the USER DGROUP  (above the 64K limit
that  plagued  programmers  prior to Windows  95).  Chapter  5 contains  more
information  on these functions.
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KRNL386 exported functions

New in
Windows 95

CALLPROC32W,  CREATEDIRECTORY, DELETEFILE, FINDCLOSE,
FINDFIRSTFILE,  FINDNEXTFILE, FREELIBRARY32W, GETCURRENTDIRECTORY,
GETDISKFREESPACE,  GETFILEATFRIBUTES, GETLASTERROR,
GETMODULENAME,  GETPRIVATEPROFILESECTION,
GETPRIVATEPROFEESECTION  NAMES, GETPRIVATEPROFJLESTRUCT,
GETPROCADDRESS32W, GETPRODUCTNAME, GETPROFILESECTION,
GETPROFILESECTIONNAMES,  GETVDMPOINTER32W,  GETVERSIONEX,
GLOBALSMARTPAGELOCK,  GLOBALSMARTPAGEUNLOCK,
INVALIDATENLSCACHE, ISBADFLATREADWRITEPTR,  K208, K209, K210,
K211, K213, K214,  K215, K228, K229, K237, [OADLIBRARYEX32W,
LSTRCATN, OPENFILEEX, PIGLET_361,  REGCLOSEKEY, REGCREATEKEY,
REGDELETEKEY, REGDELETEVALUE, REGENUMKEY, REGENUMVALUE,
REGFLUSHKFY, REGPSTERSERVICEPROCESS, REGLOADKEY, REGOPENKE¥,
REGQUERYVALUE, REGQUERYVA[UEEX, REGSAVEKEY, REGSETVALUE,
REGSETVALUEEX, REGUNLOADKEY, REMOVEDIRECTORY,
SETCURRENTDIRECTORY,  SETFILEATTRIBUTES, SETLASTERROR,
WRITEPRIVATEPROFILESECTION, WRITEPRIVATEPROFILESTRUCT,
WRITEPROFILESECTiON,  _CALLPROCEX32W

Deleted in
Windows 95

DIAGOUTPUT, DIAGQUERY, DOSIGNAL, EMSCOPY, GETFREEMEMINFO,
GETTASKQUEUEDS, GElq-ASKQUEUEES, GETWINOLDAPHOOKS,
INIT1-ASK1, K327, K329, K403,  K404,  REGISTERWINOLDAPHOOK,
RESERVED1, RESERVED2,  RESERVED3, RESERVED4, RESERVED5,
SETSIGHANDLER,  SElq-ASKQUEUE, SETTASKSIGNALPROC,
WINOLDAPCALL

1  0  AddAtomA  (00040475)

2  1  AddAtomW  (000134aa)

3  2  AddConsoleAliasA  (00014a6a)

4  3  AddConsoleAliasW  (00014ab1)

5  4  A11ocConsole  (00•1c4f2)

6  5  AllocLSCallback  (00029d84)

7  6  AllocMappedBuffer  (0003ea55)

8  7  AllocSLCallback  (00029db7)

9  8  BackupRead  (0001490d)

A  9  BackupSeek  (00014733)

B  A  8ackupWrite  (00014928)

On the Win32 side of things, here's a fragment of the output from running
DUMPBIN on the Windows 95 version of KERNEL32.DLL:
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There  are two  important  things  to  note  in this  output.  First,  several of
the  exported  APIs  come  with  two  variations  - - for  example,  AddAtomA
and  AddAtomW.  AddAtomA  is  the  version  of  AddAtom  that  uses  ASCII
strings,  and  AddAtomW  is  the  equivalent  function  that  uses  Unicode  strings.
(In Windows  95  and  Win32s,  most  of  the  Unicode  versions  of  the  functions
simply  pop  their  parameters  and  return,  since  these  Win32  platforms  don't

support  Unicode.)
The  second  thing  to  note  in  the  output  is  the  number  at  the  end  of each

line.  This  number  is  the  relative  virtual  address  (RVA)  of  the  function  in the
module.  This  is great news!  The  exports  section  contains enough  information
to  connect  a  symbolic  name  to  a code  address.  As you'll  see  later,  having  sym-
bolic  names  increases  the ease  of  spelunking  by  several  orders  of magnitude.

The  following  output  shows  a  small  portion  of  the  DUMPBIN  display
of  the  exported  functions  from  the  Windows  NT  3.5  NTDLL.DLL.

ordinal  hint  name

13  12  DbgBreakPoint  (0000aa58)

14  13  DbgPrint  (0000aa5e)

15  14  DbgPrompt  (0000aaa2)

24  23  LdrGetProcedureAddress  (000082ff)

25  24  LdrInitializeThunk  (00001108)

39  38  NtAllocateVirtualMemory  (80001198)

3A  39  NtCancelIoFile  (000011a8)

49  48  NtCreateMutant  (00001298)

4A  49  NtCreateNamedPipeFile  (000012a8)

4B  4A  NtCreatePagingFile  (00001268)

4C  4B  NtCreatePort  (000012c8)

4D  4C  NtCreateProcess  (000012d8)

4E  4D  NtCreateProfile  (000012e8)

4F  4E  NtCreateSection  (000012f8)

50  4F  NtCreateSemaphore  (000013•8)

A1  AO  NtQuerySystemInformation  (00001800)

19E  19D  RtlLocalTimeToSystemTime  (0001963c)

19F  19E  RtlLockHeap  (00011178)

1A0  19F  RtlLogStackBackTrace  (00016120)

1A1  1A0  RtlLookupElementGenericTable  (0001a104)

1A2  1A1  RtlLookupSymbolByAddress  (0001bcdf)

1A3  1A2  RtlLookupSymbolByName  (0001bb8b)
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With  functions like DbgPrint(),  NtCreateProcess(),  and NtQuerySystem-
Information(),  NTDLL.DLL has a lot of intriguing functionality  buried in it.
In  Windows  NT,  many  of  these  undocumented  APIs  uncovered  with
DUMPBIN  do  the  real  work  of creating  processes,  managing  memory,  and
so  on.  For  numerous  APl  functions  in Windows  NT,  KERNEL32.DLL is
nothing more  than  a very thin  layer  over the  real  code  in NTDLL.DLL.  You
might  be thinking,  "This is nice, but I probably can't  use NTDLL.DLL
myself."  Wrong!  If you  run  DUMPBIN  or  PEDUMP  on  some NT  programs
such as WPEREEXE,  you'll  see that  they call  undocumented  NTDLL.DLL
functions  such as NtQuerySystemInformation.

You can  often gain  additional  insight  into  the  file  by examining  some of
the  text  strings  it contains.  One  of the  most  useful  text  strings  is the  descrip-
tion field.  The  linker  puts  whatever  you  specify  on the  DESCRIPTION  line
of the  .DEF file into  the  executable's  description  field.  In  16-bit  NE  files,  the
description  string  is the first  entry in the nonresident names  table.  The  out-
put  that  follows  shows some typical  description  strings  in the  files  from the
Windows  95  \WINDOWS directory.

RUMOR.EXE:

WINBUG10.DLL:

DEFRAG.EXE:

MCIOLE.DLL:

SCANDSKW.EXE:

CARDS.DLL:

WINPOPUP.EXE:

MORICONS.DLL:

CHARMAP.EXE:

PROGMAN.EXE:

RUNDLL.EXE:

WINFILE.EXE:

DIALER.EXE:

Party  Line

DLL  for  LZ  compression  functions  for  WINBUG

Disk  Defragmenter  (Optimizer)

OLE  handler  DLL  for MCI  objects

ScanDisk  for Windows

Card  Display  Technology

Microsoft  Windows  Message  Popup  Application

MS-DOS  Application  Icons  For  Windows  3.1

Utility  for  easily  selecting  special  characters.

Windows  Program  Manager  3.1

Turn  a  DLL  into  an App

Windows  File  System  3.1

Microsoft  Windows  Telephony  Dialer

In  32-bit PE files,  the  linker  puts  the  description  string  somewhere  in the
.rdata  section.  Unfortunately,  there doesn't appear to  be any consistent pattern
to  its placement.  If you  want  to  see these  strings,  your  best  bet  is to  do  a
raw  hex dump  of the  .rdata  section  and  look  for  an  embedded  ASCII  string.
Also,  since  the  Microsoft  Win32  tools  generally  don't  need  a  .DEF  file,
you'll  find many files that  don't  have  a description  string.

Another  interesting  place  to get  useful  strings  from  dumping  an EXE or
a DLL is the  resource  section.  In  both  Win16  and Win32  programming  you
can specify resources  by ordinal  number  or  by name.  Sometimes  dialogs have
interesting  names  or  hidden  controls that  are  outside  the  dialog  rectangle.
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Stringtable  resources often contain  goodies that you may ordinarily  never see.
For instance,  in the  Microsoft  game TAIPEI.EXE,  the  program rewards you
with  a proverb  if you  win  a  game.  If you  want  to  see  all  the  possible
proverbs,  you  can  either  master  the  game,  or  you  can  cheat  like  I did  and
just  dump  out  the  string tables.

There  are  numerous  ways  to  get at  the  resources  in  a file.  Programs like
Borland's  Resource  Workshop  let you  view and  edit  the  resources  in  any
file  interactively.  If you  like doing things  from  the  command  line,  Eclectic
Software's  disassembler  (Win2Asm)  comes with  a utility  that  reads  in the
binary  resources from an executable file. It emits  a proper  .RC file that you
can  feed  back  into the  resource  compiler  if you  need to.

When  using file-dumping  programs,  the  jackpot  is when  you  encounter
a  file  that  still  contains  debugging  information.  Debugging  information
contains  all  sorts  of goodies  about  a program.  Modern  compiler  debug
information  includes  the  names  of all your  variables  and  functions,  your
source  file  names,  the  layout  of your  structure  definitions,  your  class
hierarchy,  and  many  other  things.  In  short,  in  the  hands  of those who
know  what  they're  looking for,  debug information  is almost  as good  as
source  code.

Borland's  TDUMP  dumps out  both  flavors  of Borland debug information
(16  and  32  bits),  in  addition  to  Microsoft  C7  debugging  information.
Microsoft  users  can  use  CVDUMP  to  break  apart  CodeView  information
into  readable  text.  In  addition  to  CodeView  information,  Microsoft's  32-bit
compiler  produces  another  type  of  debugging  information  called  COFE
(DUMPBIN.EXE  and  PEDUMP. EXE  from  Chapter  8 can  break  apart
COFF  debug  information.)  Finally,  the  DBG2MAP  from  Nu-Mega's
SoftIce/W can create  a human-readable  .MAP file from  both  Borland  and
Microsoft  32-bit  debug formats.

.SYM  files  are  another  form  of debug  information  that  can  be useful  for
spelunking.  Although  .SYM files  are relatively  old  and  crude,  they're  still
helpful  if you  happen  to  get hold  of them.  Microsoft  ships  .SYM files for
some  of the  debug binaries  as  part  of the Windows  95  SDK.  Alas,  there
aren't  good  .SYM  files  for  the  system DLLs  that  most  people  would  want
to  examine.

The  first  and  most  obvious  thing  that  debugging  information  (with the
exception  of  .SYM  files)  tells  you  is which company's  linker  was  used to
produce  the  executable.  (You can also  find that  information  by looking at
the  copyright  strings  that  the compiler  runtime  libraries  put  into  the  pro-
gram's  data  area.)  More  importantly,  however,  you  can  learn the  names  of
all  the  executable's  functions  and  variables.  Along with  the  functions  and
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variables  names,  the  debug  information  also contains  the  address  of these
symbols.  If you  need to  resort to  disassembly,  having symbolic  names  will
increase  the  odds  of success  manyfold.

Beside  symbolic  names,  the  debug information  might  contain  the  types
of the  variables,  the  argument  lists  for the  functions,  and  the  layout  of the
structures  and  classes.  In  short,  the  debugging  information  contains  almost
everything  about  your  program that  you  wouldn't  want  a competitor  to
know  about.  I once  shocked a programmer  by telling him  about  a GP fault
in his code,  and  on  what  line  it occurred.  I had  downloaded  the  program
from a  bulletin  board  and  didn't  have the  source.  The  debug  information
alone  was  enough  for  me  to  pinpoint  the  problem  and  the  source  line
number.  Your competitors  may not  be so nice!  That's  why it's  important  for
you to check that you don't  ship debugging information with  your product.
Many  companies,  including Microsoft,  Borland,  and  Delrina,  have  been
guilty  of this  in  the  past.  You can  see this  yourself  by running TDUMP  or
CVDUMP  on  SOUNDREC.EXE  from Windows  3.1.

Even  if you  don't  leave  debugging  information  in  your  EXEs  and  DLLs,
there's  still a  lot that  can  be learned  about  a file  by dumping  its contents  and
analyzing  the  results.  In the July  1993  issue of Microsoft Systems Journal,  I
presented  a utility  called  EXESIZE that  scans  16-bit  NE  files and  looks  for
wasted  space caused  by inefficient  or  lazy coding practices.  EXESIZE deter-
mines  if the  file  alignment  should  be smaller,  if inefficient  real-mode  code  is
being generated,  if you've  left  debug  information  in the  file,  and  so on.  In
some cases  EXESIZE  found  files that  wasted  well  over  100K.  Over  time,  I
found  that  in  most  cases, the  files  that  wasted  the  most  space  were created
by sloppy practices  or  unknowing  programmers.  Put another  way,  if an  exe-
cutable passed all  the  EXESIZE tests,  it was  probably  created  by seasoned
professionals  who  pay  attention  to  the  details.

While  I've been  focusing  on file  dumping  of EXEs  and  DLLs,  don't
overlook  the  wealth  of information  that  can  be  found  in  other  related  files.
In particular,  OBJ and  LIB files contain  quite  a  bit  of information  about  a
given  source  module  (or collection  of modules).  Borland's  TDUMP  takes
apart  Intel  OMF  OBJ files  to  show  you  public  and  external  symbols,  seg-
ment  names,  and  so  on.  Symantec  C++ includes  the  OBJ2ASM  utility  that
symbolically  disassembles  the  code contained  in an  Intel  OMF  OBJ file.
Microsoft's  DUMPBIN  and  my PEDUMP program  both perform  general-
purpose  COFF  OBJ and  LIB file dumping.  DUMPBIN can  even  disassemble
COFF  OB J/LIB files.
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SPELUNKING WITH SPYING TOOLS

While  file dumping  can  be interesting  and  informative,  it  often doesn't tell
you  everything  you  need to  know about  the  code  in question.  Tools  that  let
you  spy on  a program's  interactions  with  the  operating  system  are  often
much  better  suited  to  this  task.  The  most  well-known  Windows  spying tools
are the  message-spying  programs:  SPY from  Microsoft  and  WINSIGHT
from  Borland.  Message-spying  programs  show  the  messages  that  a window
receives,  and  how the  program responds to these  messages.

Although  this  information  can  be  useful,  programmers  often  need even
more  information  to  get to  the  root  of what  they're  trying  to  figure  out.
Programs  such as Nu-Mega's  BoundsChecker  for Windows  and  Periscope's
WinScope  have raised spy tools  to a new level. Besides window messages,  these
programs  intercept  APl calls that  a program  or  its  DLLs  make.  Additionally,
some spy programs  monitor and log hook callbacks,  TOOLHELP notifications,
and  other  callbacks.  The  idea  behind  these  programs  is to  put  "probes"  at
all  the  well-defined  places  where  controls  enter  or  exit  the  program's  code
(window  procedures,  APl  calls,  and  so  on).  The  information  that  passes
across  these  boundaries  is located  in consistent  places.  For  example,  all
window  procedures  are called  with a consistent  set  of parameters  on the
stack  (the HWND  is at  [BP+0E], the MSG number is at  [BP+0C] and so on).
Spy  programs  take  advantage  of this  knowledge to  save off,  analyze,  and
display  the  information.

The  best  spying tools  are those  that  don't  require  any modification  of the
code  that's  being spied on.  These programs  rely solely on the information  in
the  executable  file  and  the  calls  it makes  to  insert  their probes.  As I'll  show
later  in this  section,  this  allows  these  programs  to  spy on  almost  any  EXE or
DLL,  even  those  that  you  can't  relink  or  modify  in some way.

Another  group  of spying tools  requires  you to  relink  the code you want
to spy on.  These tools  work by fooling the  linker into resolving the program's
APl calls  to  point  to  the  tool's  own code rather  than  to  the operating  system
DLLs.  A closely  related  class of tools  modifies  the executable  file after  it's
been  linked.  The  effect  is still  the  same.  The  spy program  redirects  APl calls
to  the  tool's  own  code,  which  logs the  call  before  passing  control  on to  the
operating  system.

A variety  of spying tools  are  available  for  16-bit Windows  applications.
Although  the  primary  purpose  of BoundsChecker/W  (BCHKW)  is to  find
bugs,  it  accomplishes  this  by intercepting  all the Windows  APl  and  certain
of the  C library calls that  a  program  makes,  and  validating  the  parameters.
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Since BCHKW has already done the hard work of intercepting all APl function
calls, it wasn't much more work to make BCHKW retain the information  in
a trace buffer. To give a clearer picture of the sequence of events that lead up
to a bug, BCHKW also watches window and dialog messages, hook callbacks,
TOOLHELP notifications,  and other assorted callbacks.

If you choose to save the trace information  to a disk, you can use the
BCHKW's TVIEW program to get two different views of your program's
actions: an expandable view and a collapsible hierarchical view. TVIEW
includes a variety of event filters that do things like removing repetitive
sequences of APIs and messages that you're probably  not interested in. A
typical sequence of this sort would be: GetMessage/TranslateMessage/
DispatchMessage/Window  Message/DefWindowProc.

Although  BCHKW takes advantage  of debugging information for its
bug-finding  roles,  it isn't necessary for its spying capabilities.  As a result,
you can run BCHKW with just about  any Windows program,  not just
your own programs during development.

Another popular spying program for  16-bit programs is Periscope's
WinScope. Unlike BoundsChecker/W, which concentrates on one program at
a time, WinScope is a systemwide spy tool. WinScope shows you all the API
calls, hooks, and messages that occur anywhere  in the system. Sometimes
this is very useful; other times it leads to information overflow.

Luckily, WinScope provides a very high level of customization  for what
you want to spy on. You can enable or disable spying on individual APIs or
on groups of APIs. You can also enable or disable spying on windows mes-
sages and hooks. Like BoundsChecker/W, WinScope can save off a copy of
the memory that an API's far pointer parameters  point to. This enables you
to see the strings and data  structures  that  were passed to  CreateWindow,
GetPrivateProfileString,  and so on. WinScope can also save timing information
for each event, allowing WinScope to function as a crude profiler. WinScope
uses the information  in an NE file to hook APl calls, so you don't need to
relink the code you want to spy on.

If you're willing to sacrifice usability and features in exchange for saving
some money, you might consider Microsoft's API parameter profiler. Although
both  16- and 32-bit versions of this spying tool appear on the Windows NT
SDK, very few people know of its existence.

The Microsoft profiler is crude in its implementation and requires you to
modify any EXEs or DLLs that you want to examine. The core of this spy tool
is a collection of DLLs (ZERNEL.DLL,  ZSER.DLL,  ZERNEL32.DLL,
ZSER32.DLL,  and so on).  Each DLL has the same  base filename  as an
operating  system DLL, but with the first letter changed to Z. These DLLs have
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a small stub for each API exported  from the DLL they replace. For example
USER.EXE exports the function CreateWindow().  Therefore,  ZSER.DLL
exports a CreateWindow() function. You connect your program or DLL to the
special DLLs with the APFCNVRT program (or APF32CVT for you Win32s
users).  The APFCNVRT and APF32CVT programs  modify your program so
that it imports its functions from the parameter  profiling DLLs rather than in
normal operating system DLLs. When you run the modified program, all calls
to the affected DLLs go through  the parameter spying DLLs before they're
passed to the operating  system.  The parameter  profiler  saves its collected
information  to a disk file for viewing. For 32-bit programs, Microsoft provides
an alternative  set of DLLs that do real profiling rather than APl logging.

Besides the  32-bit version  of Microsoft's  parameter  profiler,  Nu-Mega's
BoundsChecker32  (BCHK32)  programs  (for NT, Windows  95,  and Win32s)
also  spy on API calls and window messages  in Win32  programs.  For the
purposes of API spying,  BCHK32 is similar  to  BoundsChecker/W.  However,
it has a few new features  not present in its Win16  sibling.  First,  when an
API call  fails, the API usually stores an error code with  SetLastError(),  indi-
cating why the call failed.  BCHK32  knows when an API fails and records the
error code.  Second,  since Win32  supports threads,  BCHK32  saves the thread
ID for each API call  and window message. The TVIEW program  uses the
thread  information  to provide additional  filtering options,  such  as showing
only the events for a specified  thread.

The  final Win32  API spy program I'll  mention  here is my APISPY32
program  from Chapter  10. Although APISPY32 isn't nearly as full-featured
as BoundsChecker32, it does provide the rudimentary  elements  of API spying
(including showing function parameters and return values). It's easily extensible
to monitor  any Win32  DLL that you want to  spy on,  and doesn't  require
any modification  to  your programs.

A key thing to consider when evaluating spying tools is which parts of the
system the  various  tools  allow you  to  watch.  WinScope  spies on  calls  to  a
dozen of the standard Windows DLLs (USER, KERNEL, GDI, and so on). More
importantly,  WinScope has the capability to spy on other DLLs through scripts
that you write.  BoundsChecker/W spies on ten  standard  DLLs (roughly the
same  set that  WinScope  includes  by default).  In  contrast,  the  Microsoft
parameter profile  watches only the main three system DLLs (USER, KERNEL,
and GDI). BoundsChecker32  currently spies on calls to KERNEL32, USER32,
GDI32,  and ADVAPI32, and on several other important DLLs.

In APl spying,  the  information  the spy tool can't  show you is often the
difference  between figuring out what's  going on and scratching your head in
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confusion. As a rule of thumb,  the more data  points  (that is, API calls, window
messages,  hook  callbacks,  TOOLHELP  notifications,  and  so on)  you record,
the  better.  For instance,  the Microsoft  parameter profiler is useless if you're try-
ing to figure out how a program uses TOOLHELP to perform some action.

Enough  descriptions  of API spying tools!  Let's solve a real-world problem
so you can see these tools  in action.  Many  times on programming  forums  I see
questions  relating to  the Windows  CLOCK.EXE  program.  The most common
query is,  "How  do I make  my program  switch  between having a title bar  and
not  having a title  bar, like CLOCK.EXE  does?"  You can find the  answer  by
using  a spy program to determine what  API calls  CLOCK.EXE  makes  when it
toggles  the title bar  on and off.  Here,  I'm going to use the 32-bit CLOCK.EXE
program  from  Windows  NT.  I could  just  as  easily  have  used  the  16-bit
CLOCK.EXE.  (Windows 95  doesn't include  a separate  CLOCK program,  but
you can run  the  NT  CLOCK.EXE  on Windows  95.)

For my tool,  I'll  use BoundsChecker32/NT,  although  any of the tools I've
mentioned  would  do.  If you  have  one  of these  programs,  you  can  follow
along  with  the steps I'll  show, although  it's  not necessary to  do so in order  to
understand  the key points.

The  first  step is to  run  the  program  in  question  and  collect  the  trace
information.  To  do  this,  run  BoundsChecker,  select  CLOCK.EXE  from  the
FILEILOAD dialog,  and choose Run.  After  CLOCK starts  up, go to  CLOCK's
Settings  menu  and  select No  Tide.  (I'm  assuming  that  when  CLOCK  started
there  was a title  bar  and  a menu.)  Shut the  Clock program  down.

The  next  step  is to  examine the  trace  output  and  find the  spot  where  the
program  responded  to the  No  Title  command.  The  following  output  shows
a text  file version  of the relevant parts  of the  trace.

WNDMSG:  HWND:0049016E  MSG:WM_COMMAND(0111)  WPARAM:00000006  LPARAM:00000000
APICALL:  GetWindowLong(HWND:OO49016E,  WINDOWLONG:GWL  STYLE)
APIRET:  GetWindowLong  returns  LONG:14CFO000

APICALL:  SetWindowLong(HWND:•Od9016E,  WINDOWLONG:GWL  ID,  DWORD:OOOO0000)
APIRET:  SetWindowLong  returns  LONG:BEOOF2

APICALL:  SetWindowLong(HWND:O•49016E,  WINDOWLONG:GWL  STYLE,  DWORD:14840000)
APIRET:  SetWindowLong  returns  LONG:14CFOO0•
APICALL:  SetWindowPos(HWND:OO49016E,  HWND:O0000000,  DWORD:O0000000,

DWORD:00000000,  DWORD:OO000000,  DWORD:OOO00000,
SWP  FLAGS:00000027:

SWP NOSIZE:SWP  NOMOVE:SWP  NOZORDER:SWP  FRAMECHANGED)

You may be wondering,  "How am I supposed to know where to  look for
the information  I need?"  The answer is incredibly simple.  Whenever you select



W M _ C O M M A N D

638

something  from a menu, Windows delivers a WM_COMMAND message to
your program. Therefore,  the first thing you need to do to find this sequence of
events is to search for the string WM_COMMAND.  If you followed the steps
given above, there should be only one WM_COMMAND  message in the entire
event log. However, for completeness, let's verify that the WM_COMMAND
message in the output is the correct one.

In a WM  COMMAND  message,  the WPARAM parameter  holds the ID
of the selected menu item. In the output,  WPARAM is 6. If you examine the
resources  in CLOCK.EXE with Resource  Workshop  or some other  similar
program,  you'll  see that the No Title menu item has an ID of 6. We're now
sure that we're  looking at the right section of the event log.

After receiving  the WM_COMMAND  message  telling CLOCK to turn
off its title  bar,  the  first thing  CLOCK does is call  GetWindowLong(),  pass-
ing the  GWL_STYLE parameter.  The next  line  of output  shows  that
GetWindowLong()  returns a DWORD of 0xl4CF0000.  This value represents
the WS_xxx style  bits  passed to  CreateWindow.  You can decode  these  bits
yourself  by looking  in WINDOWS.H:

#define  WS VISIBLE  OxlOOOOOOOL

#define  WS_CLIPSIBLINGS  OxO4000000L

#define  WS_BORDER  OxOO800000L

#define  WS  DLGFRAME  OxOO400000L

#define  WS  SYSMENU  OxOOO8000•L
#define  WS_THICKFRAME  OxOOO40000L

#define WS MINIMIZEBOX  OxOOO20000L

#define  WS MAXIMIZEBOX  OxOO•lOOOOL
 ....... ====

Ox14CF0000

For now, temporarily  ignore the next  two lines in the output  (I'11 come
back to them momentarily).  After CLOCK has retrieved  its style  bits with
GetWindowLong(),  it turns  around and sets a slightly different set of style
bits  with  the  call  to  SetWindowLong().  In  this  call,  the  style  bits  are
0x14840000.  It looks like CLOCK retrieves its WS  xxx style bits, modifies
a few of them,  and sets the revised  style  bits  back out to the window.  So
what  styles did CLOCK change? Comparing  the original 0xl4CF0000  to
the new 0x14840000,  the new style DWORD is missing  the  following styles
from the  original value:

#define  WS_DLGFRAME

#define  WS_SYSMENU
#define  WS_MINIMIZEBOX

#define  WS_MAXIMIZEBOX

0x0040000L

0x0008000L

0x00020000L

0x00010000L
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This is consistent with  CLOCK's behavior.  When you select the No Title
menu item, the system menu and the minimize and maximize  buttons go away.

Now  I'll return  to  the  two  lines  in  the  output  that I previously  skipped.
The  first of these  lines  is a call  to  SetWindowLong().  This  line  appears  to  be
setting  the  windows  control  ID  (GWL_ID)  to  0. With  only  that  bit  of infor-
mation  to  go on,  you're  probably  confused  as to  what  the  intent  of the  code
is.  To keep  things  moving,  I'll  let you  in on  the  secret.  All windows  have  an
internal  field  that  can  be  either a  menu  handle  or  a  control  ID.  Top-level
windows  (such  as  CLOCK.EXE's)  use  this  field  to  hold  a  menu  handle
(HMENU).  Child  windows  (such  as  dialog  box  controls)  use  this  field  to
hold  their  control  ID.  For  official  verification  of  this,  refer  to  the  hMenu
field  description  in  the  documentation  for  CreateWindow().

Knowing this obscure  factoid,  we can see that  CLOCK.EXE is setting its
window's  HMENU  to  0. It probably  would  have  been  better  (and clearer)
for  CLOCK  to have  used SetMenu()  to  change  its HMENU  value.  However,
there  may have  been underlying  reasons  why  CLOCK's  author(s)  didn't  use
SetMenu().  One possible reason  is that  SetMenu()  forces  the  menu  area to  be
redrawn  to reflect the  change in  menus.

The last line in the  output is a call to  SetWindowPos().  SetWindowPos()  is
an  all-purpose  routine  that can move windows,  change their Z-order,  or cause
Windows  to  recalculate  and  redraw  the  window.  That  last  part  (causing
Windows  to recalculate  and  redraw the window)  probably has  something  to
do with  why SetMenu() wasn't  used in  CLOCK.  Here's why:  After  CLOCK
has  twiddled  the  style bits  and  the  HMENU,  it needs  to  redraw  itself using
the  new styles.  Calling  SetMenu()  would  cause parts  of the window to be
redrawn.  The subsequent  call to  SetWindowPos() would  then  cause the win-
dow to  be redrawn  again, causing window flicker.  CLOCK's  implementors
may have  figured that  it was okay to reduce flicker  by directly bashing the
new HMENU value into  the window with  $etWindowWord().  They knew
that the window would  be redrawn later  by calling SetWindowPos().

The  parameters  that  CLOCK  passes  to  SetWindowPos()  are  interesting.
The  only  nonzero  parameters  are the  HWND  and  the SWP_xxx flags.  The
first  three  flags tell  Windows  that  CLOCK  doesn't  want  the  window's  size,
screen  position,  or  Z-ordering  changed.  The last  parameter  is the  important
one.  It  tells Windows  that  the window's  frame  has  changed.  This  forces
Windows  to  recalculate  the  client and  nonclient  areas,  and  to  repaint  the
entire  window.  If I were  to  show more  of the  event  trace,  you'd  see that  the
SetWindowPos()  calls  set  off a flurry  of messages  and  APl calls  that  doesn't
quiet  down  for  several  hundred  lines.  I highly encourage you  to check  this
out  for yourself.  Also,  if you  want  to  see for  yourself that  the event trace



C L O C K . E X E

640

mirrors  reality,  Microsoft  supplies  the  source  for  CLOCK.EXE  in  the
SAMPLES\DDEML\CLOCK\  directory  of  the  Win32  SDK.

In examining  CLOCK.EXE,  we've seen how spying tools can show you
how  a visual effect (removing the title  bar)  is implemented.  Spy tools  are also
useful for learning about  what's going on underneath  the  surface,  hidden from
view. A favorite  trick  among  programmers  is to  add  some undocumented
behavior  or  functionality  to  their  program.  For  instance,  the  programmer
might  want  the  program  to  be  able  to  write  out  debugging diagnostics  to  a
file.  Since this  feature  would  only  be  used  in rare  situations,  the  program-
mer  doesn't  want  to  confuse  the  end  user  by having  additional  options in
the  user  interface.  Also,  adding  this  option  to  the  user interface requires
describing  it and  documenting  it,  taking  up  additional  precious  time  for a
rarely  used  feature.  The  end result?  Undocumented  features.

One technique you can use to  find these undocumented features  is to look
for entries in the program's  .INI file that  wouldn't  appear there normally.  In
other  words,  the  program  looks  for  a particular  .INI  file  entry,  but  never
writes  out  a value for that  entry when saving its options.  To use the  undocu-
mented entry,  the  user of the program  has to  know the entry exists,  and has to
add the entry to  the  .INI file by hand.  Although this discussion focuses on the
.INI files, the same thing applies to the Win32  registry,  which for the most
part,  replaces .INI files.

Finding  situations  such  as I've just  described  is particularly easy with
spying  tools  that  save  a copy of what  an  APls pointer  parameters  refer to.
Although  I could  have  used  BoundsChecker/W  or  WinScope,  I've  chosen
to  show  an  example  of this  using the  Microsoft  Parameter  profiler.  The
following  output  shows  a snippet  of the  event  trace from running the
Windows  3.1  WINMINE.E×E  program.

01

01

01

01

O1

O1

01

01

01

O1

01

O1

APICALL:GetPrivateProfileInt  "Minesweeper"

APIRET:GetPrivateProfileInt  105

APICALL:GetPrivateProfileInt  "Minesweeper"

APIRET:GetPrivateProfileInt  105

APICALL:GetPrivateProfileInt  "Minesweeper"

APIRET:GetPrivateProfileInt  105

APICALL:GetPrivateProfileInt  "Minesweeper"

APIRET:GetPrivateProfileInt  105

APICALL:GetPrivateProfileInt  "Minesweeper"

APIRET:GetPrivateProfileInt  0

01 APICALL:GetPrivateProfileInt  "Minesweeper"

01 APIRET:GetPrivateProfileInt  0

01 APICALL:GetPrivateProfileInt  "Minesweeper"

APIRET:GetPrivateProfileInt  0
APICALL:GetPrivateProfileInt  "Minesweeper"

01 APIRET:GetPrivateProfileInt  0

"Ypos"

"Ypos"

"Ypos"

"Ypos"

"Sound"

"Sound"

"Sound"

"Sound"

50  "winmine.ini"

50  "winmine.ini"

50  "winmine.ini"

50  "winmine.ini"

0  "winmine.ini"

0  "winmine.ini"

0  "winmlne.ini"

0  "winmine.ini"
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01APICALL:GetPrivateProfileInt  "Minesweeper"

01  APICALL:GetPrivateProfilelnt  "Minesweeper"

01  APIRET:GetPrivateProfileInt  0

01  APICALL:GetPrivateProfilelnt  "Minesweeper"

01  APIRET:GetPrivateProfilelnt  0

O1  APICALL:GetPrivateProfileInt  "Minesweeper"

01  APIRET:GetPrivateProfileInt  0

O1  APICALL:GetPrivateProfilelnt  "Minesweeper"

01  APIRET:GetPrivateProfileInt  1

...  3 more  "Menu"  calls  not  shown,.,

"Tick"  O  "winmine.ini"

"lick"  0  "winmine.ini"

"Tick"  0  "winmine.ini"

"Tick"  0  "winmine.ini"

"Menu"  •  "winmine.ini"

The first part  of each  "APICALL:"  line in the output is the call nesting
level. In the output,  all the calls are at level 01, the topmost level. This means
that WINMINE didn't  call the functions while in the middle of another  APl
function. After the  "APICALL:"  is the name of the function,  followed by its
parameters.  The Microsoft  parameter profiler is nice enough to show actual
ASCII  strings  rather  than  pointer  values  (for  example,  0x10b7:003A).
GetPrivateProfileInt  takes  three  LPSTR parameters,  so  this  feature  is
particularly  helpful  in  this  case.

In examining  the  fragment  of WINMINE's  event  trace,  notice  that  the
code looks  for each  INI  entry four  times.  Why  it does  this  is a  mystery to
me.  Trying to  figure  out  strange  sequences  like this  is part  of the  fun of
spelunking.

Putting  that  behavior  aside,  look  at  the  second  parameter  of each
APICALL line.  This  parameter  is the  name  of an  entry in one of the  INI's
sections.  The  first  group  of APICALLs  is looking  for  an  entry called  Ypos.
If you  look in  the  WINMINE.INI  file,  you'll  see that  there  is in  fact  an  entry
called  Ypos.  However,  if you  continue  and  look  for  the  next  three  entries
(Sound,  Tick,  and  Menu),  you  won't  find  them  anywhere  in  the  INI  file.
Looking  further  on  in the  event  trace  where WINMINE  writes  out  new INI
file  values  as  part  of its  shutdown  sequence,  you  won't  find  Sound,  Tick,  or
Menu  in there  either.

What we've uncovered are three undocumented ways to affect WINMINE's
behavior.  I experimented  with WINMINE by adding those three entries  to the
WINMINE.INI  file myself.  Although I didn't get any effect with Tick,  adding
the entry  "Menu=l"  caused WINMINE to not display a main menu.  Adding
an entry  "Sound=3"  (or a higher number)  makes WINMINE play a little song
when you win or lose a game.
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SPELUNKING USING DISASSEMBLY

Although  disassembly  is complex  and difficult,  it's often  the  only way to
crack  open a mysterious  algorithm  or technique.

Disassembling  a program  or DLL isn't necessarily something you do only
with  other  people's code either.  When you encounter  a  strange  bug in your
code that's not  immediately  apparent  from viewing the source,  knowing how
to correlate  high-level  language code to the compiler-generated  assembler
code  is an  incredibly valuable  skill.  Disassembling  your own code also lets
you  to  see whether the compiler  has generated  optimal code  for a heavily
used routine.  Yet another  situation  in which you might  disassemble your
own  code  is when your program  is mysteriously  GP faulting at  a customer
site.  If the  user can give you the  address  where the program blows up, you
can disassemble your code  at that  address  to  see what  the  program  is doing.

Before  continuing,  I want  to  emphasize that  disassembly is not  for those
who  don't  like to  dive in details.  If the  sight of an  assembler  opcode strikes  the
remotest  hint  of fear in your heart,  disassembly is not  for you.  You have to
either know assembly  language programming  or  be willing to  learn it.  This is
not  to  say that  you  must program in assembly  language yourself.  It's  per-
fectly  fine to  prefer  to  work  in  a high-level  language.  You just  have  to  be
willing to work  at the very low level of machine  opcodes  and register  values.

Your choice in disassemblers is sometimes constrained  by the type  of files
you want  to  take apart.  To do any sort of decent job,  a disassembler  needs to
know quite a bit about the executable file format  it will  be working with. The
simplest file disassembler  isn't much more than the  brains  of a file-dumping
program  connected  to a disassembly  "engine"  that  takes raw  bytes as input,
and  outputs  assembler  mnemonics.  A  perfect  of  example  of this  is  the
/DUMPBIN/DISASM  option in the Visual  C++ 32-bit edition  linker. More
advanced  disassemblers can read in symbolic  data that  associates  a symbolic
name with  a program  address.  These  disassemblers  can  produce  assembly
listings  that  use real variable  and function  names  rather than  hexadecimal
addresses.

The  most well-known PC-based  disassembler  is probably  Sourcer,  from
V-Communication's.  By itself,  Sourcer  works  with DOS  EXE and  COM
files.  With  additional  add-on  components  that  produce  script  files,  Sourcer
also  takes  apart  16-bit  NE  files, VxDs  (LE files),  and  Win32  PE files.
Eclectic Software  has  the  Win2Asm  disassembler,  which works  with  NE,
LE,  and  PE files natively.  RJ Swantek  has the  DisDoc  Profesional  disassem-
bier,  which works  with  the  same types  of files as Win2Asm.  If you're  only
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concerned  with  Win32  files and if price  is a concern,  it's  hard  to  beat the
DUMPBIN  program  that comes with  Microsoft's  Win32  SDK. I'll give an
example  using DUMPBIN shortly.

In case you're  wondering  what  I used  to  do the research  for  this  book,  I
have  a pair  of  disassemblers  of my  own  devising  (one  for  Winl6  NE files,
the  other  for  Win32 PE files  and  VxDs).  Although  they  aren't  multi-pass
like  Sourcer,  they do  just fine for me. The advantage  of writing my own dis-
assemblers is that  I can modify them to  take  advantage  of special  tricks I've
lcarned  as well as making  them read  symbol  information  from  a variety  of
sources.  Neither  one  of them is currently  being marketed.

If you just want  to  tinker  with  the disassembly techniques  I'll  describe,
you might  be able to get  away with  using the disassembler in  your  debugger.
This is assuming  that  you  don't  use one  of those  battery-powered  integrated
development  environment debuggers  that  doesn't  have an  assembly window.
Some debuggers can  dump  the contents  of their  windows  to  a  file.  By dump-
lng  the  contents  of several  disassembly  windows  in  a  row,  you  can  get  a
somewhat reasonable  listing.  However,  this is tedious  and  time-consuming,
especially  if the  routine  in  question  calls  other  functions  elsewhere  in  the
program.  If you're  at  all  serious  about  disassembly,  get  a real  disassembler
such as  Sourcer,  DisDoc,  or Win2Asm.  They're  inexpensive,  especially  when
you consider  all the power  they give you.

Zen and the art of disassembly
There  is no  single correct  approach  to  disassembling a piece of code.  What
I'll  describe here  is what  works  for me. If some other  methodology works
for  you,  by all  means  use it!  My  basic  approach  to  disassembly  can  be
summed  up  as  "divide  and conquer."  Starting with  the raw output  from a
disassembler,  I don't  tackle  the entire  function  or  section  in one  big piece.
Instead,  I go through  a series of steps that  manipulate and break up the raw
listing  into  small  manageable  pieces.  I then  attack  the  small  pieces  with  a
much greater  chance  of success.  My  ultimate  goal  is to  work  a  disassembly
listing  into  a  piece  of commented  C code  that  I can  refer  to  later.

Depending  on  the code you're working  with,  the importance  and order
of the following steps  to  break  up a piece of code can vary.  First,  I'll describe
in general terms  the steps I take  to disassemble  a function.  Afterward,  I'll
jump into  the nitty-gritty  details  of identifying parameters,  local  variables,
branch  statements,  function  calls,  and so on.  Finally,  I'll show a real  example
of how to work a raw disassembly listing into something usable.  The steps you
need to take to disassemble a function are discussed in the following sections.
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Step  1:  Disassemble  the  file

Run the executable  through  your  disassembler to  get a listing  file.  If your
disassembler  takes  additional  symbolic  input  (for instance  from  .SYM files
or  debug information),  give it to  the disassembler  now.

If you're  interested  in  one  particular  function,  you might  find it  helpful
to  delete other code  in the  listing that  comes  before  or  after that  function.
This  makes the file more  manageable  in your  editor.  For instance,  some dis-
assembly listings  I've  made started  out  as  3MB files. This caused  my editor
to  take  a long time to  load  and save the  file.  Cutting  out the  uninteresting
code  really speeds  up this  process.

Step  2:  Label  known  entities

Go through the function and label all the known entities with more descriptive
names.  By known  entities,  I mean arguments  to the function,  local variables,
and  global  variables.  The  idea of this phase is to  do  all the easy work  first.
When  doing a jigsaw puzzle, most people do the easy parts such as the borders
and the distinctive portions  first. This reduces the number of unknown pieces
that you have to sort through.  It also gives you a better context from which to
fill in the remaining  pieces. This same concept applies to disassembly.

Assuming you know the arguments and calling convention for the function,
you  can  easily  identify  the  stack-based  arguments  to  the  function  and
replace  them  all with meaningful  names  (for example,  hWnd).  (I'11 discuss
identifying  stack-based  arguments  later  on.)

Unless  there's  debugging  information  in the  executable,  determining
names  for  the  local  variables  will  be more  difficult  than  labeling the para-
meters.  Don't  worry  if you can't  figure  out  every  single name  at  this  point.
If a local  variable  jumps  out  at  you  though,  by all  means  replace  it with  a
meaningful  symbolic  name.

If you have  symbolic  information  for global  variables,  the disassembler
may have already  replaced  the global  variable  addresses with the  symbolic
name.  However,  if it didn't,  you should  do  it  by hand  now.

Step  3:  Break  up  instruction  sequences

Disassembly listings  often contain  long sequences of instructions  with no
intervening  blank  lines.  I find  it  helpful  to  insert  blank  lines  between
instruction  sequences that logically  belong together.  This sounds vague,  but
it's  not  hard  in practice.  An example  of such a  sequence  is the function's



f o l l o w e d

645

prologue  code. Another  sequence  of instructions that  logically  belong together
is the code that pushes parameters  onto the stack and calls another  function.
A third logical instruction sequence is where the code performs some calcula-
tion  and stores the result to a variable.  A helpful (but not ironclad) guideline
is to  try to create  sequences  of instructions that  form one statement  in the
program's  source code.  Put a  blank line between each group of instructions
to  break  up the listing visually.

Later on in the disassembly process you may need to decode branch state-
ments.  In high-level languages, these are statements  such as if, while, do, switch,
and so on. I've found that putting a blank line after each conditional or uncon-
ditional  jump instruction  makes it much easier to understand the listing. If your
disassembler  doesn't do this for your automatically,  do it yourself.  I used to do
this quickly with an editor macro that searches for instructions  that start with
the letter J and then inserts a blank line following that instruction.  Lately, I've
modified  my disassembler to automatically  do this for me (yet another reason
why I prefer to write my own disassembler).

Step  4:  Add  in  string  literals

If the  function  looks  like it  uses any string literal  values,  add comments  that
contain  the string.  Put the comments near the function  calls  that  use the
string.  Later  on,  this will  help reduce  several lines  of assembler code down
to one C statement.

Step  5:  Condense  instructions  into  single  C statements

Condense  function calls  and interrupts  into  single statements.  At this point
the  function should  be broken  up into  numerous  little pieces.  Find the
instruction  sequences that  include calls  to  other  functions  for which you
know  the name  and parameters.  Study what's  being pushed  on the  stack
and  try to construct what  the  arguments  to  the  function should  look  like.

Step  6:  Identify  branch  statements

Identify and convert conditional  branch statements  into the high-level language
equivalent.  If you see a TEST or a CMP instruction immediately followed by a
conditional  jump instruction  (such as JE), you're  probably  looking  at  an if
statement  in a high-level  language.  The location  where the Jxx  instruction
jumps to is usually the end of a compound  statement.  In C, a compound  state-
ment is everything between matching {}'s. In Pascal, a compound  statement is
everything  inside a BEGIN/END combination.
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If you see a  long series of test and conditional  jumps,  you're  probably
looking  at  a  C switch statement  or  a Pascal case statement.  Figuring out the
conditional  branching  code is a tricky task.  Multiple  tests  in a high-level
language  if statement  can really make  it challenging to  figure  out what the
generated  assembler code is doing. A C statement  like:

if  ( ( G e t M o d u l e H a n d l e ( " M Y D L L . D L L " )  !=  0)
&&  (  (hWnd  !=  GetDesktopWindow())  II  (  styleFlags  &  wS_POPUP))  )

generates  a rat's nest of conditional  jumps, temporary results stored in registers,
and so on. If nothing else, you'll  end up with a newfound respect for compiler
writers. It's not uncommon to  stare at the same 20 or so instructions for an
hour and still not have the faintest clue of what the code's intent is. That's
why I recommend  spelunking only as a last resort.

Step 7:  Repeat as  necessary

Repeat  the preceding steps as necessary. This  might  sound  trite,  but it's  not
intended  to  be; this  is an iterative  process.  You make  a pass through the
code,  doing  as much as you can with the information you currently  have.
You then step  back,  look at  how the picture  has changed,  and  make  another
pass.  By figuring out  one piece of the puzzle, a  dozen more  may fall into
place  quickly.  In some ways,  spelunking is like playing  "Connect  the Dots."
The more dots you have, and the more you connect,  the clearer the rest of
the picture  becomes.

Recognizing common code sequences
and conventions
Having discussed  in  broad  strokes  how you  might go about  disassembling  a
function, I'll now examine some common code sequences and code-generation
conventions.  This will  help you to mentally  translate  raw assembler code
into  its  high-level  language  equivalent.

Identifying  functions and  procedures

The first thing to  do when looking  at  the raw output  from a disassembler is
to  figure out where  a  function  (or procedure  for you  Pascal  types)  starts  and
ends.  The easiest way to  find the start of a function  is to  look for  some sort



of  standard  prologue  code  generated  by a compiler.  For  16-bit  code,  the
standard  prologue  code  is  some  variation  of  this  process:

*  Save  original  BP register  on  stack

*  Assign  stack  pointer  to  BP register

*  Decrement  the  stack pointer  to  make  room  for  local  variables

*  Save  the  calling  function's  register  variables  on  the  stack

Expressed  in  assembly  language,  the  same  information  looks  like  this:

PUSH  BP

MOV  BP,SP

SUB  SP,XX

PUSH  SI

PUSH  DI

;;  Save  caller's  BP  frame.

;;  Set  up  new  BP  frame.

:;  XX  is  the  number  of  bytes  need  for  local  variables.

;;  DI  and  SI  are  commonly  used  as  register  variables.

or, when  80286  or  better  code-generation  is  enabled:

ENTER  XX,O  ;:  XX  is  the  number  of  bytes  needed  for  locals

PUSH  SI  ;;  DI  and  SI  are  commonly  used  as  register  variables

PUSH  DI

These  stack frames are what compilers  generate  for code that should  run
only  in  16-bit  protected  mode.  Back  in  the  bad  old  days  of  real  mode,
Windows  itself would  often  need  to  walk  the  stack  of  a  program  when
moving  segments  around  in  memory.  Since  it  can  be  quite  tricky  to  walk  a
program  stack  that contains  a  mix  of near  and  far calls,  the  compilers
helped  out  via  the  odd  BP stack  frames.  When  odd  BP-frame  code  genera-
tion  is  enabled,  all  far functions  increment  the  BP register  before  pushing  it
on  the  stack  (near  functions  leave  BP alone).  After  restoring  the  original  BP
in  a far function's  epilogue,  the  code  decrements  the  BP register.  When
walking  the  stack  frames,  if Windows  saw  an  odd  value  for a saved  BP, it
knew  that  the  function  was  a far function.  The  standard  stack  frame  for  an
odd  BP-style  far function  looks  like  this:

INC  BP

PUSH  BP

MOV  BP,SP

SUB  SP,XX

PUSH  SI

PUSH  DI

Indicate  a  far  frame.

Save  caller's  BP  frame.

Set  up  new  BP  frame.

XX  is  the  number  of  bytes  need  for  local  variables.

DI  and  SI  are  commonly  used  as  register  variables.

647
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Moving  now  to  32-bit  programs,  the  standard  prologue  code  looks
like  this:

PUSH  EBP

MOV  EBP,  ESP

SUB  ESP,  XX

PUSH  ESI

PUSH  EDI

PUSH  EBX

; Save  caller's  EBP  frame.

; Set  up  new  EBP  frame.

: Make  space  for  local  variables  on  stack.

;;  ESI,  EBI,  and  EBX  are  commonly  used  as

;;  register  variables.

or:

ENTER  XX,O

PUSH  ESI

PUSH  EDI

PUSH  EBX

::  XX  is  the  number  of  bytes  needed  for  loca]s.

The previous  sequences  are the  full-blown  prologues.  In real-world  code,
parts  or  all of the  prologue may be missing or  different:

*  If the  function's  code  doesn't  alter  a  register-variable  register  (for
example,  ESI,  EDI,  and  EBX),  it  won't  bother  to  save it  in the  prologue
code.  Also,  in  32-bit code,  EBX is sometimes  used  as a register  variable,
while  in  16-bit  code  it usually  isn't.

*  In  16-bit  code,  if the  function  doesn't  take  any parameters  or  use any
local  variables,  the  compiler  may omit  the  PUSH BP / MOV  BP, SP
sequence.

*  In  32-bit code,  even  if the  function  takes parameters  and  uses  local vari-
ables,  the  compiler  may  still  not  set  up  an  EBP frame.  The  32-bit
addressing  modes  of the  386  and  better  CPUs allow the compiler  to
address  parameters  and  locals with  the  ESP register,  for  instance:

MOV  EAX,EESP+1C].

Recognizing  the  function epilogue  is a  little  trickier.  If the  compiler's
optimizer  is turned  on,  there  may be multiple  places within the  function
where  it  does  a  RET or  RETF to  the  caller.  Assuming  the  function  has  a
single epilogue  at  the  end  of the  function,  the  full-blown,  16-bit  epilogue
will  look  something  like this:
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POP  DI  ;;  Restore  caller's  register  variables

POP  SI

LEAVE  ;;  or  ADD  SP,XX  /  POP  BP

RETF  ;;  far  return.  Near  return  is  a  RET.

For  32-bit code,  the  epilogue  will  look  like this:
POP  EBX

POP  EDI

POP  ESI

LEAVE

RET

Restore  caller's  register  variables.

A 32  bit  near  return.

When determining  where  one routine  starts  and  another  ends,  remember
that  right  after  the  end  of one  routine,  you're  likely  to  find  the  start  of
another.  If you  see something  that  looks  like  it's  epilogue  code,  verify  it  by
looking  for  something  that  looks  like  prologue  code  for  another  function
after  it.  If you  don't  see this,  either  the  compiler  has  optimized  away  the
prologue  code  for  the  next  function,  or  the  current  function  has  multiple
points  of exit.

Function  return  values

When  functions  return  a value,  they  return  the  result  in a register  or  in  a
combination  of registers.  To  determine  if a routine's  return  value  is being
used,  examine  the  register  usage in the  code that  calls the  routine.  If you  see
code  that calls  a routine  and  then  uses  the  return  value  register(s)  without
explicitly  setting  them,  you  know the code uses the  function's  return  value.
For example,  if you  see code that calls  a  function  and them  uses  the  AX
afterward  without  setting  its  value,  you  know that  the called  function
returns  its value  in the  AX register.

In  32-bit  code,  the  convention  is that  functions  return  their  values in
EAX.  16~bit code  uses  AX for  returning  16-bit  values,  and  the  DX:AX
combination  for returning  32-bit  values.  If the  code is written  in  assembly
language,  however,  all  bets  are  off because  assembly-language  programmers
can return  values  however  they want.  One common  assembler convention is
that  if the  routine  only needs  to  return  a success  or  failure  code,  the  routine
sets or  clears  the carry  flag  (CF) as  appropriate.  You can  ferret  out  these
routines  by looking for JC  and JNC  instructions  immediately after  CALL
instructions.
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Identifying  parameters
If you  know the parameters  for the function  you're  taking apart,  labeling
them  in the assembler code  is particularly  easy. With  one exception  (which
I'll  cover  later  in this section), compilers always pass  arguments  to  a function
or procedure  on the stack.  By adding up the sizes of each parameter  that's
passed,  you can quickly locate where each parameter  resides on  the stack.
Before I show an example  of this, however, I first need to do  a quick  review
of compiler calling conventions  used  in Windows  and Win32.

In  16-bit Windows  code,  most  exported  functions  use the Pascal calling
convention. In the Pascal calling convention, the calling code pushes parameters
onto  the  stack from the  leftmost  parameter  to  the rightmost  parameter.  As
an example,  the  16-bit code  generated  for a call  to  "foo(0xl0,  0x20,  0x30)"
would  look  something  like this:

PUSH  0010h

PUSH  0020h

PUSH  0030h

CALL  FAR  PTR  FO0

Besides  specifying that  parameters  are  passed from right  to  left, the
Pascal  calling convention  also dictates that  the called  function  must  remove
the  arguments  from the stack before  returning.  In the example  I just cited,
the  foo  function needs to  pop  6 bytes off the stack  before  it returns.  It will
probably  do  this with a RETF 6 instruction.

The  immediate  opposite  of the Pascal calling convention  is the C calling
convention.  The  standard  C/C++ runtime  library  functions  use the  C calling
convention.  In the  C calling convention,  the parameters  are passed  from the
rightmost  to the leftmost.  (The primary  advantage of passing arguments  from
right to left is to  support  functions such as printf that take a variable number
of arguments.)  The code that  calls a C-style function  is responsible  for remov-
ing the parameters  from the stack after the call returns.  A call to  "foo(0xl0,
0x20,  0x30)"  using the C calling convention  would  look like this:

PUSH  0030h  ;;  Parameters  pushed  right  to  left.

PUSH  0020h

PUSH  0010h

CALL  FAR  PTR  FO0
ADD  SP,O6h  ;;  Remove  parameters  from  the  stack.

You shouldn't expect  to  always  see an  "ADD  (E)SP, XX"  after  a  C-style
call.  If the compiler  pushes  only one  or two  parameters,  it sometimes POPs



C + +

651

them  into  an  unneeded  register  to  remove  them from the  stack.  The Borland
C++ compiler  is known  for this particular  code-generation  sequence.

For Win32, Microsoft has adopted the stdcall calling convention for almost
all functions exported  by the operating  system DLLs.  The stdcall convention is
a hybrid of the  C and Pascal conventions.  The caller pushes  the parameters
from  right to  left,  as in the  C style.  The callee  function  cleans the  parameters
off the stack  like the Pascal  style does.  Incidentally, when  you  use a stdcall
declared  function  with  Microsoft's  C++, the  compiler  internally  adds  on  an
"@xx"  to the  end  of the  function  name.  The xx is a string representing the
number  of bytes that  the  function  expects  as parameters,  for instance,
_GetWindowLong@8  or _PeekMessage@20.

After  you've  figured  out  the  calling  convention  of the  function  you're
examining,  you  can  determine  where  the  parameters  are  on  the  stack.
Knowing  the  offset  of the  parameter  relative  to  the  stack  frame,  you  can
look  for  the  instructions  that  reference  that  memory  location  and  then
replace  the  assembly  language  address  with  a symbolic  name.  Having
symbolic  names  around  when  staring  at  a  disassembly  listing  is  extremely
helpful  when  figuring out  what  the  code's  intent  is.

After  a  function has  executed  its prologue  code,  the  stack frame looks
like the  one shown  here:

As you  can  see,  the  (E)BP register  points  to  where the previous  (E)BP
value  is saved.  Within  the  function,  all the  parameters  can  now  be accessed
as positive  displacements  from  BP or  EBP. This  is an  important  point  worth
restating:  Instructions  that  access memory using addresses  such as  [BP+xx]
or  [EBP+xx]  are probably  using the  routine's  parameters.

For  a far  16-bit  function  like the  APIs exported  by  16-bit Windows,  the
actual  stack frame  looks  like this:
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Assuming  WORD-sized  parameters  and  the  Pascal  calling convention,
the  last parameter  to  the  function  will  be at  [BP+06],  the  second-to-last
parameter  at  [BP+08],  and  so on.  If there are  any  DWORD  parameters,  the
calculations  need to  be adjusted  accordingly.  Also,  if the  function  was  a
near  function,  the  locations  given would  again need  adjustment  because
there's  only  a return  IP on the  stack,  and  no  return  CS.

Let's  look  at  a real-world  example  now to  get  a  better  feel  for what  I've
just  described.  A window  procedure  for a  16-bit  program has  the  following
declaration:
LRESULT  WINAPI  WndProc(HWND  hWnd,  UINT  msg,  WPARAM  wParam,  LPARAM  lParam);

Inside  the WndProc  code,  the  stack  frame  looks like this:

hWnd  WORD  PTR  [BP+OE]
msg  WORD  PTR  [BP+OC]
wParam  WORD  PTR  [BP+OA]

lParam  DWORD  PTR  [BP+06]
return  CS  WORD  PTR  [BP+04]
return  IP  WORD  PTR  [BP+02]
previous  BP  WORD  PTR  [BP+00]

;;  Parameters  pushed  left  to  right.

Armed  with  this  knowledge,  you can  use your  editor's  search  and
replace  feature to  find  all the  references  to  [BP+0E]  and  replace  them with
the much  more  meaningful  [hWnd].  Likewise,  you can  replace  [BP+0C]
with  [msg],  and  so forth.

Now  let's look at the 32-bit equivalent to  the above window procedure.  In
Win32,  all parameters  are 32 bits.  The return  address is a 32-bit near pointer,
and the code uses EBP rather  than BP. And don't  forget that the window proce-
dure  uses the stdcall convention,  making the parameters  appear in the reverse
order  from the equivalent  16-bit code.  The stack frame for a 32-bit window
procedure  therefore  looks like this:

1Param

wParam
msg
hWnd
return  EIP
previous  EBP

DWORD  PTR  [EBP+14]
DWORD  PTR  [EBP+iO]
DWORD  PTR  [EBP+OC]
DWORD  PTR  [EBP+08]
DWORD  PTR  [EBP+04]
DWORD  PTR  [EBP+O0]

;;  Parameters  pushed  right  to  left.

Now  that  I've  described  the  normal  stack frame  for  a  32-bit  function,
I'll  spring  some  bad  news  on you.  32-bit compilers  have  the  option  of not
generating  standard  EBP frames.  They  do  this  to  save time and  space  by not
including  the  code to  set up  and  take  down  the  stack frame.
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The problem  is  that  the generated  code  doesn't  address  parameters  and
local  variables  with  an  offset  from  EBP anymore.  Instead,  the code may
address  the parameters  with  an  offset  from  ESP (for example,  [ESP+14]).  If
this  thought  alarms  you,  it  should!  The value  of ESP changes  throughout
the  function  as it pushes  parameters  in preparation  for calling other  routines.
Thus,  an  [lParam]  that's  at  [ESP+14]  early  on  in the  function  could  later  be
found  at  [ESP+IS]  if the  code pushes  a DWORD  onto  the  stack.  If the  code
pushes  a second  DWORD,  [1Param] will  now  be at  [ESP+IC].  This  makes  it
nearly  impossible  to  search  and  replace  memory  references  like  MOV
EAX,[ESP+14]  with  references  like  MOV  EAX,[lParam].  Because  of  this,
you'll  need  to  mentally  track  the  relative  location  of  ESP throughout  the
function,  giving  symbolic  names  to  parameters  on  an  instruction  by
instruction  basis.  Yuck!  Your  only real  hope  is that  the  compiler  has  copied
a parameter  into  a register  and  used the register's  copy  of the  value wherever
it  was  needed.

If you're  taking apart  a  function  that  you  don't  know the parameters
for,  there  are  still  some small  things  you can  do  to  make  this process  easier
on  yourself.  For  instance,  you'll  most  definitely  want  to  figure  out  how
many  bytes  of parameters  the  function  is passed.  To do  this,  look  at  the  exit
epilogue  of the  function.  Does  it pop  stuff off the  stack  with  something like
RETF  8 ? If so, you  know how  many bytes  of parameters  the  function  takes
(in this  case,  8). If the  function's  exit code  doesn't  remove  anything  from  the
stack,  find  a place  in  the  code  where  there's  a  call  to  the  function.  Is the
next  instruction  after  the  CALL instruction  something like ADD  ESP, 12?  If
so,  then  the  function  takes  12  bytes  of parameters.

Beyond knowing how many bytes of parameters  a function takes, you can
often glean more information  by studying the code that pushes parameters  on
the stack in preparation  for calling the function.  For instance,  let's  say you saw
the following disassembly listing fragment from a Win32 program:

CALL  GetFocus

PUSH  EAX

CALL  GetCurrentThread

PUSH  EAX

CALL  DoSomething

From  this  code  fragment,  you  can  determine  that  the  DoSomething
function  takes two  parameters,  an  HWND  and  a thread  HANDLE.  How
did I figure that  out?  Both  GetFocus0  and  GetCurrentThread()  are  Win32
APIs  that  return  a value  in EAX.  After  calling  GetFocus(),  EAX holds  an
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HWND  value.  After calling GetCurrentThread(),  EAX holds a  thread
HANDLE.  By logical deduction,  the DoSomething()  function expects an
HWND  and  a HANDLE  as  parameters.

Although  parameters  are usually passed on the stack,  it's  also possible
to  pass  parameters  in registers. This calling convention is usually called the
fastcall convention  because passing parameters  in registers  can be faster than
passing  them  on  the  stack.  For  instance,  many  KRNL386  internal  heap
management  routines  pass  parameters  around  in registers  to  speed things
up.  The compiler  or assembly language programmer decides whether register
parameters  will  be  used  on  a  function  by function  basis.  The  Microsoft
compilers  preface  function  names  that  use  the  fastcall  style  with  an  "@"
(asterisk)  character.  Function  "Foo"  in your  source  code  shows  up  as
"@Foo"  in the MAP  file or debug  information  if the compiler  used the fast-
call convention.  Fastcall  style  functions  aren't  limited to  register  parameters
only.  The  compiler  can pass  some parameters  and registers  and others  on
the stack.

Finally, if the code you're examining uses interrupts, get out your interrupt
list documentation  and look up which parameters  go in which registers.  (You
do  have Ralf  Brown's  Interrupt  List,  right?)  Add a  comment  to  the  INT
instruction  that  describes  what  the  instruction  does.  For  instance,

MOV  AX,0500
LES  DI,[myBuffer]

INT  31

would  become something  like:

MOV  AX,0500

LES  DI,[myBuffer]

INT  31

;  DPMI  function  0500h  Get  Free  Memory  Information

; ES:DI  >  structure  to  fill  with  information

Identifying  local variables
Like function parameters,  a routine's  local  variables  are also  usually found
on  the  stack.  The  key difference  in distinguishing between  a parameter  and
a local  variable  is that  the code references  local  variables  with a  negative
offset  from  the stack  frame.  For  example,  in  16-bit  code,  [BP-04],  or  in
32-bit  code,  [EBP-04].

Unlike parameters,  there's  no semi-mechanical  method for determining
the  types,  uses, and locations  of local  variables. Instead,  you have to  examine
how the function's  code  uses a particular  memory location.  Sometimes it's
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fairly easy to  determine  a local variable's meaning.  For example,  look at the
following Win32  code snippet:

PUSH  DWORD  PTR  [EBP+08]

CALL  GetParent

MOV  [EBP-0C].EAX

The GetParent() function  is a Win32 API that takes an HWND parameter
and  returns  that  window's  parent  HWND  in EAX.  Since the code  snippet
copies  EAX into  [EBP-0C],  it's  obvious  that  [EBP-0C]  is an HWND.
Additionally,  you can make a wild guess that this variable is probably  called
something like  "hWndParent"  in the original source code.  Once you've gotten
that  far, it's time to use your editor's search and replace feature to change  all
occurrences  of [EBP-0C] to  [hWndParent]. Look at your disassembly listing
after you do this.  Odds are, it's starting to  become clearer.

Some of you  may be saying,  "That's  nice Matt,  but not every local vari-
able is going to  be such easy picking."  True,  but there's  more  than one way
to  attack problems  like this.  Sometimes it's  easier to  identify locals  from
their  use as parameters to  other  functions.  This Win32  assembly fragment
shows  such an example:

LEA  EAX.[EBP-30]

PUSH  EAX

PUSH  [EBP+08]

CALL  GetWindowRect

Get  address  of  EBP  30h  into  EAX.

Push  it  as  an  LPRECT.

Push  an  HWND  (a  parameter).

Call  into  USER32  to  get  the  RECT  coordinates.

Looking  up  GetWindowRect()  in the  SDK documentation,  we know
that  it takes  an HWND  and a pointer to  a RECT structure  to  be filled in.
Since  GetWindowRect is a  stdcall  function,  the  RECT pointer should  be
pushed  first, followed  by the HWND.  In the  listing,  we see that  for the
LPRECT  parameter,  the code pushes  an  address  30h  bytes  below the EBP
value. Therefore,  there  must  be a local  variable  of type RECT at  [EBP-30].
This  is a  bonanza  of information!  Since WINDEEH contains  the format  of
a  RECT structure  (4 DWORDS),  we can figure  out where  all  the  RECT's
fields  are  on  the stack:

RECT.left  =  [EBP-30]

RECT.top  =  [EBP-2C]

RECT.right  =  [EBP-28]

RECT.bottom  =  [EBP-24]
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Again,  use this  opportunity  to  search  and  replace  those  [EBP-xx]'s  with
more  meaningful  symbolic names.

Compilers  can copy  local  variables  (and  parameters)  into  registers  tem-
porarily.  The  code  uses  the  register  wherever  it  needs  the variable's  value.
This  saves  both  code  space  and  clock cycles.  When  working  with  a disas-
sembly  listing,  you  need  to  be  on the  lookout  for  places  where  the  code
begins  using  a register  variable.  Wherever  you  see this  register  used  after-
ward,  substitute  the  variable  name  you've  figured  out.  Be aware,  however,
that  the  compiler  (or  assembler programmer)  may  use  the  same register  for
different  variables  at  different  places  within  the  function.

In  16-bit  programs,  the  SI and  DI variables  are most commonly  used as
register  variables.  Since these  registers  are  only  16  bits long,  they usually
aren't  used for  pointers  because  most  pointers  in  16-bit  Windows  code  are
32-bit far  pointers.  Instead,  SI and  DI are typically  used for  16-bit  values
such  as  HWNDs  and  DCs.  In Win32  programs,  the  ESI,  EDI,  and  EBX
registers  are  the  most  common  register  variables.  In  Win32,  pointers  are
32-bit  near  pointers,  so  it's  common  to  see these  registers  used  as  pointers
in  addition  to  other  types  of variables.  None  of these  guidelines  are  hard
and  fast,  however.  Use  your  own  intuition  and  judgment  when  dealing
with  register  variables.

Identifying  global  variables
Determining that  a program  is using a global  variable is particularly easy.
Almost  any  memory reference  that  uses  a hardcoded  address  is a global
variable.  Put another  way,  global  variables  don't  require  the  assistance  of
registers  like EBP to address them. In 32-bit code, a global variable reference
would  look  something like this:

MOV  EAX,[00464398]

If you're  lucky and have symbol information,  the disassembler may already
have replaced the  "[00464398]"  with the name used in the program's  source.
If it hasn't,  you should find all the instructions that  use that memory location
and replace the address with the symbolic name.  If you don't  have symbolic
information,  try to  figure out what the variable is used for and make up your
own name.

In  16-bit code,  identifying global  variables  is much  the  same as in  32-bit
code,  albeit  with  16- rather  than  32-bit  addresses.  If the code you're  working
with  has  multiple  data  segments,  however,  you'll  need  to  be  extra  careful.
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The problem is that  the same offset can  be in  use in several  data  segments.
When  accessing global  variables  in a segment  other  than  the  default
DGROUP,  the code  sets up  a segment register  (usually ES) to  point  to  that
segment.  The code  then  accesses  variables  within  the  segment with  hard-
coded  offsets - - for instance,  MOV AX,ES:[001C].  The  lesson here  is to  be
careful  when replacing global  variable  addresses  with  symbolic  names.

If you  have  symbolic  information  for  an  executable  file,  but  encounter a
memory location  that's  not  in the list of global  variables,  you might  be facing
one  of two  likely  situations.  In  the  first  situation,  that  memory  location
might  be  used  for  a  static  variable.  If your  symbol  information  includes  only
public  symbols,  the variable  won't  show up in the list.  In the  second situation,
you  might  be looking at  a  member  of a  structure  or  an  array.  For instance,  a
16-bit  program  has  a global  variable  "MSG  MyMsg;"  that  ends  up  in  the
program's  DGROUP  segment  at  offset  0364h.  Four  bytes  into  the  MSG
structure  lies  the  wParam  field.  MyMsg.wParam  will  therefore  be  at  offset
0368h  in the  data  segment.  Symbol  information generated  for this executable
will include  a public symbol called  "MyMsg"  at offset 0364h,  but will contain
nothing  about  offset  0368h.

To illustrate  this  process,  imagine  you're  watching over my  shoulder  as  I
examine  a disassembly  listing. As I'm working along, I encounter  an instruction
that  reads  the  value  at  offset  0368h.  To  my chagrin,  the  symbol  information
doesn't  show  any  symbols  at  this  offset.

All is not lost,  though.  By looking for the closest symbol  occurring  before
address  0368h,  I see there's  something called  "MyMsg"  at  offset  0364.  Based
on  that  name  and  a hunch,  I hypothesize that  the  MyMsg  symbol  at  offset
0364h  is  a MSG structure.  I then  need  to  test  this  theory.  If offset  0364h
really is a  MSG  structure,  will  offset  0368h  be  the  address  of one  of the
structure's  fields? In this  case,  yes!

However,  before  I assume that  I've guessed  correctly,  I would  look  for
other  code that  backs  up the  theory.  Does the  memory  location  0368h  look
like it's  being used  as  a WPARAM?  Does  the  next  structure  field  (at offset
036Ah)  look  like it's  being used as an  LPARAM?  Unfortunately,  there  are
no  hard  and  fast techniques  that  I can  use here.  I've got  to  make  reasonable
guesses  about  what's  going on  and  test  those  guesses  until  I'm  sufficiently
confident in my theory.

One  nice  aspect of global variables  is that  the  compiler  rarely puts  them
into  register  variables.  It's  generally  not  a  good  idea  to  enregister  global
variables.  If the  only correct copy  of the  variable was  in  a register,  interrupt
service  routines  and  callback  functions  could  fail  if they  tried  to  use  the
memory version  of the  global variable.
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Identifying  string  literals
Many  API functions  take strings as parameters. By matching up the ASCII
strings  with  the  functions  that  use them,  you  can often get  a much  better
idea  of what  the code is doing.  For  instance,  in a  16-bit  program you might
encounter  the  following  instruction  sequence:

PUSH DS
PUSH 0437
CALL  GETMODULEHANDLE

or  in  a 32-bit  program,  something  like this:

PUSH 00471784
CALL  GETMODULEHANDLE

Turning to your trusty APl documentation,  which you should always have
at  your  fingertips,  you  see that  GetModuleHandle()  takes  one argument,  a
pointer  to  a string.  Those PUSH instructions are pushing the address of a string
onto the stack as the parameter to  GetModuleHandle().  Therefore,  at address
00471784  (or DS:0437 for you  16-bit types), there must  be a null-terminated
string  (for example,  "USER32").  If your disassembler has done a hex/ASCII
dump for the data  sections of the file, go to the address  and retrieve the string.
Back in the code that referenced the string literal,  make a comment that
includes  the retrieved string.  For instance:

PUSH  00471784  ;;  "USER32"

CALL  GETMODULEHANDLE

If the  code  you're  disassembling  uses  a  lot  of  string  literals,  you'll  be
amazed  at  how  much  clearer  the  code  becomes  after  you  do  this.  Filling
in  string  literals  is  one  of the  trickier  and  more  time-consuming  aspects
of  disassembly.

Some executables  contain  string literals  in the  code  sections  themselves.
Often the  string  occurs  in memory  immediately  after  the  code that  references
the  string.  A good  disassembler  can pick up  on  this  situation  and  switch to  a
hex dump  mode  temporarily.  However,  disassemblers  often make  mistakes.
Sometimes  you'll need to  examine  the  surrounding  code to  look for clues that
tell you where the code starts  and the  data  ends.  Often,  embedded  data like
switch statement JMP tables creates temporary  garbage  in your disassembly
listing.  By looking  at  the  surrounding code, you can frequently gain clues as
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to  what's really code and what's embedded  data  in a code area.  You can then
feed this  information back into the disassembler  and make  a second listing
that  correctly  differentiates  the code from the  data.  Nobody  said  this stuff
was easy!

Identifying  if  statements

The  simplest  type  of conditional  execution  code  to  figure out  is a simple  if
statement:

if  (  some  test  )  {

do  some  sequence  of  code
}

Before  discussing variations of this  statement,  I want  to  show what  it
looks  like in  assembly language.  Viewed  from the  disassembly  listing level,
there  are three  major  types  of tests that  you  encounter:

*  Equality  tests:  if (a  == b),  if  (a  != b),  and  so  o n . . .
*  Boolean  TRUE/FALSE tests:  if  (a),  if  (!a),  and  so o n . . .
*  Bitfield  tests:  if ( a  &  0x0040  ), and  so o n . . .

Although  compilers generate  different  code sequences  for  each  type  of
test,  the goal  in each case is to  set or  clear  the  CPU's  Zero  Flag  (ZF).  After
setting  or  clearing  the  Zero  flag, the  code  uses  the JZ  (Jump  if Zero)  or JNZ
(Jump if Not  Zero)  conditional  branch  instruction  to  either  execute  or  skip
over the  next  section  of code.  In the  spirit  of keeping  assembly language
confusing,  the JZ  instruction  mnemonic can also  be expressed  as JE  (Jump
if Equal)  and JNZ  can  also  be written  as JNE  (Jump if Not  Equal).

The  basic  algorithm  of the  "test,  then  conditionally  jump"  model is as
follows:  If the  test  expression  resolves  to  a FALSE result,  the  CPU takes the
conditional  jump,  and the  following code inside the  {}'s or  BEGIN/END  block
doesn't get executed.  If the expression  evaluates to TRUE,  the conditional
jump  isn't taken,  and control  falls into  the code inside  the  {} block.

Warning:  What  I've  just  described  here  is the  simple  version  of what
occurs.  In the  real  world,  the  generated  code  might  be more  complex.  For
example,  in  16-bit  code  there  might  be  a JZ  or JNZ  instruction  that's  only
job  is to  jump  over a regular JMP statement.  This  would  happen  if the code
inside the  "if"  block was longer  than  127  bytes,  the  limit  of  a conditional
jump  instruction  in  16-bit code.  The  basic  premise  of what  I've just described
still  applies,  though.
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For equality  tests,  compilers  uses  the  CMP  instruction.  This  snippet  of
output  produced  with  "DUMPBIN/DISASM"  shows  an example:

0000101E:  cmp  dword  ptr  [ebp-04],04

00001022:  jne  0000102E

00001028:  inc  byte  ptr  [ebp-04]

00001028:  inc  byte  ptr  [ebp-08]

0000102E:  ...

The first instruction compares  the DWORD  at  [EBP-04] to the value 4. If
they're  the same, the CMP instructions sets the Zero  flag; otherwise,  it clears
the  Zero  flag. The next instruction (the JNE)  jumps over the code that follows,
but  only if the Zero  flag was clear. Therefore,  the two INC instructions execute
only if the Zero  flag was set. The Zero flag could be set only if [EBP-04] was
equal  to  4.  Expressed  in  C code,  the  above  snippet could  look  something
like this:

if  (  SomeVariable1  ==  4  )
{

SomeVariable1++  //  INC  [EBP-04]

SomeVariable2++  //  INC  [EBP-08]
}

When the expression in the if statement  is only concerned with whether the
expression  is TRUE or FALSE, the compiler  has  a choice of code-generation
options.  In some cases, the  generated  code can look  like the  if statement  code
described  earlier.  For example,  the expression  "if  (MyVariable)"  could also
be written  as  "if  (MyVariable  != 0)".  The other  situation  to  consider  is when
the  expression's  value is in a register.  When this occurs,  the compiler  can use
a smaller  instruction  to  determine  if the  value is TRUE (nonzero)  or  FALSE
(zero).  The shorter instruction is an  "OR  register, register"  instruction,  like this:

0000102E:  call  00001000

00001033:  or  eax,eax

00001035:  je  0000103E

0000103B:  inc  byte  ptr  [ebp-04]

0000103E:  ...

In this  code,  the  first  instruction  calls  a function  that  returns  its value in
EAX.  Rather  than  using  three  bytes  with  a  "CMP  EAX,0",  the  compiler
uses  an  OR  instruction.  The  OR  instruction  does  a  logical  OR  on  all  the
bits  in EAX.  The  Zero  flag is set only if none  of these  bit are  set  (and hence,
EAX ==  0).



The  compiler  generates  the  following  code:

0000101E:  cmp  dword  ptr  [ebp-08],04

00001022:  jne  00001042  ;;  Jump  past  code  inside  {}'s.

00001028:  cmp  dword  ptr  [ebp-0C],02

0000102C:  jne  00001042  ;;  Jump  past  code  inside  {}'s.

00001032:  cmp  dword  ptr  [ebp-04],06

00001036:  jne  00001042  ;;  Jump  past  code  inside  {}'s.

0000103C:  inc  byte  ptr  [ebp-08]

0000103F:  inc  byte  ptr  [ebp-0C]

00001042:  . . .

The  code here  is straightforward,  with  three  tests  in succession.  If any  of
them  fails, the code  skips  any remaining  tests  and  the  code inside the  {}'s. If
you  see a series  of test and  branch combinations  that  all jump  to  a common
spot,  you're  probably  dealing with  an  if statement  with  multiple  conditions
that  each  must  be true.

The code generated for the  OR  case - - in which there  are multiple  tests,
any  one of which can  be true  - - is similar  to  the  code generated for the
AND  case.  You'll  see a  series  of consecutive  test and  branches.  All tests
except  the  last  one jump  to  the  code  inside the  {}'s if they resolve  to TRUE.
If a  test  fails,  the  code  simply  falls through  to  the  next  test.  If the  last  test
resolves  to  TRUE, it falls into  the code inside  the  {}'s. If the last  test  fails,  it
jumps  around  the  {} code.

This  section  has just  covered  the  basics;  for  instance,  I didn't  discuss
"for"  loops  or  "while"  loops.  You're certain  to  encounter  things  that  are
more  complicated.  However,  almost  everything you'll  encounter  can  be
broken  down  into  combinations  and  variations  of the  code sequences  I've
described  here.

663

Identifying  switch  statements

Until  the  advent  of class  libraries  like MFC  and  OWL,  most Windows pro-
grams  had  a large  switch  statement  very near  the  beginning  of their window
procedures.  The switch statement  directs the various window messages to their
appropriate  handler code.  If you  need to see  a program's  window procedure

if  (  (i  ==  4)  &&  (j  ==  2)  &&  (k  ==  6)  )

{
i++;
j++; }
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to  discover what  it does with  a particular  message,  you'll  need to  know how
to crack  a  switch  statement.  Luckily,  that's  not  hard to  do.

The  general  process  for  cracking  a  switch  statement  is  this:  For  each
conditional  jump,  go  to  where  the  target  code  is.  Immediately  above the
code,  put  a  big bold  comment  that  labels  which  case that  code handles.  This
is especially helpful  for  decoding  the switch statements  that  so often  occur
in window procedures.  For each message  that  the code checks for,  put  the
corresponding  WM_xxx  message  name  above  the  section  of code  that
handles  it.  For  example:

; CASE  WM_NCHITTEST

00413254:  XOR  EAX,EAX

08413256:  JMP  00413454

; CASE  WM_GETTEXTLENGTH

0041325B:  MOV  EAX,[cbTextBuffer]

00413260:  JMP  0•413454

Recognizing  a switch statement is incredibly easy, although  there are three
common variations in how they're encoded. The easiest switch statement to
decode is what I call the  "idiot encoding."  It's very easy to follow but wastes a
lot of space in the process.  The assembler code will look something like this:

MOV  EAX,[EBP+0C]

CMP  EAX,00000045

JE  someAddress

CMP  EAX,00000169

JE  someAddress2

CMP  EAX,00000265

JE  someAddress3

The first instruction  loads the switch statement's  argument  into  a register.
In this example,  the register is EAX,  but it could just as easily  be some other
register,  such as EDI.  16-bit code seems to  always  use AX, though.

After  loading  a  register with  the test value,  the code enters  a  series of
CMP/JE combinations.  For each  "case"  clause within  the  switch statement,
there's  a  corresponding  CMP/JE combination.  As a result,  it's  easy to  find
the handler  code for  a given switch input value.  If a program uses a switch
statement  to  dispatch  messages  inside  a  window  proc,  just  look  up  the
WM_xxx  values  for  the  windows  messages  of interest.  It's  then  a  simple
matter  to  look  for  the  CMP instruction  that  tests  for  that  value.  The JE
instruction  that follows has the address  of the code that handles that message.
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If you  want  to  take  apart  the  entire  routine  to  see  how  it  handles  every
message,  it's  helpful  to  find  the handler  code  for  each  message and  label  it
prominently  with the message name.

The  second variation  of switch  statements  is closely related  to  the one
I've  just described.  The  difference  is that  the testing instructions  use fewer
bytes  and  require  you  to  keep  track  of intermediate  values.  Consider  the
following  code sequence:

MOV  EAX,[EBP+OC]

SUB  EAX,2

JE  someAddress

DEC  EAX

JE  someAddress2

DEC  EAX

JE  someAddress3

SUB  EAX,5

JE  someAddress4

At first glance, this code  is confusing.  It doesn't  compare  any values  like
the  first switch  statement  variation  does.  The  only real  action  is that  EAX's
value  keeps dropping.  To make  sense of the code,  you  need to  know  that
the  DEC and  SUB instructions  set the  Zero  flag if the result  of their  opera-
tion  is 0.  Each SUB or  DEC instruction  eats away at  the input  value.  If the
value  ever drops  to  exactly  0,  its time is up and  a JE instruction  dispatches  it
to  the  appropriate  handler.  Lower initial  values  will  be taken  out  early on,
while  higher input values are dispatched  later  on.

To see which  value is  being tested  at  a given JE instruction,  you  need to
sum up all the values  that  have  been previously  subtracted.  When  taking
apart  a switch  statement  of this type, I find  it helpful  to  label each JE
instruction  with  the current  running  total.  Here's  how I would  annotate  the
above  sequence:

MOV  EAX,[EBP+OC]  ;  Load  EAX  with  the  switch()  argument.

SUB  EAX,2

JE  someAddress  ;  2  (Jumps  only  if  EAX  was  initially  2.)

DEC  EAX

JE  someAddress2  ;  3  (Jumps  only  if  EAX  was  initially  3.)

DEC  EAX

JE  someAddress3  ;  4  (Jumps  only  if  EAX  was  initially  4.)

SUB  EAX,5

JE  someAddress4  ;  9  (Jumps  only  if  EAX  was  initially  9.)
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The third type of switch statement  encoding  you'll encounter is called a
jump table.  If a  series  of input values are  sufficiently close together, the com-
piler may decide to  build an array of addresses.  Each array entry corresponds
to  one  case value.  The  advantage  of jump  tables  is that  they're  fast.  The
code  doesn't  need to  include  a test for  every possible case value. The follow-
ing C code  shows  a  switch  statement  that  the compiler  could  use  a jump
table  for:

switch  (  i  )

{

case  0x0:  i  =  2;  break;

case  0x1:  j  =  2;  break;

case  0x2:  k  =  3;  break;

//  Cases  3  through  8  not  shown.

case  0x9:  j  =  j  +  k +  i;  break;

}

The meat of the code that  the compiler  generates  comes  down to this:

00001008:  mov  eax,dword  ptr  [ebp-0C]

0000100B:  cmp  eax,09

0000100E:  ja  00001068

00001010:  jmp  dword  ptr  [eax*4+0040108F]

The  first  instruction  loads the switch  statement's  input value into EAX.
The next  two instructions  determine  if the input value  is within  the range of
listed  case values.  If not,  the JA instruction  jumps to  the code after the switch
statement.  The  final  instruction  uses  EAX as  an  index  into  the  handler
address  array,  and  jumps  to  that  location.

In the previous  code,  the compiler  put  the handler address array  into the
data  area  of the executable.  However,  don't  be surprised  if the array comes
immediately  after  the JMP instruction.  This  is especially prevalent  in  16-bit
programs.  It's  easy to  tell when this  occurs  because the JMP instruction  uses
a CS override  as  part  of the memory address.  If the handler  address  array
follows  the JMP statement, you may see garbage instructions  for awhile. This
is because the disassembler doesn't  know that those bytes are really data rather
than code. A good disassembler will either recognize  these situations  or, at the
minimum, let you tell it which areas of code are really data.
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A disassembly example
Now  that I've covered  the basics of disassemblers,  let's look  at a real-world
example to  show  how these concepts can  be applied.  For this example,  I'm
going to  use the routine in the Windows  NT  CLOCK.EXE that switches the
program  between  having  a titlebar  and not  having a titlebar.  I chose  this
function for two reasons.  First, since I've already examined this  routine  from
the perspective of spy programs, we can do a bit of sanity checking  by com-
paring the results of the two methods.  And second, the source  for CLOCK
comes  with the samples that Microsoft  ships for Win32  programming.  With
this,  you'll  be able to judge how accurate the disassembly  process was.

For this  example,  I'll use the  output  from my own  disassembler.  I could
just  as  easily  have  used  Microsoft's  own  DUMPBIN  program.  However,
my  disassembler  automates  some  of the  things  that  you'd  have  to  do  by
hand  with  the  DUMPBIN program,  in  particular,  matching  up the  call  to
an API function  with  its  symbolic  name.  Here's  the initial  output  from the

disassembler  for the routine  in question:

12F3B00:  PUSH  ESI

12F3B01:  PUSH  EDI

12F3B02:  MOV  ESI,DWORD  PTR  [ESP+0C]

12F3B06:  PUSH  FO

12F3B08:  PUSH  ESI

12F3B09:  CALL  GetWindowLongA

12F3BOE:  MOV  EDI,EAX

12F3B10:  CMP  DWORD  PTR  [012F612C],00

12F3B17:  JE  012F3B30

12F3B19:  AND  EDI,FFB4FFFF

12F3B1F:  PUSH  00

12F3B21:  PUSH  F4

12F3B23:  PUSH  ESI

12F3B24:  CALL  SetWindowLongA

12F3B29:  MOV  [012F6000],EAX

12F3B2E:  JMP  012F3B44

12F3B30:  OR  EDI,00CF0000

12F3B36:  MOV  EAX,[812F6000]

12F3B3B:  PUSH  EAX

12F3B3C:  PUSH  F4

12F3B3E:  PUSH  ESI

12F3B3F:  CALL  SetWindowLongA

12F3B44:  PUSH  EDI

12F3B45:  PUSH  FO

12F3B47:  PUSH  ESI

12F3B48:  CALL  SetWindowLongA
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12F3B4D:  PUSH  27

12F3B4F:  PUSH  00

12F3B51:  PUSH  00

12F3B53:  PUSH  00

12F3B55:  PUSH  00

12F3B57:  PUSH  00

12F3B59:  PUSH  ESI

12F3B5A:  CALL  SetWindowPos

12F3B5F:  PUSH  05

12F3B61:  PUSH  ESI

12F3B62:  CALL  ShowWindow

12F3B67:  POP  EDI

12F3B68:  POP  ESI

12F3B69:  RET  0004

The  first  two  lines  and  the  last  three  lines  are readily  identifiable  as the
prologue  and  epilogue.  They're  of  no  real  interest  except  for two  things:  The
"RET  0004"  tells  us  that the function  takes  one  parameter  (all  parameters  in
32-bit  code  are 4  bytes).  Second, the code  doesn't  set  up an  EBP stack  frame,
so  we'll  need  to  keep track  of what's  on  the  stack  to  determine where  the
parameters  are.

As  luck  would  have  it,  there's  only  one  instruction  in  the  entire  routine
that  references  parameters  on  the  stack.  That's  the  "MOV  ESI,DWORD
PTR  [ESP+0C]"  instruction  right  after  the  prologue.  The  instruction  copies
a parameter  into  ESI,  which  is  then  seen  in several  other  spots  throughout
the  function.  It's likely  that  ESI is  some  kind  of  register  variable.  H m m m . . .
what  possible  meaning  could  ESI  have?  Scanning  through  the  routine,
we  see  that  ESI  is  passed  as  a  parameter  to  GetWindowLong(),
SetWindowLong(),  SetWindowPos(),  and  ShowWindow().  Might  ESI be
holding  an  HWND?  It  sure looks  like  it!

Let's take this  opportunity to  rewrite the previous  listing to  take advantage
of  what  we've  already found,  break  up  the  instructions  into  manageable
sequences,  and  eliminate  the  prologue  and  epilogue  code.

12F3B02:  MOV  hWnd(ESI),DWORD  PTR  [ESP+OC]

12F3B06:  PUSH  F0

12F3B08:  PUSH  hWnd(ESI)

12F3B09:  CALL  GetWindowLongA

12F3BOE:  MOV  EDI,EAX

12F3B10:  CMP  DWORD  PTR  [012F612C],00

12F3B17:  JE  012F3B30

12F3B19:  AND  EDI,FFB4FFFF



12F3B1F:  PUSH  00

12F3B21:  PUSH  F4

12F3B23:  PUSH  hWnd(ESI)

12F3B24:  CALL  SetWindowLongA

12F3B29:  MOV  [012F6000],EAX

12F3B2E:  JMP  012F3B44

1273B30:  OR  EDI,00CF0000

12F3B36:  MOV  EAX,[012F6000]

12F3B3B:  PUSH  EAX

12F3B3C:  PUSH  F4

12F3B3E:  PUSH  hWnd(ESI)

12F3B3F:  CALL  SetWindowLongA

12F3B44:  PUSH  EDI

12F3B45:  PUSH  F0

12F3B47:  PUSH  hWnd(ESI)

12F3B48:  CALL  SetWindowLongA

12F3B4D:  PUSH  27

12F3B4F:  PUSH  00

12F3B51:  PUSH  00

12F3B53:  PUSH  00

12F3B55:  PUSH  00

12F3B57:  PUSH  00

12F3B59:  PUSH  hWnd(ESI)

12F3B5A:  CALL  SetWindowPos

12F3B5F:  PUSH  05

12F3B61:  PUSH  hWnd(ESI)

12F3B62:  CALL  ShowWindow

At this point, several function calls -- in particular, GetWindowLong(),
the first SetWindowLong(), SetWindowPos(),  and ShowWindow()  - - are
screaming  to be turned into their C equivalents.  Each parameter to these rou-
tines is either the hWnd we discovered  or a numeric value that we can look  up
in WINDOWS.H.  Let's rewrite the routine yet again to condense some of

these  instruction sequences  into a single C statement:

12F3B02:  MOV  hWnd(ESI),DWORD  PTR  [ESP+OC]

GetWindowLong(  hWnd,  GWL_STYLE  );  //  GWL_STYLE  ==  -16 == 0F0h

12F3B0E:  MOV  EDI,EAX

12F3B10:  CMP  DWORD  PTR  [012F612C],00

12F3B]7:  JE  012F3B30
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While we were able to rewrite  some of the function calls in their C
equivalent,  we didn't know enough about the parameters  to the last two
SetWindowLong()'s to condense them.  In one case we need to  know what
EDI contains,  while in the  other we need to know what  the global variable
at address  [012F6000]  is.

Wait a minute! We've already seen that the GetWindowLong()  retrieved the
window's  style value  and copied it into  EDI. EDI could  be another register
variable  for holding the window's  style  bits.  As for the global variable
[012F6000],  notice  that  the  code  saves the  return  value  from the
SetWindowLong(GWL_ID)  into  it.  Earlier,  I described  how the window
ID field  (GWL_ID)  is used  to  store the HMENU for top-level  windows.
Combined  with  the fact that  SetWindowLong()  returns  the previous value
of the  field,  you can guess  that  [012F6000]  is a global variable containing
a menu handle  (HMENU).

Let's  rewrite  the routine  once  again  to  take  advantage  of these  two
new  discoveries  (the window  style variable  in  EDI and  the  HMENU
global  variable):

12F3B19:  AND  EDI,FFB4FFFF  !

SetWindowLong(  hWnd,  GWL_ID,  0  );  //  GWL_ID  ==  12  ==  0F4h

12F3B29:  MOV  [012F6000],EAX

12F3B2E:  JMP  012F3B44

12F3B30:  OR  EDI,00CF0000

12F3B36:  MOV  EAX,[012F6008]

12F3B3B:  PUSH  EAX

12F3B3C:  PUSH  F4

12F3B3E:  PUSH  hWnd(ESI)

12F3B3F:  CALL  SetWindowLongA

12F3B44:  PUSH  EDI

12F3B45:  PUSH  F0

12F3B47:  PUSH  hWnd(ESI)

12F3B48:  CALL  SetWindowLongA

SetWindowPos(  hWnd,0,0,0,0,0,  //  0x27  ==  the  flags  on  the  next  line

SWP_NOSIZE  |  SWP_NOMOVE  |  SWP_NOZORDER  |  SWP_FRAMECHANGED);

ShowWindow(  hWnd,  SW_SHOW  );
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At this point,  all we're  left with  is the conditional  branch  statement  at
address  012F3B10.  The  CMP instruction  compares  the global  variable  at
address  [012F612C]  to  0.  The destination  of the conditional  jump is imme-
diately  preceded  by a JMP instruction.  This  looks  like the  classic  if-else
statement  that  I described  earlier.  The global  variable  at  [012F612C]  looks
like  it's  some sort  of boolean.  Let's give  it a  name  (for example,  "MyBool"),
stick  in  some  {}'s and  indentation,  and  see if the code  starts  to  make  sense:
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Amazing!  We've taken  some raw  assembler code  and worked  it back
into  readable  C code.  If you  compare  this  code  to what  we  obtained  from
spying  tools,  you'll  see that  they're  entirely  consistent.  However,  the  disas-
sembly listing contains  more  information  than  you  could  have  obtained via
spy tools.  For  instance,  the  spy tools  didn't  give any  indication  that  there
were two  global  variables  involved  (the HMenu  and  the  boolean).

To  some of you,  the  series  of steps from  raw  assembler  code  to  C code
may  have  gone  a little  fast.  It's  true  that  not  every  disassembly  attempt  goes
this  smoothly  or  this  quickly. However,  I hope  that  I've  shown  how  disas-
sembling  a function  is an  iterative  process.  As you  hypothesize  and  find
things  out  about  the  code,  you  feed that  information  back  into  the  listing
in  the  hope  that  it'll  shake  something  else loose.

As a final note  on  disassembly,  don't  hesitate  to  load the code in question
into  a debugger  and  step through  it yourself.  Seeing the  code execute  with
real  live values  can often  break  a mental  block  about  the code's purpose.
Many  times  I've  been  unable  to  figure  out  what  a  function  returns.  By
stepping  through  the code  in  a debugger  and  seeing actual  return  values,
I've  often  been  able to  deduce  a pattern  in the returned  values.  For  example,
a  routine  may  always  return  a global  memory handle.  The  point  is, every
scrap of information  can help.  You'd  be surprised  how  the  tiniest  thing  can
help  you  break  a piece of code wide  open.

ADVANCED HACKING TIPS

Before  finishing  this  chapter,  I thought  it  would  be  useful  to  throw  in
some  general-purpose  tips  that  don't  fall  into  the  general  topics  I've
already  described.
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Using Softlce/Windows
If you're  at  all  serious  about  exploring,  SoftIce/Windows  is a must.  Before I
go  any  further,  I'm  obligated  to  point  out  that  I work  for  Nu-Mega,  the
company  that  makes  SoftIce/Windows.  The  only  tool  that  can  even
remotely  compare  to  SoftIce/W is Microsoft's  WDEB386  system-level
debugger,  which  doesn't  have  nearly  as  many  commands  to  dump  data
structures  or  use  symbolic  debug  information.

SoftIce/W gets  its capabilities  because it's a system-level debugger.  Unlike
application-level  debuggers  like Turbo Debugger, CodeView,  or the  debuggers
built  into your  compilers  IDE,  SoftIce/W doesn't  rely on Windows for any-
thing.  It operates  between Windows  and the hardware  itself.  Because  of this,
SoftIce/W  can step through  any code in the system, including ring 0 VxDs and
real  mode  DOS  code.  This  makes  it very  useful  for  studying  code  like the
Windows  scheduler  and  the  routines  for  switching  memory contexts.  Don't
even think  about  trying something  like that with  a regular  debugger.  They just
won't  work.

In fairness  to  Microsoft,  WDEB386  has  similar  capabilities  in  this par-
ticular  area.  One  pitfall  of Windows  95  is that  you can't  step  through  the
ring  3  system  DLLs  (like KERNE132.DLL)  with  an  application  debugger.
The  problem  is that  Windows  95  shares  this  code  with  all  processes,  so
placing  INT  3's in this  code  would  almost  always crash  the  system.  Since
SoftIce/W  operates  underneath  the  system,  it doesn't  have these  restrictions,
and  can  easily step  through  any  system code.

Unlike  regular  debuggers, you don't  load SoftIce/W from within Windows.
Nor  do you have to explicitly  debug a program to use it. Instead, SoftIce/W
loads underneath  Windows and is always present. Unless you press its hotkey
to  bring  up  its user  interface,  SoftIce/W silently  sits  underneath  the  rest  of
Windows.  For  this  reason,  you  can load  SoftIce/W every  time  you  load
Windows.  When you  need it,  just pop  it  up.  Otherwise,  you  can  ignore  its
presence.  Rather  than a program, it's much more  like a super version of
Windows  that  you  can  stop  and  poke  around  in  at  will.  Sort  of  like  the
ultimate  Windows TSR.

Unlike WDEB386,  Softlce/W contains  numerous  commands  to  dump
out  data  structures  and  lists  at  all levels  of the system.  At  the  lowest  level,  it
can  dump  out  the  CPU's page  tables  and  selectors  in the global  and  local
descriptor  tables.  Moving  up  a level,  it  can display  important  VxD-related
items  such  as the list of VxDs,  the  device descriptor  block for  a VxD,  and
the  context  tables  used to  maintain  per-process  address  spaces.  In fact,
SoftIce/W  can even switch address contexts  to any arbitrary memory context,
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allowing  you  to  see  all  the  memory  of  any  process  in  the  system.  Up yet
another  level,  SoftIce/W can  list  out  all the  processes,  threads,  modules,  and
Win16  tasks,  along  with  detailed  information  about  each  item.  This  is
invaluable  when  your  code is using a system-supplied  handle  and  you  need
to  know what  the  handle  refers  to.  At the  highest level,  SoftIce/W can display
detailed  information  on windows  and window  classes.  The  point  of all this
isn't  to  praise SoftIce/W. Rather,  it's to  give you a feeling for how much system
information  is at  your  fingertips.

A couple  of SoftIce/W features  are  particularly useful  and  simply  must
be mentioned  here.  When  stepping  through  16-bit  code,  you'll  often  be
working  with  handles  that  look  like they could  be global  heap  handles.
Simply give that  handle  to  the  SoftIce/W HEAP command,  and  you  can
instantly  verify whether  or  not  it's  a valid  global  heap  handle.  If it  is a valid
heap  handle,  SoftIce/W will tell you what  the  handle's  purpose  is  (Who
owns  it?  Is it code,  data  or  a resource?  If it's  code,  which  segment  in the NE
file  does  it correspond  to?).

In  either  16-  or  32-bit  code,  the  SoftIce/W U and  D commands  come
in  very  handy.  Given  a  code  address,  you  can  feed  it  to  the  U command
and  quickly  disassemble  at  that  address.  Likewise,  the  D command  lets
you  view  anything  in  memory  in  a  variety  of  formats.  Unlike  application
debuggers  or  other  programs,  these  commands  aren't  restricted  to  where
they  can  disassemble  or  view  memory.

Another  thing  SoftIce/W has  over other  debuggers  is that  it can  load  the
exported  function information  from  16- and  32-bit  EXE/DLL  files,  and  use
this  as  a pseudo  symbol table.  Thus,  wherever you're  stopped  in Windows,
SoftIce/W can tell you what  EXE/DLL/VxD you're  in, and  often can pinpoint
the  exact  routine.  It even  uses  this  information  in  its disassembler  so that
instead  of seeing  something like:

CALL  BFFB0149

You'll  instead  see:

CALL  GetModuleHandleA

Another  nifty  SoftIce/W command  (added  for Win32s  and Windows  95
support)  is the MAP32  command.  With  MAP32,  you  can easily determine
where  all  the  sections  of an  EXE and  its DLLs  (including system  DLLs)
reside in  memory.  Yet another  handy  feature  of SoftIce/W is the  STACK
command.  Wherever  you're  stopped in the  system,  you  can  almost  always
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get a call stack that shows how you got there.  Also, at any given time, if you
need to know what the current task or thread is, try the TASK and THREAD
commands.  These commands quickly let you know what process and thread
you're executing in.

Using hardware breakpoints
If you need to step through code when a certain condition  is true, you can
often use the CPU's hardware breakpoints to quickly get to that point in the
code. For example, a coworker of mine wanted to know when a certain rarely
used thread was activated. By using the SoftIce/W THREAD command, we
were able to find out the thread ID of the thread we were interested in. We
set a breakpoint on the code that executes after the thread switch, but that
approach turned out to be hopeless because the system is constantly switching
threads. The breakpoint was constantly going off, but the current thread was
never the thread we were interested in.

To get around this problem, we found the  DWORD in memory
where the  system keeps the current  thread  ID (hint:  unassemble  at the
GetCurrentThreadld function).  We then set a conditional  hardware break-
point on the DWORD holding the thread ID. The condition was that the
breakpoint  would trigger only when the thread ID we were interested in
was written to the thread ID DWORD. Problem solved. The system ran
normally  until we undertook the action that made the thread in question
wake up.

Another example: One of my programs was using SetThreadContext to
change the EIP of another program. SetThreadContext was reporting success,
yet the other process was always bombing. To see what was happening, I set a
hardware  breakpoint on the DWORD in the thread context structure where
the new EIP value should have been written to. Upon running the program, I
found that SetThreadContext was indeed copying the EIP value to the right
location. Unfortunately, the breakpoint went off again a bit later, and I could
see that KERNEL32.DLL was overwriting my EIP value with a garbage value.
Without using hardware breakpoints, I'd probably still be wondering if my
code was doing something wrong or if there was a bug in Windows 95.
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The VxD.  (dot) commands
Users  of WDEB386  and  SoftIce/W have  quite  a bit  of system  information
available  to  them  through  the  "."  (dot)  commands.  The  dot  commands  (so
called  because  they all  start  with  a  ".")  are  implemented in  various VxDs.
To use them,  break  into  your  system-level  debugger  and,  at  the  prompt,
enter  the  command  name  (which always  starts  with  a  ".").  Some of them
are available  all the time,  while others are available  only in the debug version.
Some commands  to  try include:

..?  .vtd

.m?  .dosmgr

.vmm  .vmpoll

.vxdldr  .vtdapi

.vpicd

The VAR2MAP utility
In Windows  95,  the  Win32  system DLLs  such  as USER32,  KERNEL32,  and
so on  are  "based."  That  is, they always  load  at  the  same linear  address  every
time you  start Windows  95.  You can take advantage  of this fact to  add your
hard-won  knowledge  about  where  functions  and  variables  are  located  to
WDEB386  or  SoftIce/W.  Doing  this  lets  you  use  these  symbols  when  step-
ping  through  system  code.  How's  this?  Take  a  look  at  the  code  for  the
GetSystemDefaultLangID  function  in  KERNEL32.DLL:

GetSystemDefaultLangID  proc

BFFB69FD:  MOV  AX,[BFFD44DO]

BFFB6A03:  RET

It's pretty  obvious  that  the  address  BFFD44D0h  holds  a global  variable
called  SystemDefaultLangID  (or  something  to  that  effect).  And  since
KERNEL32.DLL  has  a  unique  base  address  in  the  linear  address  space,
the  SystemDefaultLangID  variable  will  always  be at  address  BFFD44D0h.
Wouldn't  it  be  great  if  you  could  tell  your  system  debugger  this  fact
and  have  it  automatically  replace  the  address  "BFFD44D0h"  with
"SystemDefaultLangID"  in  its  disassembly?  I thought  so,  too,  so  I wrote
the  VAR2MAP  program.
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To use VAR2MAP, you create a file that contains a list of 32-bit addresses
and their associated names  (you have to come up with the names).  The file
can contain  both variable names and function names. The only restriction is
that all the names and addresses must be in the same EXE or DLL. VAR2MAP
takes the file you create as input and emits a  .MAP file. What good is a .MAP
file? Well, you can run the .MAP file through  a program like Microsoft's MAP-
SYM or Nu-Mega's MSYM. Either of these programs will create a .SYM file
from the supplied  .MAP file. Both WDEB386  and Softlce/W know how to
load  .SYM files for use with symbolic disassembly. I used VAR2MAP through-
out the writing of this book to give meaningful  symbolic names to functions  in
KERNEL32.DLL  and other system modules.

A typical  input file to VAR2MAP is shown in the  following code snip-
pet.  The  first line of the  file must contain  the path  to  the  EXE or  DLL that
will  contain these  addresses. Why  is this  necessary?  If you  look at  a  .MAP
file,  you'll see that  all  the addresses  for public  symbols  are given in logical
addresses,  that  is,  ObjectNumber:Offset  (for example,  0004:00013484).
VAR2MAP needs the  EXE or  DLL file to  figure out where  each of the code
and  data  sections will  be mapped  to  in memory.  This  allows VAR2MAP to
translate  the linear address  that you give it  into  a  logical address  like
0004:00013484.

FILE  :  C:\WINDOWS\SYSTEM\KERNEL32.DLL

IGetProcAddress  =  BFF81DC1

IGlobalHandle  =  BFF76E78

ILocalReAlloc  =  BFF833C8

ILocalSize  =  BFF890CB

ppCurrentThread  = BFFCB3D4

ppCurrentProcess  =  BFFCB3D8

ppgurrentTDBX  =  BFFCB3DC

pWin16Mutex  =  BFFD34D0

pK16SysVar  =  BFFD33A4

pKrn32Mutex  =  BFFCB3FC

The rest  of the lines  should  be of the form:

SymbolName  = AddressInHex

After  creating  the input  file, run  VAR2MAP and pass it the name of the
input file on the command  line  (for example,  VAR2MAP KERNEL32.VAR).
The output  .MAP file will  be placed  in the  same directory as the file whose
name is on the  "FILE  ="  line of the  input file. This makes  sense,  because the
.SYM file you create  must  be in the same directory as the EXE or DLL it
corresponds  to.  Otherwise,  the debugger  won't  know to  load  the  .SYM file.
See your  debugger  documentation  for  information  on loading  .SYM files.
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Identifying  VxD services
For this type of exploration,  it's helpful to know how calls to VxD services
are made and implemented.  A VXD service is a function that's exported
from a VxD for use by other VxDs. A VxD doesn't  directly call services in
other VxDs (at least not when it's first loaded). Instead, you invoke a VxD
service from another VxD with an INT 20h. A quick look at the VxDCall
macro in the DDK's VMM.INC shows this in action. The INT 20h is handled
by the VMM, which in turn changes the INT 20h instruction  into a call to
the address of the actual VxD service code.

How does the INT 20h handler know which VxD service you're invoking?
Immediately following the INT 20h is a DWORD that specifies the service to
be invoked. The high WORD of this DWORD is the device ID of the VxD
containing  the service to be invoked. The low WORD contains the service
number in the VxD's service table. A value of 0 in the low WORD means the
first service in that particular VxD, a value of 1 means the second service,
and so on.

The device ID in the high WORD is either one of the standard VxD
IDs defined in VMM.INC, or one of your company's VxD IDs (which are
assigned  by Microsoft).  The first  16 VxD device IDs are listed here:

VMM_DEVICE_ID  lh
DEBUG_DEVICE_ID  2h
VPICD_DEVICE_ID  3h
VDMAD_DEVICE_ID  4h
VTD_DEVICE_ID  5h
V86MMGR_DEVICE_ID  6h
PAGESWAP_DEVICE_ID  7h
PARITY_DEVICE_ID  8h

REBOOT_DEVICE_ID  9h
VDD_DEVICE_ID  0Ah
VSD_DEVICE_ID  0Bh
VMD_DEVICE_ID  0Ch
VKD_DEVICE_ID  0Dh
VCD_DEVICE_ID  0Eh
VPD_DEVICE_ID  0Fh
BLOCKDEV_DEVICE_ID  1 0h

If you're working with one of the standard VxDs, you can usually find a
list of the VxDs services by looking at the .H or .INC file for that VxD in the
DDK. The Begin_Service_Table macro indicates the start of the services list.
Each service provided in that VxD has its own line that starts with <VxD
Name>_Service  (for example, VPICD  Service). The first service listed in the
table will have a low WORD of 0 in the INT 20h DWORD, the next service
will have a value of 1, and so forth. Armed with this knowledge, you can easily
figure out the DWORD that must follow an INT 20h in order to invoke a



given function.  For example,  knowing that the VMM VxD has a device ID of
1 (which will go in the high WORD), you can easily calculate  the DWORDs
for each of VMM's  services, as shown here:

Begin_Service_Table VMM, VMM
VMM_Service  Get_VMM_Version
VMM_Service  Get_Cur_VM_Handle
VMM_Service  Test_Cur_VM_Handle
VMM_Service  Get_Sys_VM_Handle
VMM_Service  Test_Sys_VM_Handle

O0010000h
O0010001h
O0010002h
O0010003h
O0010004h
O0010005h

Debuggers  or disassemblers  that give the actual  names  of the  services
that  will  be invoked via an INT 20h  simply keep  a big table  that matches up
DWORD values  to  function  names.  Earlier,  I mentioned  that the  INT 20h
handler  patches the  INT 20h instruction  and its following DWORD  into  a
CALL instruction.  That isn't  strictly true.  If the  service number  in the  low
WORD  has its high bit set,  the INT 20h will instead  be patched  to  a JMP
instruction.  For example,  using the VMM  services shown  in the preceding
list,  an INT 20h followed  by a DWORD  of 00018001  would become a JMP
to the  Get_Cur_VM_handle  function,  rather  than  a CALL. To generate  a
JMP to  a VxD service, you'd  use the VxDJmp macro  in VMM.INC,  rather
than the  normal  VxDCall  macro.
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Identifying  Win32  VxD services
One of the nifty new features in Windows  95 is the addition  of Win32  VxD
services.  The Win32 services are sort  of like VxD services,  except that they
can  be called by ring 3 application  code.  To invoke a Win32  service,  a pro-
gram calls the VxDCall0  function  exported  by KERNEL32.DLL.

One  of the parameters  to the VxDCall0  function  is a DWORD that's
similar in nature  to  the VxD service ID I described  in the previous section.
The high WORD  of the  DWORD  is the device ID (just like a regular INT
20h  DWORD would have).  The low WORD  is the Win32  service number.
This WORD  corresponds to  the relative  order  of the Win32  services within
the Win32 service table.  0 is the first service,  1 the second service, and so on.

Let's  look at an example to make this clearer. This short  snippet  of code
is from GetThreadContext  in KERNEL32.DLL:
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BFFABD8D:  PUSH  EAX

BFFABD8E:  PUSH  DWORD  PTR  [EBX+5C]

BFFABD91:  PUSH  002A0014

BFFABD96:  CALL  VxDCall•

The first two  PUSH instructions  are parameters  for the Win32  service.
The  final  PUSH of 002A0014  informs  the VxDCall0  function  that  it should
invoke  the  0xl5th  Win32  service in device 2Ah.  What's  device  2Ah? Nothing
more  than  VWIN32,  the  source  of much  of KERNEL32's  functionality.

Identifying parameter validation and
Ixxx  functions
In Windows  3.1,  Microsoft  introduced  parameter-validated  functions.  These
are API functions  that  check the  validity of the parameters  you pass  to  it.  If
your  parameters  aren't  up  to standard  (if you  have an  invalid  pointer,  for
instance),  the  functions  simply return  to you without  doing anything.  In the
debug  version,  the  function  may also emit  a warning  diagnostic  to  the  debug
terminal.

The  complete  code  for  a  function  with  parameter  validation  typically
exists  in  two  separate  places.  The  code  that  validates  the  parameters  is
always  found  at  the  beginning  of  the  function.  Assuming  all  the  validity
test  are  passed,  the  code  then  JMPs  to  the  real  code.  In  Windows  3.1,  the
real  code  for  a  function  had  its  own  name  - - an  I,  followed  by the  function
name.  For  example,  there's  an  exported  WinExec  function  that  checks  its
parameters  and  then JMPs  to  an  internal  IWinExec function.  In this  book,
I've  followed the  same convention  for  Win32  code.

A commented  listing of theWindows  95  32-bit  WinExec  function  fol-
lows.  The code  sets  up  a structured  exception  handling  (SEH)  frame  and
then  verifies that  all characters  in the string pointed  to  by the lpszCmdLine
parameter  can be accessed.  If the  validation  fails,  a  page  fault  occurs,  and
the  SEH frame  causes  the  function to return through  another  code path not
shown here. If the validation  succeeds, the code removes the SEH frame and
then JMPs to the IWinExec code.

WinExec  proc

BFFB2569:  PUSH  EDI Preserve  EDI,

BFFB256A:

BFFB256C:

BFFB256E:

BFFB2573:

PUSH  22

SUB  EDX,EDX

PUSH  BFFB1172

PUSH  DWORD  PTR  FS:[EDX]

Set  up  a  structured  exception

handler  frame  in  case  the

following  validations  cause  a

fault.
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A key point  here  is  identifying  the  I version  of the  function.  When  you
see  code  that  looks  similar  to  what  I've  shown  here  and  that  ends  with  a
JMP  elsewhere,  it's  probably  a function  with  parameter  validation.  The
destination  of the JMP  instruction  is  most  likely  the  address  of the  I ver-
sion  of the  code.  You can  use  this  knowledge  to  build  up  the  addresses  of
additional  symbols.  For  example,  in  "The  VAR2MAP  utility"  section,  I
showed  four  functions  that  fall  into  this  category:

IGetProcAddress  = BFF81DC1
IGlobalHandle  = BFF76E78
ILocalReAlloc  = BFF833C8
ILocalSize  = BFF890CB

If you  add  these  internal  names  to  your  debugger,  stepping  through  the
system code can  be much easier. It appears that the  parameter  validation  stubs
are lumped  together  in  one location,  while  the  real  code  for the  functions  is
spread throughout  the  module.  Adding  in  additional  symbols  for  internal
functions  gives you  a fighting chance of figuring out where  you are in a given
system module.  It also greatly enhances the  usability  of stack traces.

Using the debug version
Beyond  just  finding  bugs in  your code,  the  debug  version  of Windows
makes  it much easier  to  figure out  what  Windows  is doing.  The  various
debug versions  of system  DLLs that  come in  the  SDK are  littered  with  help-
ful  diagnostic  trace  messages.  These  strings  often contain  the  name  of the
function that  they're  being emitted  from  as part  of the  message.  Likewise,

BFFB2576:  MOV  DWORD  PTR  FS:[EDX],ESP

BFFB2579:  MOV  EDI,DWORD  PTR  [ESP+14]  ;  Validate  the  lpszCmdLine

BFFB257D:  SUB  EAX,EAX  ;  parameter  by  touching  every

BFFB257F:  LEA  ECX,[EAX-01]  ; character  in  the  string.  A

BFFB2582:  REPNE  SCASB  ;  page  fault  will  trigger  the

; exception  handler  above.

BFFB2584:  POP  DWORD  PTR  FS:[EDX]  If we  got  here,  everything  was

BFFB2587:  ADD  ESP,08  OK.  Remove  the  SFH  frame.

BFFB258A:  POP  EDI  Restore  EDI.

BFFB258B:  JMP  IWinExec  JMP  to  the  real  WinExec  code.
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there  are  many messages  that  print  out  or  otherwise  comment  on the  value
of system variables.  You can  usually go  back a  few instructions  in the code to
find  the variable that  they're  referring to.  For example,  consider this code:

BFFCZ88A:  PUSH

BFFC788D:  PUSH

BFFC7892:  CALl

DWORD  PTR  [ESI+18]

BFFDBF9C  ;;  D e f a u l t  Heap:  %8x\n

BFFC6092

Here,  ESI is pointing  to  the  Win32  process  database  structure.  The sec-
ond  instruction  is passing a pointer  to  a printf-style  format  string.  From this
information,  it's  fairly  easy to  figure  out  that  you'll  find the process's  heap
handle  at  offset  18h.

Another way the  debug version  of Windows  is helpful  is in all  of the
sanity  checking  and  assert-like  code.  The  debug  DLLs are always  checking
the  parameters  to  their  functions  and  the  state  of system variables.  You can
use all this  sanity-checking code to confirm  or  disprove your guesses about
what  a certain  piece  of code  is doing or working  with.

Pentium-optimized  code
One of Microsoft's claims about Windows 95 is that it is optimized for the
Pentium.  I'm here to tell you that this claim certainly  appears to  be true. The
main optimization  that compilers do specific to the Pentium CPU is to  reorga-
nize the instruction  sequences  to  let the Pentium's  two execution units execute
together  without  stalling.  Consider this code snippet from KERNEL32.DLL:

1)  PUSH  EBP

2)  NOV  EBP,ESP

3)  SUB  ESP.04

4)  CMP  DWORD  PTR  [EBP+SC],0FFFFF98

5)  PUSH  EBX

6)  PUSH  ESl
7)  PUSH  EDI

8)  JBE  BFF741AB

Instructions  1,2,3,5,6,  and  7 together  make  up the  prologue  that  sets
up the  function's  stack  frame  and  preserve  the register variable  registers.
Instructions  4 and  8 together  make  up the  standard  instructions  for  an if
statement.  Were Pentium  optimizations  not  enabled,  the code would  make
much more sense.  The JBE instruction  would  occur immediately  after the
CMP instruction,  rather  than  four  instructions  later.
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Why am  I bringing  this  up? When  stepping  through  Pentium-optimized
code  (such  as the Windows  95  system DLLs),  the  instruction  sequences  may
not  immediately make  sense.  You have to  be aware  of this  and  look  for
instruction  sequences  that  are  doing two  different  things.  I try  to  keep  these
sequences  straight  by rearranging the  instructions  into  two  groups.  In most
cases,  the  two  groups  correspond  to  two  different  C source  code  statements.
After rearranging the instructions, I focus first on one group,  then  on the other.

SUMMARY

In this chapter,  I've  shown  several  different  methods  of exploration..  On  the
low  end,  the  methods  center  around  simplistic  file-dumping  programs.  In
the  middle  are spying  tools  that  are  extremely  useful  if you're  interested  in
the  interactions  between  a program  and  the  operating  system.  At the  high
end,  you  and  your  disassembler  can go  head to  head  with  an  optimizing
compiler  to  crack  open  practically  every aspect  of a program.  Disassembly
is messy, imprecise,  and  frustrating  work.  On  the  other  hand,  it can  be an
extremely valuable  asset  that  few programmers  take  the time  to  learn.

If you're  not  already using the  tools  and  techniques  I've  described,  I
hope  this  discussion  has  taken  away  enough  of their  mystique  so that  you're
willing to  try them if you  need to  do  so.  Although  some of the  things  these
tools  do  seem like magic,  they're  really  not.  If you  have  a firm grounding in
hardware  and  operating  system  basics,  these  tools  and  techniques  can  be
viewed  as just  another  part  of your  toolbox,  rather  than  as something
reserved  for programming  wizards.
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WRITING A WIN32

API SPY 10
A s programmers,  we often see another programmer's code and

wonder,  "How  does it do  that?"  In these situations,  pro-
gramming  tools  that  let you peer  under the hood of a running
application  are invaluable  in tracking down what some program
or DLL is doing. For live analysis of a running program,  nothing
beats  an API spy program  (a  spy).

API spying tools show you which Windows  functions are
called by a program and its DLLs.  In addition  to  showing the
names of the API functions in the order in which they're called,
API spy programs  also record the parameter values  to the API
functions,  as well as the return value for the function.  More
advanced  API spy programs  may even record additional perti-
nent information  such as window messages,  hook callbacks,  and
other program events. With all this information  on tap,  it's usu-
ally easy to figure out what a given section of code is doing.
Chapter  10 discusses the more popular API spy programs,  and
has an example  showing how to  use the output from an API
spy. In this chapter,  I'm going to construct  a  simple  but power-
ful Win32 API spying tool that's  easily extensible.

The technique  I'll  be using to  intercept  API function  calls
for  the APl spy program can also  be easily  adapted for  use in
your own Win32 programs.  For example,  let's  say you wanted
to replace  the Win32 lstrcpy function with  your  own routine.



A P I

686

Doing this  is only a function call  away  with  the code I'll  be presenting.  If
you're  just  interested  in getting the code to  intercept  API function calls, skip
ahead  to  the  last section  in this chapter  ("Intercepting  Functions  in Your
Own  Programs").  However,  if you're  interested  in Win32  system-level
programming  and  learning  how this technique  works,  read  on.

Why  bother  writing a simple API spy program when more powerful  ones,
such as BoundsChecker32,  are available commercially?  By writing you own
API spy for Win32  programs,  you can gain a thorough understanding  of the
Win32  operating  system philosophy,  and develop an in-depth knowledge
about  the  important  differences  between the three Win32  implementations
(Windows NT, Windows  95, and Win32s).

On the  surface,  the subject of this chapter  appears  to  be "How  to build an
API spy program."  However,  my real  goal  is to  present  a  set of real-world
Win32  programming  problems,  and  show  how they can  be solved.  In the
process,  you should  see many facets  of the Win32 architecture.  As you'll
soon realize,  writing  an API spy for Win32  programs  forces you  to come into
contact  with  such issues  as  address  spaces, multithreading,  dynamic  linking,
debugging  mechanisms,  process  management,  and  thread control.  In short,
the  program  I'll  be building will  give you  a good  tour  of many core Win32
concepts.

Before  jumping into  details  about  the  program,  I need to  list the  API spy
program  specifications:

1.  For  a given Win32  process,  the  program  should  log the  function  calls  it
makes  to  a given list of DLLs.

2.  The  set of DLLs  to  be monitored  should  be extendible  by the  user via a
configuration  file.

3.  If the  parameters  to  a  function  are known,  they can  be specified in the
configuration  file,  and  their  values  will  be  logged  along  with  the
function  name.

4.  The  spy program must  log the return  values  of functions.
5.  The  spy program  should  be able to  run  on Windows  NT, Windows  95,

and  Win32s.
6.  No  modification  to  the  program's  source  code  or  executable  file  should

be required.
7.  Log output  should  go to  a disk  file,  rather  than  being shown  live.
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When  this  program  is completed  (at the  end  of the chapter),  it will  be
able  to  do  several  things:  it  will  let you  pick  another  program to  spy on,  it
will  run  that  program,  and  it will  produce  an  ASCII text  file with  the  logged
information.  After  the  chosen  program terminates,  you can  view the text  file
with  an  editor  or  viewer  of your choice.

An important  limitation  of this  spy program - - and  one that  needs  to  be
pointed  out  very clearly - - is that  this  program is a per-process  API spy.
Unlike  programs  such  as the Win16  WinScope  spy program,  my Win32  API
spy doesn't  watch  calls  made  by all processes  in  the  system.  Rather,  it
watches  only the  calls made  by a single  process.  In  a system with  separate
address  space  for each process,  writing  a global  APl  spy is a  significant
undertaking  and  beyond  the scope  of this chapter.  (How's  that  for truth  in
advertising?)

INTERCEPTING THE FUNCTIONS

The  basic idea  behind  any  sort  of spy program  is that  the  spy program
inserts  itself into  the  flow of control  of the program  being spied on.  The spy
program gets control  before  the  intended  target  of the  call  is reached,  and
does  whatever  logging  it needs  to  before transferring  control  to  the  original
intended  target  of the  call.  The first  problem  we're  faced  with  is how  to  let
our  spy program gain  control  somewhere  between  the  "spyee's"  call to  a
DLL function,  and  the  execution  of the  function  in the  DLL.

One  approach  to  this  problem  that's  been used in  the past  is to  make
your  own  DLL that  exports  functions  with  the  same names  as the  functions
you  want  to  intercept.  For  example,  if you  wanted  to  intercept  calls to  the
GetProcAddress  function in KERNEL32.DLL,  you'd  make  your  own  DLL
with  an  exported  GetProcAddress  function.  By putting this  DLL's import
library  first  in  the  list of import  libraries,  the  linker  will fix up  calls  to
GetProcAddress  to  point  to  your  interception  DLL,  rather  than  to
KERNEL32.DLL.  The interception DLL logs the information  about the call
before  jumping  to  the  real  function  (for  example,  GetProcAddress  in
KERNEL32.DLL).  As an  alternative  to  creating  an  import  library,  you
could  just  alias  the  imported  functions  in your  DEF file.  However,  both  of
these  approaches  share  the  common characteristic  of requiring  the  linker  to
set up  the  APl  interception  at  link  time - - something that's  not  an  option if
the  program  you're  spying  on  isn't  one  you  wrote.
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This  method  of intercepting  calls  to  API functions  is exactly  what  the
Microsoft  API parameter  profiler in the  Win32  SDK does.  Included  with
this  profiler  are  five DLLs:  ZDI32.DLL,  ZDVAPI32.DLL,  ZERNEL32.DL
ZRTDLL.DLL, and  ZSER32.DLL; these DLLs intercept  calls to  GDI32.DLL
ADVAPI32.DLL,  KERNEL32.DLL,  CRTDLL.DLL,  and  USER32.DLL,
respectively.  Instead  of linking with  these  DLLs,  you  run  a program
(APF32CVT)  that  modifies  the  EXE you  want  to  spy  on.  The  net effect is
the  same as  if you  had  linked with the  import  libraries.  At least  no  source
code is required  to  use APF32CVT.

For  our  purposes,  there  are two problems  with  this  dummy DLL
approach.  First,  it's  not  easy  to  extend  it to  accommodate  new DLLs.  For
each  new APl  function  you  want  to  intercept,  you  need to  modify the  inter-
ception  DLL and  rebuild  it.  You  also  have to  relink  or  modify  the  EXE to
be spied  on.  The  second,  and  bigger,  problem  is that  this  approach  requires
changing  the  program to  be  spied on,  which  is a direct  violation  of one of
our  design specifications.

Another  approach  to  intercepting  calls to  API functions  is to  somehow
modify  the  target  of the call.  By changing  the initial  portion  of the  function
being  called,  a  program can enable  itself to  get control  before  the  body  of
the  function  is executed.  There  are two  methods  of modifying  a function's
prologue code to  transfer  control  elsewhere.  The  first  and  most  obvious
method  is to  place  a breakpoint  instruction  (opcode  0xCC)  at  the  first  byte
in the  function's  code.  When  the  function  is called,  an  interrupt  handler
installed  by the  spy program gets control  and  does  its logging.  The  spy pro-
gram  then  restores  the  original  byte  of the  function  before  making  the  CPU
execute  exactly  one instruction  (via the  trap  flag single-step  mechanism).  In
its  single-step  exception  handler,  the  API spy program then  reinserts  the
breakpoint  opcode  so that  subsequent  calls  to  the  function will  be caught.

Although  some Win16  spy programs  use  breakpoints  to  intercept  calls
to DLL functions,  trying  to  do  something similar  under Win32  would  be
more  difficult.  For  starters,  under  Win32,  one process  can't  see another
process's  exceptions  unless  it's  acting  as a debugger  to  that  process.  Next,
forcing  every call  to  an  API function  to  go through  the  Win32  structured
exception-handling  code  could  seriously  impair  performance.  Also,  the
separate  address  spaces  of  processes  under  Win32  would  force  the  spy
program  to  use ReadProcessMemory to  see the  target  applications's  function
parameters.  This  is far clunkier  than  being able to  read the  memory  directly.

The  second  method  of modifying a function's  prologue  code to  transfer
control  to  the  spying  code is to  insert  a JMP  or  CALL instruction  at  the
start  of the  function.  One  problem with  this  approach  is that  in  32-bit code,
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a JMP  or  a CALL instruction  will take  at  least  5  bytes.  If the  DLL has func-
tions  less than  5  bytes apart  (yes, this has  happened!),  patching in a JMP  or
CALL  becomes impractical  because  the  function  that  comes  later in the
code will start  in  the  middle  of a JMP  or  CALL instruction.  Unlike  break-
points  that  can  be handled  by another  process,  patching in JMPs  and
CALLs requires your code to  be running in the process context  of the program
being spied  on.  To run  in  any arbitrary  process  requires  that  your code be in
a DLL.  However,  as you'll  see later,  running  your spy code  in the  context  of
the  process  being spied on  isn't  such a bad  idea.  Still,  patching JMPs  or
CALLs  into  the  process  being  spied on  is a  real  nuisance,  especially with  the
need  to  constantly  switch  between  the  original  code  and your JMP/CALL
instructions.

Having  looked  at  and  discarded  two  obvious  approaches  to  interception
(linking to  a custom DLL and patching the  API function's  code),  let's  look
at  a third  approach  that's  not  so obvious.  Nothing  in  the  rule  book  says that
the  target  code  in  the API function  has  to  be patched.  It's equally  valid to
modify  the call to  the API function.  If the  spy program  can somehow  find
the  CALLs to  the API functions,  it can  modify the  CALL to  point  to  the  spy
program's  logging  code.  As in  a previously  discussed  method,  the  spy pro-
gram's logging code will need to execute in the process context of the program
being spied  on.  The  "Injecting  a DLL into Another  Process"  section  will
show  how  it's possible  to  "inject"  a DLL into  the  address  space  of a
process.  Here,  we're  concentrating on the  interception  part  of the  problem.

You might  be thinking to  yourself,  "A program  might  have hundreds  or
even  thousands  of calls to  APl  functions  in just the  system DLLs  alone.
How  on  earth  can I hope  to  find all those  CALL instructions?"  Never  fear,
the  manner  in which Win32  EXEs and  DLLs dynamically link to  each  other
makes  this  almost  incredibly  easy: All calls to  a given API function end up
traveling  through  the  same spot  in the  executable  file.  By patching that  one
location to  point  at  the  spy's  logging code,  you  intercept  all calls made  by
the  EXE to  that  function.

To see how  this  works,  let's  look  at the  actual  code generated for  three
separate calls to  the  GetVersion()  API function in KERNEL32.DLL.  Let's
start  with  the  following  small  C program:

int main()

GetVersion();

GetVersion();

GetVersion();
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From this program, the compiler generates the following assembler code

410052:  CALL  0042003C

410057:  CALL  0042003C

41005C:  CALL  0042003C

42003C:  JMP  DWORD  PTR  [00440064]

The important thing to notice here is that CALL instructions don't c a l l
directly to the GetVersion() code in KERNEL32.DLL. Instead, each call
transfers  control to a JMP statement elsewhere in the EXE's code. That JM
instruction  dereferences a DWORD in memory and jumps to that location.
In the above example,  the DWORD is at address 00440064. What's the
address  stored in this DWORD? As you might suspect,  it's the address of
GetVersion() in KERNEL32.DLL. All calls to APl functions end up going
through  a JMP DWORD PTR [XXXXXXXX]  thunk.  For each function
that an executable  imports,  there's a corresponding JMP DWORD PTR
[XXXXXXXX].  Who generates these JMP thunks? In Microsoft compilers,
the JMP thunks are code in the import  libraries for the DLLs being linked
to.  In Borland C++, the linker (TLINK) generates the JMP thunks.

The questions that naturally arise from this JMP thunk mechanism are
"Where  is the DWORD with the function's address found?"  and  "Who's
responsible  for initializing it?" The DWORD containing the imported function's
address is found in what is known as the  import  address table  (or IAT, for
short).  The IAT typically resides in the .idata  (import data)  section of each
executable.  For each DLL that an executable  links to, there's  an associated
array of DWORDs containing addresses of functions in the imported  DLL.
When the Win32  loader brings an executable  into memory, it fills in the
array  of DWORD with the proper addresses,  as shown in Figure 10-1. In
the executable  file prior to loading, each DWORD contains  an offset to an
ASCIIZ string that names the desired function  (for example  GetVersion).
When the loader brings the executable  into memory, it overwrites the array
of names offsets with the actual  addresses of the functions.

Having seen how an executable  imports functions  from other DLLs, it's
easy to understand  how a spy program can intercept and log those functions
with a minimum of fuss and overhead. The spy program merely needs to
find the array of function addresses in the executable's  imports section and
overwrite  those addresses with the addresses of its own logging routines. No
actual  code patching is required,  so there's no need to constantly  switch
between  the original code and the code as modified by the spy program.
The executable  ends up calling the API spy's code directly, so the only over-
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head is that  of the  logging functions.  After  the  spy code has  logged  the
function's data, it JMPs to the original intended target of the JMP DWORD
PTR  [XXXXXXXX]  thunk.  Simple,  no?

Figure  10-1
The. idata  section  of  the  executable  usually  holds  the  DWORD  containing  the  imported

 function's  address,  although  the  imports  table can be  located  elsewhere.

Even if spying isn't your goal, you can use this trick of modifying the
addresses  in the imports  section to  selectively intercept APIs. For example,
you might want to replace a function  in a DLL with your own custom-written
code. It's easy to implement a function that takes a DLL name and function
name and returns a pointer  to the DWORD in the imported  data section  that
holds the functions's address.  Your code would then overwrite the DWORD
with the address  of your own custom  function.  If you want to  chain  on to
the  original  address,  simply save off the original DWORD  value  before
overwriting  it.
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In the spy program I'll  be building in this chapter,  I've chosen  to inter-
cept calls to  APl functions  in the  manner just described.  In making this dec
sion, I've  committed  myself to  running  the  spy's logging code  in the process
context  of the  application  being spied on.  Since the  design goals for the APl
spy program  don't  allow relinking  or  modification  of the target  application,
I need to  somehow force the logging code into the target  program's  address
space.  It also means  that  the majority  of the APl spy program's  code must
reside in a  DLL.

INJECTING A DLL INTO ANOTHER PROCESS

Now that we know how we'll intercept calls to API functions,  the next hurdle
is to force the spying code into the target application's  address  space. In 16-bit
Windows,  this  wouldn't  be an  issue since  all  programs  share  a common
address  space. In Win32, however, each process has its own address space, and
its own set of loaded DLLs. Just because one process is using a DLL doesn't
mean that another process can use it. Each process that wants to use a DLL
needs to load the DLL for its own use, either by implicitly linking to it, or by
calling LoadLibrary().  Since the programs we'll want to spy on have no knowl-
edge of our APl spy DLL, we'll need to resort to dirty tricks to force the DLL
into their address  space.

There  are at  least three ways  to  inject a  DLL into the context  of an
arbitrary  process. Jeffrey  Richter's  May  1994  Microsoft Systems Journal
article  describes each approach  in quite  a  bit  of detail.  Here,  I'll  give a brief
overview  of the two methods  that  we won't  take  advantage  of,  and then
spend  more time on the DLL injection method that  the APl spy program
will actually use. The final method that  Richter chooses for a general-purpose
implementation  is similar  (but  not  identical)  to  the  method  I'll  use  for
our  spy program.  The key difference is that  Richter's  method  uses the
CreateRemoteThread  function,  which  isn't  available in Win32s  or Windows
95. My version  of injecting the DLL is portable  to  all three  platforms.

The  first and  best known  way to  force a DLL into another process's
address  space is to  install  a windows  hook  using SetWindowsHookEx().  If
you specify an hThread for a different process, or if you request a systemwide
hook,  the operating  system automatically  loads the DLL containing  the hook
procedure  into the  address spaces  of all processes  affected  by the hook.
Installing a windows hook to  force our APl spy DLL to  load is ineffective
for  two  reasons.  The first reason  is that  you  have to  have  an existing
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process  to  install the hook  for.  By the time this  occurs,  the target  process has
undoubtedly  called APl functions.  The spy program would  miss all  the APl
function  calls made by the target process up to that point.  The second reason
is that  the hook  DLL won't  actually  be loaded  in the target process  until
that  process  takes  some action  that causes the hook  callback  to  be invoked.
Trying  to  use hooks to  force  a DLL to  load in another process context just
doesn't  offer  enough  precision  with regard  to  when  the  DLL loads.

A second way to  force a DLL into  the address  space of a process  falls
into  the  barely  documented category.  It  seems there's  an obscure  registry key
value  buried  deep down  in the registry hierarchy:

HKEY_LOCAL_ MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\APPINIT_DLLS

By adding your DLL's name to this key, the operating system automatically
loads the DLL into  the address space of each process as the process starts up.
There  are  several reasons why this  method  isn't  suitable for  a  spy program.
The primary reason  is that  this change to  the registry won't  have an effect
until  the  next time the  system is booted.  To spy on a program,  you'd  have to
reboot  the  system first.  Not  feasible!  Another  downside  to  this  approach  is
that  the  spy DLL will  need to  determine  on a case  by case  basis if it wants
to  spy on the  process it was just loaded  for.  For applications  you don't  want
to  spy on, the APl spy DLL should return  0 in its DllMain()  procedure  in
response  to  the DLL_PROCESS_ATTACH notification.  Returning  0 from
DllMain  tells  the  operating  system that  this  DLL shouldn't  be loaded  for
this process.  Yet another  problem is that  the  operating  system will  try to
load the  DLL in every process,  even in those  hidden  processes that you  don't
interact  with  (like MPREXE.EXE). This slows down the entire  system.

The  third  way to  inject a DLL into another process  is the  brute-force
approach;  this is the  approach  I'll use in the APl spy program.  In an ideal
world, we would somehow convey to  the target  process  that  it should call
LoadLibrary  to  load  our  spy DLL, and that  it should  call  LoadLibrary
immediately  upon starting  up. While we can't  do  this  directly,  there's no
reason  why we can't  trick  the process into  loading the DLL for  us.

Let's look  at an  analogy to  get a  better  feel for what I'm proposing.
Suppose  you wanted  access to  a vault that's  locked via a  voice-recognition
lock.  Only one person has the proper  voice pattern  to  unlock  the door,  and
you're  not  that  person.  The person  with  the proper  voice won't  willingly
unlock the  door  for you.  However,  you could hypnotize  the person,  and
while they're  in the trance,  tell them to  speak the words  to  unlock  the door.
Before bringing them out  of the hypnotic  state,  you tell  them to  forget
everything  that  just happened.
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So, how does this apply to loading a DLL? If we can freeze  (or hypnotise
if you prefer)  the target process, we can modify the process's  memory and reg-
isters  so that it looks like the process is calling LoadLibrary of its own volity.
After  setting up the registers and memory properly,  we unfreeze the program
and let it execute. The end result is that the target  process calls LoadLibrary
and the operating  system obliges by loading the API spying DLL into the target
process's  address space.  After the LoadLibrary  call returns, we freeze the target
process  again, restore the memory  and registers  to their original values,  an
let the process  resume as if nothing happened.

As you  might  imagine,  the  code to  fake  the  target  process  into  calling
LoadLibrary  is complex.  It'll  be modifying  the code  of the  target  process, so
the  first  step  is to  calculate  which code page  it will modify  and  save that
page  away  for  later  restoration.  The  injection  code  also  needs  to  modify
registers  in the target process,  so it should  save away a copy of all the original
register  values.  Luckily,  Win32  provides  the  GetThreadContext  function,
which retrieves  all the  register  values  for  a given thread  into  a  C structure.

Next,  my code creates  a code snippet  to  call LoadLibrary  from within
the  context  of the  target  process.  Included  in this  code snippet  is an  ASCII
string  with  the  name  of the  spy DLL (APISPY32.DLL).  Immediately after
the  call to  LoadLibrary  in the  code  snippet  is a  breakpoint  instruction  that
allows  the  loader program  to  gain control  immediately  after the  LoadLibrary
executes.  Once the code  snippet  is created,  I write  it  out to  the  first page of
the  target  process  with  the WriteProcessMemory  function.  Immediately
after, I'll  change  the  EIP register  in the  target  process  so that  execution will
resume  at  the  beginning  of my code  snippet.

After  setting up  the  memory and registers  just  so,  the APl  spy program
lets  the  target  process  execute.  If all goes according  to  plan,  the  process
successfully  executes  the  LoadLibrary  code  and  returns  to  the  breakpoint I
set.  When  it hits  the  breakpoint,  the target  process  is temporarily  frozen
again.  The  spy program takes this  opportunity  to  restore the  original  code
page it  saved  away,  and  to  restore  the  original  register  values  (again,  using
SetThreadContext()).  With  everything  back to  the  way it was  originally
(except  for  the  addition  of our  APl  spy DLL to  the process's address  space),
the  breakpoint  handler  lets the  target process  resume  execution.  I'll  come
back  to this  method  of forcing  another  process to  load  a DLL in  more detail
when  I show the  code  for the  program  in  "The APISPY32  Code"  section.
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USING THE DEBUG APl TO
CONTROL THE TARGET PROCESS

When loading a DLL in another process's  context,  it's essential  to  have precise
control  over the child process's  execution.  The Win32  debug APl provides all
the essential  information we'll need.  In particular,  we need to  know exactly
when the target process  is about  to  execute the first instruction  so that we can
inject  the  spy's DLL. We'll also need the  debug APl to  know when the target
process  terminates.  In addition,  when we're performing surgery in the target
process's  address  space, we need to be sure that the  process isn't going to take
off and  start executing while we're in the middle  of it.  Using the debugging
APl takes care of this problem. Whenever  the debugged  process reports  some-
thing to the  debugger,  all threads  in the debuggee are suspended until the
debugger  tells the operating  system to let the  debuggee resume execution.

If we  were writing a spy program  for  16-bit  Windows  programs,  the
TOOLHELP  NotifyRegister  and  InterruptRegister  functions  would  be just
the  ticket.  The TOOLHELP  NFY_STARTTASK notification would  allow us
to know when the new task is about  to  begin execution,  but  before it actually
executes  any  of the  task's code.  Unfortunately,  the TOOLHELP  model  of
notification  callbacks  assumes  a single  address  space  for all processes.  The
TOOLHELP  notification  callback model  won't  work  under  the  separate
address  spaces  of NT and Windows  95,  so we'll  need to  use the closest
equivalent,  the Win32  debug APl.

Using the Win32  debug APl  to  monitor  the  target  process's  execution
imposes a certain  architecture  on  our  APl  spy program.  The APl  spy will
consist  of two  components.  The  first component  is the code that  intercepts
the  APl functions  in the  target  process  and  logs them. This code must  reside
in a DLL since we'll  be injecting it into  the  address  space  of the  process  to
be spied  on.  The  second  component  of the  APl  spy consists  of a  loader pro-
gram that  loads the  process  to  be spied upon.  After  loading  the  program,
the  spy executable  enters  into  a debugging  loop,  which  consists  primarily  of
calls  to  WaitForDebugEvent()  and  ContinueDebugEvent().  As debugging
events  are returned  by WaitForDebugEvent(),  the  loader  program examines
the  events  and  takes whatever  action  is necessary.  The type  of events  that
can  be returned  by WaitForDebugEvent()are

EXCEPTION_DEBUG_EVENT
CREATE_THREAD_ DEBUG_EVENT
CREATE_PROCESS_DEBUG_EVENT
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EXIT_THREAD_DEBUG_EVENT

EXITPROCESS_DEBUG_EVENT

LOAD_DLL_DEBUG_EVENT

UNLOAD_DLL_DEBUG_EVENT

OUTPUT_DEBUG_STRING_EVENT

RIP_EVENT

Incidentally,  if you  compare  the Win32  debug events  to  the notifications
returned  by a Win16  NotifyRegister  callback function,  you'll notice a striking
similarity.  Also,  if you  want  a program that  uses WaitForDebugEvent  and
displays all the possible information  returned  by it, check out the DEB sample
program in the  Win32  SDK.

Once  our  loader  program  has handled the  debug event  notification,  it
calls  ContinueDebugEvent()  to  inform the  operating  system  that  it's  okay
for the  debuggee  to  resume  execution.  By putting WaitForDebugEvent and
ContineDebugEvent()  in a loop,  the  loader can  see all  significant  events in
the  life of the process  being spied on.

The  most important  debug event  for our  APl  spy program is the
EXCEPTION_DEBUG_EVENT.  Immediately  before a process  is about  to
begin execution,  WaitForDebugEvent()  returns  an  EXCEPTION_DEBUG_
EVENT  notification,  with  the  exception  being of type  STATUS_BREAK-
POINT.  The  API spy loader  program  takes this  as  its cue to  force the  spy
DLL into  the  process's  address  space  in the  manner  I described  earlier.
When  the LoadLibrary  call  returns  to  the  breakpoint  we inserted  into  the
process's  code  area,  the  loader  program sees another  STATUS_BREAK-
POINT  exception.  The  loader  program  uses  this  to  know when  it should
restore  the  original  registers  and  memory pages that  we  modified  earlier.

Once  the  loader  program  has executed  the  target  process  past  the  two
breakpoint  exceptions,  its work  is mostly  done.  However,  the Win32  API
apparently  doesn't  offer a way  for a debugger  to  tell the  system that  it
doesn't  want  to  receive  debug notifications  anymore.  Once you  begin  using
the  debug  API  on  a process,  that  process  will  be  suspended each time it
generates  a debug event.  A debugger  call  to  ContinueDebugEvent  for  each
debug event is the  only way to  keep the  debuggee  process  running.  Because
of this,  the  APl  spy loader  program  needs  to  spin  around  in  a WaitFor-
DebugEvent  and  ContinueDebugEvent  loop until  the target  process terminates.
Even though  we  only really need  a couple of the  debug events,  we're  forced
to  receive them  all.  We can  ignore  any  debug event  that  we're  not  interested
in,  and  call  ContinueDebugEvent without  any  further  processing.  In
pseudocode  form,  the  APl  spy loader  looks  like this:
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Load  Process  to  be  spied  on

while  (  TRUE  )
{

WaitForDebugEvent()

if  (  debug  event  is  a  breakpoint  ) {

if  (  first  breakpoint  )

modify  debuggee  to  make  it  load  the  spy  DLL

else  if  (  second  breakpoint  )

restore  original  register  and  data  pages  of  debuggee

} else  if  (  debug  event  is  an  EXIT  PROCESS  )

break  out  of  loop

ContinueDebugEvent()
}

BUILDING STUBS TO LOG APl FUNCTIONS

At this point,  we've  worked  out the major  architectural  questions  relating to
the  operating  system:

*  How  API functions  will  be intercepted
*  How  to  load  the  spy DLL into  the  target  process's  address  space
*  How  to  precisely control  the target  process's  execution

There  are  still  other  issues to  deal with,  but they're  not  as directly
related  to  operating  system concerns.  One  such area  is the code that  will
handle  the redirected  APl function  calls.  While it would  be tempting  to  try
to  make  a  single entry point  for  all the  function  calls we redirect to  our spy
DLL, that  just  isn't  feasible.  There would  be no way  for a  single entry  point
in the  spy DLL to  know  which  function  call  it's  currently  logging.  Instead,
we'll  need  to create  a unique  block  of code for  each  function  that  we inter-
cept.  The word  thunk  is commonly used to  describe short pieces of code
that  do  some processing  before  transferring  control  elsewhere.  While the
blocks  of code  I'll  be creating  could  be called thunks,  I'll  use the  term stub
to  avoid  ambiguity  between my code and  Window's  thunks.  All the code
stubs for  our  spy program will  be similar,  but will  differ  slightly.  When each
stub  receives  a  redirected  function  call, it pushes  information  unique  to that
function  onto  the  stack  before calling a common  routine to  log the call.
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If all we needed to do was to  intercept a known fixed set of functions, it
would  be easy to create  some macros  and generate  all the code stubs at com-
pile time.  Since our specification  dictates  that this APl spy be extendible,  build-
ing the  stubs when we compile the spy program isn't an option.  Instead,  we'll
need to dynamically create the stubs  based on information  in a configuration
file. Luckily,  under Win32  this isn't hard.

For  each  stub we  need, we can  simply  allocate  some memory and write
the  appropriate  code into  it.  Under  16-bit Windows  this  would  be harder,
since  we  would  need to  somehow allocate  memory in code segments,  rather
than  in the  data  segments  returned  by memory  allocation  functions.  Once
we  had  proper  code  segments,  we couldn't  just write  our  stub code  into the
memory  block  because  writing  into  code  segments  isn't  allowed.  To write
to  the  code  stubs,  we'd  have to  use  alias  selectors  or  the TOOLHELP
MemoryWrite()  function.  Under Win32  these issues don't  come up since both
the  code data  segments map to the identical range  of addresses.  We can write
out our code  using regular  flat model  data  pointers  and  later execute through
that code.

To  build  the  stubs,  the  spy DLL reads an  input  file  (APISPY32.API)  that
contains  the  following  information  about  each  function  to  be intercepted:

*  The  DLL containing  the  function
*  The  name  of the  function
*  Optional  information  about  the  function's  parameters

For each  function,  the  spy DLL builds  a stub containing  code  and  data,
and  which  is of the  form shown  in Figure  10-2.  The code  portion  of the
stub  first preserves  all the  general-purpose  32-bit registers.  This  isn't  strictly
necessary,  but  good coding practice  dictates  that  you  leave things  the  way
you  found them.  Next,  the  stub  pushes  three pointers  on  the  stack  in prepa-
ration  for the  call  to  the  logging function.  The  three  pointers  point  at  the
function's  name,  its return  address  and  parameters  on the  stack,  and  infor-
mation  about  the  function's parameters.  (I'll  come  back  to  the parameter
information  in a bit.)  After  the  logging function  has  done  its work,  the  stub
code restores  all the  general-purpose  registers  and JMPs  to  the  code that
originally  should  have  been called  (had we not  intercepted  the  call).
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DWORD  RealAddressOfInterceptedFunction;

pushad

lea

push

push

push

call

popad

jmp

Preserve  all  registers.

EAX,  [ESP+32]

EAX  :  Push  pointer  to  the  return  addr  and  params.

[pParamInfo]  ;  Push  pointer  to  byte  encoded  parameter  info.

[pszFunctionName]  ;  Push  pointer  to  the  function's  name.

LogCall  ;  Call  function  that  does  logging.

; Restore  original  registers.

[RealAddressOfInterceptedFunction]  ;  Jump  to  the  original  code.

char  szFunctionName[]  ;  ASCIIZ  name  of  the  function.

BYTE  paramInfo[]  ;  Optional  byte  encoded  parameter  info.

; First  byte  is  the  length  of  the  info.

Figure  10-2
For each intercepted function,  the SPY DLL builds a stub containing  code and data.

As you might  expect,  the entire collection  of stubs  needs to  be built  before
we  can start the redirection  of APl function  calls.  As  the  spy DLL  builds each
stub,  it adds  that stub's address  to  an  array of stub pointers.  Redirecting  the
function  calls  in the target program  to the appropriate  stub  is easy.  For each
imported function  in the target process,  the spy DLL retrieves the  address  of
the  imported function.  The  imported function's  addresses  are kept in a table
pointed  to  by  the  DataDirectory[IMAGE  DIRECTORY  ENTRY
IMPORT].VirtualAddress  field  in the PE header.  Next,  the spy DLL iterates
through the array of  stubs  it's  built,  searching  for a stub  containing  the  same
address  in the stub's  first DWORD.  If it  finds  a match,  the spy DLL patches
the  appropriate  DWORD  in the target program's  imports  table  with  the
address  of the stub's  first instruction.  This process  is shown  in Figure  10-3.

PARAMETER INFORMATION ENCODING

A large part  of the  usefulness  of API spy programs  comes  from the  fact  that
they  show  the  actual  values  of  the parameters  to  API functions.  It would  be
prohibitively  expensive  for the logging  function  to  have  a  separate  section  of
code  for each  function  and  its  parameters.  In addition,  you'd  have  to  add
code  and  recompile  the API spy in order  to  add new  functions.
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Figure  10-3
The  imparted  function  addresses  are redirected  through  stubs  built on  the  fly.  These stubs
invoke  the APISPY32  code  that  lags  the function  call's  name  and  parameters.

A better  approach  is to  represent  the  function  parameters  in a condensed
format  that  can be interpreted  as part  of logging a function  call.  Since there's
a  limited number  of parameter  types in Win32  programming,  I decided to
encode  each of the  basic types  as  a unique  BYTE value.  These fundamentals
types  include BYTEs,  WORDs,  DWORDs,  and  LPSTRs.  To keep things sim-
ple,  I encoded  all pointers  to  data  as  an  LPDATA type,  with the  exception of
LPSTRs and LPWSTRs.  If you want  to  make  the  spy program  fancier,  you
can expand  the  parameter  encodings  to  include  other  types,  including point-
ers  to  specific  data  structures  (for example,  an  LPRECT).  The  logging code
could  use this  additional  parameter  type  information  to  display more  details
about  the  parameters  (such  as  what  the  fields  in  the  LPRECT  were).
However,  as  I said,  my  goal  was  to  keep  things  simple,  so  there  are  only
ten  unique  parameter  types  in the supplied code.

In our  API spy program,  the  parameter  information  is kept  at  the  very
end of the  stub  that's  built  for each APl function.  The  first  byte  of the  para-
meter  information  holds  the  number  of parameters  for  that  function.  The
BYTE codes  for each  parameter  come immediately afterward,  in the  order
of their  appearance  in the  function  declaration.  For  example,  let's  say that
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HWND  parameters  are represented  by the BYTE value  8, while  DWORD
parameters  use the  value  1. The parameter  encoding  for the  GetWindow-
Word(HWND,DWORD)  function  would  be:  2,8,1  (two  parameters,  the
first  an  HWND  (8)  and  the  second  a DWORD  (1)).  A function  that  has  no
arguments  is represented  by a single  0 value.

Decoding  the  parameter  information  to  display  the  parameter  values is
very  simple.  One  of the  values  that  the  API  function's  stub  passes  to  the
logging  function is a pointer  to  the  top  of the  stack  (the  ESP register)  imme-
diately  upon  entry to  the  function.  The  DWORD  at  the  top  of the  stack  is
the  return  address  that control  will return  to  after  the  API function  has
completed.  Immediately  higher  in memory  are  the  parameters  that  the  call-
ing function  pushed  on  the  stack.  To decode  the  parameters,  the logging
function iterates  through  the  BYTE-encoded  parameter  information.  For
each  encoded  parameter,  the  logging function  retrieves  a DWORD  from  the
stack  and  emits  a  string containing the  parameter  type and  its  value  (for
instance:  LPSTR:00410068).

After  each  parameter,  the code increments  the pointer  to  the  stack  area
by 4  bytes  to  point  at  the  next  parameter.  One  nice advantage  to  the  Win32
API is that  parameters  are pushed in last-to-first  order,  making  the  first
parameter  appear  at  the  lowest  address.  If the Win32  API used  the  pascal
calling convention  (first-to-last)  like  the Win16 API does,  decoding  the
parameters  would  be more  difficult  because  the  first  parameter  would
appear  at  different  locations  on  the  stack for  different  APIs.

FUNCTION RETURN VALUES

At this  point,  we've  got  the  mechanics  of intercepting  functions  and  logging
their  parameters  well  in hand.  We could  go  off now  and  start  implementing
code.  However,  our  design  specification  says  that  we need to log the  value
that  the  function returns.  This  makes  things  more  difficult,  and  in more
ways  than  one.  While  all calls to  a given function  end  up  being routed
through  one place  (allowing  us to  intercept  them all),  the  API function  can
return  to  a multitude  of different  places.  How  can we get control  at  that
point  to  retrieve  the  value  of the  EAX register,  which  is where  return  values
are placed?

Before we let the  API function's  real code execute,  the  only thing  we
know about  what  the  function  returns  is the  address  that  it  will  RET to.
One  obvious  solution  that  springs  to  mind  is to  set  a  breakpoint  at  that
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address.  A related  method  would  be to  stick in a JMP to  our  logging code,
While  both  of these  methods  would work  (usually),  they're  messy and have
the  same set  of problems  I described  earlier  when talking  about  intercepting
the  function  call.  A less obvious  but cleaner  solution  (and one that  doesn't
require  code modification)  is to  change  the  return  address  on  the  stack to
point  at  the spy DLL's return  value  logging code.  Of course,  you would have
to  temporarily  remember  the  original  address,  doing all this  before  you let
the  real  APl  function  code execute.  After  letting the  original  function  code
execute,  the  return  value  logging code will  be entered.  After  logging the
function's  return  value,  the logging code  copies  the  original  return  address
back  to  the  stack so that when the  logging  code  returns,  control  ends up
back  in the  target  program.

Lest you think that the above method  of obtaining function return values
is too simple,  be aware that there is a catch.  In both Win16  and Win32, an APl
function might  be in the middle of executing when it needs to call another APl
function.  The classic  example  of this is DispatchMessage.  DispatchMessage
is the code that  calls  your program's  window procedure.  When you call
Windows  functions in your window procedure,  you're actually calling an APl
function  from within another  APl function (DispatchMessage, in this case). So
what's wrong with that? In the simple method of grabbing return  values that I
just described,  a single variable holds the original return  address.  If you get into
a situation with nested APIs, only the most recent call's  return  address will be
saved. The return  addresses of the more deeply nested functions will be lost.

To deal  with  this  problem  of nested API  functions,  I've  implemented  a
stack of return  addresses.  Whenever the  code patches a function  call's  return
address  to  point  at  our  logging code,  it  adds  the  original  return  address  to
the  top  of our return  address  stack.  When the  return  value  logging code is
ready  to  return  to  the calling program,  it grabs the  topmost entry  off the
return  address  stack and  returns  to  that  address.  Our  function  return
address  stack  is similar  to  the  real  program  stack  in  some ways.  The  key
difference  is that  the return  address  stack doesn't  hold  parameters,  and  only
contains  address  for  functions  that  are intercepted  by the  spy DLL.

With  this  situation of nested  API function  calls taken  care  of,  we're
ready  to  start  coding,  right?  Not  so fast.  Programs  under Windows  NT  and
Windows  95  support  multiple  threads  of execution.  Each thread  uses  its
own  separate  stack  and is oblivious  to  what  the  other  threads  are  doing.  To
deal  with  multiple  threads,  the  API spy DLL maintains  a separate  return
address  stack  for each thread  that  the  target  program  starts  up.  Since the
spy  program can't  know ahead  of time how  many threads  the  process  to  be
monitored  will start  up,  the  memory for  the  per-thread  return  address  stack
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is allocated  whenever  a new thread  starts  up.  Luckily for our  spy program,
Win32 makes it easy to know when a thread  is created. The operating  system
calls  the entry point  of all  DLLs  (for example,  DllMain)  each time it starts
a  new thread.  As you'll  see in the next  section, where  I present  the  spy pro-
gram's  code,  the  DllMain  function  allocates  memory to  hold  a per-thread
stack  for  each thread  that  starts.

The pointer to the per-thread  return address stack is stored using the Win32
Thread  Local Storage  (TLS) mechanism. Thread  local storage allows you to
store a collection  of unique  DWORDs  for each thread,  but retrieve them in a
consistent manner,  no matter which thread is executing.  Chapter  3 describes
the implementation  of thread local storage in detail. To use thread local storage,
you first allocate  an index value with the TlsAlloc  function  and  store the
index in a global variable. Thereafter,  each thread can retrieve its thread-specific
data  by passing the index to TlsGetValue.  To save away a per-thread  value,
you call TlsSetValue,  passing  both the TLS index allocated  earlier and the
value you want to save for the currently  executing thread.  In the case of our
API spy DLL, the per-thread  value we want to  save is a pointer  to  our return
address stack for that thread.  The APl spy DLL allocates the TLS index value
when the DLL is first loaded and is processing  the DLL_PROCESS_ATTACH
code  in DllMain.

Some of you Win32  programmers might  be aware  of the _
_declspec(thread)  compiler  directive.  Using _ _declspec(thread)  is  a  con-
venient  way to  create per-thread  variables without  using the TlsXXX  func-
tions.  (See the description  of the  .tls section  in  Chapter  8 for  more  informa-
tion  on how __declspec(thread)  works.)  Wouldn't it  be easier to  make the
per-thread  stack a _ _declspec(thread)  variable,  rather than  use the TlsXXX
functions?  Unfortunately,  _ _declspec(thread)  variables  don't  work  properly
in a DLL that's  loaded with LoadLibrary  (they work  fine in implicitly
loaded DLLs, though).  Our API spy DLL is loaded  with  LoadLibrary,  so _
_declspec(thread)  variables  are useless to  us.

You might  be wondering about what  our  spy program will  do  under
Win32s,  since Win32s doesn't  support  multithreading.  Microsoft  did the
right  thing  and included  the TLS functions  in the Win32s  libraries.
Although  the TLS data  for  a Win32s program  is essentially just global  data,
the  important  thing  is that  our API spy DLL can use the TlsXXX functions
without  worrying about  which  operating  system it's running  on.

As you can  see, grabbing  the return  value from API functions  is quite  a
bit more  difficult  than it  initially appears.  Not  only do we need to  maintain
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a stack of return  addresses,  but we have to  have  such  a stack  for each
thread  in the  target  process.  Things  can't  get any  more  complicated than
that,  can they?  Guess  again.

One  of the  neat  features  of the Win32  APl  is structured exception  han-
dling, which is related  to  exceptions  in  C++,  but  isn't  quite  the  same thing,
(For  details  on  how  structured  exception  handling  works,  see Chapter  3.)
The  problem with  structured  exception  handling  is that  it can play  havoc
with  our  APl return  address  stack.  Let's say that  you  placed  a try/except{}
block around  a call  to  DispatchMessage.  Inside the  window  procedure that
DispatchMessage  eventually  calls,  your  code  generates  an  exception  (a
STATUS_ACCESS_VIOLATION,  for  instance).  The  except  block  that ends
up  handling  the  exception  is the  except{} block after the  DispatchMessage
code.  The  problem  is that  the  CPU will effectively jump  to  the  except{}
block without  ever  returning  from  DispatchMessage.  Since  our  return  value
logging  code won't  be called  by the  return  from  DispatchMessage,  we don't
know to  remove  the  DispatchMessage  return  address  off our  per-thread
return  address  stack.  If this  situation  occurs  repeatedly,  the  per-thread
return  address  stack  will  eventually  overflow.

Unlike  the  other  problems  we've  encountered  with  return  value  logging,
there  is no elegant,  clean  solution  to  the  problem  caused  by structured
exception handling.  There  are messy,  complex,  and  incomplete solutions  to
this  problem  that  I've  used  in commercial  programs  (the BoundsChecker32
series),  but  I haven't  included  similar  code  in the  APl  spy DLL because  it
complicates the  code greatly.  In defense  of my decision  to  ignore  structured
exception handling  difficulties,  programs  that  actually  bounce out  of nested
APl functions  without  returning are rare.  To  date,  I've  never  seen a program
that  has  structured  exception handling  troubles  with  the  logging code as
presented here,  with  the  exception  of contrived  test  programs  I've written.

One  nice  side  effect  of the return  address  stack  is that  we can  use  the
stack pointer  to  figure  out  how  deeply  nested  in API function  calls we are.
The  logging code  takes advantage  of this  to  indent  the  function  call  and
return  lines  for  functions  that  are called  inside another  API function.  The
more  deeply  nested  the  APl  function,  the  more  indented  it appears  in  the  log
file.  When  the  logging code  is about  to  write  out  a function  call  or  return
value  line,  it  checks  the  per-thread  return  address  stack  pointer  and  indents
the  beginning  of the  line accordingly.  In the  log file,  it's  easy to  match  up  a
return  value  with  its call line  by looking  for  the  next  line  that  starts  at the
same indentation  level.  For  instance,  here  you  can  easily see the  call  line  (at
the  top)  that  matches  the  return  value  (at  the  bottom):
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DispatchMessageA(LPDATA:80B6AE68)

LoadCursorA(HANDLE:OOOOOOOO,LPSTR:OOOO7F00)

LoadCursorA  returns:  2CE

SetCursor()

SetCursor  returns:  2CE

DispabchMessageA  returns:  0

THE APISPY32  CODE

Now  that  we've  explored  the  theory  involved  in how  we'll  be implementing
the  spying  code,  it's  time  to  discuss  the  actual  code  I wrote  to  implement  the
API  spy program.  I'll  first  describe  the  component  functions  of  the  DLL,  and
then  show  the  loader  program code.  Don't  worry,  there's  not  a  whole  ton  of
code  to  go  through  here.  I was  pleasantly  surprised  by how  little  code  was
needed.

The  name of  the  APl  spy program I've  constructed  is  APISPY32,  which
is  also  the  source  file  name  of  the  spy  DLL's entry point.  The  first  important
part  of  APISPY32.C  is  shown  in Figure  10-4.

HINSTANCE  HInstance;

BOOL  FChicago  =  FALSE;

#if  defined( _ _BORLANDC_ _)

#define  DllMain  DllEntryPoint

#endif

INT  WINAPI  DllMain

HANDLE  hInst,

ULONG  ul_reason_being_called,

LPVOID  lpReserved

//  OutputDebugString("In  APISPY32.C\r\n");

switch   (ul_reason_being_called)

{

case  DLL_PROCESS ATTACH:

HInstance  =  hInst;

FChicago  =  (BOOL)((GetVersion()  &  0xC0000000)  ==  0xC0000000);

if  (InitializeAPISpy32()  ==  FALSE  )

return  0;

if  (InitThreadReturnStack()  ==  FALSE  )

return  0;

break;
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case  DLL  THREAD  ATTACH:

if  (InitThreadReturnStack()  ==

return  0;

break;

FALSE  )

case  DLL  THREAD_DETACH:

if  (ShutdownThreadReturnStack()  ==  FALSE  )

return  0;

break;

case  DLL  PROCESS  DETACH:

ShutDownAPISpy32();

if  (ShutdownThreadReturnStack()  ==  FALSE  )

return  0;

break;

return  1;

Figure  10-4
The  first part  of  the  Dl lMain  functions  in  APISPY32.C.

The DllMain function has a switch statement  to direct the four important
process/thread  events to the appropriate  handler.  When I say  "event"  in the
following description, I'm really talking about an invocation  of DllMain with
the dwReason field set to  a specific value.  The DLL_PROCESS_ATTACH
event is our clue to intercept all the target  processes  calls and set up other
things related to  function  logging.

For the  initial thread  in a process, the operating  system doesn't call
DllMain  with  a  DLL_THREAD_AT TACH event.  Instead,  you need to
consider DLL_PROCESS_ATTACH  as also containing  an implicit
DLL_THREAD_ATTACH  event.  We'll  need a  per-thread  return address
stack  for  all threads  in the target  process,  so both  the DLL_PROCESS_
ATTACH  and  DLL_THREAD_ATTACH  handlers  call  InitThreadReturn-
Stack to  create  the per-thread  stack.  The implicit  assumption  being made
here  is that  both  of these  notifications  are  made  in the  context  of newly
created  threads.  The  DLL_THREAD_DETACH  event handler calls
$hutdownThreadReturnStack  to  free the  memory  used  by a per-thread
return  address  stack.  The last  event,  DLL_PROCESS_DETACH,  calls
ShutDownAPISpy32.  Currently this function  doesn't  do  much except close
the log file so that  the  operating  system's internal  buffers  will  be written to
the  disk.  We could actually  go and patch  back all the  original  addresses  in
the imports  section  of the  EXE, but  there's  really  no  reason to.  As with
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thread  creation,  there's no  explicit DLL_THREAD_DETACH  for the last
thread  in the process.  The DLL_PROCESS_ATTACH handler therefore also
calls  ShutdownThreadReturnStack  to  get rid  of the  last remaining return
address  stack.

The  remaining parts  of APISPY32.C  are  shown  in Figure  10-5.  The  first
action  of the  InitializeAPISpy32  function  is to  invoke the  LoadAPlConfig-
File routine.  LoadAPIConfigFile  loads  the  .APl  file containing  APl  functions
and  parameter  information  and  builds  the  stubs  with that  data.  (I'11 discuss
this  function  in more  detail  later  on in  the  code walkthrough.)
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BOOL  InitializeAPISpy32(void)

HMODULE  hModExe;

DWORD  moduleBase;

if  (LoadAPIConfigFile()  ==  FALSE  )

return  FALSE;

if  (OpenLogFile()  ==  FALSE  )

return  FALSE;

hModExe  :  GetModuleHandle(O);

if  (  !hModExe  )

return  FALSE;

if  ((GetVersion()  &  0xC8000000)  ==  0x80000000  )  //  Win32s???

moduleBase  -  GetModuleBaseFromWin32sHMod(hModExe);

else

moduleBase  =  (DWORD)hModExe;

if  ( !moduleBase )

return  FALSE;

return  InterceptFunctionsInModule(  (HMODULE)moduleBase);

BOOL  ShutDownAPISpy32(void)
{

CloseLogFile();

return  TRUE;  }

 Figure  10-5
The APISPY32. C initialization  and shutdown functions.
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After  building the API function  stubs,  the next  step in the initialization
is to open up the output  file that  the spy DLL writes  its function  call and
return  value  information to.  The final portion  of the initialization  is to cai
InterceptFunctionslnModule  to redirect  the target  program's  function calls
to  the stubs we built earlier.  The InterceptFunctionslnModule  function needs
to know  the  base load address  of the target  process  in memory  so that it can
go find the imported  functions  section table.  In Windows  NT and Windows
95  (Windows 4.0),  the HMODULE  of a running  program  is the same as its
base load  address.  Since our  DLL isn't  the main  EXE, its HMODULE isn't
the one we need.  Instead,  we call  GetModuleHandle(0),  which  under Win32
gives you the EXE's HMODULE,  no matter where you call  it from.  Under
Win32s,  we need to  take  an extra  step,  since an HMODULE  isn't the same
as  a  base  address.  To get the  base  address  of a Win32s  module,  I wrote
the  GetModuleBaseFromWin32sHMod  function.  This  routine  uses two
undocumented Win32s functions to convert a Win32s HMODULE to a base
address,  and is in the W32SSUPP. C file.  Shutting  down  the API spy is much
simpler than  the initialization  code,  and consists  of a call  to  CloseLogFile.

The code  in Figure  10-6 is responsible  for  reading  in the APISPY32.API
file.  After  reading  in the  definition  for  one function,  it calls AddAPIFunction
in INTRCPT. C to actually allocate memory for the function  stub and initialize
it accordingly.  The APISPY32.API  file is a  line-oriented  ASCII text  file.
Whitespace  before  lines  and  blank lines  are  tolerated,  but  extra  characters
at  the end  of an  otherwise  valid line are  not.  Any line that  isn't  recognized is
ignored  and processing continues  with the next line.

The syntax  for  the APl definition  is extremely  simple.  For each  function
you  want to  intercept,  add  a line of the following  form:

API:ModuleName:FunctionName

For instance:

API:USER32.dll:GetMessageA

Immediately  after  a new function  definition,  you can place parameter
information  about  that  function,  one parameter  per line.  For example:

API:USER32.dll:GetMessageA

LPDATA

HWND

DWORD

DWORD
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The valid parameter keywords  are stored  in the ParamEncodings array,
and consist of the following:

DWORD  ;  Any  general  purpose  4  byte  value  (DWORD,  UINT,  int,  etc.)

WORD  ;  Any  general  purpose  2  byte  value  (WORD,  USHORT,  short,  etc.)

BYTE  ;  Any  general  purpose  1-byte  value  (BYTE,  char,  etc.)

LPSTR  ;  Pointer  to  a  null  terminated  ASCII  string.

LPWSTR  ;  Pointer  to  a  null  terminated  Unicode  (wide)  string.

LPDATA  ;  Pointer  to  any  data,  other  than  LPSTRs  and  LPWSTRs.

HANDLE  ;  A  handle  value  (other  than  HWNDs).

HWND  ;  An  HWND.

BOOL  ;  A  BOOL  parameter.

LPCODE  ;  Pointer  to  code  (e.g.,  FARPROC,  WNDPROC,  etc.).

To allow you to use APISPY32 with a minimum of initial  fuss, I've
included an APISPY32.API file containing function and parameter information
for KERNEL32.DLL, USER32.DLL, and GDI32.DLL, and ADVAPI32.DLL.
You can add additional functions definitions to this file. A likely candidate would
be COMCTL32.DLL. If you want to use APISPY32 with several different pro-
jects and DLLs, you might want to extend the LoadAPIConfigFile function to
read in multiple .API files.

In the parameter  types I've defined, there is some overlap. For example,
an HWND could also be encoded as a HANDLE or a DWORD. My goal in
defining this set of keywords was to break out the most commonly encoun-
tered types to allow some flexibility in how the parameters  will be displayed
in the output.  By having separate LPSTR and LPDATA parameter types, we
can show a snippet of the actual string when we encounter  an LPSTR para-
meter. If we lumped LPSTR parameters  in with LPDATA parameters,  we
wouldn't know which parameters  to try to show characters from the string
for. Another possibility that I haven't implemented would be to show TRUE
or FALSE for BOOL parameters,  rather than their numeric value. Yet
another option would be to take HWND parameters  and include a portion
of the window title in the output.  This makes it easier to connect an
HWND value to a specific window when viewing the log file.

If you're ambitious, feel free to extend the parameter encodings I've
defined here. Adding a new parameter type is easy. In the PARMTYPE.H file
is an enumeration called PARAMTYPE. Add your new parameter type to the
end of the enumeration. Then, add the name of the parameter as it should
appear in the API file, and your enumeration to the end of the
ParamEncodings  array. Finally, in the logging code in LOG.C, add the code to
print out whatever you want for your new parameter. One obvious thing to
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do would  be to define more specific pointer types. For example,  an LPMSG is
a common parameter. By defining an LPMSG parameter, the logging code
could dereference the LPMSG pointer to add the values of the MSG structure
members  to the log.  Figure 10-6 shows the beginning of LOADAPIS.C, the
.API file-parsing code.

BOOL  IsNewAPILine(PSTR  pszInputLine);

BOOL  ParseNewAPILine(PSTR  pszInput,  PSTR  pszDLLName,  PSTR  pszAPIName);

PARAMTYPE  GetParameterEncoding(PSTR  pszParam);

PSTR  SkipWhitespace(PSTR  pszInputLine);

extern  HINSTANCE  HInstance;

BOOL  LoadAPIConfigFile(void)
{

FILE  *pFile;

char  szInput[256];

BYTE  params[33];

BOOL  fBuilding  =  FALSE;

char  szAPIFunctionFile[MAX_PATH];

PSTR  p;

//  Create  a  string  with  the  path  to  the  API  function  file.  This

//  file  will  be  in  the  same  directory  as  this  DLL.

GetModuleFileName(HInstance,  szAPIFunctionFile,  sizeof(szAPIFunctionFile));

p  = strrchr(szAPIFunctionFile,  '\\')+1;

strcpy(p,  "APISPY32.API");

pFile  = fopen(szAPIFunctionFile,

if  (  !pFile  )

return  FALSE;

"rt");

//

//  Format  of  a  line  is  moduleName:APIName

//  (e.g.,  "KERNEL32.DLL:LoadLibraryA")
//

while  (  fgets(szInput,  sizeof(szInput),  pFile)  )
{

PSTR  pszNewline,  pszInput;

char  szAPIName[128],  szDLLName[128];

pszInput  = SkipWhitespace(szInput);

if  (  *pszInput  ==  '\n'  )  //  Go  to  next  line  if  this  line  is  blank

continue;
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pszNewline  = strrchr(pszInput.  '\n');

if  (  pszNewline  )

*pszNewline  =  0;

//  Look  for  the  newline.

//  Hack  off  the  newline.

if  (IsNewAPILine(pszlnput) )
{

//  Dispense  with  the  old  one  we've  been  building.

if  (  fBuilding  )

AddAPIFunction(szDLLName.  szAPIName,  params);

if  (  ParseNewAPILine(pszInput.  szDLLName,  szAPIName)  )

fBuilding =  TRUE;

else

fBuilding = FALSE;

params[0]  = 0;  //  New  set  of  parameters.

} else {  //  A  parameter  line

BYTE  param  = (BYTE)GetParameterEncoding(pszlnput);

if  (  param  ! = PARA M_NONE  )

params[  params[O]  +1  ]  =  param;  //  Add  param  to  end  of  list.

params[O]++;  //  Update  the  param  count.

else

if  (  (*pszInput  != O)  &&  (stricmp(pszInput.  "VOID")  !=  0)  )
{

char  errBuff[256];

wsprintf(errBuff.  "Unknown  param  %s  in  %sXrXn".

pszInput,  szAPIName);

OutputDebugString(errBuff);
}

}
}

fclose(  pFile  );

return  TRUE;

//  Returns  TRUE  if  this  line  is  the  start  of  an  API  definition.  It  assumes

//  that  any  whitespace  has  already  been  skipped  over.

BOOL  IsNewAPILine(PSTR  pszInputLine)
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 return  0  ==  strnicmp(pszInputLine,  "API:",  4);

}

//  Break  apart  a  function  definition  line  into  a  module  name  and  a  function

//  name.  Returns  those  strings  in  the  passed  PSTR  buffers.

BOOL  ParseNewAPILine(PSTR  pszInput,  PSTR  pszDLLName,  PSTR  pszAPIName)

PSTR  pszColonSeparator;

pszDLLName[O]  =  pszAPIName[O]  =  0;

pszInput  +=  4;  //  Skip  over  "API:"

pszColonSeparator  =  strchr(pszInput,  ':

if  (  !pszColonSeparator )

return  FALSE;

');

*pszColonSeparator++  =  0;    //  Null  terminate  module  name,  bump  up

//  pointer  to  API  name.

strcpy(pszDLLName,  pszInput);

strcpy(pszAPIName,  pszColonSeparator);

return  TRUE;
}

typedef  struct  tagPARAM_ENCODING

PSTR  pszName;  //  Parameter  name  as  it  appears  in  APISPY32.API

PARAMTYPE  value;  //  Associated  PARAM_xxx  enum  from  PARMTYPE.H

PARAM  ENCODING,  *  PPARAM_ENCODING;

PARAM_ENCODING  ParamEncodings[]  = {

{"DWORD",  PARAM_DWORD},

{"WORD",  PARAM_WORD},

{"BYTE",  PARAM_BYTE},

{"LPSTR",  PARAM_LPSTR},

{"LPWSTR",  PARAM_LPWSTR},

{"LPDATA",  PARAM_LPDATA},

{"HANDLE",  PARAM_HANDLE},

{"HWND", PARAM_HWND},

{"BOOL",  PARAM_BOOL},

{"LPCODE",  PARAM_LPCODE},

};
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//  Given  a  line  that's  possibly  a  parameter  line,  returns  the  PARAM  xxx

//  encoding  for  that  parameter  type.  Lines  that  don't  match  any  of  the

//  strings  in  the  ParamEncodings  cause  the  function  to  return  PARAM  NONE

PARAMTYPE GetParameterEncoding(PSTR pszParam)
{

unsigned  i;

PPARAM  ENCODING  pParamEncoding  =  ParamEncodings;

for  (  i=0;  i  <  (sizeof(ParamEncodings)/sizeof(PARAM_ENCODING));  i++
{

if  (  stricmp(pParamEncoding->pszName,  pszParam)  ==  0  )

return  pParamEncoding->value;

pParamEncoding++;

}

return  PARAM_NONE;

}

//  Given  a  pointer  to  an  ASCIIZ  string,  return  a  pointer  to  the  first

//  non-whitespace  character  in  the  line.

PSTR  SkipWhitespace(PSTR  pszInputLine)

{
while  (  *pszInputLine  &&  isspace(*pszInputLine)  )

pszInputLine++:

return  pszInputLine;

I

 Figure  10-6
The beginning  of  the  .AP/file-parsing  process  in  LOADAPIS. C.

The  INTRCPT. C source  module contains  all the  code  related  to  inter-
cepting  functions  calls  from the  target process.  The  first  routine  in INTR-
CPT. C is AddAPIFunction.  After  the  LOADAPIS.C  code has  read  in all the
information  for  one function,  it passes the  function  name,  the  name  of the
DLL that  contains  the  function,  and  the  byte-encoded  parameter  informa-
tion  to  AddAPIFunction.  AddAPIFunction's  two  jobs  are  to  construct
the  function  interception  stub and to  add  that  stub to  the  list  of stubs.
AddAPIFunction  delegates  the  grunge work  of constructing  the  stub to the
BuildAPIStub  routine.

BuildAPIstub  first uses the  function  and  module  name  to  call
GetProcAddress  to retrieve the address of the specified function. Assuming
GetProcAddess  succeeds,  the BuildAPIStub  code calculates  how  much
memory  will  be needed for  the  stub  (the APl name  and  the  parameter
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encodings  are of variable length),  and allocates the memory.  Next
BuildAPIStub fills in the fields of the stub, the initial portions of which are
defined by the APIFunction structure given in INTRCPT2.H. At the end of
the allocated  stub memory, BuildAPIStub copies the function's name and its
byte-encoded  parameter  information.

Besides building and maintaining the function interception stubs, the other
important  duty of INTRCPT. C is to  rummage  through the target process's
memory image and redirect  its JMP DWORD PTR [XXXXXXXX]  calls
to point at the stubs  built earlier. The InterceptFunctionslnModule  func-
tion doesn't  need anything  except the load address  of the module in mem-
ory to  find the imported  functions  table, which  I described  in an earlier
section.  The function first verifies that  a valid module  base address was
found  by looking  for the DOS MZ and Win32  PE signatures  in the file.
Once the function knows that it has a valid  base address,  it uses the data
directory  at the end of the IMAGE_NT_HEADERS structure to  get a
pointer  to the .idata  section  of the module.

To find all the functions that the EXE imports,  InterceptFunctionsln-
Module iterates through the array of IMAGE_IMPORT_DESCRIPTOR
structures  at the beginning of the .idata section. The PEDUMP from
Chapter  8 does something similar to this. There is one IMAGE_IMPORT_
DESCRIPTOR for each DLL that the EXE implicitly links to.  Each IMAGE
IMPORT_DESCRIPTOR  contains a relative offset to an array of IMAGE_
THUNK_DATA structures,  with one IMAGE_THUNK_DATA structure for
each imported  function.

Using two nested loops, InterceptFunctionslnModule  walks through all
the functions imported  by the EXE and retrieves the address of the imported
function.  This address is stored as part of the IMAGE  THUNK_DATA
structure.  For each imported function,  our routine passes the imported
function's  address to LookuplnterceptedAPI.  LookuplnterceptedAPI  scans
through the array of function  stubs we built, looking for a stub that has the
same address in its first DWORD. If a stub is found, InterceptFunctionsln-
Module  overwrites the original imported function address in the IMAGE_
THUNK_DATA structure with a pointer to code in the stub we just looked
up  (as shown in Figure 10-7). From this point on, whenever the process to
be spied on calls an imported function, its JMP DWORD PTR [XXXXXXXX]
thunk in the import address table  will jump to our interception  stub rather
than to the intended API function.  Only after we've logged the function call
will our stub pass control along to the imported  function.
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PAPIFunction  BuildAPIStub(PSTR  pszModule,  PSTR  pszFuncName,  PBYTE  params);

//  MakePtr  is  a  macro  that  allows  you  to  easily  add  to  values  (including

//  pointers)  together  without  dealing  with  C's  pointer  arithmetic.  It

//  essentially  treats  the  last  two  parameters  as  DWORDs.  The  first

//  parameter  is  used  to  typecast  the  result  to  the  appropriate  pointer  type.

#define  MakePtr(  cast,  ptr,  addValue  )  (cast)((DWORD)(ptr)+(DWORD)(addValue))

#define  MAX_INTERCEPTED_APIS  2048
unsigned  InterceptedAPICount  = 0;

PAPIFunction  InterceptedAPIArray[MAX_INTERCEPTED_APIS];

extern  BOOL  FChicago;
extern  FILE  *  PLogFile;

BOOL  AddAPIFunction

PSTR  pszModule,

PSTR  pszFuncName,

PBYTE  params

//  Exporting  DLL  name.

//  Exported  function  name.

//  Opcode  encoded  parameters  of  exported  function.

PAPIFunction  pNewFunction;

if  (  InterceptedAPICount  >=  MAX _INTERCEPTED _APIS  )

return  FALSE;

pNewFunction  =  BuildAPIStub(pszModule,  pszFuncName,  params);

if  (  !pNewFunction  )

return  FALSE;

InterceptedAPIArray[  InterceptedAPICount++  ]  =  pNewFunction;

return  TRUE;

PAPIFunction  BuildAPIStub(PSTR  pszModule,  PSTR  pszFuncName,  PBYTE  params)
{

UINT  allocSize;

PAPIFunction  pNewFunction;

PVOID  realProcAddress;

UINT  cbFuncName;

HMODULE  hModule;

hModule  = GetModuleHandle(pszModule);

if  (  !hModule  )

return  0;

realProcAddress  =  GetProcAddress(  hModule,  pszFuncName  );

if  (  !realProcAddress  )
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return  0;

cbFuncName  =  strlen(pszFuncName);

allocSize  =  sizeof(APIFunction)  +  cbFuncName  +1  +  *params  +  1;

pNewFunction  = malloc(allocSize):

if  (  !pNewFunction  )

return  0;

pNewFunction->RealProcAddress  =  realProcAddress;

pNewFunction->instr_pushad  =  0x60;

pNewFunction->instr_lea_eax_esp_plus_32  = Ox2024448D:

pNewFunction->instr_push_eax  = 0x50;

pNewFunction->instr_push_offset_params  =  0x68;

pNewFunction->offset_params  =  (DWORD)(pNewFunction  +  1)  + cbFuncName  + 1;

pNewFunction->instr_push_offset  funcName  = 0x68;

pNewFunction->offset_funcName  =  (DWORD)(pNewFunction  +  1);

pNewFunction->instr_call_LogFunction  =  OXES;

pNewFunction->offset_LogFunction

=  (DWORD)LogCall  -   (DWORD)&pNewFunction->instr_popad;

pNewFunction->instr_popad  = 0x61;

pNewFunction->instr_jmp_dword_ptr_RealProcAddress  =  Ox25FF;

pNewFunction->offset_dword_ptr_RealProcAddrss  =  (DWORD)pNewFunction;

strcpy(  (PSTR)pNewFunction ->offset_funcName,  pszFuncName  );

memcpy(  (PVOID)pNewFunction->offset_params,  params,  *params+1  );

return  pNewFunction;

PAPIFunction  LookupInterceptedAPI(  PVOID  address  )

{
unsigned  i;

PVOID  stubAddress;

for  (  i=0;  i  <  InterceptedAPICount;  i++  )

{
if  (  InterceptedAPIArray[i]->RealProcAddress  ==  address

return  InterceptedAPIArray[i];
}

//  If  it's  Windows  95,  and  the  app  is  being  debugged  (as  this  app  is)

//  the  loader  doesn't  fix  up  the  calls  to  point  directly  at  the

//  DLL's  entry  point.  Instead,  the  address  in  the  .idata  section

//  points  to  a  PUSH  xxxxxxxx  / JMP yyyyyyyy  stub.  The  address  in

//  xxxxxxxx  points  to  another  stub:  PUSH  aaaaaaaa  /  JMP  bbbbbbbb.

//  The  address  in  aaaaaaaa  is  the  real  address  of  the  function  in  the

//  DLL.  This  ugly  code  verifies  we're  looking  at  this  stub  setup,

//  and  if  so,  grabs  the  real  DLL  entry  point,  and  scans  through

//  the  InterceptedAPIArray  list  of  addresses  again.
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//  ***WARNING***  ***WARNING***  ***WARNING***  ***WARNING***

//  This  code  is  subject  to  change!

if  (  FChicago  )
{

if  (  address  <  (PVOID)0x80000000)  //  Only  shared,  system  DLLs

return  0;  //  have  stubs.

if  (  IsBadReadPtr(address,  9)  ||  (*(PBYTE)address  !=  0x68)

||  (*((PBYTE)address+5)  !=  0xE9)  )

return  0;

stubAddress  =  (PVOID)  *(PDWORD)((PBYTE)address+1);

for  (  i=0;  i  <  InterceptedAPICount;  i++  )
{

PVOID  lunacy;

if  (  InterceptedAPIArray[i]->RealProcAddress  ==  stubAddress  )

return  InterceptedAPIArray[i];

lunacy  =  InterceptedAPIArray[i]  ->RealProcAddress;

if  (  !IsBadReadPtr(lunacy,  9)  &&  (*(PBYTE)lunacy  -=  0x68)

&&  (*((PBYTE)lunacy+5)  == 0xE9)  )
{

lunacy  =  (PVOID)*(PDWORD)((PBYTE)lunacy+1);

if  (  lunacy  == stubAddress  )

return  InterceptedAPIArray[i]

return 0;
}

BOOL  InterceptFunctionsInModule(PVOID  baseAddress)
{

PIMAGE_DOS_HEADER   pDOSHeader  =  (PIMAGE_DOS_HEADER)baseAddress;

PIMAGE_NT_HEADERS  pNTHeader;

PIMAGE_IMPORT_DESCRIPTOR  pImportDesc;

if  (  IsBadReadPtr(baseAddress,  sizeof(PIMAGE_NT_HEADERS))  )

return  FALSE;

if  (  pDOSHeader->e_magic  !=  IMAGE_DOS_SIGNATURE  )

return  FALSE:

pNTHeader  =  MakePtr(PIMAGE_NT_HEADERS,  pDOSHeader,  pDOSHeader->e  lfanew);

if  (  pNTHeader->Signature  !=  IMAGE_NT_SIGNATURE  )

return  FALSE;
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pImportDesc  = MakePtr(PIMAGE_IMPORT_DESCRIPTOR,  baseAddress,

pNTHeader->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].

VirtualAddress);

//  Bail  out  if  the  RVA  of  the  imports  section  is  0  (it  doesn't  exist)

if  (  pImportDesc  ==  (PIMAGE_IMPORT_DESCRIPTOR)pNTHeader  )

return  FALSE:

while  (  plmportDesc->Name  )
{

PIMAGE_THUNK_DATA  pThunk;

pThunk  =  MakePtr(PIMAGE_THUNK_DATA,

baseAddress,  pImportDesc->FirstThunk);

while  (  pThunk->ul. Function)
{

PAPIFunction  pInterceptedFunction;

pInterceptedFunction  =  LookupInterceptedAPI(pThunk->ul.  Function);

if  (  pInterceptedFunction  )
{

DWORD  cBytesMoved;

DWORD  src=  (DWORD)&pInterceptedFunction->instr_pushad:

//  Bash  the  import  thunk.  We  have  to  use  WriteProcessMemory,

//  since  the  import  table  may  be  in  a  code  section  (courtesy

//  of  the  NT  3.51  team!).

WriteProcessMemory(GetCurrentProcess(),

&pThunk->ul. Function,

&src,  sizeof(DWORD),  &cBytesMoved  );

pThunk++:
}

pImportDesc++;
}

return  TRUE;
}

Figure  10-7
The beginning  of stub  building  and  function  interception  in  INTRCPT. C.



The  LOG.C file contains all code related  to writing  the  function  call  and
return  information  to the  output  file.  The  first  routine,  OpenLogFile,  opens
the  output  file in the  directory  where the  program to  be spied  on  resides.
The  output  file has  the  same name  as the  executable  file,  but  with  a OUT
extension.  Calling  GetModuleFileName  with  the  HMODULE  of the  target
program  conveniently  gives us the program's  directory  and  filename,  so all
we have to  do  is replace  the  EXE extension  with  OUT. OpenLogFile  doesn't
take  read-only  media into  account,  so  if you  run  the  executable  from a CD-
ROM,  the  fopen  call  will  fail and  you  won't  get  a trace  file.

The  LogCall  routine  in  LOG.C  is the  high-level  routine  responsible  for
adding the  information  about  a function  call  to  the  output  file.  LogCall  is
called  by the intercepted  function  stubs,  and  expects  a pointer  to  the  function
name,  a pointer  to  the  byte-encoded  parameter  information,  and  a pointer
to  the  stack  upon  entry to  the  stub code.  The  first thing  LogCall  does  is pass
off the  tedious  job  of decoding  and  formatting  the  function  parameters  to
the  DecodeParamsToString  function.

Afterward,  LogCall  emits a new line to the trace file with the function name
and its decoded parameters  inside ()'s. If the intercepted  function is nested inside
another  intercepted function, the line will be indented with space characters
proportional  to the nesting level. The final act of the LogCall code is to call
InterceptFunctionReturn.  This routine  (in RETURN. C) patches the return
address of the intercepted  function to point at our return-value logging code.

The  DecodeParamsToString  helper  function  accepts  a pointer  to the
stack upon  entry to  the  intercepted  function  stub,  a pointer  to  the  byte-
encoded  function  parameters,  and  a pointer  to  a  buffer  to  write  to.  The
function  first  bumps  up the  stack  frame  pointer  by 4  bytes  to  get past  the
intercepted  function's  return  address.  Next,  a  for  loop  iterates  through  all
the  byte-encoded parameters,  grabs the  associated  DWORD  out  of the  stack
frame,  and  formats  the parameter  accordingly.  The  general  form  of each
parameter  is  <type>:<value>,  for instance,  HWND:000200AC.  If the  para-
meter  is of type  LPSTR, the  function  calls the  GetLPSTR  helper  function  to
get  a  snippet  (10  bytes  maximum)  of the  string that  the  parameter  points  to.
If a valid string is pointed to,  the  string is appended to the  other  information,
separated  by a:  (a colon),  as  shown here:

LPSTR:80B70018:"FreeCellIc"

As DecodeParamsToString  formats each parameter,  it tacks  the  string on
to the end  of the  buffer passed in to the  function.  If there  are multiple  parame-
ters, a  ","  (a comma)  separates  them, just as  it would  in real  C/C++ code.  The
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goal  is to make the parameter  information  look  as realistic  as possible,  for
example:

LoadAcceleratorsA(HANDLE:0001C9E,LPSTR:80B70004:"FreeMenu")

The  flip  side of logging  the  function's  parameters  is logging  its return
value,  which  is performed  by the  LogReturn  function.  LogReturn  is consid-
erably  simpler than  LogCall,  and consists of indenting  the return  line appro-
priately  for  its nesting level and then  printing  out the  function  name  and
return  value.

Some of you may have  noticed  the complete  lack of any  thread  synchro-
nization  code  in the  LOG.C.  Normally  in  a multithreading  program that
does file I/O,  you need  critical  sections or  mutexes  to  prevent problems  if a
thread gets  switched  away from  at an  inopportune  time.  The LOG.C
doesn't  need to  use thread  synchronization  since it  doesn't  use any global
variables  that  it modifies  (neither the PLogFile  pointer nor  the TlsIndex
variables  will  change  during program execution).  But what  about  the
fprintf()  calls? Won't  there be problems  if a thread  switches  in the  middle of
one  of them?  If you  don't  pay  attention,  the  answer  is yes.  However,  the
APISPY32  DLL is linked  using the multithreading  runtime  library
LIBCMT. LIB for Visual  C++). These multithreading  libraries  internally  use
synchronization  mechanisms  so that  the  user of the functions  doesn't  have
to.  Interestingly  enough,  if you  look through  all the code  for APISPY32,  you
won't  find any synchronization  code.  This  is largely  because global  vari-
ables are written to  only during  the initialization phase, and never change
afterward.  Figure  10-8  shows LOG.C,  which  writes  the APl function  names
and parameters  to  the  output  file.

//  Helper  function  prototypes

void  MakeIndentString(PSTR  buffer,  UINT  level):

void  DecodeParamsToString(PBYTE  pParams,  PDWORD  pFrame,

BOOL  GetLPSTR(  PSTR  ptr,  PSTR  buffer  );

PSTR  pszParams);

FILE  *PLogFile  =  0;

extern  DWORD  TlsIndex: //  Defined  in  RETURN.C

BOOL OpenLogFile(void)
{

char  szFilename[MAX _ PATH];

PSTR  pszExtension;

GetModuleFileName(GetModuleHandle(O),  szFilename,  sizeof(szFilename)  );
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pszExtension  =  strrchr(szFilename,  '.');

if  (  !pszExtension  )

return  FALSE;

strcpy(pszExtension,  ".out");

PLogFile  =  fopen(szFilename,  "wt")

return  (BOOk)PkogFile;

BOOL  CloseLogFile(void)

if  (  PLogFile  )

fclose(  PLogFile  );

return  TRUE;

void  __stdcall  LogCall(PSTR  pszName,  PBYTE  pParams,  PDWORD  pFrame

{

char  szParams[512];

char  szIndent[128];

PPER  THREAD  DATA  pStack;

if  (  !PLogFile  )

return;

DecodeParamsToString(pParams,  pFrame,  szParams);

pStack  =  (PPER  THREAD  DATA)TlsGetValue(TlsIndex);

if  (  !pStack  )

return;

MakeIndentString(szIndent,  pStack ->FunctionStackPtr);

fprintf(PLogFile,  "%s%s(%s)\n",  szIndent,  pszName,  szParams);

fflush(PLogFile);

//  Patch  the  return  address  of  this  function  so  that  returns  to  us

InterceptFunctionReturn(pszName,  pFrame);

void  DecodeParamsToString(PBYTE  pParams,  PDWORD  pFrame,  PSTR  pszParams

{
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unsigned  i;

unsigned  paramCount;

unsigned  paramShowSize;

PSTR  pszParamName;

pszParams[0]  =  0;  //  Null  out  string  in  case  there's  no  parameters.

paramCount  = *pParams++;

pFrame++;

//  Get  number  of  parameters  and  advance

//  to  first  encoded  param.

//  Bump  past  the  DWORD  return  address.

for  (  i=0;  i  <  paramCount;  i++  )

{

switch  (  *pParams  )

{

case  PARAM  DWORD:

pszParamName  =  "DWORD";  paramShowSize  =  4;  break;

case  PARAM  WORD:

pszParamName  =  "WORD" ; paramShowSize  =  2;  break;

case  PARAM  BYTE:

pszParamName  =  "BYTE";  paramShowSize  =  1;  break;

case  PARAM  LPSTR:

pszParamName  =  "LPSTR";  paramShowSize  =  4;  break;

case  PARAM  LPWSTR:

pszParamName  =  "LPWSTR";  paramShowSize  =  4;  break;

case  PARAM  LPDATA:

pszParamName  =  "LPDATA";  paramShowSize  =  4;  break;

case  PARAM  HANDLE:

pszParamName  =  "HANDLE" ; paramShowSize  =  4;  break;

case  PARAM  HWND:

pszParamName  =  "HWND";  paramShowSize  =  4;  break;

case  PARAM_BOOL:

pszParamName  =  "BOOL";  paramShowSize  = 4;  break;

case  PARAM  LPCODE:

pszParamName  =  "LPCODE";  paramShowSize  =  4;  break:

default:

pszParamName  =  "<unknown>";  paramShowSize  =  0;

pszParams  +=  wsprintf(pszParams,  "%s:",  pszParamName);

switch  (  paramShowSize  )

{

case  4:  pszParamName  =  "%08X";  break;

case  2:  pszParamName  =  "%04X";  break;

case  1:  pszParamName  =  "%02X";  break;
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pszParams  +=  wsprintf(pszParams,  pszParamName,  *pFrame)  ;

//  Tack  on  the  string  literal  value  if  it's  a  PARAM  LPSTR

if  (  *pParams  ==  PARAM  LPSTR  )

char  buffer[30];

if  (  GetLPSTR(  (PSTR)*pFrame,  buffer  )  )

{

strcpy(pszParams,  buffer);

pszParams  +=  strlen(buffer);

if  (  (paramCount  i)  !=  1  )

*pszParams++  =  ',';

//  Tack  on  a  comma  if  not  last

//  parameter.

pFrame++;

pParams++;

//  Bump  frame  up  to  the  next  DWORD  value

//  advance  to  next  encoded  parameter.

//  End  of  for()  statement.

BOOL  GetLPSTR(  PSTR  ptr,  PSTR  buffer  )

{

PSTR  p  =  buffer;

int  i;

*p++  = ':';

*p++  =  '\"';
//  Write  out  initial  -> :" <- 

for  (  i=0;  i  <  10;  i++  )

{

if  (  !IsBadReadPtr(  ptr,  1  )  &&  *ptr

{

*p  =  *ptr++;

if  (  *p  ==  '\r'  )  {  *p++  =  '\\';  *p  :  'r';  }

else  if  (  *p  ==  '\n'  )  {  *p++  =  '\\':  *p  =  'n';  }

else  if  (  *p  ==  '\t'  )  {  *p++  =  '\\':  *p  = 't';  }

p++;

}
else

break;
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if     (  i == 0  )  //  Not  a  valid  string

return  FALSE

*p++ = '\"';

*p++  =  O;

/ Valid  string  ptr  - end  quote  and  null

/ terminate  the  string

return  TRUE;    }

void  LogReturn(PSTR  pszName,  DWORD  returnValue,  DWORD  level)

{

char  szIndent[128];

if ( !PLogFile )

return;

MakeIndentString(szIndent,  level);

fprintf(PLogFile,  "%s%s  returns:  %X\n",

fflush(PLogFile);

szIndent,  pszName, returnValue);

void  MakeIndentString(PSTR  buffer,  UINT  level)  {

DWORD  cBytes  = level  *  2;

memset(buffer,  '  ',  cBytes);

buffer[cBytes]  = 0;

}

Figure  10-8
LOG. C  writes  the APl  function  names  and parameters  to  this output  file.

The code  in RETURN.C  all relates  to  intercepting  the  return from an
API function  in  order to  get its return value. The  first two  functions,
InitThreadReturnStack  and ShutdownThreadReturnStack,  are called once
for each thread in the target process.  InitThreadReturnStack  allocates  a
block  of memory the  size  of  a PER_THREAD_DATA  structure  and initial-
izes  it  (see PERTHRED.H).  The  PER_THREAD_DATA  structure  holds the
two  components  necessary  for that  thread's return address  stack:  an array
of HOOKED_FUNCTION  structures  and a stack pointer  (see Figure 10-9).

Each  time an intercepted  function  is called,  its original  return address

and name pointer  are written to the  next  available  HOOKED_FUNCTION
structure.  Afterward,  the  stack pointer  is incremented  by  1. Implementing
the  stack  in this way  allows  the  stack  pointer  (really an index,  not  a pointer)
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Figure  10-9
The PER_THREAD_DATA structure contains  the stack pointer and  the array of
HOOKED_FUNCTION structures that hold that thread's return address stack.

Th e InterceptFunctionRetur n is calle d b y th e function-cal l loggin g code,
jus t prio r to lettin g contro l jum p to th e originall y intende d AP l function
code . Th e InterceptFunctionRetur n firs t add s th e intercepte d function's
retur n addres s an d nam e to th e retur n addres s stack . Afterward , it  over-
write s th e retur n addres s wit h th e addres s o f th e AsmCommonReturnPoint
routin e in ASMRETRN.ASM.

The final function in RETURN. C is CCommonReturnPoint, which is
invoked by the assembler code in AsmCommonReturnPoint. Although I
could have had the assembler code do everything, I wanted to keep as much
of APISPY32 in C as possible. CCommonReturnPoint first calls LogReturn
to log the intercepted function's return value. It then writes the original
return value into a special space in the stack reserved for that purpose by
the assembler code, and returns to the assembler code. Figure 10-10 shows
RETURN.C, which handles the details of logging the function's return value.
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void  AsmCommonReturnPoint(void);

DWORD  TlsIndex  =  OxFFFFFFFF;

BOOL  InitThreadReturnStack(void)

PPER_THREAD_DATA  pPerThreadData;

static  BOOL  firstTime  =  TRUE;

if  (  firstTime  )

TlsIndex  =  TlsAlloc();

firstTime  =  FALSE;

if  (  TlsIndex  ==  OxFFFFFFFF  )

return  FALSE;

pPerThreadData  =  malloc(  sizeof(PER_THREAD_DATA)  );

if  (  !pPerThreadData  )

return  FALSE;

pPerThreadData->FunctionStackPtr  =  0;

TlsSetValue(TlsIndex,  pPerThreadData);

return  TRUE:
}

BOOL  ShutdownThreadReturnStack(void)

I
PPER_THREAD_DATA  pPerThreadData;

if  (  TlsIndex  ==  OxFFFFFFFF  )

return  FALSE;

pPerThreadData  =  TlsGetValue(  TlsIndex  );
if  (  pPerThreadData  )

free(  pPerThreadData  );

return  TRUE;

BOOL  InterceptFunctionReturn(PSTR  pszName,  PDWORD  pFrame)

I
PPER_THREAD_DATA  pStack;

DWORD  i;

pStack  =  (PPER_THREAD_DATA)TlsGetValue(TlsIndex);
if  (  !pStack  )

return  FALSE;
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if  (  pStack ->nctionStackPtr  >= (MAX_HOOKED_FUNCTIONS - 1) )

return  FALSE;

i =  pStack->FunctionStackPtr;

pStack->FunctionStack[i].pfnReturnAddress  =  (PVOID)pFrame[0];

pStack->FunctionStack[i].pszName  =  pszName;

pStack->FunctionStackPtr++;PTR++;

pFrame[0]  = (DWORD)AsmCommonReturnPoint:

return  TRUE;

{

//  return  address  <-  pFrame[8]
//  EAX   <-  pFrame[7]

//  ECX   <-  pFrame[6]
//  EDX   <-  pFrame[5]
//  EBX   <-  pFrame[4]

//  ESP  <-  pFrame[3]
//  EBP  <-  pFrame[2]
//  ESI  <-  pFrame[1]

//  EDI  <-  pFrame[0]

//

//  Common  return  point  for  all  functions  that  we've  intercepted.

//  Called  by  AsmCommonReturnPoint  in  ASMRETRN,ASM
//  pFrame  is  a  pointer  to  the  stack  frame  set  up  by  the  PUSHAD
//  (see  above  comment  for  the  layout  of  this  frame)
//

void  CCommonReturnPoint(  PDWOR D pFrame  )
{

PPER  THREA D DAT A pStack;

DWO D i;

//  Get  the  function  stack  for  the  current  thread
pStack  =  (PPER_THREAD_DATA)TlsGetValue(TlsIndex);

if  (  !pStack  )

return;

i = -  pStack->FunctionStackPtr;

//  Emit  the  information  about  the  function  return  value  to  the  logging

//  mechanism,
LogReturn(pStack->FunctionStack[i].pszName,  pFrame[7],  i);

//  Patch  the  return  address  back  to  what  it was  when  the  function

// was  originally  called.
pFrame[8]  =  (DWORD)pStack->FunctionStack[i].pfnReturnAddress:

 Figure  10-10
RETURN. C logs  the function's return  value.
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When  I set out to  write APISPY32,  I wanted  to  keep it entirely  in C
code.  Unfortunately,  given the  stack games we played to get control  when
an intercepted  function returns,  I couldn't  find a way  to  do  it cleanly in C.
Also,  C routines are allowed  to trash registers.  I wanted  the APISPY32 code
to have as little effect  as possible  on the target  process,  so  I chose  to push

and pop  all  the general-purpose registers around  the call  to  the  C routines.
The ASMRETRN.ASM  code  does the  bare minimum.  It first subtracts  4
from the  ESP register to reserve space  for the  original  return address.  The C
code eventually  fills  in that  DWORD  with  the correct  address,  so that when

the assembler  code returns,  it will  return to the correct  location,  and with
the  stack  pointer exactly  as it was when  the routine was entered.  The
remainder  of the code,  shown in Figure 10-11,  is just a PUSHAD  and
POPAD  around  a call  to the  CCommonReturnPoint  function.

.386

.model  flat

extrn  _CCommonReturnPoint:proc

.code

public  _AsmCommonReturnPoint

_AsmCommonReturnPoint  proc

SUB  ESP,4  ; Make  space  for  return  address

PUSHAD

MOV

PUSH

CALL

ADD

POPAD

RET

EAX,ESP

EAX

_CCommonReturnPoint

ESP,4

_AsmCommonReturnPoint  endp

END

Figure  10-11
The assembler  portion  of the function  return hooking  code  in ASMRETRN.
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WIN32S-SPECIFIC  CODE

The last remaining  bit of code m APISPY32.DLL is specific to Win32s,  and
comes  from the W32SSUPP. C file. The one function  from this module,
GetModuleBaseFromWin32sHMod,  is shown  in Figure  10-12. The  func-
tion's  task is to  take  a Win32s  hModule  (which  isn't  a  base load address  of
a  module  in memory),  and convert it into  a  base  address.  Browsing through
the  Win32s  documentation,  I couldn't  find any clean  (or even documented)
way to  do the conversion.  However,  I did know that  functions  like the
Win32  GetProcAddress  would  need to do  something  similar.  Stepping
through  the Win32s  libraries in SoftIce/W revealed  that  two exported  (but
undocumented)  functions  in W32SKRNL.DLL  did exactly  what  I needed.
The  first function  is _ImteFromHModule@4,  which  takes  a Win32s
HMODULE  and returns an internal  handle  known  as an  IMTE.  (IMTEs
were  described  in Chapter  3.)  The second function  I found is BaseAddr-
FromImte,  which  takes  one of these IMTEs  as a  parameter  and returns  a
32-bit  linear  base address where  the module is loaded.

Since these  functions  are  specific  to  Win32s,  I couldn't  directly call them
from the APISPY32  DLL,  since the DLL wouldn't  then  be able to  load
under Windows 95  or Windows NT.  Calling the  functions  directly would
place  a  fixup  to those  functions  in the DLL, and  the loader wouldn't  be able
to find them when  it brings APISPY32.DLL  into  memory.  Therefore, I used
the  standard  technique  of using GetProcAddress  to  get a  pointer to  the two
functions  and  then  called through  the pointer.

typedef  DWORD  (_ _stdcall  *XPROC)(DWORD):

DWORD  GetModuleBaseFromWin32sHMod(HMODULE  hMod)
{

XPROC  ImteFromHModule,  BaseAddrFromImte;

HMODULE  hModule;

DWORD  imte;

hModule  =  GetModuleHandle("W32SKRNL.DLL");

if(  !hModule  )

return 0;

ImteFromHModu]e  =  (XPROC)GetProcAddress(hModule,

if  (  !ImteFromHModule  )

return  O;

"ImteFromHModule@4");
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BaseAddrFromImte  =  (XPROC)GetProcAddress(hModule,  "_BaseAddrFromImte@4');

if  (  !BaseAddrFromImte  )

return  O;

imte = ImteFromHModule( (DWORD)hMod);

if  (  !imte  )

return  O;

return  BaseAddrFromImte(imte);

Figure  10-12
W32SSUPP. C is the  Win32s-specific code.

THE APISPYLD CODE

With  the  code  for the  API spy DLL behind  us,  all that  remains is the program
loader.  The  program  loader  is itself a program,  and  uses  CreateProcess  to
start  the  process  to  be spied  upon.  Before the  target  process  can execute any
code,  the  program loader  injects the API  spy DLL  (APISPY32.DLL) into the
target  process.  Once  injected,  the program loader  doesn't  have much  to do
except spin in  a WaitForDebugEvent  loop  until the  target process  terminates.
I've named  the  program  loader  APISPYLD.  Its  source  file is larger  than the
other  source  files  in the  project,  so I'll  break  up APISPYLD.C  into  several
pieces for  examination.

The  first portion  of APISPYLD.C  is the  minimal  user-interface  code and
the  code that  loads the  target  process.  The WinMain  is a  simple  while  loop
that  cycles until  a program  has  been  successfully spied on  or  until  the user
elects  to  quit the  spy program.  The while  loop  first  invokes  a dialog  box to
get the program  name  to  spy on.  If the  DialogBox  returns nonzero,  WinMain
calls  LoadProcessForSpying.  If the process  is successfully started,  WinMain
calls  DebugLoop where it APISPYLD remains,  pumping through all the  debug
messages  until  the  target  process  terminates.

The dialog box for APISPYLD is minimal, as you can see from Figure 10-13.
The  single edit control is for typing in the command line (including parameters)
of the  program  to  be spied  on.  For  the  sake of Convenience,  the  File.. .  but-
ton  brings  up  the  GetOpenFileName  common  dialog  box,  enabling  you to
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click your  way to  the filename,  rather than  tediously  typing  in the path  by
hand.  Clicking on  Run dismisses  the dialog and  attempts  to  load  the speci-
fied process  for  spying.  Clicking  on  Cancel  dismisses  the dialog  and exits
the  program.

 Figure  10-13
The APISPYLD d/a/ag  box  lets you  indicate  the program  to  be  spied on.

The dialog procedure code in APISPY32DlgProc is extremely simple, and
responds to only three messages: WM_INITDIALOG,  WM_COMMAND,
and WM_CLOSE. The WM_INITDIALOG  handler allows us the opportunity
to retrieve the last command  line we gave to APISPYLD, and stuff it into the
edit control.  The previous command line is stored in a private  .INI file called
APISPY32.INI.

The meat of the dialog code is for processing WM_COMMAND messages;
it resides  in the Handle_WM_COMMAND  helper  function.  The  only
WM_COMMAND  messages  handled  are for  the three  buttons.  The  File...
button  code  calls the  GetProgramName helper  function,  which  is a wrapper
around  the  Common  Dialog  GetOpenFileName  function.  If GetProgram-
Name  succeeds,  the program name  will  be in the  dialog's  edit control.
Clicking on  the  Run  button  tells  APISPYLD to  copy whatever is in the edit
control  into the  SzCmdLine global variable  and  exit  from the  dialog with  a
code of  1. The  Cancel  button  also exits  the  dialog,  but tells  it to  return  0 so
that  WinMain won't  try to  load  anything.

If the user correctly  enters  a proper command  line and  hits the  Run  but-
ton,  the  dialog  box will  exit  and control  returns  to  WinMain.  WinMain
then calls  LoadProcessForSpying,  passing it the contents  of the  SzCmdLine
global  variable.  LoadProcessForSpying  is just  a shell  around  the Win32
CreateProcess  API function.  The  only interesting part  of this particular
CreateProcess  call  is that  the fdwCreate  flags parameter  specifies  DEBUG_
ONLY_THIS_PROCESS.  This tells  the  operating  system that  our  program
(APISPYLD)  wants  to  act as a  debugger  for the program  being loaded.  It
also informs  the operating  system that  we're  interested  only in  debug events
for this particular  process,  and not in  any of the newly created  process's
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children.  Had I specified DEBUG_PROCESS instead of DEBUG_ONLY_
THIS_PROCESS, APISPYLD would also get debug notifications for any
programs that the target process created. Figure 10-14  shows the beginning
of the APISPYLD.C user interface and process loading procedures.

char  SzINISection[]  =  "Options";

char  SzINICmdLineKey[]  =  "CommandLine";

char  SzINIFile[]  =  "APISPY32.INI";

char  SzCmdLine[MAX_PATH];

BOOL  FFirstBreakpointHit  =  FALSE  FSecondBreakpointHit  =  FALSE;

PROCESS_INFORMATION  ProcessInformation;

CREATE_PROCESS_DEBUG_INFO  ProcessOebugInfo;

CONTEXT  OriginalThreadContext,  FakeLoadLibraryContext;

PVOID  PInjectionPage;

#define  PAGE_SIZE  4096

BYTE OriginalCodePage[PAGE_SIZE];

BYTE  NewCodePage[PAGE_SIZE];

// ........................  Code  .............................................

//

//  Function  prototypes
//

BOOL

void

void

BOOL

BOOL

void

DWORD

void

void

BOOL

BOOL

PVOID

BOOL

CALLBACK  APISPY32DlgProc(HWND,  UINT,  WPARAM,  LPARAM);

Handle_WM_COMMAND(HWND  hWndDlg,  WPARAM wParam,  LPARAM  lParam);

Handle_WM_INITDIALOG(HWND  hWndDlg,  WPARAM  wParam,  LPARAM  lParam);

GetProgramName(HWND  hWndOwner,  PSTR  szFile,  unsigned  nFileBuffSize);

LoadProcessForSpying(PSTR  SzCmdLine);

DebugLoop(void);

HandleDebugEvent(  DEBUG_EVENT  * event  );

HandleException(LPDEBUG_EVENT  lpEvent,  PDWORD  continueStatus);

EmptyMsgQueueOfUselessMessages(void);

InjectSpyDll(void);

ReplaceOriginalPagesAndContext(void);

FindUsablePage(HANDLE  hProcess,  PVOID  PProcessBase);

GetSpyDllName(PSTR  buffer,  UINT  cBytes);

int  APIENTRY  WinMain(  HANDLE  hInstance,  HANDLE  hPrevInstance,

LPSTR  lpszCmdLine,  int  nCmdShow  )

{
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//  This  dialog  returns  0  if  the  user  pressed  cancel

while  (  0  !=  DialogBox(hInstance,  "APISPY32_LOAD_DLG",  0,

(DLGPROC)APISPY32DlgProc))

if  (LoadProcessForSpying(SzCmdLine)  )

{
DebugLoop();

break;  }

MessageBox(O,  "Unable  to  start  program",  0,  MB_OK);

return  0;

}

BOOL  CALLBACK  APISPY32DlgProc(HWND  hWndDlg,  UINT  msg,

WPARAM  wParam,  LPARAM  lParam)

{
switch  (  msg  )
{

case  WM_COMMAND:

Handle_WM_COMMAND(hWndDlg,  wParam,  lParam);

return  TRUE:

case  WM_INITDIALOG:

Handle_WM_INITDIALOG(hWndDlg,  wParam,  lParam);

return  TRUE;

case  WM_CLOSE:

EndDialog(hWndDlg,  0);

return  FALSE;
}

return  FALSE;

void  Handle_WM_COMMAND(HWND  hWndDlg,  WPARAM  wParam,  LPARAM  lParam)

if  (  wParam  ==  IDC _RUN  )
{

if  (  GetWindowText(  GetDlgItem(hWndDlg,  IDC_CMDLINE),

SzCmdLine,  sizeof(SzCmdLine))  )

WritePrivateProfileString(SzINISection,  SzINICmdLineKey,

SzCmdLine,  SzINIFile);

EndDialog(hNndDlg,  1);  //  Return  TRUE
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else
{

MessageBox(  hWndDlg,  "No  program  s e l e c t e d " ,  0,  MB_OK);

}
}

else  i f  (  wParam  ==  IDC_PILE  )
{

i f  (  GetProgramName(hWndDlg,  SzCmdLine,  sizeof(SzCmdLine))  )

SetWindowText(  GetDlgItem(hWndDlg,  IDC_CMDLINE),  SzCmdLine  );

}
else  i f  (  wParam  ==  IDCANCEL  )
{

EndDialog(hWndDlg,  0);

}

void  Handle_WM_INITDIALOG(HWND  hWndDlg,  WPARAM  wParam,  LPARAM  lParam)

GetPrivateProfileString(SzINISection,  SzINICmdLineKey,  "",  SzCmdLine,

sizeof(SzCmdLine),  SzINIFile);

SetWindowText(  GetDlgItem(hWndDlg,  IDC_CMDLINE),  SzCmdLine  );

}

static  char  szFilter1[]  =  "Programs  (*.EXE)\O*.EXE\0";

BOOL  GetProgramName(HWND  hWndOwner,  PSTR  szFile,  unsigned  nFileBuffSize)

{

OPENFILENAME  ofn;

szFile[0]  = 0;

memset(&ofn,  0,  sizeof(OPENFILENAME));

ofn.lStructSize  =  sizeof(OPENFILENAME);

ofn.hwndOwner  =  hWndOwner;

ofn.lpstrFilter  =  szFilterl;

ofn.nFilterIndex  =  1;

ofn.lpstrFile =  szFile;

ofn.nMaxFile  =  nFileBuffSize;

ofn.lpstrFileTitle  =  0;

ofn.nMaxFileTitle  = 0;

ofn.lpstrInitialDir  =  0;

ofn. Flags=  OFN_PA[HMUSTEXIST  | OFN_FILEMUSTEXIST;

return  GetOpenFileName(&ofn);

}
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BOOL  LoadProcessForSpying(PSTR  SzCmdLine)
{

STARTUPINFO  startupInfo;

memset(&startupInfo,  0,  sizeof(startupInfo));
startupInfo.cb =  sizeof(startupInfo);

return  CreateProcess(

0,  //  lpszImageName
SzCmdLine,  //  lpszCommandLine

0,  //  lpsaProcess

0,  //  lpsaThread

FALSE,  //  fInheritHandles

DEBUG  ONLY_THIS  PROCESS,  //  fdwCreate

0,  //  lpvEnvironment
0,  //  lpszCurDir
&startupInfo,  //  lpsiStartup•nfo

&Processlnformation  //  lppiProcInfo
).

 Figure  I0-14
 The beginning  of the APISPYLD C user interface and process loading  functions.

The middle portion  of APISPYLD.C is devoted to the debug loop:  a loop
that calls WaitForDebugEvent  and  ContinueDebugEvent  until  the process
we're spying terminates.  Each time WaitForDebugEvent  returns,  there's  a new
XXX  DEBUG_EVENT (for instance,  EXCEPTION_DEBUG_EVENT  or
CREATE_THREAD_DEBUG_EVENT).  The DebugLoop passes each debug
event to the HandleDebugEvent helper  function to  let it do whatever process-
ing is necessary.  For the most part,  the code in HandleDebugEvent ignores
most of the events and passes DBG_CONTINUE to  ContinueDebugEvent.
However,  two  EXCEPTION_DEBUG_EVENTs that  occur during the lifetime
of the target process are of interest  to  our program loader.  For this reason,  I
broke out the handling of exceptions into yet another  helper function,
HandleException.

The  first  EXCEPTION_DEBUG_EVENT  that  our  program  loader
should  see is the  breakpoint  exception,  EXCEPTION_BREAKPOiNT  (from
WINBASE.H).  This  breakpoint  isn't  in the  target  process's  code.  Rather,
there's  an  embedded  INT  3  in the  operating  system code that's  executed
right  before  the  first  instruction  of the  new process.  Our  HandleException
routine  explicitly looks  for  this  first  breakpoint  exception;  when  it  sees the
exception,  it  injects the  spy DLL into  the  address  space  of the child  (using
InjectSpyDll,  described  later  in this  section).
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The  second  exception  that  HandleException  looks  for  is the  break-
point  that  InjectSpyDll injects into  the code  so that  we'll  get control  after
APISPY32.DLL  loads.  When  this  breakpoint  occurs,  APISPYLD knows
that  the  target  process  has finished  loading APISPY32.DLL.  The  original
memory pages and thread context modified by InjectSpyDll need to be put back
the way they were when the first breakpoint went off. HandleException uses
the ReplaceOriginalPagesAndContext  helper function to perform this chore.

The final  bit of code in this portion of APISPYLD is for Win32s only.
Earlier, I said that when WaitForDebugEvent  returns,  a new debug event is
waiting to  be processed.  Under Win32s this isn't necessarily true.  Instead,
the Win32s WaitForDebugEvent  returns  TRUE if there's  another  message
waiting  and FALSE if there's not.  Another undocumented  oddity under
Win32s  is that  the  system posts window messages with  NULL window
handles  to  the  debugger's  (APISPYLD's) message  queue.  The  window
messages posted to the queue have message numbers that Win32s obtained
by making this call:

RegisterWindowMessage("W32S_Debug  Msg").

If you don't  empty these messages out of your queue,  your message
queue will flu up and real window messages won't  go into the queue.  To
handle  both of these  strange Win32s  behaviors,  our debug loop calls
EmptyMsgQueueOfUselessMessages  if WaitForDebugEvent  returns
FALSE and  if the program  is running  under  Win32s.

EmptyMsgQueueOfUselessMessages  is a simple routine that calls
PeekMessage(PM_REMOVE)  until  PeekMessage  returns  FALSE. Any
message with a nonzero HWND  is given to DispatchMessage-  but to
date, I haven't  seen any messages with valid HWNDs come through this
routine.  After emptying the queue of these messages,  DebugLoop  again calls
WaitForDebugEvent.  This time WaitForDebugEvent  blocks  until there's
really a waiting debug event.  Figure  10-15 shows the  beginning of the debug
loop and debug event processing in APISPYLD.C.

void  DebugLoop(void)

I
DEBUG_EVENT  event.

DWORD  continueStatus.

800L  fWin32s.

BOOL  fWaitResult.

fWin32s  =  (GetVersion()  &  0×C0000000) ==  0x80000000;
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while(  1  )

{
fNaitResult  =  WaitForDebugEvent(&event,  INFINITE);

if  (  (fWaitResult  ==  FALSE)  &&  fWin32s  )

EmptyMsgQueueOfUselessMessages();

continue;
}

continueStatus  =  HandleDebugEvent(  &event  );

if  (  event.dwDebugEventCode  ==  EXIT_PROCESS_DEBUG_EVENT  )

return;

ContinueDebugEvent(  event.dwProcesstd,
event.dwThreadId,
continueStatus  );

PSTR  SzDebugEventTypes[]  =

{
"  "

"EXCEPTION",
"CREATE  THREAD",

"CREATE  PROCESS",
"EXIT  THREAD",

"EXIT  PROCESS",
i

"LOAD_DLL",
"UNLOAD_DLL",
"OUTPUT  DEBUG  STRING",

"RIP",

};

DWORD  HandleDebugEvent(  DEBUG_EVENT  *  event  )
{

DWORD  continueStatus  =  DBG_CONTINUE;

//  char  buffer[1024];

/ /  wsprintf(buffer,  "Event'  %s\r\n",
/ /  SzDebugEventTypes[event->dwDebugEventCode]);

//  OutputDebugString(buffer);

if  (  event->dwDebugEventCode  ==  CREATE_PROCESS_DEBUG_EVENT  )

ProcessDebugInfo  =  event->u.CreateProcessInfo;
}

else  if  (  event->dwDebugEventCode  ==  EXCEPTION_DEBUG  EVENT  )
{
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HandleException(event,  &continueStatus);

}

return  continueStatus;
}

void  HandleException(LPDEBUG_EVENT  lpEvent,  PDWORD  continueStatus)
{

//  char  buffer[128];
//  wsprintf(buffer,  "Exception  code:  %X  Addr:  %08X\r\n",
//  lpEvent->u.Exception.ExceptionRecord.ExceptionCode,
//  lpEvent->u.Exception.ExceptionRecord.ExceptionAddress);

//  OutputDebugString(buffer);

if  (  lpEvent->u.Exception.ExceptionRecord.ExceptionCode
==  EXCEPTION_BREAKPOINT  )

{
if  (  FFirstBreakpointHit  ==  FALSE  )
{

InjectSpyDll ( );
FFirstBreakpointHit =  TRUE;

}
else  if  (  FSecondBreakpointHit ==  FALSE  )

{
Repl aceOriginalPagesAndContext();
FSecondBreakpointHit  =  TRUE;

}

}
else {

*continueStatus  =  DBG_CONTINUE;

*continueStatus  =  DBG_EXCEPTION_NOT_HANDLED;
}

}

void  EmptyMsgQueueOfUselessMessages (void)

{
MSG  msg;  //  See  PeekMessage  loop  for  explanation  of  idiocy.

//  Win32s  idiocy  puts  W32s_Debug_Msg  message  in  our  message  queue.

//  Dispose  of  them!  They're  useless!
while  (  PeekMessage(&msg,  0,  0,  0,  PM_REMOVE)  )

{
if  (  ms g.hwnd  )

DispatchMessage(&msg);
}

}

 F i g u r e  1 O- 15
 T h e beginning of the APISPYLD. C debug loop and debug event processing,
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The final portion  of our  APISPYLD code is for injecting  the APISPY32
DLL into  the  address  space  of the  process  to  be spied on  after  it  hits  the  first
breakpoint.  InjectSpyDll  is a complicated  routine  that can  be roughly  broken
up into  three  phases.  The first phase  of InjectSpyDll  is for locating important
addresses  in the  child  process.  Of primary  interest  at  this  stage  is the  address
of the  first writeable  data  page  in the  target process  that's  not  in  the  .idata
section.  Also  important  is the  address  of  the  LoadLibrary  routine  in
KERNEL32.DLL,  the  name  of the  DLL  to  load  (APISPY32.DLL),  and
saving the  original  thread  context  of the process's  initial  thread.

In its second phase,  InjectSpyDll  copies the  contents  of the  first writeable
data  page  into  a global  variable  called  OriginalCodePage.  (This  variable  is
badly  named,  by the way.  Early  versions  of APISPY32 used  the  first code
page  (instead of the  first writeable  data page)  to  store their injection  code.  I
simply haven't gotten around  to changing the variable's  name.)  It's  important
to  note  here  that  in  order  to  make  a copy of the page  we'll  be modifying,  it's
necessary  to  call  ReadProcessMemory.  The page  we're  saving a copy of is in
another  process,  and  the  loader  can't  directly  access that  memory.

The  third  phase  of InjectSpyDll  sets things  up  so that  when  the  target
process  resumes  execution,  it calls  LoadLibrary,  telling the  operating system
to  load APISPY32.DLL.  The  code  that  will call  LoadLibrary  is constructed
by filling  in the  fields  of the  FAKE_LOADLIBRARY_CODE  structure.  Each
of the  fields  of this  structure  is either  an  assembler  opcode  or  an  operand
for  the  preceding  instruction.  At the  end  of the  structure  is a copy of the  spy
DLL name.  I put  the  DLL name  in the  structure  because  the DLL name
needs  to  be visible  in the context  of the target  process,  not  the  APISPYLD
program.  After  the  structure  is all  filled in,  i  use WriteProcessMemory  to
copy the  structure  into  the  appropriate  page of the  target  process.
Afterward,  the  InjectSpyDll  functions  uses SetThreadContext  to  change the
EIP value  that  the  target process  thread  will  use when  it resumes  execution.
Specifically, the  EIP register  will  be set to  the  first  instruction  of the  code
snippet  as  it  appears  in the  target process's  address  space.

Assuming  InjectSpyDll  worked  correctly,  the  target  process  executes  the
LoadLibrary code when  it resumes  execution.  When  LoadLibrary  returns,
the  CPU will  be at  the  breakpoint  instruction  after  the  LoadLibrary  call.
This  causes  the  target process  to  again  be frozen,  and  the  call  to  WaitFor-
DebugEvent  in the APISPYLD process  to  return with  an  EXCEPTION_
DEBUG_EVENT.  When  the  HandleException  function  sees this  particular
exception,  it knows  that  it's  time to restore  the  original  page we modified
earlier,  as well  as  the thread  context.  The code  to  restore  the  thread  to  its
original  state  is in the ReplaceOriginalPagesAndContext  helper  function.  In
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this routine,  we  use WriteProcessMemory  to  write  the modified page back,
and then  do  a SetThreadContext,  passing the thread context we  saved off
before we  injected the DLL. Figure 10-16  shows  the InjectSpyDll  section of

APISPYLD.C.

#pragma  pack  (  1  )

typedef  struct

{
WORD  instr_SUB;

DWORD  operand_SUB_value;

BYTE  instr_PUSH;

DWORD  operand_PUSH_value;

BYTE  i nstr_CALL;
DWORD  operand_CALL_offset;

BYTE  i nstr_INT_3;

char  data_DllName[1];

}  FAKE_LOADLIBRARY_CODE,  *  PFAKE_LOADLIBRARY_CODE'

BOOL  InjectSpyDll  (void)
{

BOOL  retCode;

DWORD  cBytesMoved;

char  szSpyDllName[MAX_PATH];

FARPROC  pfnLoadLibrary;

PFAKE_ LOADLIBRARY_CODE  pNewCode;

// ====

//  Phase  1  -  Locating  addresses  of  important  things
//  ............

pfnLoadLibrary  =  GetProcAddress(GetModuleHandle("KERNEL32.DLL"),

"LoadLibraryA"  );

if  (  !pfnLoadLibrary  )

return  FALSE;

PInjectionPage  =  FindUsablePage(ProcessInformatinon.hProcess;

ProcessDebugInfo.lpBaseOfImage);

if  (  !PInjectionPage  )

return  FALSE;

if  (  !GetSpyDllName(szSpyDllName,  sizeof(szSpyDllName))  )

return  FALSE;

OriginalThreadContext.ContextFlags  =  CONTEXT_CONTROL;

if  (!GetThreadContext(ProcessInformation.hThread, &OriginalThreadContext))

return  FALSE;
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//  Phase  2  -  Saving  the  original  code  page  away
//  ---

//  Save  off  the  original  code  page

retCode  =  ReadProcessMemory(ProcessInformation.hProcess,  PInjectionPage,

OriginalCodePage,  sizeof(OriginalCodePage),

&cBytesMoved);

if  (  !retCode  ||  (cBytesMoved  !=  sizeof(OriginalCodePage))  )

return  FALSE;

//

//  Phase  3  - Writing  new  code  page  and  changing  the  thread  context

//

pNewCode  =  (PFAKE_LOADLIBRARY_CODE) NewCodePage;

pNewCode->instr_SUB  =  0xEC81;

pNewCode->operand_SUB_value  =  0x1000;

pNewCode->instr_PUSH  =  0x68;

pNewCode->operand_PUSH_value  =  (DWORD)PInjectionPage

+  offsetof(FAKE_LOADLIBRARY_CODE,  data  DllName);

pNewCode->instr_CALL  =  0xE8;

pNewCode->operand_CALL_offset  =

(DWORD)pfnLoadLibrary -  (DWORD)PInjectionPage

- offsetof(FAKE LOADLIBRARY_CODE,instr_CALL)  -  5;

pNewCode->instr_INT_3  =  0xCC;

lstrcpy(pNewCode->data_DllName,  szSpyDllName);  //  Copy  DLL  name.

//  Write  out  the  new  code  page

retCode  =  WriteProcessMemory(ProcessInformation.hProcess,  PInjectionPage,

&NewCodePage,  sizeof(NewCodePage),

&cBytesMoved);

if  (  !retCode  ||  (cBytesMoved  !=  sizeof(NewCodePage))  )

return  FALSE;

FakeLoadLibraryContext  =  OriginalThreadContext;

FakeLoadLibraryContext. Eip  =  (DWORD)PInjectionPage;

if  (  !SetThreadContext(Processtnformation.hThread,

&FakeLoadLibraryContext)  )

return  FALSE;

return  TRUE;
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BOOL  ReplaceOriginalPagesAndContext(void)

{

BOOL  retCode;

DWORD  cBytesMoved;

retCode  =  WriteProcessMemory(ProcessInformation.hProcess,  PInjectionPage,

OriginalCodePage,  sizeof(OriginalCodePage),

&cBytesMoved);

if  (  !retCode ||  (cBytesMoved  !=  sizeof(OriginalCodePage))  )

return  FALSE;

if  (  !SetThreadContext(ProcessInformation.hThread,

&OriginalThreadContext)  )

return  FALSE;

return  TRUE;

PVOID  FindUsablePage(HANDLE  hProcess,  PVOID  PProcessBase)

{
DWORD  peHdrOffset;

DWORD  cBytesMoved;

IMAGE_NT_HEADERS  ntHdr;

PIMAGE_SECTION_HEADER  pSection;

unsigned  i;

//  Read  in  the  offset  of  the  PE  header  within  the  debuggee

if  (  !ReadProcessMemory(ProcessInformation.hProcess,

(PBYTE)PProcessBase  +  0x3C,

&peHdrOffset,

sizeof(peHdrOffset),

&cBytesMoved)  )

return  FALSE;

//  Read  in  the  IMAGE_NT_HEADERS.OptionalHeader.BaseOfCode  field

if  (  !ReadProcessMemory(ProcessInformation.hProcess,

(PBYTE)PProcessBase  +  peHdrOffset,

&ntHdr,  sizeof(ntHdr),  &cBytesMoved)  )

return  FALSE'

pSection  =  (PIMAGE_SECTION_HEADER)

((PBYTE)PProcessBase  +  peHdrOffset  +  4

+  sizeof(ntHdr.FileHeader)

+  ntHdr.FileHeader.SizeOfOptionalHeader);

for  (  i=0;  i  <  ntHdr.FileHeader.NumberOfSections;  i++  )

{
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IMAGE_SECTION_HEADER  section;

if  (  !ReadProcessMemory(  ProcessInformation.hProcess,

pSection,  &section,  sizeof(section),

&cBytesMoved)  )

return  FALSE;

//  OutputDebugString(  "trying  section:

//  OutputDebugString(  section.Name  )'

//  OutputDebugString(  "\r\n"  )'

"  ) ;

//  If  it's  writeable,  and  not  the  .idata  section,  we'll  go  with  it

if  (  (section.Characteristics  &  IMAGE_SCN_MEM_WRITE)

&&  strncmp(section. Name,  ".idata",  6)  )
(

//  OutputDebugString(  "using  section.  " ) ;

//  OutputDebugString(  section. Name  );

//  OutputDebugString(  "\r\n"  );

return  (PVOID)  ((DWORD)PProcessBase  +section. VirtualAddress);

pSection++;  //  Not  this  section.  Advance  to  next  section.

return  0;
}

BOOL  GetSpyDllName(PSTR  buffer,  UINT  cBytes)

char  szBuffer[MAX_PATH] ;

PSTR  pszFilename;

//  Get  the  complete  path  to  this  EXE  -  The  spy  dll  should  be  in  the

//  same  directory.

GetModuleFileName(0,  szBuffer,  sizeof(szBuffer));

pszFilename  =  strrchr(szBuffer,  '\\');

if  (  !pszFilename  )

return  FALSE;

lstrcpy(pszFilename+1,  "APISPY32.DLL");

strncpy(buffer,  szBuffer,  cBytes);

return  TRUE;
}

 Figure  10-16
 The APfSPYLD. C  DLL  injection  routines.
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NOTES ON USING APISPY32

To spy on a program with  APISPY32, run the APISPYLD program.  In the
edit control,  type in a command  line, or  use the File... button  to  browse for
the executable.  Once the executable  name is entered,  click the  Run button.
The APISPYLD dialog will go away,  and the  selected program  should  begin
running.  After your target  program has completed,  there  should  be a file
with  a OUT extension  in the  same directory  as the executable.  Figure  10-17
shows a portion  of the output  from running APISPY32 on the Win32
CLOCK program.

KillTimer(HWND:000826F4,DWORD:00080001)

KillTimer  returns:  1

SetTimer(HWND:00026F4,DWORD:OOOOOOO1,DWORD:000001C2,  LPDATA:00000000)

SetTimer  returns:  1

CheckMenuItem(HANDLE:00S01EFS,DWORD:00000S08,DWORD:80000808)

CheckMenuItem  returns:  0

wsprintfA(LPSTR:80E3AD68,LPSTR:80DEE190:"%s  -  %s")

wsprintfA  returns:  F

SetWindowTextA(HWND:000026F4,LPSTR:88E3AD68:"Clock -  4/")

DefWindowProcA(HWND:000026F4,DWORD:0000000C,DWORD:80000000,DWORD:80E3AD68)

DefWindowProcA  returns:  0

SetWindowTextA  returns:  1

GetSystemMenu(HWND:000026F4,BOOL:80000800)

GetSystemMenu  returns:  1F68

AppendMenuA(HANDLE:00001F68,DWORD:00000800,DWORD:00000000,LPSTR:80000000)

AppendMenuA  returns:  1

 Figure  10-17
 CLOCK32 output from APISPY32.

Most  of the time,  a line in the OUT file for  a  function  call is immedi-
ately  followed  by a line with  the return  value from the function.  However,
this  isn't  always the case. Notice  (in Figure  10-17)  how the DefWindow-
ProcA function and return  lines are indented.  This  indicates that  the function
was called  during the execution  of the surrounding  function  (in this  case,
SetWindowTextA).  This particular  sequence makes  sense, as the  second
parameter  to DefWindowProc  (the message parameter)  is shown with  a
value  of 0xC.  Looking  up  the number  in WINUSER.H,  you'll  find  that
message  0xC  (12) is WM_SETTEXT.  Since the DefWindowProc  was called
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within  the call  to  SetWindowText,  it's  a  safe  assumption  that  SetWindow-
Text sent a WM_SETTEXT message  to  the program's window procedure,
and that  program  didn't  handle  the  message,  but simply passed it on to
DefWindowProc.  In this  output  from APISPY32,  there  was  only one level
of nesting.  It's  not  uncommon  to have  nested  functions  that  are 4 or  5 levels
deep,  especially during  the program's  shutdown  sequence  when  the main
window gets  a WM_CLOSE  message.

When looking  at  LPSTR parameters,  bear  in mind  that  the complete
string  may not  be shown.  Since garbage  strings  might  be passed as  buffers,  I
had  no  way to  know ahead  of time how many characters  to  display for each
LPSTR parameter.  The  solution  I decided  on was to  print  out  either the  first
10 characters  or  up  until  the  first NULL byte.  Also,  tabs,  carriage  returns
and  linefeeds are represented  by \t, \r, and \n,  respectively.  If I were  to  have
printed out the  raw characters,  the  lines in the  OUT file would  be formatted
improperly.

If you run APISPY32 under early versions of Win32s (versions prior to
Win32s  1.2), you'll get numerous RIPs if you run the debug  16-bit USER.EXE.
This  is a  bug in Win32s  related to  message  translations  between Winl6  and
Win32.  In the transition  from Winl6  to  Win32,  several messages  were
renumbered.  The Win32s  thunking  layer needs  to convert  the  numbers  of
certain  messages  when  a  message passes  between  16- and  32-bit  code. To
know which  messages  to  translate,  Win32s  needs  to  know which  class the
window  is for,  so Win32s  calls  GetClassName  in USER.EXE.  The  problem
arises  when a  message  with an HWND  of 0 is encountered.  The debugging
version  of GetClassName  RIPs if a  0 HWND  is passed to  it.  Where  does
our  spy program get messages  with HWNDs  of 0 ? As I described  earlier,  the
Win32s  WaitForDebugEvent  function  posts  RegisterWindowMessage-
(W32S_Debug_Msg)  messages to  the  debugger's  message  queue.

If you  build the APISPY32 program  using Borland  C++, you won't  have
much luck when  spying on multithreaded  programs.  The Borland  C++ mul-
tithreading  library  uses per-thread  data  for certain  functions  (in APISPY32,
the function of interest is fprintf).  In the Borland runtime library, the code
doesn't  pay attention  to  the DLL  THREAD_ATTACH  notifications.
Instead,  the  runtime  library  relies on the program's  call  to  the _beginthread
function  to  know when to  allocate  its per-thread  data.  Unfortunately,  this
method  breaks  down  when  a thread  is created  in a  different  module than
yours.  In the case  of our  spy program,  the  Borland  runtime  library  code  in
APISPY32.DLL won't  see beginthread  calls  made  in the  EXE being spied
on.  Borland  has acknowledged  this  as a  bug,  but it still  hasn't  managed  to
fix this  problem as of BC++ 4.5.
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INTERCEPTING FUNCTIONS IN
YOUR OWN PROGRAMS

At the  beginning  of the chapter,  I promised  you  a method  by which  you
could  use the  APISPY32 function interception  technique  in your  own code.
The  code to  do  this  is in HOOKAPI.C,  which  is shown  in  Figure  10-18.  The
HooklmportedFunction  in HOOKAPI.C  allows  you  to  intercept  all the calls
that  one module  makes  to  a given  function  in another  module.  For  example,
if you  use  a DLL called  FOO.DLL,  you  could  intercept  all  of FOO.DLL's
calls to the MessageBeep routine  (even if you don't  have source for FOO.DLL}.
If you  also  wanted  to  intercept  MessageBeep  calls made  by BAR.DLL and
BAZ.DLL,  you'd  also  need to call the  HooklmportedFunction  routine  once
for  each  of those DLLs.

Another  important  point  to  remember  is that  this  interception  technique
only intercepts  imported functions  within your own  process.  It can't  intercept
APl  function calls made  by other  processes.  In  other  words,  you can  only
intercept  calls that  your  EXE and  its DLLs  make.  You couldn't  use it to do
something like intercepting  all calls  that  WINFILE  makes  to  OpenFile.  Your
interception  code won't  be mapped  into  the  address  space  of the  WINFILE
process.

The  first  parameter  to  HooklmportedFunction  is the  module  handle  of
the  EXE or DLL that  you want  to  intercept  calls from  (in the above  example,
FOO.DLL).  The  second  parameter  is the  module  name  of the  module that
contains  the  function  you  want  to  intercept.  The  third  parameter  to  Hook-
ImportedFunction  is the  name  of the  function  you want  to  intercept.  The
final  parameter  is the  address  of the  function that  you  want  called.  Hook-
ImportedFunction  returns  the original  address  of the  function  you just  inter-
cepted.  You can use this address  to chain  on to the original  code  if necessary.
Using the  above  example,  the  call  to  HooklmportedFunction  looks like this:

pfnOriginalProc  = HookImportedFunction(GetModuleHandle("BAR.DLL"),
"USER32.DLL",

"MessageBeep",
MyMessageBeepHandler  );

//  Macro  for  adding  pointers/DWORDs  together  without  C  arithmetic  interfering.
#define  MakePtr(  cast,  ptr,  addValue  )  (cast)((DWORD)(ptr)+(DWORD)(addValue))

DWORD  GetModuleBaseFromWin32sHMod(HMODULE  hMod);  //  Prototype  (defined  below)
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PROC  WINAPI  HookImportedFunction(

HMODULE  hFromModule,
PSTR  pszFunctionModule,

PSTR  pszFunctionName,

PROC  pfnNewProc
)

PROC  pfnOriginalProc;
PIMAGE_DOS_HEADER  pDosHeader;
PIMAGE_NT_HEADERS  pNTHeader;

PIMAGE_IMPORT_DESCRIPTOR  pImportDesc;

PIMAGE_THUNK_DATA  pThunk;

//  Module  to  intercept  calls  from.

//  Module  to  intercept  calls  to.

//  Function  to  intercept  calls  to.

//  New  function  (replaces  old  function).

if  (IsBadCodePtr(pfnNewProc)  )  //  Verify  that  a  valid  pfn  was  passed.

return  0;

//  First,  verify  the  module  and  function  names  passed  to  use  are  valid.

pfnOriginalProc  = GetProcAddress(GetModuleHandle(pszFunctionModule),

pszFunctionName  );

if  !pfnOriginalProc  )

return  0;

if  (GetVersion()  &  0xC0000000)  ==  0x80000000  )

pDosHeader  =

(PIMAGE_DOS_HEADER)GetModuleBaseFromWin32sHMod

else

pDosHeader  =  (PIMAGE_DOS_HEADER)hFromModule;

//  Win32s

hFromModule);

//  other

//  Tests  to  make  sure  we're  looking  at  a module  image  (the  MZ  header).

if  (  IsBadReadPtr(pDosHeader.  sizeof(IMAGE_DOS_HEADER))  )

return  0;

if  (  pDosHeader->e_magic  != IMAGE_DOS_SIGNATURE  )

return  0;

//  The  MZ  header  has  a  pointer  to  the  PE  header.

pNTHeader  =  MakePtr(PIMAGE_NT_HEADERS,  pDosHeader,  pDosHeader->e_lfanew);

//  More  tests  to make  sure  we're  looking  at  a  "PE"  image.

if  (  IsBadReadPtr(pNTHeader,  sizeof(IMAGE  NT  HEADERS))  )

return  0;

if  (  pNTHeader->Signature  !=  IMAGE_NT_SIGNATURE  )

return  0;

//  We  know  have  a  valid  pointer  to  the  module's  PE  header.  Now  go

//  get  a  pointer  to  its  imports  section.

pImportDesc  = MakePtr(PIMAGE_IMPORT_DESCRIPTOR,  pDosHeader,

pNTHeader->OptionalHeader.
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DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].

VirtualAddress);

//  Bail  out  if  the  RVA  of  the  imports  section  is  0  (it  doesn't  exist).

if  (  pImportDesc  ==  (PIMAGE_IMPORT_DESCRIPTOR)pNTHeader  )

return  0;

//  Iterate  through  the  array  of  imported  module  descriptors,  looking

//  for  the  module  whose  name  matches  the  pszFunctionModule  parameter.

while  (  pImportDesc->Name  )
{

PSTR  pszModName  = MakePtr(PSTR,  pDosHeader,  pImportDesc->Name);

if  (  stricmp(pszModName,  pszFunctionModule)  ==  0  )

break;

pImportDesc++;  //  Advance  to  next  imported  module  descriptor.

//  Bail  out  if we  didn't  find  the  import  module  descriptor  for  the

//  specified  module,  pImportDesc  >Name  will  be  nonzero  if we  found  it.

if  (  pImportDes ->Name  ==  0  )

return  0;

//  Get  a pointer  to  the  found  module's  import  address  table  (IAT),

pThunk  = MakePtr(PIMAGE_THUNK_DATA,  pDosHeader,  pImportDesc->FirstThunk);

//  Blast  through  the  table  of  import  addresses,  looking  for  the  one

//  that  matches  the  address  we  got  back  from  GetProcAddress  above.

while  ( pThunk_>ul.Function)
{

if  (  pThunk->ul. Function  ==  (PDWORD)pfnOriginalProc)
{

//  We  found  it!  Overwrite  the  original  address  with  the

//  address  of  the  interception  function.  Return  the  original

//  address  to  the  caller  so  that  they  can  chain  on  to  it.

pThunk ->ul.Function  =  (PDWORD)pfnNewProc;

return  pfnOriginalProc;
}

pThunk++;  //  Advance  to  next  imported  function  address.

return  0;  //  Function  not  found.
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typedef  DWORD  ( _ _stdcall  *XPROC)(OWORD);

//  Converts  an  HMOOULE  under  Win32s  to  a  base  address  in  memory.

DNORD  GetModuleBaseFromWin32sHMod(HMODULE  hmod)
{

XPROC  ImteFromHModule,  BaseAddrFromImte;
HMODULE  hModule;

DWORD  imte;

hModule  =  GetModuleHandle("W32SKRNL.DLL");
if(  !hModule  )

return  0;

ImteFromHModule  =  (XPROC)GetProcAddress(hModule,  "_ImteFromHModule@4");
if  (  !ImteFromHModule  )

return  0;

BaseAddrFromImte  =  (XPROC)GetProcAddress(hModule,

if  (  !BaseAddrFromImte  )

return  0;

"_BaseAddrFromImte@4");

imte  =  ImteFromHModule(  (DWORD)hMod);
if  (  !imte  )

return  O;

return  BaseAddrFromImte(imte);

 Figure  10 - 18

 HOOKAPI. C lets you intercept function calls from your own programs.

Your function  that's  called  instead  of  the original  APl  function  should  be
prototyped  exactly the same as the function  you're  intercepting.  This  allows
you  to  access  all  the  function's  parameters,  and causes  the compiler  to  pop
the correct  number  of  bytes  off the stack  when  the function  returns.  If you
want  to  pass  control  to  the  original  API function  as  part  of your handling,
call  through  the function  pointer  returned  by HookImportedFunction.
Typically,  you'll  do  this  as the  last thing in your handler function,  and you'll
return  whatever  value  the original  API function  returns  to  your  code.

To demonstrate  the  use of  HookImportedFunction,  I've  written  the
SimonSez  program.  The program  is  extremely  simple,  and consists  of  inter-
cepting  SimonSez's  calls  to  MessageBox  and prepending  the  string  "Simon
Sez:"  on  to  the  message  to  be  displayed.  Since  SimonSez  has  previously
intercepted  the  MessageBox  function,  the  installed  handler  function
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(MyMessageBox)  will be called, rather than the MessageBox in USER32.DLL.
Afterward  MyMessageBox  calls  the original  MessageBox function in
USER32.DLL.  The SIMONSEZ.C program is shown in Figure  10-19.

//.. . . . . . . === . . . . . . === . . . . . === . . . . ===

//  SIMONSEZ  Matt  Pietrek  1995

//  FILE:  HOOKAPI.C
//::===== .... ==== ..... ===: .... :===:=

#include  <windows.h>

#include  <malloc.h>

#include  "hookapi.h"

//  Make  a  typedef  for  the  WINAPI  function  we're  going  to  intercept

typedef  int( __stdcall  *MESSAGEBOXPROC)(HWND,  LPCSTR,  LPCSTR,  UINT);

MESSAGEBOXPROC  PfnOriginalMessageBox;  //  For  storing  original,  address

//

//  A  special  version  of  MessageBox  that  always  prepends  "Simon Sez:"

//  to  the  text  that  will  be  displayed.
//

int  WINAPI  MyMessageBox(  HWND  hWnd,  LPCSTR  lpText,

LPCSTR  lpCaption,  UINT  uType  )

{
int  retValue;  //  Real  MessageBox  return  value.

PSTR  lpszRevisedString;  //  Pointer  to  our  modified  string

//  Allocate  space  for  our  revised  string  -  add  40  bytes  for  new  stuff.

lpszRevisedString  =  malloc(lstrlen(lpText)  +  40  );

//  Now  modify  the  original  string  to  first  say  "Simon  Sez:  ".

if  (  lpszRevisedString  )

{
lstrcpy(lpszRevisedString,  "Simon  Sez:  ");

lstrcat(lpszRevisedString,  lpText);
}

else  //  If  malloc()  failed,  just

lpszRevisedString  =  (PSTR)lpText;  //  use  the  original  string.

//  Chain  on  to  the  original  function  in  USER32.DLL.

retValue  =  PfnOriginalMessageBox(hWnd,lpszRevisedString,lpCaption,uType):

if  (  lpszRevisedString  !=  lpText  )  //  If  we  successfully  allocated  string

free(  lpszRevisedString  );  //  memory,  then  free  it.
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return  retValue; //  Return  whatever  the  real  MessageBox  returned.

int  APIENTRY  WinMain(  HANDLE  hInstance,  HANDLE  hPrevInstance,

LPSTR  lpszCmdLine,  int  nCmdShow  )
{

MessageBox(0,  "MessageBox  Isn't  Intercepted  Yet",  "Test",  MB_OK);

//  Intercept  the  calls  that  this  module  (TESTHOOK)  makes  to

//  MessageBox()  in  USER32.DLL.  The  function  that  intercepts  the

//  calls  will  be  MyMessageBox(),  above.

PfnOriginalMessageBox  =  (MESSAGEBOXPROC)  HookImportedFunction(

GetModuleHandle(0),  //  Hook  our  own  module

"USER32.DLL",  //  MessageBox  is  in.  USE32.DLL

"MessageBoxA",  //  Function  to  intercept.

(PROC)MyMessageBox);  //  Interception  function.

if  (  !PfnOriginalMessageBox  )  //  Make  sure  the  interception  worked
{

MessageBox(0,  "Couldn't  hook  function"  0,  MB_OK)

return  0;

}

/ /  !II!!!!!!!!?!!!!?!!!!!!!  WARNING  II!!..!!!!!!!!!...!!!!!!!!!!!!..!!

//  When  built  with  optimizations,  the  VC++  compiler  loads  a

//  register  with  the  address  of  MessageBoxA,  and  then  makes  all

//  subsequent  calls  through  it.  This  can  cause  the  MessageBox  call

//  below  to  not  go  through  the  Import  Address  table  that  we  just  patched.

//  For  this  reason,  the  .MAK  file  for  this  program  does  not  use  the

//  /02  or  /01  switches.  This  usually  won't  be  a  problem,  but  it

//  was  in  this  particularly  simple  program.  ACCKK!!!!

//  Call  MessageBox  again.  However,  since  we've  now  intercepted

//  MessageBox,  control  should  first  go  to  our  own  function

//  (MyMessageBox),  rather  than  the  MessageBox()  code  in  USER32.DLL.

MessageBox(0,  "MessageBox  Is  Now  Intercepted",  "Test",  MB_OK);

return  0;

Figure  1 O- 19
This simple SIMONSEZ. C program demonstrates the use of HooklmportedFunction.
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How does HookImportedFunction  work?  As I described  earlier, when a
Win32 program calls a function  imported  from another  module,  the call
actually  transfers control  to a JMP DWORD  PTR [XXXXXXXX]  thunk.
The DWORD  at memory location XXXXXXXX contains  the  address of
the  imported  function  (for example, the  address of MessageBox  in
USER32.DLL).

All the HooklmportedFunction code does is search through the  import
address  table to find the particular DWORD with  the address  of the  function
you want  to  intercept.  Once it finds that  location,  HooklmportedFunction
overwrites the address  of the  imported  function  with  the  address of your
handler  function.

The first parameter  to  HooklmportedFuction is an HMODULE identi-
fying the EXE or DLL that  you want to  intercept calls from.  In Windows
NT and Windows  95,  an HMODULE is nothing  more than the  linear
address where the module  begins  in memory.  This address is known  as the
module's  base address.  Since Win32  uses memory mapped  files, the memory
at the module's  base address is a DOS MZ header (refer to the IMAGE_DOS_
HEADER in WINNT. H). Using the value in the e_lfanew field, Hooklmported-
Function  locates  the address of the PE header  (the IMAGE_NT_HEADERS
structure  in WINNT. H).  At the  end of the IMAGE_NT_HEADERS struc-
ture  is an  array  of structures that contain  addresses  for important areas  in
the  module.  Of particular  interest to  our HooklmportedFunction  routine  is
the  start  of the import  address table.  This table  (which  typically resides in
the  .idata  section of the  module) contains  information  about the  functions
imported  by this  module.  Somewhere  in the  import  address table  is the
DWORD that HooklmportedFunction  needs to  overwrite with  the  address
of your handler  function.

At the  beginning of the  import  address table  is an array  of IMAGE
IMPORT_DESCRIPTOR  structures  (again,  see WINNT. H). There  is one of
these  structures  for each DLL that  this module  imports  functions  from. The
end of the IMAGE_IMPORT_DESCRIPTOR array is indicated by an IMAGE_
IMPORT_DESCRIPTOR  whose  fields are all 0s.  Each IMAGE_IMPORT_
DESCRIPTOR has a pointer  to  the name of the associated DLL, as well as a
pointer to the import address table  (the array of function addresses mentioned
earlier).  HooklmportedFunction  walks through the IMAGE_IMPORT_
DESCRIPTORs  until  it finds the  one whose  name matches the pszFunction-
Module parameter  passed  to  HooklmportedFunction.  The routine  uses the
information  in the IMAGE_IMPORT_DESCRIPTOR to  create  a pointer to
the import  address table.
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Near  the  beginning  of HookImportedFunction,  the code called  GetProc-
Address  to  get the  address  of the  function  we want  to  intercept  calls  to.
That  address  should  be among  the  addresses  in the  import  address  table  we
just  located.  The  HooklmportedFunction  code walks  through  the  array  of
addresses  until  it  finds the  slot  with  an  address  identical  to  what  GetProc-
Address  returned.  All that  remains  is to  copy  the new  function's  address  (the
pfnNewProc  parameter)  into  that  slot and  return  the  original  function's
address.

SUMMARY

Win32  programming provides a whole  new set of challenges  for programmers
from the Winl6  environment.  In general, Win32  system programming  is more
restrictive  and  complicated  because  of issues  such  as separate  addresses  and
multiple  threads  of execution.  In this  chapter,  we've  met these issues  head-on
in  building an API spy program  and in creating a general-purpose  mechanism
for  intercepting  APl  function  calls.  We've  also  seen that,  despite  Microsoft's
claim that  "There's  just  one Win32  API,"  there  are occasional  differences
when  you  get  down  to the  details.  However,  by understanding these  issues,
you  can write  industrial-strength  programs  that  work  across  all the  Win32
platforms.



THE UNDOCUMENTED

KERNEL32.DLL
IMPORT LIBRARY   A

T
he  first  100  entries  in the  Windows  95  KERNEL32.DLL
exports  table  are exported  by ordinal  only.  In  contrast,  all

normal Win32 APl functions that Microsoft provides are exported
both  by name  and  by ordinal.  Exporting  a function  by name  is
what  allows  you  to pass  a function  name  to  GetProcAddress
and  get  back  the  address  where the  function can  be called.

Clearly, since Microsoft didn't export these first  100 functions
by  name,  it  didn't  intend  for  you  to  call  or  use  them.  Put
another  way,  these  are  "undocumented"  functions.  As we  all
know,  undocumented  functions  can  be  extremely  useful.  In
fact,  sometimes  the only way you  can  accomplish a particular
goal  is  to  use  an  undocumented  function.  However,  since
these  functions  aren't  exported  by  name,  you  can't  just  call
GetProcAddress  and  use  them  as  you  might  expect.

Normally  in a situation  like this,  determined hackers
wouldn't  be deterred  because  they know that  GetProcAddress
can be passed a function's  export  ordinal  rather  than  its name.
Alas,  as  you  saw  in Chapter  3,  Microsoft's  KERNEL32  coders
also  blocked  off this  backdoor  approach.  The  GetProcAddress
function  intentionally  fails  any calls that  attempt  to  look  up
addresses  in KERNEL32.DLL by their ordinal value.  Interestingly,
it's  only  KERNEL32.DLL  that  GetProcAddress  doesn't  allow
ordinal  lookups  on,  so  it's apparent  that  Microsoft  is trying  to
prevent people from using these  100 functions  in KERNEL32.DLL.
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Never fear. As you've seen elsewhere in this book, these artificial restrictions

on calling undocumented KERNEL32.DLL functions  can be overcome.  One
approach  is to write your own GetProcAddress function.  It's really not hard
to do,  since the format of a loaded PE module in memory is well documented.
Chapter  3 even gives the pseudocode for GetProcAddress  if you want to see

how Windows  implements  it.
The problem  with the  "roll-your-own"  GetProcAddress  approach  is

that it's a pain to  have to call  GetProcAddress  and then save away its return
value  in a function pointer.  A much simpler  way  to  use these  undocumented
functions  is to  use an import  library that  includes  these functions.  We all
know that Microsoft  isn't going to willingly  hand over such an import
library. Thus,  this appendix  provides you with the tools  to create  your  own
import  library for use with Visual  C++ or other Microsoft  compilers/linkers.

Figure A-1  shows  K32LIB.DEF,  which contains  most  of the  100  or so
exported,  undocumented  KERNEL32.DLL  functions.

LIBRARY  KERNEL32

EXPORTS

VxDCall0@0  @1

VxDCall1@8  @2

VxDCall2@12  @3

VxDCall3@16  @4

VxDCall4@20  @5

VxDCall5@24  @6

VxDCall6@28  @7

VxDCall7@32  @8

CharToOemA@8

CharToOemBuffA@12

OemToCharA@8

OemToCharBuffA@12

LoadStringA@16

wsprintfA@8

wvsprintfA@4

CommonUnimpStub@0

GetProcessDWORD@8

@10  : USER32's  version  calls  straight  here.

@11  ; USER32's  version  calls  straight  here.

@12  ; USER32's  version  calls  straight  here.

@13  ; USER32's  version  calls  straight  here.

@14  ; USER32's  version  calls  straight  here.

@15  ; USER32's  version  calls  straight  here.

@16  ; USER32's  version  calls  straight  here.

@17  ;  Non  implemented  APIs  call  here.

@18

DosFileHandleToWin32Handle@4

Win32HandleToDosFileHandle@4

DisposeLZ32Handle@4

GDIReallyCares@4

GlobalAlloc16@8

GlobalLock16@4

@20
@21

@22

@23

@24

@25
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GlobalUnlock16@4  @26

GlobalFixl6@4  @27

GlobalUnfix16@4  @28

GlobalWire16@4  @29

GlobalUnWire16@4  @30

GlobalFree16@4  @31

GlobalSize16@4  @32

HouseCleanLogicallyDeadHandles@0  @33

GetWin16DOSEnv  @34

LoadLibrary16@4  @35

FreeLibrary16@4  @36

GetProcAddress16@8  @37

AllocMappedBuffer  @38

FreeMappedBuffer  @39

OT 32ThkLSF  @40

ThunkInitLSF@20  @41

LogApiThkLSF@4  @42

ThunkInitLS@20  @43

LogApiThkSL@4  @44

Common32ThkLS  @45

ThunkInitSL@20  @46

LogCBThkSL@4  @47

ReleaseThunkLock@4  @48

RestoreThunkLock@4  @49

W32S_BackTo32  @51

GetThunkBuff@0  @52

GetThunkStuff@8  @53

K32WOWCallback16@8  @54

K32WOWCallback16Ex@20  @55

K32WOWGetVDMPointer@12  @56

WOWGlobalAlloc16@8

WOWGlobalLock16@4
WOWGlobalUnlock16@4

WOWGlobalFree16@4

WOWGlobalAllocLock16@12

WOWGlobalUnlockFree16@4

WOWGlobalLockSize16@8

WOWYield16@0

WOWDirectedYield16@4

K32WOWGetVDMPointerFix@12

K32WOWGetVDMPointerUnfix@4

K32WOWGetDescriptor@8

IsThreadId@4

K32RtlLargeIntegerAdd@16

K32RtlEnlargedIntegerMultiply@8

K32RtlEnlargedUnsignedMultiply@8

@59
@60

@61

@62

@63

@64

@65

@66

@67

@68

@69

@70

@71

@72

@73

@74
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K32RtlEnlargedUnsignedDivide@16

K32RtlExtendedLargeIntegerDivide@16

K32RtlExtendedMagicDivide@20

K32RtlExtendedIntegerMultiply@12

K32RtlLargeIntegerShiftLeft@12

K32RtlLargeIntegerShiftRight@12

K32RtlLargeIntegerArithmeticShift@12
K32RtlLargeIntegerNegate@8

K32RtlLargeIntegerSubtract@16

K32RtlConvertLongToLargeInteger@4
K32RtlConvertUlongToLargeInteger@4

@75

@76

@77

@78

@79

@80

@81

@82

@83

@84

@85

FT_PrologPrime  @89

QT_ThunkPrime  @90

PK16FNF@0  @91

GetPK16SysVar@0  @92

GetpWin16Lock@4  @93

_CheckNotSysLevel@4  @94

ConfirmSysLevel@4  @95

_ConfirmWin16Lock@O  @96

EnterSysLevel@4  @97
LeaveSysLevel@4  @98

Returns  a pointer  to the Win16Mutex.

Acquire  a mutex  (e.g., Win16Mutex).

Release  a mutex  (e.g., Win16Mutex).

I Figure A-1
You can use these undocumented  KERNEL32. DLL functions  to create  your own  import

 library  to  use with  Visual  C++  or  other compilers  and  linkers.

You've  probably  noticed  that  I haven't  included  prototypes  for  all  the
undocumented  functions  listed  in  Figure  A-1.  Although  it  would  be  possible
to  write  an  entire  Undocumented Windows-like  chapter  that  prototypes  and
documents  these  functions,  that task isn't  the purpose  of  this  book.  No  doubt
these  functions  will  be documented  and described  in the future  in some  other
text.  Note  that certain  of  the  functions,  such  as VxDCall0@0,  are referenced
and used elsewhere  in this  book,  and  that you  can easily  figure  out the para-
meters  and actions  of some  of the  other  functions.

K32LIB.DEF and K32LIB.LIB  (for Microsoft VC++)  are included  on the
disk  that accompanies this  book;  you'll  find them in the APPENDIX  directory
in the source tree for the files.  Normally,  the Microsoft linker creates  an import
library for a DLL when it links the DLL.  However,  the Microsoft LIB.EXE
program  can create  an import library from a .DEF file.  To rebuild the import
library from K32LIB.DEF,  you can  use the MAKE.BAT in the same directory
as K32LIB.DEE  MAKE.BAT is nothing more than the following:

lib  /MACHINE:IX86  /DEF:K32LIB.DEF
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To use K32LIB.LIB  in your project,  you should place it immediately  after
KERNEL32.LIB  in the list of import  libraries.  This  forces the Microsoft  linker
to  place  the  code  and  data  from  K32LIB.LIB  contiguous  with  the  code
and  data  brought  in  from  KERNEL32.LIB.  You'll  see  two  references  to
KERNEL32.DLL  in  the  resulting  executable.  Don't  be  too  concerned,
though.  You're  getting  two  IMAGE_IMPORT_DESCRIPTOR  headers
for  KERNEL32.DLL,  but  not  two  copies  of  all  the  data  that  describes
each  imported  function.  (To  explain  what  the  Microsoft  linker  is doing
at  this  level  would  be  a  long  story,  so  don't  ask...)

Borland C++ users can take K32LIB.DEF  and run it through IMPORT. LIB
to create an import  library in the proper format for TLINK. The command line
in this case is:

IMPLIB  K32LIB.LIB  KB2LIB.DEF

You can  place  K32LIB.LIB anywhere  in the import  library  list; TLINK
doesn't  care  about  the  order  in which  it appears.

As you've  seen in many  of the  other  programs  throughout  this  book,
K32LIB.LIB  is invaluable  for  calling Windows  95  functions  that  Microsoft
doesn't  want  you  to  use.  Of course,  you  should  avoid  using  undocumented
functions  if that's  at  all possible.  One  very good  reason  for this  is that  if you
do  use undocumented  functions,  your programs  won't  run  under Windows
NT  and  may  break  in  future  versions  of Windows.  The  programs  in this
book  are tied  to Windows  95  and  are explicitly  designed  to  show  what's
really  happening  in Windows  95.  There was  no way for  me to  avoid  using
these  functions  in this  book's  programs.

If you  absolutely must  use these  functions  in your  code,  put  version
tests  and  other  sanity checks  in your  code  so that  your  program  fails  grace-
fully.  To  do  this  (while  avoiding  loadtime  failures),  you'll  have  to  use
GetProcAddress  rather  than  calling the functions  directly.  Such are the risks
of working on  the  fringe of the  documented  operating  system APIs.
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BeginServiceTable,  678
beginthread  method, 745
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BLOCKDEV, 39
BlockedOnID,  456
BlockHandle, 455
_BlockOnID, 439-440
BlockState,  455
BM_GETSTATE,  29
BN_CLICKED, 228
bootup  sequence, 17-23
BoundsChecker  (BCKHW), 623,634, 635,640,

686, 703
BP register, 647, 651
braces ({}), 663
branch statements, 645-646
BreakEvent,  119
BreakHandlers, 119
breakpoints, 675,688
BreakSem, 119
BreakThreadlD,  119
BreakType,  119
BSEXCPT.H,  159
.bss section, 580
BuildAPIStub,  713
BUILDFSR.BAT, 209
Bunny_351,447
Button class, 233

C
Cairo, 14, 556
CALC.EXE, 75, 77, 469-471,521,532,  625-626
CalculateNewPriority, 141-142,  143
CB_SETEDITSEL, 30
cbCIsExtra,  226
cbFileName,  75
cbFileName2,  77
cbModName, 76
cbModName2, 77
cbWndExtra, 226
cClsWnds, 225
CCommonReturnPoint,  725,728
CDPSCSI, 39
cHandles, 132
ChangeBits,  220
CheckSum, 339, 567
ChecksumHeapBlock,  335, 351-352
classAtom,  231
ClassFirst,  27, 234
classNameAtom,  225
ClassNext,  27, 234
CL.EXE, 13
Client  Reg_Struc, 430

CLOCK32, 744
CLOCK.EXE, 601,637-640,  667-672
cMsgs, 219
cNotTermThreads,  109
CodeView, 574, 584-585,606,  615,632, 673
COFF (common object file format}, 3, 49, 555-620

debug information,  611-613
.LIB files, basic description of, 615-620
line-number  tables, 613-614
.OBJ files, PE files and, difference between,

614-616
section flags, 575-576
spelunking and, 633
symbol tables, 605-610

colon (:), 199
ComboBox class, 233
ComboLBox class, 233
COMCTL32.DLL, 60, 234
COMDLG32.DLL,  38
COMMAND.COM, 21-22
COMMCTRL.DLL, 60
COMMON.C,  610, 614-615
Common Thunk,  190-191
CommonUnimpStub,  329, 377, 378
compatibility, backward, 38, 54, 187
CONFIGMG, 39
CONFIG.SYS, 18, 21
ContinueDebugEvent(), 695-696,  735
CONTEXT_CONTROL,  150
_ContextCreate, 310-311,439-440
CONTEXT_DEBUG_REGISTERS,  150
_ContextDestroy, 310-311,  439-440
CONTEXT_FLOATINGPOINT,  150
ContextHandle,  454
CONTEXT_INTEGER,  150
CONTEXT_SEGMENTS,  150
_ContextSwitch,  306, 310-311,439-440
ContinueDebugEvent, 62
"copy on write" mechanism, 290-291,298-299
_CopyPageTable,  308
CopyTasklnformation,  545,546-547
CR 3 register, 303,304
CR command, 305
crashes

exception handling and, 56-57
modules and, 78
Win32s and, 9
in Windows NT, vs. Windows 95, 13-14

CreateDirectory,  67
CreateEvent,  46
CreateFileMapping, 51
CreateProcess,  42, 731
CREATE_PROCESS_DEBUG_EVENT, 61



CreateRemoteThread,  692
CreateSemaphores,  47
CreateThread,  44
CREATE_THREAD_DEBUG_EVENT,  61
CreateToolhelp32Snapshot,  62-63
CreateWindow,  526, 635,636, 661
CreateWindowEx,  234
CreateWindowExA,  597
CreateWindowExW,  597
cReference, 106, 128
cRing0Threads,  109
CRITICALSECTION, 46, 48, 110, 337, 369,

388, 464
criticalSection,  337, 388
crst, 110
CRTDLL.DLL,  688
.CRT section, 580
cSections, 76
CS register, 188, 278
cThreads,  109
CTRDLL.DLL,  331,420
ctrlID, 230
CurrentSS, 133
CurTDB, 217, 459, 524
cUsage, 77
CVDUMP, 632, 633

D
.data section, 579-580
Date[12], 618
DBG2MAP, 632
DbgPrint(), 631
DBWIN, 61
DDE (Dynamic Data Exchange), 622
.debug$S section, 585
.debugST section, 585
DebugContext,  130
DEBUGEVENT, 60-63
DebuggerThread,  133
debugging. See also disassembly;  spelunking;

spy programs
the "copy on write" mechanism and, 290-291
the debug version of Windows and, 681-682
exception handling and, 56-57
heap functions and, 335
memory management and, 290-291,314,  327,

329, 335, 411-414
overview of, 60-63
PE/COFF formats and, 583-585,611-613
virtual functions and, 314, 327, 329

DebugLoop, 730

DEBUG_ONLYTHIS_PROCESS, 731-732
DEBUGSYS.INC, 453
DEC (Digital Equipment Corporation), 3
DecodeParamsToString,  719-720
DefaultHeap,  107
.DEF files, 78, 288, 502-503,631,687
DefWindowProc, 245,246
DefWindowProcA, 744
delete function, 330
DeleteObject,  263
delta, definition of, 603
DeltaPriority, 134, 139
DemandInfoStruc,  442
Desktop class, 233
DesktopWndProc,  244-247
development considerations, overview of, 13-14
DeviceIoControl,  40, 431
DGROUP, 26-27, 34-35, 50, 67

memory management and, 280, 294-295,298
USER/GDI subsystems and, 188, 196-200,

204, 211-212, 225,231-232,  239,
258-260, 264

DialogBox,  503-505
Dialog class, 233
.directive section, 585
dir/AH,  17-18, 20
disassembly,  622, 642-672
DisDoc, 642-643
DispatcherContext,  161
DispatchMessage,  702, 703,736
DisplatchRITInput,  216
DLLENTRYPOINT, 491
DllMain(),  693,703,  706
dollar sign ($), 585-586
DoSomething(), 653,654
DosPDBSeg, 456
DragListBoxes,  59
Dr. Watson, 158
DS register, 52, 188, 193,278,504-505,540
DTA (Disk Transfer Area), 534
DumpAuxSymbols(), 610
DUMPBIN, 558, 623-624, 626, 629-633,

643,667
DumpExportsSection,  598
DumpSecondLinkerMember,  620
dwExStyleFlags, 230
dwFlags, 230
dwMemCommitted,  207
dwSize, 336, 388
dwStyleFlags, 230
dwTotaiFree,  207
DX register, 537
DYNAPAGE, 39
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E
EAX register, 188, 430, 434, 438, 701
.edata section, 581,598
Edit class, 233
EH_EXIT_UNWIND,  162
EH_UNWINDING,  161
EIP register, 126, 302, 434
EM_SETRECT, 30
EMF (Enhanced Metafile) support, 263,270
EmulatorData,  133
EmulatorSelector,  132
EnterCriticalSection, 48, 337
EnterSysLevel,  139, 238
EntProcAddress,  517, 519-521
entry tables, 480-481,499-501
EnumChildWindows, 237
EnumTaskWindows, 522
EnumWindows, 237
ENVIRONMENT_DATABASE,  117-122
EnvironSelector, 113
ERROR_INVALID_PARAMETER, 120
ErrorMode,  113
EstablishFrame, 161
events, as synchronization objects, 46-47
Excel, 622
Exceptl6List,  133
EXCEPTION_BREAKPOINT,  735
ExceptionCount,  456
EXCEPTION_DEBUG_EVENT, 61,696,

735,739
EXCEPTION  DISPOSITION,  160-161
exception handling, structured. See SEH

(structured exception handling)
EXCEPTION_RECORD,  161
EXCPT.H,  160
Exec_PM_Int,  424, 450
EXEHDR, 503,623,624,  625,628
EXESIZE, 633
EXEUTIL, 270
EXIT_PROCESS_DEBUG_EVENT,  61, 62
EXIT_THREAD_DEBUGEVENT,  61
.EXP files, 581
Explorer, 21, 67, 204, 245,472

About dialog box, 202-203
TDB and, 530
WNDPROC  and, 213

EXPLORER.EXE,  530, 593
exporting  functions

definition of, 480
export  address tables and,  86
PE files and, 593-598

expWinVer, 220
extralnfo,  220, 223

F
FARPROC, 540
fastcall convention, 654
fFileApisAreOem, 117
File... button,  730, 731
FileAlignment, 566
file-dumping tools, 622, 624-633
Filter... button,  467
FindClose, 450-451
FindExeFile, 506
FindExeInfo, 506, 509-510
flat memory model, 278-279
.FLT files, 467
FOO.DLL,  78, 289, 746
ForwarderChain,  587
FREE_LIST_HEADER_DEBUG,  388
FREE_LIST_HEADER_RETAIL,  336
FREECALL,  307
freelistArray[4], 336, 388
FreeRing0Callgate, 302
FSR (free system resources), 35, 67, 202-217,

244-245,331
FS register, 136-137,  191
FSR32, 209-211
FSR32.C, 210-211
function(s)

GDI, available for Win16 applications,
270-271

heap, 329-411
identifying, 646-649
importing/exporting,  86, 480, 586-598
intercepting, in your programs, 746-753
module-related,  505-521
return values, 649, 701-705
task-related, 536

G
GDI, 7-10,  12,  15, 67. See also GDI.EXE;

GDI32.DLL
32-bit heaps and,  196, 200, 201
basic description of, 33-34
free system resources and, 202-217
functions, available for Win16 applications,

270-271
modules, 260-271
objects, 263-269
subsystems,  185-272
Win16Mutex  and, 31-33
Windows 95 design flaws and, 64



GDI.EXE, 10-11,  33-34, 36, 195-196, 204, 260,
264-266,  270, 488, 625-626

GDI32.DLL, 7,  10, 33-34,  38, 260, 262, 590
GetObjectType and, 266-269
memory management and, 284, 297
spy programs and, 709

GDIReallyCares, 182, 183
GetActiveWindow, 241-242,  250-252
GetATaskSomehow, 539
GetAtomNameW,  627
GetCapture,  241-242,  250-252
GetClassName, 745
GetCommandLineA,  119-120
_GetCurrentContext,  310-311,  439-440
GetCurrentDirectoryA,  163-166
GetCurrentPDB, 522, 533
GetCurrentProcess, 103-104
GetCurrentProcessID, 40, 65,  103, 104, 127, 182
GetCurrentPSP,  522
GetCurrentTask,  522, 537
GetCurrentThread,  127, 653-654
GetCurrentThreadlD,  65,105,  127, 182,

183,334
Get  Cur  VM, 678
Get  Cur  VM_Handle, 426
_GetDemandPageInfo, 415,439-440,  442-444
GetDlgCtrlID, 256-257
GetDlgltem, 255-256
GetEnvironemnt  Strings, 120
GetExePtr, 504, 506, 510-514
GetE×ePtrHelper, 511, 513-514
GetExitCodeProcess, 114-115
GetExitCodeThread,  131, 177-178
GetFileInformationByHandle(),  101
GetFocus, 241-242,  250-252,  653
GetFreeSystemResources,  67, 202-217,  245
GetHeapSpaces, 207
GetLastActivePopup, 231
GetLastError,  176
GetLastErrorCode,  133, 176
GetMessage, 9,  11, 28, 32, 45, 214-215,218,

221,223,  523,577-578
GetMessageExtraInfo, 220, 251-252
GetMessagePos,  220, 251-252
GetMessageTime, 220, 223, 251-252
GetModuleBaseFromWin32sHMod,  729-730
GetModuleFileName,  75, 92-95,117,  529,

549, 719
GetModuleHandle,  75-76,  78, 80, 95-97,  117,

479, 504-510,  561,658
GetModuleUsage, 77
GetObjectType,  266-269

GetOpenFileName dialog box, 730-731
GetParent, 228, 655
GetPercentFree  16BitHeap, 207-208
GetPercentFree32BitHeap, 207-208
GetPhysica!AddressFromLinear,  300
GetPriorityClass, 145-146
GetPrivateProfileSection, 67, 461
GetPrivateProfileString, 635
GetProcAddress, 64-65,  80, 89,  164, 473, 475,

628, 687, 713-714,  729, 753
basic description of, 515-521
Winl6  modules/tasks and, 501-502,

515-521,523
GetProcessAddress,  80-85
GetProcessHeap, 54, 195,335,342,  377-378
GetQueueStatus, 29, 220, 221
GetRing0Callgate,  301-302
GetStdHandle,  121
GetSystemDefaultLanglD, 676
GetSystemMenu, 231
GetSystemTime, 427
GetTaskQueue(),  538-539
GetTextExtent,  625-626
GetThreadContext,  45, 62, 146-149,  694,

679-680
GetThreadHandle,  126
GetThreadPriority,  139-140
GetThreadSelectorEntry,  417-4 19
GetVersion(), 689, 690
Get_VMM_Version, 426
GetWindow, 228
GetWindowLong, 213,214,  638, 668-670
GetWindowRect,  655
GetWindowThreadProcessld,  229, 243-244
GetWndPtr32, 248-250,  256
GFSR_SYSTEMRESOURCES,  205
GlobalAlloc,  53-54,  76, 278, 287, 309, 329, 331,

379, 408, 479, 510-511,541
GlobalCompact,  411
GlobalFix,  410
GlobalFlags, 410
GlobalFree, 380, 409
GlobalHandle,  409
GlobalLock,  53,408,  478
GlobalMemoryStatus,  414-417,  442
GlobalNotify,  531
GlobalNukeGroup,  392
GlobalPageLock(),  35-36
GlobalReAlloc,  409
GlobalSize, 409
GlobalUnfix,  411
GlobalUniock,  409
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GlobalUnWire,  410
GlobalWire, 410
GMEM_FIXED,  281
GMEM_SHARE,  51,286-289,  511
GP faults, 52, 56, 529, 537-538, 539, 633,642
_GPFIX, 586
GrouplD[6],  618
guard pages, 44-45
GW_HWNDNEXT, 228
GWL_WNDPROC,  213,214
GW  OWNER, 228

H
HANDLE, 41-42, 45, 49, 47
HandleDebugEvent,  735
HandleException,  735-736
HandlerFunction(),  160
hBrBackground, 226
HBRUSH, 263
hcNext, 225
hCriticalSection,  337, 388
HCursor, 226
Header control type, 59
headMsg, 219
headPDB, 524
HeadTDB, 524
heap(s)

arenas, 332-342
functions,  overview of, 329-411
global heap functions, 379-380, 408-411
headers,  332-342
local heap functions, 379-407
typical Win32, diagram of, 333

"Heap 32" command, 198
Heap32First,  62
Heap32ListFirst,  62
Heap32ListNext,  62
Heap32Next,  62
HeapAlloc(),  54, 73, 195,330-331,337,

343-344, 374, 379, 420, 422, 598
_HeapAllocate,  309-311,439-440
HEAP.C, 421-422
HeapCompact,  377
HeapCreate,  309, 335,337, 366-368
HeapDestroy,  55, 373-376
HeapFree,  55, 195,330, 354-356, 420
_HeapFree,  309, 310-311,331,439-440
HEAP_FREE_CHECKING_ENABLED,  366
HEAP_GENERATE_EXCEPTIONS,  343, 360
HeapHandle,  109

HeapHandleBlockList,  112
HeapLock,  66, 378
HEAP NO  SERIALIZE, 360, 369, 373, 383
HeapOwnList,  112
HeapReAlloc,  55, 73,330, 360-361
_HeapReAllocate,  310-311,439-440
HEAP_REALLOC  IN  PLACE_ONLY, 360
HeapSetFlags,  330, 344
HeapSize, 55,352-353
HeapUnlock,  378
HeapValidate,  377
HEAPW32.H, 339
HeapWalk, 66, 262, 307, 379
HEAP_ZERO_MEMORY,  343,349, 360
"Hello World" programs, 184
HelplAbout,  67, 203
HGDIOBJ, 263,264, 266
HGLOBAL, 408
hGIobalHeap, 524
HIBYTE, 491-492
Hlcon, 226
hIconSm, 226
HIGH_PRIORITY_CLASS,  139
hlnstance,  229
HINSTANCE, 50, 76, 496, 503-505,510-511,

515-516, 529, 540, 561
HIWORD, 64
HKEY_CLASSES_ROOT, 57
HKEY_CURRENT_CONFIG,  57
HKEY_CURRENT_USER, 57
HKEY_DYN_DATA,  57-58
HKEY_LOCAL_MACHINE,  57
HKEY_USERS, 57
hMenu, 230
hMenuSystem, 231
HMODULE, 49, 50, 65, 70-71, 76

spy programs and, 708,719
Win16 modules/tasks and, 479, 487-489, 492,

496, 503-505, 510-511,515-516,522,
535-536, 547-548

HMODULE.H, 482, 496
HOOKAPI.C, 746-753
HOOKED_FUNCTION,  724-725
HookImportedFunction,  746-753
HotKey, 60
HouseCleanLogicallyDeadHandles,  383
HPAlloc, 344-351,380,  383,400, 408
hpCarve,  344-345,348-351,357
hpCommit,  369
hpFreeSub, 357-360, 369
HPInit,  345,366, 369-373
HPReAlloc, 362-365
hProcess, 40, 42, 114, 145,322



hQueue, 222, 229
hQueueSend, 221
HRGN, 200
hrgnUpdate, 229
hStdErr,  118
hStdln,  118
hStdOut, 118
hTask, 219
HTASK, 40, 512, 522, 533,534, 538-539
hThread, 45,692
hWnd, 213, 244, 644, 669
HWND, 25, 27-29, 69, 700

changes to, in Windows 95,226-233
spelunking and, 644, 655,656,668-669
USER/GDI subsystems and, 199-200,

211-212,  223-233,239-241,249,  255,
258,262

hWnd16, 231
HWND32.H, 228
hWndActive, 226
hWndCapture,  226
hWndChild, 228
hWndNext, 228
hWndOwner,  228
hWndParent, 228

IATs (import address tables), 690
IBM (International Business Machines), 12
.icon section, 579
.idata section, 581,586-593
IDLE_PRIORITY_CLASS, 139
IDTs (Interrupt Descriptor Tables}, 429
IFSMGR, 39
if statements, 659-663
IGetCurrentDirectory,  165
IGetExitCodeProcess,  114-115
IGetExitCodeThread, 177-178
IGetFreeSystemResources,  204-207
IGetModuleFileName, 92-95
IGetModuleHandle,  95-97, 505-510
IGetProcAddress,  80-85,515-521,681
IGetThreadContext,  146-149
IGetThreadSelectorEntry, 417-419
IGetWindowThreadProcessId, 243-244
IGlobalFiags, 410
IGlobalHandle,  681
IGlobalMemoryStatns, 414-417
IHeapAlloc,  343-344
IHeapDestroy, 373-376
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IHeapFree,  354-356,  374
IHeapReAlloc,  360-361
IHeapSize,  352-353
ILoca!Alloc,  383-387
ILocalFree,  392-396
ILocalHandle, 400-404
ILocaiLock,  387-390
ILocalReAlloc,  396-400,  681
ILocalSize, 402-404,  681
IMAGE ARCHIVE_MEMBER_HEADER,

616-617,  620
ImageBase,  566
IMAGE_BASE_RELOCATION,  603-604, 605
IMAGE_DEBUG_DIRECTORY,  583-585,611
IMAGE_FILE_HEADER, 606, 611,614-615
IMAGEHLP.DLL, 567
IMAGE_IMPORT_DESCRIPTOR,  587-588,

591-592,714,  752
ImageList,  60
IMAGE_NT_HEADERS,  72, 75, 76, 559, 563
IMAGE_OPTIONAL_HEADER,  615
IMAGE_RELOCATION,  615
IMAGE_RESOURCE_DATAENTRY, 497, 600
IMAGE_RESOURCE_DIRECTORY_ENTRY,

599-602
IMAGE_SCN_MEM_SHARED, 288-289
IMAGE_SECTION_HEADER, 570-573,576,  614
IMAGE_SYMBOL, 606-610
IMAGE_THUNK_DATA, 588-593,714
IMakeProclnstance, 540-544
importing/exporting,  86, 480, 586-593
IMTEs (Internal Module Table Entries), 73-80,

108, 179
spy programs and, 729
structure of, 74-78
Win32Wlk and,  181-183

InheritConsole,  119
.INI files, 57-58,  640, 641
InitApp, 539
InitializeCritica!Section,  48,337
InitialRing0ID,  110
InitThreadReturnStack,  724
InjectSpyDll,  735-736,  739, 740
instance handles, use of the term, 561
INT 2Fh functions, 300, 428, 429
INT 3 functions, 56, 290, 735
INT 20h functions, 426-427,  678-679
INT 21h functions, 23,  113,165,424,

450-453,  531
INT 30h, 429-430,  434--435
INT 31h functions, 450, 453
INT 41h functions, 450, 453-454
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Intel processors, 3,  14, 274, 277, 429, 603-604
80386 class, 4,  16
Pentium-optimized code and, 682-683

InterceptFunctionReturn,  725
InterceptFunctionsInModule,  714
InterruptRegister,  540, 695
INTRCPT.C,  708, 713-718
INTRCPT2.H,  714
IO.SYS, 20
ISetThreadContext,  151-164
IsGDIObject, 264-266
IsTask(), 537-538,  545
IsWindow, 239-241,248-249
IsWindow16, 239-241
IVirtualProtect, 327-328
IVirtualQuery, 323-324
IWinExec, 680

J
JP Software, 21
jump tables, 666

K
K16PDB, 456
K16TDB, 456
K209 function, 380
K211 function, 380
K32LIB.LIB,  443
K32OBJ_CHANGE,  101
K32OBJ_CONSOLE,  101
K32OBJ_CRITICAL_SECTION,  101,135
K32OBJ_DEVICE_IOCTL,  101
K32OBJ_EVENT, 101,106
K32OBJ_FILE,  101
K32OBJ_MAILSHOT,  101
K32OBJ_MEM_MAPPED_FILE,  101
K32OBJ_MUTEX,  101
K32OBJ_PIP,  101
K32OBJ_PROCESS,  101,106
K32OBJ_SCREEN_BUFFER,  101
K32OBJ_SEMAPHORE,  101
K32OBJ_SERIAL,  101
K32OBJ_SOCKET, 101
K32OBJ_THREAD,  101, 125, 128
K32OBJ_TOOLHELP_SNAPSHOT,  101
KERNEL32, 10, 42, 52, 59, 66

memory management and, 286,291,295,
312, 332-333,336,342,  345,366,  380,
383,387,  392, 396

objects,  100-102,  123
modules and, 73-76
processes  and,  106
threads and, 70,  127-128,  170
Windows 95 design flaws and, 64

KERNEL32.DLL,  10-11,  37-40,  63-66,  73,
176-178,  216, 423-424,  433-441,447,
450-453,457-466,  468, 471-481

anti-hacking  code and, 64-65
export  section, 597, 598
memory management and, 280, 284, 297-298,

309, 311,343,380
processes  and,  102-103
SEH and,  163
spelunking and, 627, 631,679-680,  682
spy programs and, 687-690,  709, 739
threads and,  125, 139
Win16 modules/tasks and, 477-481

KRNL386, 37, 52-53, 63-64,  182, 286,
294-295,298,  392, 418, 428-430

KRNL386.EXE,  10-11,  37, 40, 423-424,
457-466

spelunking and, 628-630
USER/GDI  subsystems and, 201,213,217
Win16 modules/tasks and, 477, 480, 489

L
lastActive, 231
lastMsg, 219
lastMsg2, 220
LastTlsSetValueEIP,  136
LB_INSERTSTRING, 30
LDTAIias, 418
LDTPtr, 418
LDTs (local descriptor tables), 50-51, 52,  198,

300, 417-418
LeaveMustComplete, 412
LeaveSysLevel,  139, 238
LIBDUMP.C, 620
LIB.EXE,  589
.LIB files, basic description of, 615-620
LibMain, 534
Linker members, 618-619
LINK.EXE, 13
ListBox class, 233
ListView,  60
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LMEM_FIXED, 27, 54, 380-383,387-388,  390,
392, 396, 400, 402-403,405

LMEM_INVALID_HANDLE,  405
LMEM_MOVEABLE, 264, 380-383, 387, 390,

392-393,396,  400, 402-403,405
LOAD_DLL_DEBUG_EVENT, 61
LOADAPIS.C,  710
LoadLibrary, 72, 78,461,482, 569, 692-694,

703,739
LoadModule,  42, 479, 480-481
LoadProc, 496
LoadProcessForSpying,  730
LoadTDB, 524
Local32Alloc, 201
Local32Free, 201
Local32FreeQuickly,  201
Local32Info,  207
Local32ReAlloc, 201
Local32Translate,  201
LocalAlloc, 54, 55, 195,309, 331,379-387,  408
LocalCompact,  408
LocalFlags, 405-407
LocalFree, 55,382, 392-396
LocalHandle,  400-404
LocalHeap,  330
LocalHeapFreeHead,  110
Locallnit, 55
LocalLock, 53, 387-390
LocalReAI!oc, 55,396-400,  627
LocalShrink, 407
LocalSize, 55,402-404
LocalUnlock,  390-392
LOG.C, 709-710, 719, 720
LogCall, 719, 720
logo, Microsoft, 4-5, 18
LogReturn, 720
Longnames archive member section, 620
LOWORD, 64
lpl6SwitchRec,  135
IParam, 223
LPARAM, 30, 657
lpfnWndProc, 229, 236
lpIntWndClass,  235
lpMem, 354
LPRECT, 700
lpszCmdLine, 680
lpszCurDir,  164
lpszMenuName, 226
lpszPath, 92
LSTMGR.C, 102
lstrcpy, 685
LT_USER_CLASS, 234
LT_USER_PROCESS, 221

LT_USER_QMSG, 222
LT_USER_SUBSYSTEM, 222
LT_USER_VWININFO,  225
LvaToFirstLinenumber,  612
LvaToFirstSymbol,  612
LZA32.DLL, 38

M
main(),  163
MajorlmageVersion,  567
MajorOperatingSystemVersion,  567
MajorVersion,  594, 599
MakeProclnstance,  535-536, 540-544
malloc, 53,312, 330-331,420-422
MAP32, 674
.MAP files, 494, 632, 677
MAP! (Mail AP1), 15
MapViewOfFile,  51
MDIClient class, 233
MEM_COMMIT, 53,314
MEM_DECOMMIT, 319
MemMapFiles,  109
memory. See also addresses;  address spaces;  FSR

(free system resources);  heaps; memory
management;  RAM (random-access
memory)

areas of, examining, with MEM/DEBUG,
18-20

consumption  below 1MB, 35-36
corruption, 9
"insufficient  memory" messages, 35-36
mapped files, basic description of, 51-52,

55-56
requirements,  for Windows 95 vs. Windows

NT, 4, 7, 16
sharing,  286-289, 298,473-475
VxDs and, 425-426, 473-475
windowing systems and, 25, 26

MemoryContext,  107
memory management, 52-55,273-422

"copy on write" mechanism and, 290-291,
298-299

heap functions and, 329-379
memory contexts and, 281,303-308
page-based,  274-289
selectors and, 277-278
Win32 virtual functions and, 312-379

MEMORYSTATUS,  414-4 17
MemoryWrite(),  698
MEM_RELEASE, 319
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MEM_RESERVED,  314
MEM_TOP_DOWN, 314
MessageBox,  749-750
MessageBoxW, 257
messagePos, 223
message queue(s), 218-226

format, 218-222
per-queue  system windows and, 224-226
QUEUEMSG structure and, 222-224

MessageQueue,  130, 137
messageTime,  220, 223
messaging system(s).  See also message queues

changes, in the USER subsystem, 214-217
overview of, 27-29

Meyer, Brian, 157
MinorImageVersion, 567
MinorOperatingSystemVersion, 567
MinorVersion, 594, 599
MMTASK,  307
MOD, 22, 196-197, 284
MODFLAGS_APPTYPE,  484
MODFLAGS_AUTODATA  485
MODFLAGS _CALL_WEP,  484
MODFLAGS_DLL, 484, 485
MODFLAGS_IMPLICIT  LOAD, 485
MODFLAGS_SELF LOADING, 484
MODFLAGS_SINGLEDATA 485
MODFLAGS_WIN32  485
MODREF, 73, 78-80,  100, 181
MODREFlist,  110
module(s)

basic description of, 49-50, 69-73
database fields, new, 492
-related  functions, 505-521
Win16, overview of, 477-554

MODULE32.H, 74-79
ModuleFirst, 481
ModuleNext, 481
MPREXE.EXE, 693
MRFromHLib, 93
MSDOS.SYS,  17-18
MSGQUEUE.H,  218, 221,223,225
MSGSRV32, 217
MSGSRV32.EXE, 530
MsgWaitForMuitipleObjects, 47
mtelndex, 80, 108
multitasking,  11,458

cooperative,  523
snapshots and, 63
synchronization and, 45

multithreading,  9, 44
MustCompleteCount,  455
mutexes, 46, 48
MyDialog,  600

N
NE (New Executable) format, 34, 49, 479,

491-503,525
basic description of, 479-480
GDI.EXE and, 262
PE/COFF formats and, 570, 576,581,584,

599, 603
spelunking and, 625, 635

NegStackBase,  133
new (function), 53,312,330-331,420-422
nextBlock, 336, 388
nextHeap, 337, 388
nextQueue, 218
nextQueueMsg, 223
NFY_STARTTASK,  695
NORMAL_PRIORITY_CLASS,  138-139
NotifyRegister,  61,540,  695,696
npNext, 222, 225
npPerQueue, 219
npProcess,  219
npQMsg, 225
NtCreateProcess(),  631
NTDLL.DLL, 40, 627, 630-631
NtQuerySystemInformation(), 631
NTSD (NT system debugger), 606
NumberOfAuxSymbols, 609
NumberOfFunctions,  594
NumberOfldEntries,  599
NumberOfLinenumbers,  574, 612
NumberOfMembers, 619
NumberOfNamedEntries,  599
NumberOfNames,  594, 596
NumberOfRelocations,  574
NumberOfRvaAndSizes,  569
NumberOfSymbols, 612, 618-619
nWndFocus, 226

O
OBJ2ASM, 633
object, use of the term, 561
OBJ_METAFILE, 266
Obsfucator values, 65,105,  127
OEM characters, 92, 95
OFSTRUCT, 483
OFSTRUCTEX, 483-484
OpenEvent, 46
OpenFile, 746
OpenLogFile,  719
OpenProcess,  42, 115-117



OriginalCodePage, 739
OS/2, 4, 7,  12, 23, 490, 547

LX format, 576
SEH and,  157, 158, 159

OutputDebugString, 61
OUTPUT_DEBUG_STRING_EVENT,  61

P
_PageAttach, 308, 310-311,439-440
_PageChangePager,  439-440
_PageCommit, 310-311,314,  349, 439-440
_PageDecommit, 310-311,319,  357, 439-440
page directories, 303-306
PAGEFILE, 39
_PageFlush,  310-311,  439-440
_PageFree,  310-311,  319, 374, 439-440
_PageModify, 306
_PageModifyPermissions,  306, 310-311,315,

439-440
_PageQuery, 439-440
_PageRegister,  310-311
_PageReserve,  310-311,312,314,  332, 366,

439-440
_PagerQuery, 310-311,  439-440
_PagerRegister,  439-440
page tables, 302-305,308
parameter(s), 650-654

information  coding, 699-701
validation,  163-164,  680-681

Parameter profiler (Microsoft), 640
ParentPDB,  110
PARMTYPE.H, 709
Pascal,  489, 645-646,  650-652
pConsole,  111
pConsoleProvider,  113
pCreateData16,  134
pCurrentPriority,  130, 137
PDB (Process Database), 102-103,585

basic description of,  106-114
Win16 modules/tasks and, 533, 534

PDBToPID, 103, 127
PE (Portable Executable) format, 3, 34, 50, 55

COFF .OBJ file format and, difference
between, 614-616

concepts, basic, 559-562
.data section, 579-580
file exports,  593-598

file imports,  586-593
header, 562-569
.icon section, 579
modules and, 71, 72, 479, 497-498
overall layout of, diagram of, 562
overview of, 555-620
section tables and, 570-586
spelunking and, 624, 631
.text section, 577-579

PEDUMP, 12, 257, 295, 558-559,  570, 581,584,
586, 591,597-598,  601-602,  605-606,
610, 613-614,  620, 626, 631,633

PeekMessage,  9,  11, 28, 45,214-215,218,  221,
223, 523,  736

Pentium-optimized code, 682-683
PERQUEUEDATA, 225, 241,250
pExeMODREF,  111
pfdwOldProtect,  327
pGlobalHeap,  524
PGTPTR (Page Table Pointer) values, 308
PHANDLE_TABLE, 110
pHandleTable,  110, 181
PHYS, 287-288,  291-302,  308
PHYS (command), 305
PHYS.EXE, 292-299
PID, 182, 183
PidToPDB, 104-105
Plug and Play, 15
plus sign (+), 181,237, 467, 547
pModuleTableArray,  73-74, 80, 93, 182
pNextModRef,  79
pNTHdr,  75
PointerToLinenumbers,  574
PointerToRawData,  574
PointerToRelocations,  574
PopupMenu class, 233
portability,  3-4,  7-8,  16
POSIX, 7
PostAppMessage, 522
PostMessage,  537
ppCurrentProcess, 103
ppdb,  80, 454
pPMPSPSelector,  456
pProcess,  128
pProcess2, 130
PPROCESS_DATABASE,  110-111,  114, 116,

128, 130, 143, 145
"Press any key..." prompt, 295
prev_structure,  159
printf(), 12, 573
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PROCDB.H,  117
procedures, identifying, 646-649
process(es), 69-71.  See also PDB (Process Database)

16-bit representations of, reasons for, 478
basic description of,  102-103
handles, 103-106,  122-123
IDs, 40, 42, 45,  103-106,  116-117
injecting DLLs into, 692-694
list, in Win32Wlk,  179-181,182
management, overview of, 40-43
synchronization, 4.5-49

Process32First,  62,  106
Process32Next, 62,  106
PROCESS_DATABASE,  80,  117, 122-123,460
ProcessDWORD, 111
PROCESSENTRY32, 106
ProcessGroup, 111
Property Sheets control type, 60
protected mode, 427-430,  446-453
pSomeCritSectl,  135
pSomeCritSect2, 135
pSomeEvent, 106, 128
pSomeHeapPtr,  112
PSP (Program Segment Prefix), 43, 69,  106, 108,

460, 511,522
PSPSelector,  108
pStartuplnfo,  118
pszCmdLine, 118
pszCurrDirectory,  118
pszEnvironment,  118
pszFileName, 75
pszFileName2, 77
pszModName,  75, 76
pszModName2,  77
ptdb,  454
pTDBX,  132
pTIB,  129, 137
pTLSArray, 130, 137
PulseEvent,  46
pvExcept, 128, 137
PVIEW, 66
pvTLSArray, 137
PWALK, 321-322
pWinl6Mutex,  135
pWin32Mutex,  135

Q
QEMMFIX,  39
QS_ALLINPUT, 221
QT_Thunk,  191-195,208-210

QueuedSyncFuncs,  456
QUEUEMSG, 220, 222-224
QUEUEPROCESSDATA, 219, 221-222,  243

R
RAM (random-access memory), 44, 52, 56

memory management and, 53,274-278,  280,
282-283,290,  292, 295,299-300,  303,
313,329,  414, 416

VxDs and, 443
Win16 modules and, 494, 498

Raymond, Eric S., 621
.RC files, 632
.rdata section, 583-585
ReadProcessMemory, 62,116,  411-414,  688
realloc, 330
REALTIME_PRIORITY_CLASS,  139
REBASE.EXE, 284
RECT,  655
rectClient,  229
rectWindow, 228
_RegCloseKey,  439-440
_RegCreateKey,  439-440
_RegDeleteKey,  439-440
_RegDeleteValue, 439-440
REGEDIT,  57
_RegEnumKey,  439-440
_RegFlushKey,  439-440
RegisterClass, 234
registry, basic description of, 57-58
RegLoadKey,  439-440
_RegOpenKey, 439-440
_RegQueryMultipleValues, 439-440
_RegQueryValueEx, 439-440
_RegRemapPreDefKey,  439-440
_RegReplaceKey,  439-440
_RegSaveKey,  439-440
_RegSetValue,  439-440
_RegSetValueEx,  439-440
_RegUnLoadKey, 439-440
ReleaseSemaphore, 47
.reloc section, 581-582
Reschedule function, 536
RESFMT.TXT,  602
resident/nonresident  names tables, 501-503
resource tables, 480-481,495-499
ResumeThread,  156-157
RETURN.C,  719, 724, 725-727
ReturnFailureCode,  166
RichEdit, 60



 Index  773

Richter, Jeffrey,  124, 157, 692
RING0.EXE, 300
RIPEVENT,  61
ripString, 136
RITs (Raw Input Threads), 28, 215-216
robustness, 3, 7-8,  13-14,  25
.rsrc section, 580-581
RSW {readable, writeable, shared), 474
RtlHeapFree, 598
RtlUnwind,  159, 166
RVAs (Relative Virtual Addresses), 86, 295,

560-561,563,  573,585,587,  591,595,
603,608,  630

RvaToFirstByteOfCode,  612, 613
RvaToLastByteOfCode,  612, 613

S
Scheduler {Windows), 536
Schmidt,  Alex, 300
Schulman, Andrew,  10-11,207,  216-217
SC_TASKLIST,  245
section(s)

.bss section, 580

.CRT section, 580

.data section, 579-580

.debug$S section, 585

.debug$T section, 585

.directive section, 585

.edata section, 581,598

.icon section, 579

.idata section, 581,586-593

.rdata section, 583-585

.reloc section, 581-582

.rsrc section, 580-581
tables, 570-586
.text section, 577-579
.tls section, 582-583
use of the term, 561

SectionAlignment, 566
SectionNumber, 608
security,  3,  16, 64
segment  tables, 480-481,492-495
SEH (structured exception handling), 44-45, 53,

56-57, 680
overview of,  157-168
parameter validation and,  163-164
TIB and, 69

SelectObject, 263
SelmanList,  129, 137
SelTableLen, 524

SelTableStart, 525
semaphores, 46, 47-48
SEM_FAILCRITICALERRORS, 113
SEM_NOALIGNMENTFAULTEXCEPT,  113
SEM_NOGPFAULTERRORBOX,  113
SEM_NOOPENFILEERRORBOX,  113
SendMessage,  213-214,  252-254,  523
SetActiveWindow, 224
SetDeskWallPaper,  625
SetErrorMode,  528-529
SetEvent,  46, 47
SetFileApisToANSI, 92
SetFileApisToOEM, 92,  117
SetFocus,  28,  189-191,208,  224
SetLastError,  176, 177, 412, 636
SetMenu(),  639
SetMessageQueue, 222-223
SetPixel,  488, 502
SetPriorityClass,  42,  138, 143-145
SetResourceHandler, 496
SetSigHandler, 530
SetStdHandle, 121
SetTaskSignalProc,  530
SetThreadContext,  62,  151-164,  675,694,

739, 740
SetThreadPriority,  140
SetUnhandledExceptionFiher,  115
SetWindowLong, 233,638-639,  668-670
SetWindowPos(),  639, 668-669
SetWindowsHookEx(), 692
SetWindowText,  745
SetWindowWord(), 639
SHELL, 39
SHELL32.DLL,  38, 204, 208, 472
ShortName,  607
SHOW16, 478, 481-482,  496, 507, 525-526,

532, 547-554
SHOW16.EXE, 50, 70
ShowPhysicalPages,  292-294
ShowScrollBar, 69
SHOWSEH.C, 162-163
ShowWindow(), 668-669
SHOWWND,  196, 218, 221,223,  225,228,234,

237-239
SHOWWND.C,  226, 238
ShutDownAPISpy32,  706
ShutdownThreadReturnStack,  707, 724
sig2, 221
sig[3], 219
_SignalID,  439-440
SignalProc,  530
SimonSez,  749-752



774

SizeOfBlock, 603
SizeOfCode, 565
SizeOfHeaders, 567
SizeOfHeapCommit,  569
SizeOfHeapReserve, 569
SizeOfImage,  567
SizeOfIntializedData, 565
SizeOfRawData, 573
SizeOfStackCommit, 568
SizeOfStackReserve,  568
SizeOfUninitializedData,  585
snapshots, 63
SoftIce/W, 14, 125,729

32-bit heaps and,  196-199
Addr command, 306-307,  308
CR command, 305
"Heap 32" command,  198
LDT command,  198
memory management and, 284-286,  291,

305-308,334
MOD command,  196-197, 284
QT_Thunk and,  191
spelunking and, 632, 673-675
THREAD command, 334
USER/GDI subsystems and,  191,196-199
VxDs and, 284-286,  429, 432-433,  438-440,

445,453, 459
some32BitHandle, 230
somehQueuel,  225
somehQueue2, 225
SOUNDREC.EXE, 633
Sourcer, 623, 642
SpellCheck(),  628
SPELL.DLL, 627-628
SpellInit(),  628
SpellTerminate(), 628
SpellVer(),  628
spelunking, 621-683

advanced tips for, 672-683
using disassembly, 622, 642-672
with  file-dumping tools, 622, 624-633
overview of, 623-624
with  spying tools, 622, 634-641

spy programs, 466-475,685-753
building stubs and, 697-699
controlling  target processes and, 695-697
function return values and,  701-705
injecting DLLs into other processes and,

692-694
intercepting functions and, 687-692
parameter information coding and, 699-701
spelunking with, 622, 634-641

SS register, 52,  188, 193, 504-505
SSTable, 134
StackBase,  132
StackLow, 129
StackSelector16, 129, 137
Start button, 467
Static class, 233
STATUS_BREAKPOINT, 696
StatusWindow, 60
STILL_ACTIVE,  177
StorageClass, 609
string literals

adding in, 645
identifying, 658-659

StringTable, 619-620
stubs

building, 697-699,  713-718
definition of, 697

SuspendCount, 455
SuspendHandle, 455
SuspendThread,  154-155,156
switch statements, 663-666
.SYM files, 632, 644, 677
symbol(s)

: (colon), 199
{} (braces), 663
$ (dollar sign), 585-586
+ (plus sign), 181,237,  467, 547

SymbolTableIndex,  614
synchronization, 45-49,  70,  124, 440
SyncWaitCount, 456
SystemDefaultLanglD, 676
SYSTEM.INI, 22
SystemParametersInfo,  625
system resource cleanup, 34-35
system resources, free. See FSR

(free system resources)
SzCmdLine,  731

T

TabControl,  60
tailMsg, 219
TAIPEI.EXE, 632
TAPI (Telephony APl), 15
task(s).  See also TDB (Task Database)

16-bit, basic description of, 521-525
common misconceptions about,  525-526
definition  of, 40, 521
-related functions, 536



TASKENTRY, 545
TaskFindHandle(),  544-547
TaskFirst, 523,525
TaskNext,  523,525
TDB (Task Database), 40, 43,  125,468,

510-511,522-523
basic description of, 526-554
SHOW16 and, 548-549

TDB.H,  526
TDBX, 454-457,  459-460
TDUMP,  503,558,  623,625-626,  632
TDUMP.EXE, 624
TerminateProcess, 42
TerminationStack,  132
TerminationStatus,  107, 131, 177
Test  Cur  VM  Handle, 426-427
TEST instruction, 661
TextOut, 7
.text section, 577-579
THCBs (Thread Control Blocks), 125, 132, 454
THHOOK, 523
Thielen, Dave, 425
thread(s), 9,  11-12,  69-71.  See also TIB

(Thread Information  Block)
basic description of, 3-4, 43,  124-126
contexts,  146-149
databases, 128-136
execution control,  146-157
functions, miscellaneous, 176-178
handles, 126-128
heap functions and, 334
IDs, 45,  126-128,  169
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WaitForDebugEvent,  48-49,  60-62, 695-696,

735, 736
WaitForMultipleObjects, 47-49
WaitForSingleObject,  42, 46-49
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