
MATT PIETREK

Windows 95
System programming

SECRETS

I D G

Windows 95 System Programming SECRETS
Published by
IDG Books Worldwide, Inc.
An International Data Group Company
919 East Hillsdale Boulevard, Suite 400
Foster City, CA 94404

Copyright
Copyright © 1995 by IDG Books Worldwide. All rights reserved. No part of this book (includ-
ing interior design, cover design, and illustrations) may be reproduced or transmitted in any
form, by any means (electronic, photocopying, recording, or otherwise), without the prior
written permission of the publisher.

Library of Congress Catalog Card No.: 95-75057

ISBN 1-56884-318-6

Printed in the United States of America

Second Printing, March, 1996

1 0 9 8 7 6 5 4 3 2

Distributed in the United States by IDG Books Worldwide, Inc.

Limit of Liability/Disclaimer of Warranty
The author and publisher of this book have used their best efforts in preparing this book. IDG
Books Worldwide, Inc., International Data Group, Inc., and the author make no representation
or warranties with respect to the accuracy or completeness of the contents of this book or the
material on this disk included with this book, and specifically disclaim any implied warranties
of merchantability or fitness for any particular purpose, and shall in no event be liable for any
loss of profit or any other commercial damage, including but not limited to special, incidental,
consequential or other damages.

Trademarks
All brand names and product names used in this book are trademarks, registered trademarks,
or trade names of their respective holders. IDG Books Worldwide, Inc., is not associated with
any product or vendor mentioned in this book.

Published in the United States

CONTENTS SUMMARY

FOREWORD ... XXVII

INTRODUCTION ... XXIX

CHAPTER 1: PUTTING WINDOWS 95 IN PERSPECTIVE

Brush up on the historical background of the Win32 operating
systems, Windows NT, Win32s, and Windows 95. You can read
about the relative strengths and weaknesses of each system, as well
as alternative Win32 environments such as OS/2 Warp and the
Phar Lap TNT DOS extender.

CHAPTER 2: WHAT'S NEW IN WINDOWS 95 .

In this chapter, you'll receive a broad architectural overview of
Windows 95, and learn why Windows 95 evolved from
Windows 3.1, rather than having been written from scratch.
High-level issues such as memory management, thread synchro-
nization, and improvements to the windowing system are also
described.

15

CHAPTER 3: MODULES, PROCESSES, AND THREADS

By examining Windows 95's modules, processes, and threads, you
can unravel the data structures that KERNEL32 uses to implement
them. Augmenting this chapter the pseudocode for the Win32
functions that rely on these data structures. In addition, you can
read about thread local storage and structured exception handling.

69

CHAPTER 4: USER AND GDI SUBSYSTEMS .

Microsoft reworked the windowing, messaging, and graphics sub-
systems of Windows 3.1 for Windows 95. To better understand
what this means, learn all about the 32-bit USER and GDI heaps,
and the effect that the new data structures in the 16-bit USER
heap have on the free system resources.

185

CHAPTER 5: MEMORY MANAGEMENT ... 273
Thirty-two-bit memory management in Windows 95 is a compli-
cated area. In this hefty chapter, you can explore the topic in
detail by delving into paged-based virtual memory, separate
address spaces, and shared memory. Each Win32 memory man-
agement APl is also described using pseudocode,

6 : V W I N K E R N E L 3 2 3 8 6

xvi

CHAPTER 6:VWINKERNEL32386 423
In Windows 95, there are three essential kernel components: the 16-bit
KRNL386, the 32-bit KERNEL32, and the ring 0 VWIN32.VXD.
(If you put them all together, you get VWINKERNEL32386.) As
you examine the relationship between these kernels, you'll discover
many useful -- albeit undocumented -- functions along the way.

CHAPTER 7 : W I N 1 6 MODULES AND TASKS 477

Not to be overlooked, the 16-bit KERNEL data structures of
Windows 95 deserve a good bit of explanation. Although
Windows 95 is a 32-bit operating system, much of the system's
state is reflected in data structures also present in Windows 3.1.
These data structures include the task database and the 16-bit
module database, and go a long way toward explaining the intri-
cacies of the Windows 95 architecture.

CHAPTER 8: THE PORTABLE EXECUTABLE AND
COFF OBJ FORMATS ... 555
To fully understand Windows 95, you need to understand the
Portable Executable file format, which is the native executable
format for both Windows 95 and Windows NT. In this chapter, you
can also learn more about the COFF format OBJ and LIB files that
linkers use to create PE files.

CHAPTER 9: SPELUNKING ON YOUR OWN 621
If you want to really get into the nuts and bolts of Windows 95,
Chapter 9 gives you the means to do so. You'll learn to use file-
dumping tools and API spying programs, as well as how to examine
assembler listings to find things such as local variables, parameters, if
statements, and so forth. The chapter concludes with a collection of
helpful hints.

CHAPTER 10: WRITING A WIN32 APl SPY 685

Building on the information presented in earlier chapters, this chapter
shows you how to create a user-extendable API function spying
tool. This spy program can log API function calls as well as their
parameter values.

CONTENTS

FOREWORD .. XXVII

INTRODUCTION ... XXIX
Assumptions About You, the Reader x x xThe Pseudocode

 . xxxiThe Sample Programs .. xxxi

CHAPTER 1: PUTTING WINDOWS 95 IN PERSPECTIVE 1

Positioning the Win32 Operating Systems 5
The Windows NT implementation 7
The Win32s implementation .. 8
The Windows 95 implementation 10
Win32 implementations outside Microsoft 12

Development Considerations ... 13The Future of Win32 ... 14Summary ... 14

CHAPTER 2: WHAT'S NEW IN WINDOWS 95? 15
Similarities to Windows 3.1 ... 17Improvements over Windows 3.1 .. 23DOS is dead (almost) .. 24

The windowing system .. 24
Changes to the messaging system 27
The interaction between 16- and 32-bit processes 29
The Win 16Mutex .. 31The Windows 95 GDI ... 33System resource cleanup .. 34
Decreased memory consumption below 1MB 35

Brand-New Features .. 36
The Windows 95 Win32 implementation 36
The Windows 95 Win32 system DLLs 37
The ring 0 components of Windows 95 38

5 5

x v i i i

40Process management ... 4 3Thread management ..
Process and thread synchronization .. 45

49Module management .. 50The Windows 95 address space ..
Windows 95 memory management ... 52

55Memory mapped files ...
Structured exception handling .. 56

57The registry ... 59Additions to USER ...
System information and debugging ... 60

63"Dirty Little Secrets" About Windows 95 ...
Anti-hacking code .. 64

66The Win32 APl farce ..
Free system resource fudging .. 6767Winl6 isn't dead ... 68Summary ...

CHAPTER 3: MODULES, PROCESSES, AND THREADS ... 69
71Win32 Modules ..

IMTEs (Internal Module Table Entries [?]) ... 73
74The IMTE structure .. 78The MODREF structure ..

Module-Related APl Functions ... 80
GetProcAddress and IGetProcAddress .. 80
x_FindAddressFromExportOrdinal ... 86

89x_FindAddressFromExportName ...
GetModuleFileName and IGetModuleFileName 92
GetModuleHandle and IGetModuleHandle .. 95
x_GetMODREFFromFilename ... 98
x_GetHModuleFromMODREF .. 99

100KERNEL32 Objects .. 102Windows 95 Processes ..
What's a Process Handle? What's a Process ID? .. 103
The Windows 95 Process Database (PDB) .. 106

GetExitCodeProcess and IGetExitCodeProcess 114
115SetUnhandledExceptionFilter .. 116OpenProcess ... 117SetFileApisToOEM ...

T l s G e t V a l u e

xix

The Environment Database ... 117
GetCommandLineA .. 119
GetEnvironmentStrings ... 120
FreeEnvironmentStringsA ... 120
GetStdHandle ... 121
SetStdHandle .. 121

Process Handle Tables ... 122
Threads ... 124
What's a Thread Handle? What's a Thread ID? .. 126
The Thread Database .. 128
The Thread Information Block (TIB) .. 136
Thread Priorities ... 138

GetThreadPriority ... 139
SetThreadPriority .. 140
CalculateNewPriority ... 141
SetPriorityClass ... 143
GetPriorityClass .. 145

Thread Execution Control .. 146
GetThreadContext and IGetThreadContext ... 146
x_ThreadContext_CopyRegs .. 150
SetThreadContext and ISetThreadContext ... 151
SuspendThread and VWIN32_SuspendThread 154
ResumeThread .. 156

Structured Exception Handling ... 157
Structured exception handling and parameter validation 163
GetCurrentDirectoryA .. 164
x_invalid_param_handler ... 166

Thread Local Storage .. 169
TlsAlloc .. 170
TlsSetValue ... 172
TlsGetValue .. 173
TlsFree .. 174

Miscellaneous Thread Functions ... 176
GetLastError ... 176
SetLastError .. 177
GetExitCodeThread and IGetExitCodeThread 177

The Win32Wlk Program ... 178
Under the hood of Win32Wlk .. 181

Summary ... 184

X XXX

CHAPTER 4: USER AND GDI SUBSYSTEMS 185

The Windows 95 USER Module ... 186
USER32 thunking example ... 189
32-bit heaps .. 195
The mysterious GetFreeSystemResources issue 202
The mixed 16-/32-bit nature of the windowing system 211
Messaging system changes .. 214
Per-thread message queues .. 218
Per-queue system windows .. 224
Changes to (H)WND structures in Windows 95 226
Changes to Windows 95 window classes .. 233
The SHOWWND program .. 237
Pseudocode for select 16-bit USER.EXE functions 239
USER32 isn't just thunks to USER.EXE .. 248
Unicode support in Windows 95 (Huh?) ... 257

The Windows 95 GDI Module .. 260
GDI objects ... 263
New Win32 GDI functions available to Win16 applications 270

Summary ... 271

CHAPTER 5: MEMORY MANAGEMENT .. 273

Windows 95 Page-Based Memory Management ... 274
274Memory paging ..

Memory paging versus selectors .. 277
The Address Space of a Windows 95 Win32 Process 279
Sharing Memory ... 286
"Copy on Write" in Windows 95 (or the Lack Thereof) 290
The PHYS Program ... 292

Examining shared memory with PHYS ... 298
Examining copy on write with PHYS .. 298
Cool stuff in the PHYS program (for advanced readers) 299

Memory Contexts (Advanced Stuff) .. 303
The Windows 95 Memory APIs .. 309

310The VMM Functions ..
The Win32 Virtual Functions .. 312

VirtualAlloc .. 313
mmPAGEToPC ... 318
VirtualFree .. 319
VirtualQueryEx .. 321

. .

xxi

VirtualQuery and IVirtualQuery ... 323
VirtualProtectEx ... 325
VirtualProtect and IVirtualProtect ... 327
VirtualLock and VirtualUnlock ... 328

The Win32 Heap Functions .. 329
The Win32 heap header and heap arenas .. 332
The Windows 95 heap header ... 335
The WALKHEAP program ... 339
GetProcessHeap ... 342
HeapAlloc and IHeapAlloc ... 343
HPAlloc .. 344
hpCarve ... 348
ChecksumHeapBlock .. 351
HeapSize and IHeapSize ... 352
HeapFree and IHeapFree .. 354
hpFreeSub ... 357
HeapReAlloc and IHeapReAlloc ... 360
HPReAlloc .. 362
HeapCreate ... 366
HPInit ... 369
HeapDestroy and IHeapDestroy ... 373
HeapValidate .. 377
HeapCompact .. 377
GetProcessHeaps .. 377
HeapLock ... 378
HeapUnlock ... 378
HeapWalk ... 379

The Win32 Local and Global Heap Functions ... 379
Win32 local heaps ... 380
LocalAlloc and ILocalAlloc ... 383
LocalLock and ILocalLock ... 387
LocalUnlock ... 390
LocalFree and ILocalFree .. 392
LocalReAlloc and ILocalRealloc ... 396
LocalHandle and ILocalHandle .. 400
LocalSize and ILocalSize ... 402
LocalFlags ... 405
LocalShrink .. 407
LocalCompact .. 408

xxii

The Win32 Global Heap Functions ... 408
408GlobalAlloc .. 408GlobalLock ... 409GlobalUnlock ... 409GlobalFree .. 409GlobalReAlloc .. 409GlobalSize ... 409GlobalHandle ... 410GlobalFiags and IGlobalFlags ... 410GlobalWire ... 410GlobalUnWire .. 410GlobalFix .. 411GlobalUnfix .. 411GlobalCompact .. 411Miscellaneous Functions ...

WriteProcessMemory and ReadProcessMemory 411
GlobalMemoryStatus and IGlobalMemoryStatus 414
GetThreadSelectorEntry and IGetThreadSelectorEntry 417
The C/C++ compiler's malloc and new functions 420

422Summary ...

CHAPTER 6:VWINKERNEL32386 .. 423
425A Crash Course in VxDs ...

Calling VxD functions from other VxDs ... 426
Calling VxD functions from Win16 427(protected mode) code ..

Calling VxD Functions from Win32 Code .. 431
Where Can I Find Win32 VxD Services? ... 438
Win32 VxD Services Provided by VMM ... 439441Calling Win32 VxD Services on Your Own ... 444Examining VWIN32.VXD .. 445The VWIN32.VXD ring 0 VxD service API ..

The VWIN32.VXD 16-bit protected mode APl 446
The VWIN32.VXD Win32 VxD service AP1 ... 447

454The VWIN32 TDBX ...
How the Three Windows 95 Kernels Communicate 457

458VWIN32 knowledge of KRNL386 ...

H M O D U L E s
VWIN32 knowledge of KERNEL32.DLL ... 460
KERNEL32.DLL knowledge of VWIN32 460
KERNEL32.DLL knowledge of KRNL386.EXE

(or, What Microsoft isn't telling you) .. 461
KRNL386 knowledge of KERNEL32.DLL
KRNL386 knowledge of VWIN32 ... 465

The Win32 VxD Service Spy (W32SVSPY) 466 466A sample W32SVSPY session
Technical challenges in writing W32SVSPY .. 469Summary 472

 ... 476

CHAPTER 7: WIN 16 MODULES AND TASKS 477

Why Have 16-bit Representations of 32-bit Modules and
Processes?

 .16-bit Modules ... 478
The NE Header ... 479

482New module database fields in Windows 95 ... 492
The Segment Table ..
The Resource Table ... 492
The Entry Table ... 495

· 499The Resident and Nonresident Names Tables ... 501
HMODULEs versus HINSTANCEs
Module-Related Functions .. 503

 .. 505The GetModuleHandle function ... 505
The GetExePtr function .. 510
The GetProcAddress function ... 515

16-bit Tasks ..
Some Common Misconceptions about Tasks .. 521
The Task Database (TDB) ... 525

526Task-Related Functions ...
The GetCurrentTask() function ... 536537The IsTask() function ..
The GetTaskQueue() function ... 537538The MakeProcInstance() function ... 540
The TaskFindHandle() function

The SHOW16 Program .. 544
 ... 547Summary ... 554

F i l e

xxiv

CHAPTER 8 : THE PORTABLE EXECUTABLE AND
COFF OBJ FORMATS .. 555

The PEDUMP Program . 559
Basic Win32 and PE Concepts .. 559
The Section Table .. 570
Commonly Encountered Sections .. 576

The .text section ... 577
The Borland CODE and .icode sections .. 579
The .data section ... 579
The DATA section ... 580
The .bss section ... 580
The .CRT section .. 580
The .rsrc section .. 580
The .idata section .. 581
The .edata section ... 581
The .reloc section .. 581
The .tls section .. 582
The .rdata section ... 583
The .debug$S and .debug$T sections .. 585
The .drective section ... 585
Sections containing $ (OBJs/LIBs only) ... 585
Miscellaneous sections .. 586

PE File Imports . 586
The IMAGE_THUNK_DATA DWORD ... 590
Putting IMAGE_IMPORT_DESCRIPTORs and
IMAGE_THUNK DATAs together ... 591

PE File Exports ... 593
Export forwarding .. 598

PE File Resources .. 599
PE File Base Relocations ... 602
The COFF Symbol Table ... 605
The COFF Debug Information .. 611
The COFF Line-Number Table ... 613
Differences Between PE Files and COFF OBJ Files 614
COFF LIB Files ... 615

Linker members .. 618
The Longnames member ... 620

Summary ... 620

7 5 3

Contents xxv

CHAPTER 9: SPELUNKING ON YOUR OWN 621

Spelunking Overview .. 623
Spelunking with File-Dumping Tools .. 624
Spelunking with Spying Tools ... 634
Spelunking Using Disassembly .. 642

Zen and the art of disassembly .. 643
Recognizing common code sequences and

conventions .. 646
A disassembly example ... 667

Advanced Hacking Tips ... 672
Using SoftIce/Windows ... 673
Using hardware breakpoints .. 675
The VxD . (dot) commands .. 676
The VAR2MAP utility .. 676
Identifying VxD services ... 678
Identifying Win32 VxD services .. 679
Identifying parameter validation and Ixxx functions 680
Using the debug version .. 681
Pentium-optimized code .. 682

Summary ... 683

CHAPTER 10: WRITING A Win32 APl SPY 685

Intercepting the Functions ... 687
Injecting a DLL into Another Process .. 692
Using the Debug APl to Control the Target Process 695
Building Stubs to Log APl Functions ... 697
Parameter Information Encoding .. 699
Function Return Values ... 701
The APISPY32 Code ... 705
Win32s-Specific Code ... 729
The APISPYLD Code .. 730
Notes on Using APISPY32 .. 744
Intercepting Functions in Your Own Programs ... 746
Summary ... 753

x x v i

xxvi

APPENDIX A: THE UNDOCUMENTED KERNEL32.DLL
IMPORT LIBRARY ... 760

INDEX .. 761

B o r l a n d ' s

FORWORD

Windows 95 System Programming SECRETS is Matt
Pietrek's third major work on how to truly understand

Microsoft Windows. Matt has been mucking about with this
Windows stuff for quite some time. His life as techno-guru
began when he graduated in 1988 from the University of
Santa Cruz with a degree in physics but only two computer
courses under his belt. After joining the tech support depart-
ment at Borland, he quickly distinguished himself by tying for
the lowest score in an evaluation that gauged "employee sym-
pathy for the customer."

Life was rosier in Borland's R&D division. There Matt wrote
TDUMP and WinSpector, and even admits to having worked on
the OS/2 Turbo Debugger. He was richly rewarded for his efforts
by being laid off during one of Borland's many staff pogroms.
Matt finally came into his own at NuMega, where today he is
chief architect for the Bounds-Checker family of products.

I first met Matt at the spring Software Development con-
ference in 1991, an event where we Windows advocates were
still a minority. Charles Petzold and I were panelists for a
Windows versus OS/2 debate. We were soundly trounced by
the other panelists, and heckled by the audience for predicting
that the dominant PC OS of the very near future was going to
be Windows.

J .

xxviii

It seems as if Matt, Charles and I were proven right -- in fact, Windows
has now transcended the realm of technology and become a part of pop cul-
ture. During its opening weekend, Windows 95 grossed more than Jurassic
Park. Thankfully, when you look beyond all the hype, there is plenty of steak
to go with the sizzle. An end-user migration from Windows 3.x to Windows
95 finally rids us of the memory model agitation we've experienced for years,
and enables us to live out our lives entirely in 32 bits.

If Windows is a big labyrinthian cave, then this book is for those of us
who want to venture farther into the cave than the Win32 APl will take us.
Matt is the foremost guide to the innermost caverns of Windows 95. (In fact,
the working title to this book was Spelunking Windows.) Many of the other
"current" Windows 95 developer books (including the first edition of the
"unauthorized" one) promise to show you all the dark chambers, but were
in fact written a year or more ago. In an effort to be first, the authors of
some of those books jumped the gun, exploring Chicago no further than its
May 1994 beta 1 release. Some of those works are now riddled with obsolete
information and misleading supposition.

Matt, on the other hand, scrutinized all the iterations of Chicago - -
including the retail release of Windows 95 -- to bring you the up-to-date
information contained here. So strap on your safety helmet, light that lamp,
and start spelunking.

Eric J. Maffei
Editor-in-Chief
Microsoft Systems Journal
New York, September 1995
ericm@microsoft.com

INTRODUCTION

O
f late, Microsoft has been asking, "Where do you want to
go today?" The company hasn't been shy about promoting

Windows 95 as the means by which we'll reach our destination.
What we as programmers need to know is whether Windows 95
is the appropriate vehicle for getting there. Almost everybody
will agree that Windows NT is a Cadillac (or Mercedes Benz, if
you prefer)--it's well built and loaded with options. The ques-
tion is: Is Windows 95 a Chevrolet or a go-cart? The only way to
find out is to pop the hood and look for yourself. That's the pur-
pose of the book you're now holding. Only by examining the
fundamentals of an operating system such as Windows 95 is it
possible to tell whether it's composed of tail fins and chrome, or
serious safety and comfort features.

You might be wondering why programmers like me keep
taking apart the fundamental pieces of operating systems such
as Windows 95. Wouldn't it be better to focus our efforts on
new technologies like OLE, MFC, or the latest graphics or mul-
timedia APIs? Although some programmers prefer to learn just
enough to get by, other programmers have an insatiable need to
understand all the layers of code down to the bare metal.
Maybe we just don't want to trust our code to run atop the
unexamined code of others. Whatever the reason, Windows 95
System Programming SECRETS is a book for these program-
mers. Knowledge is power, and the more knowledge you have
about a system like Windows 95, the more control you have
over it.

H o w ' s

XXX

Windows 95 System Programming SECRETS is by no means an author-
itative look at all aspects of the Windows 95 architecture and implementation.
Rather, I self-indulgently chose to concentrate on the areas that I'm partic-
ularly interested in. I hope that somewhere within the contents of this tome,
you'll find something of particular interest or use to you in your own
Windows 95 programming.

ASSUMPTIONS ABOUT YOU, THE READER

To cover any significant ground in this book, I needed to make certain
assumptions about my reading audience. In a nutshell, my main assumption
is that the reader of this book is a competent Windows programmer who's
done at least some Windows 3.x programming. This book isn't a "How do I
write a program for Windows 95 ?" book. There are already plenty of books
available for programmers who want to learn the basics of Windows 95
programming.

Rather, Windows 95 System Programming SECRETS assumes that
you know how to program in Windows 3.1 or Windows 95, and that you
now want to go on to the next step: understanding why Windows 95
works as it does.

By knowing what goes on inside the theoretical black box of Windows
95, you'll be able to make sense of the rituals you perform to accomplish
tasks in Windows 95--rituals that you might otherwise perform blindly.
Likewise, when (heaven forbid) you find a bug in your program, the debug-
ging process goes much faster if you understand how Windows 95 works.
How's this? If you grasp what Windows is doing (or should be doing), you
can usually identify where your program goes off-track much earlier in the
debugging process.

The examples in this book are written in C, with a bit of assembler
mixed in. The pseudocode I present for various Windows 95 functions is
also based on the C language. Therefore, to get the maximum benefit from
this book, you should know C/C++. You can probably squeak by if you
program in some other compiled language such as Borland Pascal/Delphi.

P E D U M P

xxxi

THE PSEUDOCODE
Since the goal of this book is first and foremost to show how Windows 95
works, I provide pseudocode for various functions in the system DLLs. This
pseudocode usually resembles compilable C code. However, when it makes
sense to break the rules of strict C syntax for the sake of clarity, I do. The
pseudocode is based on the debug version of Windows 95, which provides
many helpful diagnostics strings and other tidbits that make it easier to see
exactly what Windows is doing. If you're not running the debug version of
Windows 95, you really should be. The debugging DLLs for Windows 95
give very useful information when something goes wrong. If you resist the
debug version and try stepping through the retail build, be prepared for
discrepancies between what you see in your debugger and the pseudocode
from this book.

THE SAMPLE PROGRAMS
Windows 95 System Programming SECRETS includes quite a few programs
for exploring Windows 95 on your own. All these programs (both the .EXEs
and the source files) are included on the disk that accompanies this book. I
absolutely despise books that take up (pad) 30 pages at a time with source
code listings. For this reason, almost none of the source code for these programs
appears here. The one exception is the APISPY32 program in Chapter 10.
The focus of Chapter 10 is building a Win32 APl spy, and a close examina-
tion of the source code is necessary to demonstrate the concepts involved.

If you read Microsoft Systems Journal or PC Magazine, you may have seen
some of the programs from this book in their earlier incarnations. In fact,
several of the chapters in this book were excerpted in the aforementioned
magazines. However, if you've read these articles, don't skip over the corre-
sponding sections in this book. The programs have evolved since they originally
appeared in magazine form. And, there are reams of material that didn't make
it into the magazine articles for space reasons.

For example, the PEDUMP program from Chapter 8 has almost doubled
its amount of functionality since it first appeared in Microsoft Systems Journal.
Likewise, the APISPY32 program that appeared in Microsoft Systems Journal
worked with beta 2 of Windows 95, but broke in later builds. The APISPY32
program from this book works with the shipping Windows 95, as well as with
.EXEs that use the extensions introduced in NT 3.51.

PUTTING
WINDOWS 95 IN
PERSPECTIVE

 A WIN32 OVERVIEW

A
s I write this, Microsoft is madly churning out copies of
Windows 95, in the wake of its August debut.
Windows NT, on the other hand, has been available for

two years -- and in many people's minds has flopped. The per-
ception is that NT is slow and a resource hog. (Windows NT
3.5 was a substantial improvement over the first NT release,
however, and many of the initial complaints were dealt with. I
quite enjoy developing in Windows NT now.) The Win32s
libraries, which run atop Windows 3.1 and which were
released at the same time as Windows NT 3.1, are widely
regarded as being incredibly buggy and ultimately not worth
the effort of working with.

Things just haven't looked too bright for the future of 32-bit
Windows programming until the release of Windows 95. Now,
like it or not, you'll have to come face to face with Win32 pro-
gramming if you want to stay in the Microsoft camp and keep
up with the latest technologies. Microsoft is putting all its eggs in
the Win32 basket. Even though 16-bit Windows 3.x applications
will continue to be supported in future Microsoft operating sys-
tems, 16-bit programs won't be able to take advantage of many
new features. Given that Win32 is the future (according to
Microsoft, anyway), the big question is "Where should you be
focusing your programming efforts?"

While the primary focus of this book is on the architecture and implemen-
tation of Windows 95, this operating system is the newcomer to the Win32
playing field. Even though Windows NT and Win32s have been shipping for
quite some time, many of you probably didn't pay much attention to Win32
programming until Windows 95 came along. Microsoft's master strategy for
the Win32 application programming interface (APl) and the scaleability of its
operating systems have been with us for three years now. It would be foolish
to pretend that Windows 95 is brand new, and without a history. In addition,
although Windows 95 is currently getting all the press, in the halls of Microsoft,
it's the NT team that's building Microsoft's operating system of the future.
Microsoft intends Windows NT and Windows 95 to merge in the future, and
the result will be based more on Windows NT technology than on Windows 95.
Therefore, before digging into the nitty-gritty technical details of Windows 95,
I'll use this chapter to provide a sense of Microsoft's Win32 strategy over the
past several years and to show how Windows 95 fits into the picture. Believe
me, the remainder of the book will be chock-full of information about
Windows 95 and how it's implemented. But this first chapter is important to
put Windows 95 into the larger context of Win32 programming and the
Win32 (APl).

No doubt Microsoft won't like some of what I'll say here, since its mantra
has long been "There's just one Win32 APl. Write one program and have it
run on all our systems." Although this sounds like a nice idea, it breaks down
in practice.

Probably the best way to start this discussion is to define the term Win32.
Used properly, Win32 defines a set of operating-system functions (an APl)
that application programs can use to carry out their work. This set of func-
tions is called the Win32 AP1. When Microsoft first introduced Windows
NT, many programmers were confused about the difference between the
terms "Win32" and "Windows NT." Windows NT is just one implementa-
tion of the Win32 APl. However, since it was the first announced Win32
implementation, some programmers had a hard time differentiating between
the operating system (Windows NT) and its APl (Win32).

Since one of Microsoft's major goals with respect to Win32 is to provide
easy porting to the Win32 APl, the Win32 APl functions are very similar to
the Windows 3.x APl in those areas covered by Windows 3.x (for instance,
in window management and display output).

If Microsoft had limited the use of the Win32 APl to just Windows NT,
Windows 95 would have turned out very different than it did. However,
Microsoft committed to implementing the Win32 APl on several operating

2

3

systems. Each operating system is optimized for a specific situation and hard-
ware environment. For powerful high-end machines where robustness and
security are of primary importance, Windows NT is the implementation of
choice. For low-end 386 machines that are still running Windows 3.1 with
limited memory, the Win32s libraries were the optimal Win32 solution until
Windows 95 arrived on the scene. The important point from Microsoft's
perspective is that by writing your programs using the Win32 APl, the
same executable can presumably run on any Win32 implementation.

In theory, the Win32 APl implementation in each operating system should
gloss over any underlying differences in hardware or low-level operating sys-
tem design. This relates to Microsoft's "Scaleable Architecture" campaign,
promoted around the time of the first Win32 developer's conference in July of
1992. As the name Win32 implies, one of the key advantages of switching to
the Win32 APl from the Windows 3.x APl is 32-bit code. In defining the
Win32 APl, Microsoft also outlined a new 32-bit executable file format. This
format is known as the PE (Portable Executable) format and is derived from
the UNIX System common object file format V (COFF). The Win32 APl and
the PE format are a matched set. All Win32 operating system implementations
(even on non-Intel platforms) use the PE format as their primary executable
format. By using the same executable format for all Win32 operating systems,
Microsoft hopes to guarantee that a properly written Win32 program will run
on all Win32 implementations. Of course, portability only goes so far. While
the executable format is portable, you still can't run a program compiled for
the DEC Alpha on a computer with an Intel CPU (at least, not without very
complex emulation software).

Shortly after Windows NT was put into the public arena, Microsoft
announced another implementation of the Win32 APl called Win32s. The
idea behind Win32s is that a collection of DLLs and virtual device drivers
(VxDs) provided by Microsoft could be added to an existing Windows 3.1
machine to enable it to run Win32 programs. Unfortunately, some of the
desirable features that Windows NT brings to the party weren't achievable
under the architecture imposed by running atop Windows 3.1. Thus was
born the concept of the Win32s subset. The Win32s libraries provide some,
but not all, of the APl functions that Windows NT and Windows 95 have.
In fact, the s in Win32s stands for subset (or, depending on your experience
with Win32s, a variety of other less flattering words). The major downfall
of Win32s is that it doesn't support many features of modern operating sys-
tems, such as threads and separate address spaces. Threads are a feature of
advanced operating systems that allow more than one portion of a program
to execute at once (or at least appear to operate this way). A classic use of

4

threads is to use one thread to handle printing, while another thread contin-
ues to respond to user input. Win32s is also hamstrung by some of the limita-
tions of Windows 3.x. (More on this in "The Win32s implementation" section
later in the chapter.)

Like Win32s, Windows 95 provides only a subset of the full Win32 APl
as defined by Windows NT. Microsoft originally dubbed this subset Win32c
(the c stands for Chicago, which was the original code name for Windows
95). The Win32c APl subset includes all the functions in Win32s, and adds
a significant number from the full NT APl set. Hopes are high for the suc-
cess of Windows 95, because even though its APl is a subset of Windows
NT's, Windows 95 contains most of the features programmers find desirable
in an advanced operating system -- for example, threads and separate
address spaces (both features that Win32s lacks). Programmers generally love
separate address spaces because this feature prevents buggy programs from
overwriting another program's data or, more importantly, from overwriting
the operating system itself. Windows 95 also requires less memory than
Windows NT, making it a more suitable choice for the average desktop PC.

Unlike the Windows NT team, the Windows 95 team didn't consider
portability to other processors to be a major goal. That's because the Intel
market is large enough to enable Microsoft to have two mostly separate
Win32 development efforts. The Windows NT group produces a portable
Win32 implementation, but one that isn't optimal for any given platform.
The Windows 95 group produces a Win32 implementation that is optimized
for the Intel 80386 class of CPUs. If Microsoft didn't have a version optimized
for the Intel platform, it would likely lose ground to operating systems that do,
such as OS/2 Warp. In fact, many people think OS/2 and Windows 95 are very
similar and that Windows 95 is an "OS/2 killer."

A while ago, Microsoft ditched the term "Win32c" because it seemed
to highlight the differences between Windows NT and Windows 95 and
was confusing programmers. In place of the term "Win32c," Microsoft
started claiming that there is just one Win32 APl, and that a program
written for the Win32 APl will run on all the Win32 implementations.
The reality, however, is that programmers still have to consider the functions
that Windows 95 implements as a proper subset of the Windows NT
(Win32) APl. Microsoft's concern seemed to be that programmers might
be holding off on writing to the Win32 APl since they didn't know which
subset to target. Later on, Microsoft tried to further enforce this "Just
one Win32 APl" mindset by making support for both Windows NT and
Windows 95 a requirement to use the Microsoft Win32 Logo on a product.

t h e

5

Of course, trying to feather over the differences among API subsets is
complete nonsense. There are differences between the subsets, and they do
matter. For example, developers discovered that it was difficult for them to
obtain Microsoft's Win32 Logo program because the differences between
the Windows NT and Windows 95 Win32 implementations made it next
to impossible to meet Microsoft's requirement that its products support
both implementations. (Eventually, enough whining by developers caused
Microsoft to revise its logo requirements.) And, as a second example, it's
clear that a program that relies on multiple threads to do its job can't run
on Win32s since Win32s doesn't support multithreading. The result of
these differences is that, in order to program effectively, programmers will
have to pay attention to the Win32 subsets and understand the underlying
operating system.

POSITIONING THE WIN32 OPERATING SYSTEMS

To clarify the underlying architecture of the current Win32 platforms, I've
come up with an audio-system analogy (see Figure 1-1) that nicely illustrates
the relationships between the platforms. For the sake of this discussion, pre-
tend that audio compact disks don't exist and that cassette tapes are the best
available form of recorded music.

 Figure 1-1
This audio-system analogy clarifies the underlying architecture of the current Win32

 platforms and shows how they are related to each other.

U n i c o d e)

6

In my analogy, Win32 programs are like cassette tapes, and 16-bit
Windows 3.x programs are like the older, clunkier 8-track tapes. Similarly,
a Win32 operating system is like a cassette tape player that can play and
record cassette tapes, and Windows 3.x is like an 8-track player and is
limited to 8-track tapes.

Given this scenario, if you were an audiophile and wanted top-of-the-line
stereo components, you'd purchase a high-quality cassette deck with all the
bells and whistles -- that is, you'd purchase Windows NT. On the other hand,
if you're strapped for cash and wanted to play cassette tapes, but had only an
8-track player, what would you do? You might decide to get an adapter for
your 8-track player that will permit you to listen to cassettes. In Windows
programming, Win32s is the equivalent of this cassette-to-8-track adapter.
You plug Win32 programs into the Win32s adapter, which in turn plugs into
Windows 3.1 (the 8-track tape player). When using these tape adapters, you're
limited in what you can do. For instance, you can't use an 8-track adapter to
record onto a cassette tape. Also, the sound quality isn't anywhere near as
good as playing the cassette on a cassette deck would be (since there's an extra
layer of electronics and tape heads between the 8-track tape and the cassette
deck tape head). Likewise, Win32s has limits on what it can do: The full
Win32 APl isn't supported, nor are features such as threads available.

Where does Windows 95 fit in? Windows 95 would be the equivalent of
a basic-model cassette deck, with some of its components scrounged from an
8-track player (and a pretty new face plate). Windows 95 has a lot of new
32-bit code, but also borrows heavily from the Windows 3.1 code base for
features such as window management. For the most part, the Windows 95
cassette deck does everything that the Windows NT premium-quality cassette
deck does, but it lacks some high-end features -- for example, it doesn't sup-
port security or double-byte character sets (a.k.a. Unicode) like NT does. On
the positive side, however, the Windows 95 basic-model cassette deck doesn't
require anywhere near the amount of fancy, sophisticated electronics inside,
so it's cheaper to produce. In other words, Windows 95 won't have nearly as
much code as NT, so it will take up less room in memory and run faster.

With this rather corny analogy safely tucked away in the attic of your
mind, let's zoom in and examine each of Microsoft's Win32 implementations
to see how they relate to one another.

P O S I X .

The Windows NT implementation
The primary goals of Windows NT are robustness and portability to other
platforms. Much of the code is written in portable C or C++ rather than in
hand-optimized assembler for the target platform. The emphasis on stability
makes NT an ideal development platform, even if you're targeting Windows
95, Win32s, Windows 3.x, or DOS. On the other hand, portability and
stability come at a cost. All the C/C++ code in NT adds up to a large footprint
in memory just to get the system booted. A minimum usable Windows NT
development machine is a 486 with 16MB of memory. Even with that hard-
ware, NT won't be as fast as a system running OS/2 or Windows 95. (In
defense of Windows NT, however, the 3.5 version was significantly better
than NT 3.1, which is the version many programmers based their first
impressions on.)

One of the primary reasons for NT's robustness is its protected subsystem
architecture. In the protected subsystem, the operating-system code that imple-
ments the API functions runs in a different address space and process than that
of the calling program. The most important subsystem in Windows NT is the
Win32 subsystem. The Win32 subsystem is its own process, with most of the
USER and GDI code placed in a DLL called WINSERV. DLL. When your pro-
gram makes a call to an APl function such as TextOut, you're not making a
direct call to the real TextOut code. Instead, a stub in NT's GDI32.DLL copies
your parameters into a region of memory accessible by both your process and
the Win32 subsystem process. Your thread then signals the Win32 subsystem
process that there's a function request waiting for it and then goes to sleep.
When the Win32 subsystem process sees the signal that there's work to do,
it processes the request (doing things such as putting a text string to the
screen) and then informs the calling process's thread that the function has
completed. This subsystem client/server model also applies to other operating
system "flavors" that NT supports, such as OS/2 1.x and POSIX.

The advantage of protected subsystems is that their address space is
better protected against memory overwrites and other bugs in application
program code. In operating systems without this subsystem model (such
as Windows 3.x and Windows 95), the operating-system code and data is
mapped into the address spaces of all processes, making it possible for a
buggy program to overwrite and crash the operating system. The disad-
vantage to the subsystem model is increased execution time. Every call to

c l o c k ~ c y c l e - w i s e ,

an operating-system function theoretically causes a process switch and
memory context change. This is expensive, clock~cycle-wise, with estimates
of 2000-3000 clock cycles for the average call. For this reason, the NT
developers optimized some heavily used routines so that they wouldn't
require a process switch. In addition, certain GDI calls can be batched so
there doesn't have to be a process switch for each call.

All this improved robustness for Win32 applications is great, but what
about existing 16-bit applications that are run under NT? Sixteen-bit Windows
programs run under a cooperatively multitasking model, and expect to be able
to access memory belonging to other tasks. NT keeps 16-bit tasks at arm's
length by running them in a separate process known as WOW (Windows On
Windows). By default, 16-bit Windows applications run in a single "WOW
box," which is essentially a multithreaded DOS box.

The WOW box is a Windows 3.l-like "sandbox" inside of which ! 6-bit
applications can do anything they want; their actions don't corrupt anything
outside the box.

The WOW subsystem communicates with the Win32 subsystem code
to perform display output, allowing 16- and 32-bit windows programs to
interact on the same screen. Windows NT 3.5 introduced the ability to run
each Win16 application in its own WOW box, increasing stability among
several applications running Win16 at the expense of additional memory.

I'm introducing the WOW subsystem in this section because it's an
important architectural difference between Windows NT and Windows 95.
(Windows 95 runs Win16 applications in the same address space as the cur-
rent Win32 application.) The only real downside to the WOW subsystem in
NT is that 16-bit Windows applications run slower than they would under
Windows 3.1 running on the same machine.

The Win32s implementation
In contrast to Windows NT, Win32s is yet another layer on the already
shaky DOS and Windows house of cards. Win32s isn't an operating system
in and of itself; rather, it's a set of extension libraries for Windows 3.1.
Likewise, Windows 3.x isn't a true operating system by itself, either. Instead, it
rests rather dicily on the unprotected real mode operations of DOS. The code
for implementing the Win32 API with Win32s adds another precariously bal-
anced layer because it relies on the VxDs and system DLLs from Windows 3.1.

With few exceptions (such as memory mapped files), if a particular
piece of functionality isn't in Windows 3.1, the equivalent Win32 function

8

' N u f f

9

isn't in the Win32s subset. A good chunk of the Win32s code is nothing more
than thunks to go from your 32-bit program down to the 16-bit Windows 3.1
code that does the actual work. Thunks are the programming equivalent of
patching things together with chewing gum, string, and bailing wire. Thunks
in Win32s and Windows 95 are small chunks of code that handle the transitions
between 16- and 32-bit code.

The limitations of Win32s are numerous. First and foremost, it doesn't
support multithreading. 'Nuff said on that point. A second Win32s flaw is
its single address space for all Win16 and Win32 programs. Since Windows
95 and NT have separate address spaces for Win32 programs, this relegates
Win32s to the "abandon as soon as you can" category. Win32 programs
running under Win32s can see the memory of other Win32 programs, as
well as the memory of 16-bit programs, making memory corruption a very
real possibility.

A third mark against Win32s is the lack of per-process DLL data. In NT
and Windows 95, the data area of a DLL is instanced on a per-process basis
(by default). In simpler terms, this means that you can safely use global vari-
ables in DLLs without worrying that another process will call the DLL and
overwrite the variable with another value. Since DLLs under Win32s share
the same data area between all users of the DLL (just like under Windows 3.1),
you can run into nasty bugs. Typically, your program and its DLLs will work
fine under NT or Windows 95, but crash in Win32s/Windows 3.1. This is
yet another reason to forget that Win32s ever existed, now that Windows 95
is here.

Another group of Win32 problems that don't exist in Windows NT and
Windows 95 relates to process scheduling and the messaging system. In
Windows NT and Windows 95, threads are switched pre-emptively. In
addition, Windows NT and Windows 95 give each thread its own message
queue, and a separate input system thread assigns mouse and keyboard
events to the appropriate queue. These two design factors allow one thread
to be as unresponsive and take as much time as it wants without affecting
other programs. In contrast, Win32s is stuck with the hopelessly problem-
prone Windows 3.1 cooperative multitasking model. In order for one task
to run, another task has to yield the CPU by calling a function such as
GetMessage or PeekMessage. If a task doesn't retrieve its messages and yield
the CPU in a timely manner, the user can't switch to or use other programs.

The bottom line? Win32s has a reputation of being cranky and prone to
crashes or other strange behavior. If you're getting the feeling that I don't think
Win32s isn't worth the trouble, you're right. Thank goodness Windows 95 is
finally here to take its place.

W i n 3 2 s

10

The Windows 95 implementation
The best way to describe the Windows 95 Win32 implementation is to say
that it's Win32s done properly. Another way to think of Windows 95 is to
conceive of it as incorporating the best features of Windows NT implemented
in the Win32s style. Windows 95 contains just the right amount of advanced
operating-system features without going overboard in terms of code size and
speed. In fact, the Window 95 memory footprint is roughly the same as
Windows 3.1 with Win32s installed, making Windows 95 an ideal replacement
for Win32s.

Under the hood, Windows 95 has a stronger resemblance to Windows 3.1
and Win32s than it does to Windows NT. Like Windows 3.1, the lowest
layer of Windows 95 is ring 0 system code consisting of the Virtual Machine
Manager (VMM) and assorted VxDs. The code running at CPU ring level 0
is theoretically the most stable and trusted code, so it has more access to the
hardware and operating-system data than the application-level code running
at ring level 3 of the CPU. Also, as in Windows 3.1, there is one virtual
machine set up for running Windows programs and a separate virtual
machine for each DOS session you start. In the system virtual machine
that's used by Windows programs, you'll find the familiar ring 3 system
DLLs: USER, KERNEL, and GDI, along with their 32-bit equivalents:
KERNEL32, USER32, and GDI32.

Like Win32s, Windows 95 implements a big chunk of its code in the
16-bit system DLLs and uses thunks to transfer from 32-bit programs down
to the 16-bit code. Almost all of the windowing and messaging system code
resides in the 16-bit USER.EXE, just as in Windows 3.1. Trying to convert the
massively complex windowing system code in USER.EXE to 32 bits would
have led to a large size increase and incompatibilities with existing 16-bit pro-
grams. Neither of these problems was acceptable to Microsoft, since backward
compatibility with existing hardware and software was not up for debate.
Therefore, the windowing and messaging system in Windows 95 is essentially
an updated version of the Windows 3.1 code. The updates are primarily to
allow the 16-bit components to interface with the 32-bit components, as well
as to add whatever functionality was needed to implement the Win32 functions
that Windows 95 supports.

The implementation of the 32-bit GDI APl in Windows 95 is split
between existing code in the 16-bit GDI.EXE and new code in GDI32.DLL.
Wherever possible and reasonable, the Windows 95 GDI32 functions thunk
down to the existing 16-bit GDI code. With regard to the KERNEL APIs,
Microsoft's statements have indicated that the 32-bit KERNEL32.DLL
doesn't thunk down to the 16-bit KRNL386.EXE. However, Andrew Schulman

l l

ll

proved conclusively in Unauthorized Windows 95 that KERNEL32 does in
fact call down to KRNL386.EXE. We'll also be scrutinizing Microsoft's
statements on this topic later on in the book, especially in Chapter 3.

In the previous section I described some of the problems with Win32s: no
threading support, a single address space, the lack of per-process DLL data,
and cooperative multitasking. For the most part, Windows 95 corrects these
issues; that is, it works like NT. Windows 95 32-bit programs can have threads
(although 16-bit tasks cannot), and data in DLLs is per-process. However,
some corners have been cut. For example, each process in Windows 95 gets
its own address space, but all loaded system DLLs are visible to a Windows 95
process, not just the DLLs that the process has loaded itself. In addition, the
memory of all Win16 tasks and some of the DOS memory below 1MB is visible
to the currently running Win32 process. In other words, parts of DOS, Win16
programs, and the current Win32 process all intermingle in the same address
space, unlike in Windows NT. As Chapter 5 shows, memory corruption is still a
possibility in Windows 95, but the likelihood of a 32-bit programming
bashing memory that it doesn't own is much less than under Win32s.

One of the hot topics about Windows 95 is its not-very-smooth multi-
tasking behavior in the presence of 16-bit programs. Windows 95 really
does have preemptive multitasking, but a badly behaved 16-bit program
can cause other threads to jam up at the entrance to 16-bit DLLs such as
USER.EXE and GDI.EXE. The problem is that the 16-bit system DLLs are
nonreentrant. That is, they don't expect to be switched away from while
they're in the middle of doing something. Since many of the Win32 APl
functions thunk down to the system DLLs, some method to prevent a thread
switch at an inopportune moment is necessary. Many solutions were discussed
and hotly debated during the early design period of Windows 95.

The solution that was finally decided on as the most palatable of numerous
bad options is known as the Win16Mutex. The Win16Mutex is essentially
a mutual exclusion semaphore that needs to be acquired upon entry to the
16-bit system DLLs such as USER.EXE and GDI.EXE. The Win16Mutex
means that only one thread can be executing at a time through the 16-bit
system code. This in itself wouldn't be so bad, but to prevent other problems,
the Win16Mutex is "owned" whenever a 16-bit application is executing. The
unfortunate ramification is that a 16-bit program that doesn't yield properly
by calling GetMessage or PeekMessage can prevent the user interface threads
of 32-bit applications from executing.

The implications of the Win16Mutex are twofold. First, the sooner you
move your application to 32 bits, the better. If a system isn't running any
badly behaved 16-bit programs, the Win16Mutex will almost never be a
source of trouble. (As pointed out in Unauthorized Windows 95, no

f r e a d

12

Windows 95 system is completely free of Winl6 tasks, since the system
itself uses one or two 16-bit tasks. However, these system tasks are good
about yielding control to other tasks, and thereby are good about
releasing the Winl6Mutex.)

The second implication of the Win 16Mutex involves threading. If you're
doing time-critical work, you'll probably want to split your application into
multiple threads (for instance, a user interface thread and one or more worker
threads). The Winl6Mutex doesn't affect threads that aren't thunking down
to 16-bit code like USER or GDI. These threads will continue to be pre-
emptively scheduled and executed, even if the entire user interface is tied
up with an ill-behaved 16-bit program that's not yielding. The most likely
way to get hung up in your Win32 application while waiting for the
Winl6Mutex is by calling USER and GDI functions. With advance planning,
you can avoid calls that might block in your time-sensitive threads.

Win32 implementations outside Microsoft
The previous three sections have focused on the Win32 platforms provided
by Microsoft. However, the Win32 APl is sufficiently well defined and full
featured enough to enable other companies to implement it. The example
most people are aware of is OS/2 Warp. With the advent of all these Win32
operating systems from Microsoft, IBM saw the writing on the wall. Even
though the Win32 APl competes directly with the native OS/2 APl, IBM's
more recent versions of OS/2 have support for a subset of the Win32 APl.
At the time of this writing, the Win32 subset supported by OS/2 is Win32s,
although no doubt IBM is looking at supporting the Windows 95 subset in
the future.

Nearer and dearer to my heart is Win32 for DOS. Even though I primarily
run either Windows 95 or Windows NT, I still boot DOS and Windows 3.1
frequently. When I do this, I hate not having all my programming utilities
available that I wrote using the Win32 APl. Luckily, I don't have to forego my
tools when operating in a nonnative Win32 supporting environment. Both
Phar Lap and Borland make DOS extenders that support enough of the Win32
APl to allow console mode programs to run under DOS or Windows 3.1. If
you use any graphics or windowing system functions, these DOS extenders
won't fill the bill, but often a console mode program (like my PEDUMP from
Chapter 8) is all you need.

Phar Lap's DOS extender is called TNT; Borland's DOS extender comes
with the Borland DOS Power Pack. Using these extenders, you can write
generic C/C++ programs that use functions such as printf and fread with-

13

out concern for whether your program will be running under Windows
NT, Windows 95, or DOS.

Using the Phar Lap or Borland DOS extenders can be as simple as
changing a line or two in your linker options. You can continue to use your
existing Win32 compiler without any changes. The idea behind these DOS
extenders is that you use the special program supplied with the DOS extender
as the DOS stub program in your Win32 executable. If you run the EXE
under Windows 95 or NT, the operating system ignores the stub program. If
you run the program from DOS, the stub program loads the DOS extender
and brings in the code that provides the Win32 API subset under DOS.

Interestingly, Microsoft itself used the TNT DOS extender in its first
release of Visual C++ 32-bit edition. Since there were programmers who
wanted to develop for Win32s but didn't have an NT machine, Microsoft
couldn't make Windows NT a requirement for running the compiler (CL.EXE)
and linker (LINK.EXE). By using the TNT extender, the Microsoft tools run
as native Win32 console mode applications for programmers developing on
NT and as DOS extended applications for Win32s developers. The majority
of Borland's command-line tools are also Win32 applications and continue
to use the Borland Power Pack DOS extender to this day.

DEVELOPMENT CONSIDERATIONS

If you decide that your next great project is going to run on both Windows 95
and Windows NT (and heaven help us, maybe even Win32s}, the selection of
your primary development platform is critical. If you get your program to
work correctly on Windows 95, and don't use features specific to Windows 95,
there's a pretty good chance that the code will run unmodified on Windows
NT. On the other hand, Windows 95 isn't as robust as Windows NT. You
may spend quite a bit more time rebooting in Windows 95 than you do under
Windows NT (at least I do). This point lends credence to the argument that
NT is the ideal Win32 development platform.

The choice of whether to develop on Windows NT or Windows 95 seems
to be intensely personal. Some developers abhor the Windows 3.1-style shell of
NT 3.5 and would much rather work in Windows 95. It's likely that those
same people aren't doing the kind of development work that tends to put the
system in an unstable state. Others, like me, routinely put the system at risk by
doing things such as writing debuggers and poking around at the operating
system and therefore enjoy the incredible robustness of Windows NT. In all
my work, I've crashed Windows NT only once or twice over a period of two

N T .

14

years, whereas I routinely crash Windows 95. (This isn't because Windows 95
is inherently unstable, it's just that the design of NT makes it more resistant to
hard system crashes.) But despite the robustness of Windows NT, I still find
myself developing quite a bit on Windows 95 because there are tools such
as SoftIce/W available for it that aren't yet available for Windows NT. In
short, there is no good answer to this question. Both Windows NT and
Windows 95 have merits as your Win32 development platform or choice.

THE FUTURE OF WIN32

About the time this book was published, Microsoft was working on the next
major revision of NT, code-named Cairo. Cairo will use the Win32 APl, and
is supposed to be extremely object oriented, even down to its file system.
Cairo should also sport Microsoft's post-Windows 95 thoughts on user
interface design. Since Cairo will be a revision of the NT code base, its plat-
form independence may be achieved at the cost of increased code size and
slower performance. Perhaps Microsoft is betting that the average machine's
performance and available memory will have increased significantly by the
time Cairo arrives.

Although Windows 95 is not the end of Microsoft's 32-bit Intel-specific
operating-system line, the Windows 95 architecture may only live on for a
few more years. If hardware prices and capabilities are conducive to run-
ning Cairo and its successors on average desktop systems, Microsoft may
discontinue developing two Win32 operating systems in parallel. On the
other hand, if the majority of user's hardware won't support running the
portable Cairo code base, Microsoft will certainly continue to develop an
Intel-specific Win32 platform that allows them to keep their market share.

SUMMARY

This concludes my whirlwind rendition of how Windows 95 relates to other
Win32 implementations and the Win32 story to date. In Chapter 2, the
focus will be entirely on Windows 95. Specifically, it will provide an
overview of what's new in Windows 95 relative to Windows 3.1. The
remainder of the book will then dig down into the dirty details of what is
sure to be the most widely studied and supported Win32 platform ever.

N T

WHAT'S NEW
IN WINDOWS 95?

F or nearly two years, people have been speculating about
what Windows 95 is. Some have described Windows 95

as NT Lite - - but Windows 95 isn't just a "light" version of
NT. Others have described Windows 95 as Win32s on
steroids-- and although there are some striking similarities
between the two operating systems, that description isn't really
right either. Windows 95 is much more than a bulked up
Win32s.

This chapter provides an overview of Windows 95 from a
programming and architectural point of view. Since most users
will be converting to Windows 95 from Windows 3.1, I used
Windows 3.1 as the baseline for the various comparisons I make.

The portions of the architecture I describe are those that
almost every Windows application deals with. The majority of
the topics I discuss fall into the traditional KERNEL, USER, and
GDI troika. The view of Windows 95 given here is by no means
complete. There are many topics - - such as OLE 2.0, Plug and
Play, MAPI (Mail API), and TAPI (Telelphony APl) -- that are
beyond the scope of what I can hope to describe in this book.

Throughout this chapter, I describe some Windows 95
features and architectural concepts that are technically Win32
features and concepts rather than Windows 95-specific. These
features have existed in NT for quite some time. However,

16

Windows 95 will be the first real exposure to Win32 programming for many
programmers. Since this book is first and foremost about Windows 95, I say
Windows 95 in many places where it would be more technically correct to
say "Win32" or "NT and Windows 95."

As I see it, Windows 95 has two fundamental, if sometimes conflicting,
requirements:

* Provide an implementation of the Win32 API with all the goodies of
Windows NT (threads, separate address spaces, virtual memory, and so
on), without the space-eating features such as security and support for
the Unicode standard.

* Run existing MS-DOS and 16-bit Windows applications on a 4MB
machine as well or better than Windows 3.1 would on the same
machine.

The first requirement represents Microsoft's admission that not every
computer has the processing power or memory needed to run Windows NT.
Although NT is a great "No Compromises" operating system, its resource
requirements exceed that of the average 4MB desktop PC. Windows 95
brings a respectable subset of NT's capabilities to users who don't have NT-
capable hardware but also don't need all the overhead of a bulletproof
operating system like NT or UNIX. Since there are tens of millions of
non-NT-capable machines, Microsoft gave up NT's portability to get a
powerful Win32 implementation that runs on the average desktop PC.
While the Win32 API layers are very similar between NT and Windows 95,
Windows 95's implementation ties it to the 80386 class of Intel CPUs. The
capability to bring Win32 to a vast number of machines made it worth the
expense of maintaining two operating systems.

The second requirement for Windows 95 needs to be specified very clearly.
Note that Microsoft doesn't claim you can run a couple of large applications
smoothly on a 4MB Windows 95 machine. Instead, Windows 95's target is
this: On machines with 4MB or more, Windows 95 will run no worse than
Windows 3.1, given equivalent program loads. I think applications that run
better on a 4MB machine than on Windows 3.1 will be the rarity. However,
it's reasonable to expect that applications will run as well on Windows 95 as
they did on Windows 3.1. (Bear in mind that almost everyone considers 8MB
to be a usable minimum for Windows 3.1, so running "as well as" isn't the
same thing as "running well.") Since Windows 95 can't give up Windows
3.1 features, it's clear that the Win32 support needs to be shoehorned into
space freed by tightening and tuning the Windows 3.1 code. This is where most
of the Windows 95 design compromises come into play.

M S D O S . S Y S

17

I've divided this chapter into four main sections:

* How Windows 95 is the same as Windows 3.1
* How Windows 95 has improved on already-existing Windows 3.1 features
* New features introduced in Windows 95
* "Dirty little secrets" about Windows 95

This chapter provides a high-level view of the changes and additions to

Windows 95 and defers the in-depth discussion to subsequent chapters.
Where appropriate, I'll give pointers to other chapters in the book where
you can find more information.

SIMILARITIES TO WINDOWS 3.1
Microsoft has gone to great lengths to convince people that Windows 95
is a brand new operating system, built from the ground up. However, you
shouldn't believe everything you're told. If you make a few small changes
(which I'll describe next), you can make a persuasive argument that a
Windows 95 system is actually running Windows 3.1. That's because under
the hood, Windows 95 is primarily an evolution of the DOS and Windows
3.1 code base. Sure, there are many great new features in Windows 95;
I'll be describing them here and throughout the book. For the purpose of
truly understanding what Windows 95 is, however, it's important to set
aside the hype and take an honest look at the foundations
of Windows 95.

I've just now asserted that Windows 95 has evolved from the combination
of DOS and Windows 3.1. It's time for me to put up or shut up. For our first
experiment, let's take a look at what happens when you turn on the machine.
(I'm assuming you have Windows 95 installed already.) Before rebooting your
machine though, let's make a small change. In your boot drive's root directory
is a hidden system file called MSDOS.SYS. If you run the dir/AH command,
you'll see it:

C:\> dir /ah MSDOS.SYS

Volume in drive C is MS DOS 5
Volume Serial Number is 1CDE 9CF5

Directory of C:\
MSDOS SYS 1,641 07 17 95 9:40p MSDOS.SYS

1 file(s) 1,641 bytes
0 dir(s) 71,696,384 bytes free

b o o t u p

18

Now, this file is no big surprise if you've been using PCs for awhile.
However, in Windows 95, the file has changed quite a bit. In fact, it's now an
ASCII text file. Let's change the attributes to make it accessible to a text editor:

C:\> ATTRIB -r -h s MSDOS.SYS
RHSA_ > ___A_ C:\MSDOS.SYS

Bringing up MSDOS.SYS in an editor will show you something like this:

[Paths]
WinDir=C:\WINDOWS
WinBootDir:C:\WINDOWS

HostWinBootDrv=C
[Options]
BootMulti=1
BootGUI=1
Network=0

;The following lines are required for compatibility with other programs.

;Do not remove them. (MSDOS.SYS needs to be >1024 bytes.)
;XXXa
... rest of f i l e o m i t t e d . . .

Your file may differ slightly, but you get the point. Now, let's add a line
("Logo=O") to the [Options] section:

[Options]
Logo=0
BootMulti=1

Next, save the file. While you're at it, you might want to change the
attributes back to the way they were before (+r +h +s). Now reboot.
Assuming you still have a CONFIG.SYS or AUTOEXEC.BAT files after
installing Windows 95, you should see the contents of these files being
processed before the Windows 95 user interface comes up. What's missing
from the equation is the logo that Windows 95 usually displays during your
bootup sequence. It's pretty obvious that the logo is primarily an attempt to
hide those messy technical details involved in booting up the computer --
the kind of details that can confuse end users. What they don't see can't
concern them, right? With a single line, we just dismissed a big part of the
Windows 95 "user friendliness."

It certainly looks like DOS may still be involved here somewhere. To
check this out, I deleted my CONFIG.SYS and AUTOEXEC.BAT file and
rebooted. Perhaps the DOS-like behavior we just saw is for backward com-
patibility. After booting without CONFIG.SYS or AUTOEXEC.BAT, I ran
the MEM/DEBUG command to see what's in memory below 1MB. The
abbreviated output is as follows:

0 0 0 C 4

19

Conventional Memory Detail:

Total Name TypeSegment

00000
00040

00050
00070

000C4 5,072

00201 11,584

1,152

2,848

688

544

400

1,488

256

512

448

3,072
004D5 80
004DA 192
004E6 3,312
005B5 32
005B7 16

005B8 1,152

00600 208

0060D 5,728

00773 1,312

007C5 240

007D4 90,400
O1DE6 532,896

1,024 (1K)

256 (OK)

512 (1K)
1,344 (1K)

(5K)

(11K)

(1K)

(3K)

(1K)

(1K)

(0K)

(1K)

(0K)

(1K)

(OK)

(3K)
(OK)

(OK)

(3K)

(0K)

(0K)

(1K)

(0K)

(6K)
(1K)

(0K)

(88K)
(520K)

IO

CON

AUX

PRN

CLOCKS

A: - D:

COM1

LPT1

LPT2

LPT3

CONFIG$

COM2

COM3

COM4

MSDOS

IO

XMSXXXX0

IFSHLP
SETVERXX

MSDOS

WIN

WIN

vmm32
MSDOS

vmm32

COMMAND

COMMAND

COMMAND

MEM

MEM
MSDOS

System
System

System

System

System

System
System

System

System
System
System

System

System
System

System
Install

Install
Install

Interrupt Vector

ROM Communication Area
DOS Communication Area
System Data

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Device Driver

Data

Data

ed Device=HIMEM

ed Device=IFSHLP

ed Device=SETVER

Sector buffer

Block device tables

FILES=30

FCB:S=4
BUFFERS-24

LASTDRIVE=E
STACKS-9,256

System Program

Environment
Program

Data

- Free -

Program

Data

Program

Environment
Environment

Program
- Free -

F i g u r e 2-1
 The MEM/DEBUG command shows these fragments of DOS (even though DOS is
 supposedly gone in Windows 95).

(5 K)

20

If Windows 95 really does away with DOS, we shouldn't be seeing any

vestiges of DOS. Yet two lines from the output in Figure 2-1 stick out:

000C4 5,072 (5K) MSDOS System Data

00201 11,584 (llK) IO System Data

H m m . . . There's a 5K area labeled as MSDOS, and an 11K area with
the name IO. Perhaps this is somehow related to the IO.SYS file from the
days when we ran DOS and Windows 3.1 rather than the integrated
Windows 95. Let's check this out. Another dir/AH command in the root

directory confirms this:

C:\> dir /AH IO.SYS

Volume in drive C is MS DOS_5

Volume Serial Number is 1CDE 9CF5

Directory of C:\
IO SYS 223,148 07-11 95 9:50a IO.SYS

1 file(s) 223,148 bytes

0 dir(s) 71,688,192 bytes free

Yes indeed, IO.SYS is a big file. Although it's close to 220K, when loaded
on my system it takes up only the 11K of DOS memory we saw earlier. While
11K isn't much memory these days, it's still pretty good proof that there's at

least some DOS-like code residing on every Windows 95 system.
Here are a couple of other interesting lines from the MEM/DEBUG

output in Figure 2-1:

004DA 192 (OK) WIN Environment

004E6 3,312 (3K) WIN Program

These two lines sure make it look like a program called WIN was loaded
into memory. Hey, wait a minute! When I started Windows 3.1 from my DOS
prompt, didn't I type WIN, which invoked WIN.COM? Let's go have a look

and see if WIN.COM is still hanging around in Windows 95:

C:\>dir c:\windows\win.com

Volume in drive C is MS DOS_5

Volume Serial Number is 1CDE 9CF5

Directory of C:\WINDOWS
WIN COM 22,487 03-14-95 6:44p WIN.COM

1 file(s) 22,487 bytes

 dir(s) 68,542,464 bytes free

Sure enough. It looks like WIN.COM is still there in Windows 95. Seeing
as how the next thing in memory after the WIN program is something called
vmm32, it looks like WIN.COM plays the same role in Windows 95 that it
did in Windows 3.1. Namely, WIN.COM is what kicks off the whole process
that takes the machine from real (or Virtual 8086) mode into the protected
mode Windows environment.

Let's do one final experiment in this DOS area to confirm that theory.
In the CONFIG.SYS file, let's change the DOS command processor
(COMMAND.COM) to something else. I happen to prefer 4DOS, which is
a COMMAND.COM-compatible replacement from JP Software that offers
features above and beyond COMMAND.COM. To switch to 4DOS (assum-
ing you have a copy), add the following line to your CONFIG.SYS file:

SHELL=C:\4DOS.COM

When I did this, I rebooted and found myself sitting at a 4DOS prompt
rather than in the nice, cozy Windows 95 Explorer environment. It seems
that my version of 4DOS.COM didn't know to invoke WIN.COM at the
end of its processing of the AUTOEXEC.BAT file. Yet the COMMAND.COM
that comes with Windows 95 does. Oops! It looks like another part of this
seamless integration just fell away. The transparent boot straight into
Windows 95 that most end users experience turns out to be nothing more
than the moral equivalent of putting the following as the last line of your
AUTOEXEC.BAT file:

WIN

Since we're at a 4DOS prompt (which presumably knows nothing about
Windows), let's ask it what version of DOS we're running:

C:\>ver

4DOS 5.0 DOS 7.00

DOS 7, eh? I guess this shouldn't be a surprise. The previous version of
DOS was 6.x, right? If you fire up the Windows 95 COMMAND.COM
and ask it the same question, you'll get the following response:

Microsoft(R) Windows 95

(C)Copyright Microsoft Corp 1981 1995.

C:\>ver

Windows 95. [Version 4.00.950]

21

2 2

22

That's strange, there's no mention of DOS anywhere. Microsoft really
doesn't want the nontechnical end user to know that DOS is mixed in with

Windows 95.
I could go on and present other examples and technical demonstrations

that show the existence of DOS-like code in Windows 95. However,
Unauthorized Windows 95 covered this topic in much greater detail. If
you have further interest in this particular subject, check out Unauthorized

Windows 95.
Now let's look at what happens after Windows 95 begins firing up. If you

were to load Windows 95 under versions of WINICE that were written for
Windows 3.1, you could pop into WINICE and see much that would lead you
to believe you were looking at Windows 3.1. For example, Windows 95 (like
Windows 3.x) is still based heavily on VxDs. Many of the familiar VxDs are
still there in Windows 95: VMM, VPICD, VTD, VDMAD, V86MMGR, and
so on. (There are also many new VxDs, but we'll talk about those later.) In
addition, you can continue to load your own VxDs via the [386enh] section
of the SYSTEM.INI files. (However, Microsoft would prefer you to add VxDs
through the registry, something I'll describe later.)

Doing a MOD command in WINICE would also take you back to the

days of Windows 3.1:

:mod

hMod PEHeader Module Name

0117 KERNEL

01C7 SYSTEM

01BF KEYBOARD

01CF MOUSE

01E7 DISPLAY

036F DIBENG

023F SOUND

02EF COMM

042F GDI

17FF FONTS

1807 FIXFONTS

17F7 OEMFONTS

17CF USER

.EXE File Name

C:\WINDOWS\SYSTEM\KRNL386.EXE

C:\WINDOWS\SYSTEM\system.drv

C:\WINDOWS\SYSTEM\keyboard.drv

C:\WINDOWS\SYSTEM\mouse.drv

C:\WINDOWS\SYSTEM\atim32.drv

C:\WINDOWS\SYSTEM\DIBENG.DLL

C:\WINDOWS\SYSTEM\mmsound.drv

C:\WINDOWS\SYSTEM\comm.drv

C:\WINDOWS\SYSTEM\gdi.exe

C:\WINDOWS\fonts\vgasys.fon

c:\WINDOWS\fonts\vgafix.fon

C:\WINDOWS\fonts\vgaoem.fon

C:\WINDOWS\SYSTEM\user.exe

All these DLLs were present in Windows 3.1 and continue to serve
active roles in Windows 95. Likewise, a WINICE HEAP command would
show you that the 16-bit global heap hasn't changed either. Again, I could
continue with examples in which I show that vast portions of Windows 95
look and work identically to the way things worked in Windows 3.1. The

I M P R O V E M E N T S

23

fact that Windows 95 has evolved from Windows 3.1 is indisputable. Yes,
the evolution was dramatic in some cases. The fact remains, though, that if
you understand Windows 3.1, you've got a good head start on understand-
ing Windows 95. Chapter 7 describes in more detail how the Winl6 com-
ponents of Windows 95 are similar but not identical to the Windows 3.1
components.

Let me clarify something I've said in this section. I think Microsoft
made the right choice in evolving Windows 95 rather than starting from
scratch. Backward compatibility was ail absolute requirement. Although
Windows 95 won't be 100-percent compatible with Windows 3.1, it will be
significantly more compatible than Windows NT or OS/2 Warp can ever be.
Starting from a fresh code base for Windows 95 would have been a night-
mare for compatibility. Likewise, a fresh code base would have bloated the
code, and a mass market operating system that doesn't run on the average
PC doesn't make sense. You have to give Microsoft credit for facing the
harsh reality that most end-user systems are limited when compared to the
souped-up hardware most developers work on.

If you're an operating-system purist who turns your nose up at the com-
promises of Windows 95, do something about it. Run Windows NT, OS/2, or
UNIX. Just don't complain when some program that you really need to run
doesn't work on those platforms. To be honest, I'm guilty of doing my share
of complaining about the Windows 95 architecture. However, I also run
Windows NT regularly as a matter of course. My point is, both Windows 95
and Windows NT are valid operating-system platforms. You have to decide
what's more important to you (memory consumption and compatibility or
robustness and security), and choose the appropriate platform.

My philosophy is that both Windows 95 and Windows NT will be very
important over the next several years. As such, I devote my efforts to both
platforms. So why is this book about Windows 95? Because I feel that the
programming market for Windows 95 will be larger than that for Windows
NT in the near term.

IMPROVEMENTS OVER WINDOWS 3.1
Even if you don't care about the new features in Windows 95 (pre-emptive
multithreading, protected process address spaces, and so on), it's worth
upgrading from Windows 3.1 to Windows 95 just for the improvements it
offers. In this section, I'll go over what these improvements are in broad
strokes, deferring more detailed descriptions to subsequent chapters.

V x D

24

DOS is dead (almost)
Although you might never notice it, the biggest improvement in Windows 95
over the DOS/Windows 3.1 combination might be the placement of what we
used to call DOS into VxDs. In Windows 3.x, the Virtual Machine Manager
(VMM) acted as a DOS extender. When a program called DOS to do some-
thing, such as read from a file, the INT 21h was first bounced up to the ring
0 WIN386, which then reflected the interrupt down to the 16-bit DOS run-
ning underneath Windows. In Windows 95, once VMM32.VXD is up and
running, almost all calls to DOS functions are handled entirely in VMM32
with all new 32-bit code. (VMM32 is the master collection of VxDs that
comprise the ring 0 component of Windows 95. VMM32 is equivalent to
WIN386.EXE in Windows 3.1.)

One of the most marked benefits of putting code formerly found in DOS
into VxDs is that file I/O can be handled entirely in 32-bit ring 0 code,
dramatically improving performance. When I say DOS, I'm not limiting
the scope of the improvements to just DOS programs. A Windows program
that calls _lread eventually ends up in the same VxD code for doing file I/O
that a DOS program calling INT 21h would.

For backward compatibility with old hardware devices and drivers,
Windows 95 continues to reflect certain critical interrupts to the small bit of
real mode (actually V86 mode) DOS code that sits underneath Windows 95.
(This is the DOS code I described in the previous section.) For example, when
VMM32 sees that a DOS device driver is expecting to be used, it can fall back
to the old behavior of reflecting interrupts down to a 16-bit DOS virtual
machine so that the device driver can do its thing. Other interrupts, such as
the DOS Get Time function (INT 21h, fn. 2Ch), are always reflected to the
real mode (V86 mode) DOS code. The important thing to remember is that
the majority of DOS's functionality has been moved to 32-bit code residing
in Windows itself. With a little work, Microsoft could make Windows 95
entirely rid itself of the real mode DOS code. Although this might appeal to
some operating-system purists, it would come at the expense of compatibility
with existing software. If you want that, run Windows NT.

The windowing system
For some programmers, the biggest relief provided by Windows 95 is the
introduction of 32-bit heaps to the windowing and graphics components.
In Windows 3.0 and earlier, all windows and related data structures were

D G R O U P ,

25

crammed into the USER DGROUP, which was limited to a maximum of
64K. In Windows 3.1, some of the windowing system's data was moved
out into other 64K segments, but this alleviated only certain limitations. In
Windows 95, the windowing code in USER knows about and uses two
separate 32-bit heaps to store items like the HWND data structures. As a
result, you're no longer limited to a maximum of a couple hundred windows
or to only 8160 entries in a listbox. (Having a listbox with eight thousand
entries is usually not an example of good program design. However, if you
really need that many entries for some reason, Windows 95 will be an
improvement over Windows 3.1.)

Although the Windows 95 windowing system uses 32-bit data, you
shouldn't confuse this with 32-bit code. All the windows in Windows 95
(yes, even windows created by 32-bit applications) are managed by the 16-bit
USER.EXE that you've come to know and love. In contrast, the Windows NT
team had the opportunity to write their USER components in brand new
Win32 code. (Compatibility isn't nearly as important as robustness in NT.)
There's been quite a bit of debate among programmers about whether the
Windows 95 team made a wise decision in updating with the existing 16-bit
USER code. However, there are two important factors that make this
approach the only logical choice. I discussed this issue in Chapter I but the
following paragraphs recap my main points.

The first reason for keeping the windowing system code in the 16-bit
USER.EXE is the size issue. Having two copies of the windowing system
code, one 16-bit and the other 32-bit, would add several hundred kilobytes to
the memory footprint of Windows 95. Given Microsoft's goal of running on a
4MB system, this was unacceptable. Remember, Windows 95 isn't intended
only for developers with moderate- to high-end hardware. Windows 95
needs to run on all those ancient 386s in companies that just recently took
the plunge and upgraded them to 4MB. You might be thinking, so why
doesn't Windows 95 put the windowing system code in a 32-bit DLL and
call up into it?

That leads me to the second reason: To put things bluntly, the 16-bit
USER.EXE is not tremendously portable. Important sections are written in
optimized assembly language. In addition, USER.EXE is legacy code -- it's
been modified, tinkered with, and otherwise tweaked for close to a decade.
It no doubt contains peculiarities that applications have come to rely on as
normal behavior. It's unlikely that one person can keep an entire working
model of USER and all its assumptions and quirks in his or her head. If
USER's code was ported to completely 32-bit code, existing applications
would break.

N T

26

In addition to the size constraints, Windows 95 has its hands further
tied by the need to be 99.44 percent backward compatible. The windowing
system in NT is 32 bit, and was written to be as compatible as reasonably
possible with its 16-bit predecessor. Still, Microsoft doesn't claim 100 percent
backward compatibility with Win16. Windows 95 is being held to a higher
standard of backward compatibility. In this light, the decision to keep the
windowing system in 16-bit code makes sense.

Having dispensed with the high-level philosophizing, let's get down to the
details of how the windowing system has changed to accommodate 32-bit
applications. I've already mentioned that USER uses two different 32-bit
heaps, but that's only part of the story. Windows 95's USER actually uses a
combination of 16- and 32-bit heaps in a somewhat unusual memory layout.
As in Windows 3.1, the 16-bit USER.EXE continues to have a 16-bit
DGROUP segment with a local heap within it. Stored inside the local heap
are items such as atoms, windows classes, and properties. All the normal
things you'd expect in USER's 16-bit DGROUP. Conspicuously absent,
however, are windows (or more accurately, WND structures). Where the
heck did they go? At this point, 32-bit heaps come into play. A h h h . . .
USER must have created a special 32-bit heap for holding windows, right?
Right. But that's not the end of the story.

If you look closely at the selector assigned to USER's DGROUP, you'll
find that its limit isn't even close to 64K in length. Its limit is much greater
that 64K. In Windows 95, the USER DGROUP selector's limit is 2MB+128K.
The 32-bit window heap in Windows 95 actually encompasses the USER
DGROUP segment at its low end. Consider the ramifications of this. All
the various data structures that USER uses can be accessed with one selec-
tor. The USER code that deals with items still in the normal DGROUP local
heap can continue to use 16-bit offsets as it did in Windows 3.1. Only the
code that manipulates items in the 32-bit heap, such as the WND data struc-
tures, needs to be changed to use 32-bit offsets. Remember, though, that
these 32-bit offsets as relative to the start of USER's data segment, not to
32-bit linear addresses.

In addition to the new 32-bit heap used to store windows, Windows
95's 16-bit USER has another 32-bit heap to store menus and their strings.
Unlike the 32-window heap, there isn't a 16-bit local heap sitting in the bottom
64K of the menu heap. Incidentally, the idea of breaking out menu-related
items into a separate heap isn't new to Windows 95. Windows 3.1 had a
separate menu heap, albeit only 16 bits. Chapter 4 describes the 32-bit
heaps in Windows 95 in more detail.

0 x 8 0 ,

27

One immediate result of Windows 95's shift to a 32-bit window heap
relates to window handles (HWNDs). In Windows 3.x, an HWND was a
local heap handle of a block in USER's DGROUP. Since the WND structures
were stored in LMEM_FIXED blocks, the local handle was nothing more
than an offset. Therefore, by combining the selector of USER's DGROUP
with an HWND, a program could get a far pointer to a WND structure
and peek and poke at it directly. In Windows 95, this no longer works.
Windows 95 HWNDs are small values like 0x80, 0x84, and 0x8C. These
values aren't offsets. Instead, they're handles for blocks in the 32-bit window
heap. Internally, USER can convert from one of these handles to a 32-bit offset
and back again. Chapter 4 describes how HWNDs can be converted from
their 16-bit HWND form to a 32-bit pointer, and back again.

As part of the move toward each application knowing only about itself,
USER has changed the way it maintains the list of window classes. In
Windows 3.1, all window classes were stored in a linked list. You could
walk through the list and obtain the class names and owning module with
the TOOLHELP ClassFirst and ClassNext functions. In Windows 95,
ClassFirst and ClassNext still work, but they return information only about
the standard system classes (such as buttons) that USER registers at startup
time. Classes that are registered by applications are kept in a private list. At
least part of the information for each of these private classes is kept in
USER's 16-bit DGROUP, but again, TOOLHELP. DLL knows nothing of
them. Chapter 4 covers the changes to window classes in Windows 95.

Changes to the messaging system
In Windows 95, Microsoft has finally stopped the insanity and provided
separate input message queues for each process. Actually, there are separate
message queues for each thread, but the important thing is that there's no
longer a single system input queue shared by all tasks in the system. Why is
a single input queue so bad? The short answer is that forcing all tasks to get
their user input (for example, mouse and keyboard messages) from a single
source leaves them vulnerable to a badly written task that doesn't yield.
When a given task is active, it effectively has a lock on the user input system.
Until it yields, no other task can retrieve input messages.

Windows 95 (like Windows NT) throws away this antiquated model
and allows messages to be delivered immediately to the input queue of the
appropriate task. Unfortunately, the controversial Win16Mutex (described
later in "The Win16Mutex" section) causes Windows 95 to continue to act

G e t M e s s a g e

28

like Windows 3.1 if a 16-bit task doesn't yield by calling GetMessage or
PeekMessage in a timely manner. Win32 processes don't have this problem
and can dawdle in their message processing without affecting other processes.

Windows 95's method of delivering input messages to programs is an
extension to the Windows 3.1 model. The raw mouse and keyboard messages
are delivered to a single system queue by the interrupt handler code in the
mouse and keyboard drivers. In Windows 3.x, all programs read their input
from this single queue, and one program could lock out other programs from
reading from the queue. In Windows 95, a dedicated thread, the Raw Input
Thread (RIT) monitors the queue and as input messages come in, delivers
them to a separate input queue for the appropriate thread. Thus, even if one
program doesn't yield, other programs can continue to get input messages
intended for them. Of course, there still remains the problem of the
Win16Mutex and 16-bit programs. The benefits of this separate input
system thread are primarily for 32-bit pre-emptively scheduled programs.

Along with separate input queues for each thread, the Win32 philosophy
dictates that a process shouldn't be able to change values or states that another
process is using. In Windows 3.1, USER maintained many windowing system
states as systemwide values. A prime example of this is the focus window. In
Windows 3.1, USER had a single global variable called HWndFocus. Any task
could call SetFocus whenever it felt like it, thereby taking away the focus from
another application (and causing the HWndFocus variable to change}. The
same was true for the window capture and other windowing system states.
This is unacceptable in the Win32 model. In Windows 95, every thread (not
just every process) has its own set of windowing system state variables. When
you call an API function like SetFocus, you're acting on the current thread's
state, not on a single global state. Beneath the surface, USER takes care of the
onscreen representation so that everything looks kosher. The states that are
definitely stored on a per-queue basis are the capture window, the focus win-
dow, the active window, and the cursor. Chapter 4 describes the per-queue
windowing system states in detail.

Besides just storing windowing states on a per-thread basis, Windows 95's
USER generally doesn't allow one thread to modify the windowing states of
other threads. For instance, if you call SetFocus, passing it an HWND that's
owned by a different thread/queue, you'll receive a warning message from the
debug version of USER, and the operation won't succeed. From the HWND
passed to SetFocus, USER can obtain the queue that owns the window. By
comparing the current queue to the handle of the queue that owns the HWND
passed to SetFocus, USER can tell if an inter-thread focus change is being
attempted. Judging from other messages that appear in the debug version of
USER.EXE, inter-queue window activations aren't allowed either.

G e t M e s s a g e ,

29

Speaking of message queues and such, when someone posts a message
to a window in Windows 95, that message doesn't immediately appear in
the queue associated with the target window. Instead, the messaging system
saves up a list of messages and distributes them to the appropriate queues
only when their presence might affect a decision that USER makes. For
example, whenever a task enters the 16-bit scheduler (via GetMessage,
PeekMessage, Yield, and so on), Windows 95 first distributes the messages in
the saved-up list to the appropriate thread's message queue. If the scheduler
didn't do this, the scheduler wouldn't see that the task had a message, so it
wouldn't choose it to run next. Likewise, calling GetQueueStatus forces
USER to flush the temporary message list since the messages must be in the
destination queue in order for GetQueueStatus to return an accurate set of
flags. From an application programming level, you don't have to worry
about this beneath the surface change in messaging behavior. USER assumes
the responsibility of making sure that things look consistent and act just as
they do in Windows 3.1.

The interaction between 16- and
32-blt processes
An area where the windowing system implementation of Windows 95 gets
interesting is the interaction of windows from 16- and 32-bit applications.
Even though the window procedure for a 32-bit program's window is written
in 32-bit code, existing 16-bit applications don't know or care about this.
These programs expect any window, regardless of its bit size, to act just as it
would in Windows 3.x. Now, consider something like window subclassing.
Imagine that a 16-bit program gets hold of an HWND for a 32-bit program's
window. The 16-bit program then subclasses the 32-bit program's window
by saving its original WNDPRC address and dropping in a new 16-bit
WNDPROC address. If Windows 95 had originally stored a 32-bit linear
address in the 32-bit windows WND structure, things would go up in smoke
rather quickly. To prevent problem scenarios such as this, Windows 95 goes
to great lengths to make all windows behave as if they were 16-bit windows.

Another area where USER does extra work behind the scenes is with mes-
sage numbers. In Win16, the message numbers for private control messages
start at WM_USER and go up. Additionally, some of these private message
numbers overlap with message numbers for other controls. For instance, in
Win16, the BM GETSTATE message is defined as WM_USER+2, which is

E M _

30

the same as EM_SETRECT, LB_INSERTSTRING, and CB_SETEDITSEL. In
these cases, a message number by itself is meaningless unless you know what
type of control it's being used with. Perhaps in an attempt to make things more
consistent, the Win32 implementors reassigned the message numbers for cer-
tain controls so that they fall below WM_USER and don't overlap with other
private message numbers. The remapped message groups are as follows:

Message qroup Use Win32 startinq messaqe

EM_ Edit controls 0x00B0

SBM_ Scroll bars 0x00E0

BM_ Buttons 0x00F0

CB_ Combo boxes 0x0140

STM_ Static controls 0x0170

LB_ List boxes 0x0180

If the same message has a different value in Win16 and Win32 programs,
how are 16- and 32-bit windows able to communicate? Inside the thunking
layer between 16- and 32-bit code, USER converts these messages to the
appropriate value for the target window of the message. Messages sent
between 16-bit programs don't incur the overhead of determining whether
the message needs to be remapped.

The complexity involved in making 16- and 32-bit windows work together
seamlessly doesn't stop at simple message translation, however. Many mes-
sages use the WPARAM and LPARAM parameters to convey additional infor-
mation. Often the LPARAM of a Win16 message contains a far pointer to
some data or a buffer to fill in. What happens when a 16-bit program sends a
message to a 32- bit program and passes a far 16:16 pointer in the LPARAM?
Again, the USER thunking layer needs to step in and make the message usable
by the code in the 32-bit window procedures. In this example, the thunk layers
convert the 16:16 far pointer into the equivalent 32-bit linear address that it
passes to the 32-bit window procedure. In the opposite case, where a 32-bit
process sends a message to a 16-bit window, a 32-bit linear address must be
converted to a 16:16 far pointer. In this situation, USER keeps a selector
around for this very purpose; it changes the base address of the selector to
match the 32-bit linear address. The limit of this selector is set to 0xFFFF
bytes.

Beyond the additional work with 16-bit far pointers versus 32-bit linear
addresses, Windows 95's windowing system also needs to do parameter
conversions when messages are exchanged between 16- and 32-bit applica-
tions. Earlier I mentioned that certain messages needed to be translated
between Win16 and Win32 programs. The WPARAM parameter in ames-

G D I

 31

sage also needs conversion. In Win32, the WPARAM parameter is 32 bits,
while in Win16 it's 16 bits. In the general case, when converting a 16-bit
message to be usable by a 32-bit window, USER puts a 0 in the high word
of the 32-bit WPARAM. When going in the opposite direction (a 32-bit
message converted for a 16-bit window), USER throws away the top WORD
of the 32-bit WPARAM. There are a few exceptions to these rules, but we
don't need to go into them in this overview chapter.

The Win 16Mutex
Although the Windows 95 thread scheduler is pre-emptive, scheduling in
Windows 95 is still affected by the single threaded, one at a time, 16-bit
code in modules like USER.EXE. A Win32 process can create threads that
don't call GetMessage or otherwise deal with user input. An example would
be a thread that calculates the value of pi (3.14159265 . . .) to 50 places.
These 32-bit threads that don't do user-interface activities are governed only
by the 32-bit thread scheduler in VMM32. The thread scheduler continues
to pre-emptively switch between these threads, even if things are jammed up
and not moving because of clogged user-interface threads. Unfortunately,
16-bit tasks can't spawn additional threads, so they can't partake in the
pre-emptive multitasking.

A second ago, I mentioned jammed up user-interface threads. Just what
was I talking about? Aren't threads pre-emptively switched? The answer to
this question leads to the infamous and unpopular Win16Mutex. At this
point, the fact that Windows 95 is a mixture of old 16-bit and new 32-bit
code is probably pounded into your head. The problem that resulted in the
Win16Mutex solution is that the 16-bit USER and GDI code isn't written
with pre-emptive multitasking in mind. The code assumes that it won't be
interrupted for any reason, and that switches to other tasks will occur at a
few well-defined places. There are also numerous global variables through-
out the USER and GDI code. If Windows 95 ignored the problem entirely, a
thread could be switched away from while it's in the middle of a USER or
GDI call. Since the old 16-bit code isn't expecting this, the system would
crash in very short order.

The problem of existing 16-bit code not being ready for pre-emptive
multitasking isn't limited to the code in Windows. There are thousands of
third-party DLLs that were also written without pre-emption in mind. Even
if Microsoft came up with a magic bullet solution for the USER and GDI

W i n l 6 M u t e x

32

code, those other DLLs would still make the system vulnerable to a thread
switch at an inopportune time.

One solution to this problem of pre-emptive switching would be to
identify all the vulnerable areas in USER and GDI and protect them with
synchronization mechanisms such as critical sections. Doing this in some-
thing as large and complex as USER.EXE would be error prone and time-
consuming. More importantly, spreading synchronization code throughout
USER and GDI would bloat the size of these modules. Code size ("4 megs
or bust") was one of the mantras of the Windows 95 development team, so
adding critical sections or mutexes throughout the code wasn't an acceptable
solution. In NT, where resource requirements aren't so tough, the windowing
and graphics systems are protected with critical sections, so they are re-entrant.

Microsoft's solution to the pre-emptive thread problem is known as the
Win 16Mutex. The Win16Mutex is essentially a mutual exclusion semaphore
that covers all 16-bit areas of the system that would have trouble if they were
executing when a thread switch occurred. The Win16Mutex covers all 16-bit
code. Since much of the 32-bit windowing and graphics systems are imple-
mented as calls to their 16-bit counterparts, even Win32 threads are affected
when they perform user-interface-related actions or otherwise thunk down to
16-bit code. When 32-bit programs aren't doing any user-interface-related
actions or thunking to 16-bit land, they don't own the Winl6Mutex and
they continue to be pre-emptively scheduled.

Whenever a thread is executing in 16-bit code, it owns the Winl6Mutex.
The Winl6Mutex prevents other threads from entering code like the 16-bit
USER and GDI code until the lock has been released. The 16-bit thread
releases the Winl6Mutex when the thread yields to another thread by call-
ing a yielding function such as GetMessage. The thread that was yielded to
then grabs the Winl6Mutex and continues execution. The important thing
to remember is that a 16-bit thread owns the Winl6Mutex for the entire
time that it's actively executing, not just while it has called into the operating
system.

While Win32 threads own the Winl6Mutex only when they call into cer-
tain operating-system functions, all Win l 6 programs own the Win16Mutex
the entire time they're running. (Even if they're calculating pi to 50 places.} As
a result, a 16-bit task that doesn't yield the Winl6Mutex will prevent other
threads from being able to acquire the Winl6Mutex. These other threads,
regardless of whether they belong to a 16- or 32-bit process, will effectively
be hung until the thread holding the Winl6Mutex gives it up. Thus, a 16-bit
program that doesn't yield can lock out other programs, both 16- and 32-bit,
from executing.

G D I

33

The basic situation of an application that doesn't promptly process mes-
sages and yield in a timely manner has always been a problem in Windows.
What's new in Windows 95 is that there is finally pre-emptive multitasking.
However, the Win16Mutex acts as a bottleneck for any code that has to exe-
cute through old 16-bit code like USER.EXE. The fact that a badly written
16-bit task can adversely affect 32-bit programs has made the Win16Mutex
an incredibly unpopular design decision among those users who don't have
to implement Windows 95 themselves.

While obnoxious, nonyielding 16-bit programs can bring the user input
system to a halt, the Win16Mutex is almost never a problem for a system
containing only 32-bit programs. (Granted, Windows 95 always has one or
two 16-bit programs running, but they're background processes and don't
grab the Win16Mutex and hang onto it.) Threads for a 32-bit program
will need to acquire the Win16Mutex, but only when they thunk down to
16-bit code such as USER or GDI to perform user-interface actions. The
USER and GDI code will theoretically execute quickly and then release the
Win16Mutex. In general, no 32-bit thread will ever hold and hog the
Win16Mutex for any significant period of time (of course, you can always
concoct perverse exceptions to this rule). If you're worried about the
Win16Mutex affecting your Win32 program, you can create additional
threads that don't call down to 16-bit code such as USER and GDI. These
threads will continue to be scheduled and run regardless of whether a 16-bit
thread is hogging the Win16Mutex.

The Win16Mutex's effect on the system is simple to describe. If there are
16-bit applications running, the multitasking of application user interfaces in
Windows 95 will continue to be similar to that of Windows 3.1. If there are
no (nonsystem) 16-bit programs running, the user interface should multitask
smoothly, like NT. The moral here should be obvious: Write all new programs
as Win32 programs and port existing 16-bit applications to Win32 as soon as
possible. Just say No to 16-bit code and Hello to smooth multitasking.

The Windows 95 GDI
The Windows 95 graphics system (GDI) is a hybrid of the Windows 3.1 16-bit
GDI and new graphics functions implemented in the 32-bit GDI32.DLL. In
general, if a given GDI function existed in Windows 3.1, it has remained in
GDI.EXE in Windows 95. New functions like Beziers, paths, and enhanced
metafile support were added to the existing GDI.EXE. Other new functions
like the TrueType font rasterizer and the printing subsystem are in GDI32.DLL.

U S E R . E X E ,

34

Like USER.EXE, the Windows 95 GDI has 16-bit code that uses a 32-bit
heap immediately above it. The Windows 95 GDI uses the 32-bit heap to
store regions and fonts. Also like USER.EXE, the 32-bit GDI heap contains the
16-bit GDI DGROUP within its first 64K. GDI objects other than regions are
still held in the 16-bit GDI DGROUP, meaning that you can't go hog wild
and create tons of GDI objects.

One of the most well-known limitations of Windows 3.x was that there
was a limit of five screen device contexts (DCs) available systemwide. If a
buggy application grabbed those five DCs, other applications couldn't do
their painting, and the system often became unstable. In Windows 95, the
limitation on screen DCs appears to have been lifted.

Since a large portion of Windows 95's GDI remains in 16-bit code,
Windows 95's GDI coordinate system is still limited to 16 bits. Even though
the Win32 APl and NT specify that 32-bit coordinates are the norm, the
Windows 95 GDI pays attention to only the bottom 16 bits of any coordinates
passed in to it.

Another place where the Windows 95 GDI sticks to its 16 bit past is
with device drivers. When it comes time for the GDI to display something
on the screen or some other device, the GDI calls into a 16-bit device driver
DLL. Although all new portions of Windows 95 expect 32-bit Portable
Executable (PE) drivers, the GDI must remain backward compatible with
existing 16-bit display and printer drivers. This isn't to say that all 16-bit
device drivers confine themselves to 16 bits. Many high-performance drivers
use 32-bit instructions even though the driver remains a 16-bit New
Executable (NE) format DLL.

System resource cleanup
Windows 95 implements each 16-bit task as a separate process. One reason
for this is resource cleanup. For whatever odd reason (space considerations,
probably), prior versions of Windows didn't tag their USER objects such as
icons with an owner. When a task terminated, USER didn't have any idea
what owned the resource, so it couldn't clean up after the task. Repeatedly
running a program that was sloppy about freeing its resources could cause
the system to run out of room in its heaps; the result was that subsequent
programs were unable to run. This problem has been an Achilles' heel for
Windows and is one of the main reasons Windows hasn't gained acceptance
in certain areas of the market. Windows 95 takes a major step forward
(albeit a long overdue step) and associates each resource with the process that

allocated it. When a process terminates, Windows 95 iterates through the
resources and frees up those that the terminated process didn't release itself.

There's one twist to this improved model for resource usage. In
Windows 3.1, one task could allocate a resource and pass the resource
handle to another task to use. Even if the allocating task exited, the second
task could continue to use the resource. The new Windows 95 method of
freeing up resources when the allocating process exits could backfire in this
situation. To retain backward compatibility, when Windows 95 is about to
free a resource that belonged to a terminated process, it checks to see what
kind of process it is. If the process was a 16-bit task and wasn't marked as
being Windows 4.0-compatible, Windows 95 doesn't delete the resource until
there are no more running 16-bit applications. This eliminates the possibility
that Windows 95 will yank a resource out from under a 16-bit task that is
using the resource.

If Windows 95 is much better about cleaning up after sloppy programs,
how does this affect the infamous Free System Resources? In Windows 3.1,
the magical System Resources number reported in About boxes was found
by looking at the free space in four heaps: three 16-bit USER heaps and the
16-bit GDI heap. Of these four heaps, the heap with the lowest percentage
free is what USER reports as the free system resources. Since Windows 95
has 32-bit heaps (such as the heap used to store WNDs), the calculation needs
to change. In most cases, the reported free system resources isn't changed by
the presence of 32-bit heaps, since these heaps almost invariably have a higher
percentage free than the 16-bit USER or GDI DGROUPs. However, by
moving certain space-consuming objects out of the 16-bit USER and GDI
DGROUPs, Windows 95 makes the available system resources decrease at a
slower rate. Chapter 4 contains a more complete discussion of exactly how
free system resources are computed in Windows 95.

Decreased memory consumption below 1MB
Finally, we come to the infamous "insufficient memory to load this pro-
gram" message. The good news is that the Microsoft coders have fixed the
"below 1MB" problem! In Windows 3.x, FIXED segments in DLLs and
GlobalPageLock()'d segments ended up at the low end of the heap. Often
this meant that they ended up below 1MB. These segments could eat up all
the memory below 1MB, thus preventing Windows from starting additional
tasks (each task needs at least 512 bytes below 1MB for its task database).
See my Questions & Answers column in the May 1995 Microsoft Systems

35

G l o b a l P a g e L o c k ' d

36

Journal for a more detailed description of the problem. In Windows 95,
FIXED and GlobalPageLock'd segments still come from the low end of
memory, but they stop short of going below 1MB. While it's still possible
in perverse cases to create a scenario where applications can't run because
of insufficient memory below 1MB, I think this will rarely be the case in
normal use.

BRAND-NEW FEATURES

Up to this point, I've been discussing the ways in which Windows 95 is
either the same as Windows 3.1 or improves on Windows 3.1 features.
Now it's time to examine the Windows 95 features that are completely new.
Of course, many of these areas are very similar to Windows NT. However,
for the majority of programmers and end users, Windows 95 is the first
exposure to these topics.

The Windows 95 Win32 implementation
From a programming perspective, the biggest news about Windows 95 is the
addition of the Win32 APl. It's Microsoft's hope that the Win32 APl will
enable applications to be written in a portable manner. Theoretically, an
application written to the Win32 APl can run unmodified on different oper-
ating systems (for example, Windows NT), as long as they also support the
Win32 APl and the underlying CPU is the same. A properly written Win32
application can also simply be recompiled and run on other CPUs -- again,
as long as they're running an operating system that supports the Win32 APl.
How effective the Win32 APl is in glossing over operating-system differences
will be the subject of discussion for years to come.

When I first heard of the Win32 support in Windows 95, the big question
in my mind was,"Is it implemented like NT or like Win32s?" After working
with it for over two years, my conclusion is that the best description of
Windows 95 is "Win32s done properly." Like Win32s, Windows 95 has
32-bit system DLLs that thunk down to the equivalent 16-bit DLLs. Most
calls to the Win32 windowing and messaging APl functions go through thunks
down to the 16-bit USER.EXE. Likewise, many calls to Win32 graphics func-
tions thunk down to the 16-bit GDI.EXE. In contrast, Windows NT has fully
32-bit USER and GDI modules. 16-bit applications run under NT and have

V x D s

37

their calls thunked up to the 32-bit USER32 and GDI32 by the Windows On
Windows (WOW)layer.

While Windows 95 is closer to Win32s than to NT in its implementa-
tion, Windows 95 is light years beyond Win32s. The implementors of
Win32s were constrained by the necessity of building it atop the existing
Windows 3.1 code. The Win32s developers couldn't make changes to
Windows 3.1 since Windows 3.1 was already installed on millions of
machines. Upgrading them to a newer version of Windows just for Win32
support was not an option. As such, Win32s is severely limited relative to
Windows 95 or Windows NT.

The Windows 95 developers, on the other hand, had the luxury of
being able to modify and adapt the underlying foundation in order to best
implement the Win32 APl on top of it. Starting from the Windows 3.1 code
base, both the ring 0 components (the Virtual Machine Manager and VxDs
in VMM32.VXD) and the ring 3 components (such as KRNL386, USER,
and GDI) have been extensively modified to support the Win32 system
DLLs (for example, KERNEL32.DLL, USER32.DLL, and GDI32.DLL). In
essence, Windows 95 has most of NT's feature set but uses an implementa-
tion much closer to Win32s. For the average user, Windows 95 provides the
best tradeoffs between speed, memory usage, features, and system stability.

Just because there are still 16-bit components in Windows 95 doesn't
mean that they're unaware of the new 32-bit additions. For instance,
KRNL386.EXE makes many calls up into KERNEL32.DLL, primarily for
things like 32-bit heap and process management on behalf of the 16-bit
USER and GDI. Chapter 6 contains more information about this.

The Windows 95 Win32 system DLLs
The Windows 95's Win32 API layer is implemented using a mixed collection
of 16- and 32-bit DLLs. Table 2-1 lists some common Win32 APl DLLs and
how they're implemented. In the table, the pattern that emerges is that, wher-
ever reasonable, Microsoft tried to reuse existing 16-bit code by thunking to it.

This approach has two benefits. First, 16-bit code is smaller on average
than the 32-bit equivalent. Second, the 16-bit Windows 3.x code has already
been shaken out and tested in the real world. A rewritten 32-bit version of a
system DLL like USER would need to undergo much more extensive bug fix-
ing and testing, possibly delaying the release of Windows 95. The windowing
system implemented in the 16-bit USER.EXE is mature and most of its quirks
are well understood. If Microsoft had recoded the windowing system in 32-bit

V M M . V X D

3 8

code, it would have had to reproduce all the subtle behaviors of the 16-bit
version, including bug fixes and workarounds.

The NT developers chose to write a 32-bit version of USER, sacrificing
some compatibility with existing 16-bit applications. The NT design criteria
allowed this. Windows 95's doesn't. Backward compatibility is essential in
Windows 95.

Table 2-1
The implementation of selected Windows 95 32-bit system DLLs

Name of DLL Purpose of DLL How DLL is implemented

KERNEL32.DLL Win32/Windows 95 Mostly Win32 code, but makes many
kernel services calls into VxDs, and some calls down to

KRNL386.EXE.

USER32.DLL Window Manager Mostly thunks to 16-bit USER.EXE, but
functions some functions are implemented in

USER32.DLL.

GDI32.DLL Graphics functions Mostly thunks down to 16-bit GDI.EXE.
However, TrueType rasterizer- and
printing-related code are in GDI32.DLL.

ADVAPI32.DLL Windows registry Mostly Win32 code, but calls into
VMM.VXD for registry functions.

OLE32.DLL OLE 2.0 bBase DLL All 32 bit code.

COMDLG32.DLL Common Windows Mostly 32-bit code, but does same
dialogs thunks.

SHELL32.DLL Windows 95 shell Mostly 32-bit code, but does some
(32-bit) Jibrary thunks to 16-bit code.

LZ32.DLL LZA file decompression Thunks to 16-bit code.

VERSION.DLL Version-stamping library Thunks to 16-bit code.

WINMM.DLL Multimedia functions Mix of 16- and 32-bit code.

The ring 0 components of Windows 95
Moving down to the level below the system DLLs, we encounter the ring 0
components of Windows 95. These are the Virtual Machine Manager and
virtual device drivers (VxDs). In Windows 3.x, these components were all
lumped into the WIN386.EXE file. In Windows 95, these components are
still lumped together, but the file is now called VMM32.VXD. Tables 2-2
and 2-3 show the changes to the standard VxDs in VMM32.VXD as
compared to WIN386.EXE.

P E R F

39

Table 2-2
New VxDs in Windows 95's VMM32.VXD file

Name of VXD Purpose of VXD

CONFIGMG
DYNAPAGE
IFSMGR
lOS
PERF
SHELL
SPOOLER
VCACHE
VCDFSD
VCOMM
VCOND
VDD
VDEF
VFAT
VFBACKUP
VFLATD
VMM
VMOUSE
VPD
VSHARE
VTDAPI
VWIN32
VXDLDR

Configuration manager (Plug&Play)
Paging manager
Installable File System Manager
I /O Supervisor (replaces BLOCKDEV)
Configuration/status info
Shell support
Local spooler
Disk cache
CD file system
COMM device driver
Console device
Display device
(Unknown)
File Allocation Table helper
For backup apps
Flat Memory device
Virtual Manager Manager
Mouse device
Printer device
File SHARE support
Virtual Timer Device APl
Win32 device
VxD loader

Table 2-3
VxDs removed from Windows 95's VMM32.VXD file

Name of VXD Purpose of VXD

BLOCKDEV
CDPSCSI
PAGEFILE
QEMMFIX
VDDVGA
VFD
VNETBIOS
WDCTRL
WIN386
WSHELL

Block device (replaced by lOS)
SCSI CD device
Pagefile device (replaced by DYNAPAGE
Fix for QEMM
VGA display device
Floppy device
Netbios device
Western Digital fastdisk
Replaced by VMM
Old shell device

V M M 3 2

The most interesting addition to the VMM32 collection of VxDs is the
VWIN32 device. Actually, VWIN32 isn't really a device. Instead, it's ring 0
code that the 16-bit KRNL386.EXE and 32-bit KERNEL32.DLL use to
perform certain low-level primitives. The closest equivalent to VWIN32 in
Windows NT is NTDLL.DLL, which isn't documented, but obviously
contains a lot of the low-level operating-system goodies.

Both VWIN32.VXD and VMM.VXD (along with a few other VxDs)
provide ring-3-callable functions that are known as Win32 VxD services.
Much of KERNEL32's operations rely heavily on Win32 VxD service calls
to VWIN32, and to a lesser extent, to VMM. These calls include operating-
system primitives like thread creation, blocking on a synchronization object,
creating a new memory context, and so on. I'll be describing VWIN32 and
Win32 VxD services in Chapter 6.

One way the Windows 95 developers helped keep memory consumption
down was through advances in the VxD architecture. Windows 95 supports
dynamically loadable VxDs. In Windows 3.x, a VxD had to be loaded when
Windows booted, and it remained in the system for the entire session.
Windows 95 programs can load and unload VxDs only when they're
needed, much like existing programs load printer drivers only when printing.
The new VxD architecture also supports pageable VxDs. Portions of your
VxD that aren't used often can be made pageable so that they're only
loaded into memory when they're needed.

A porting issue for those of you with existing Win16 code concerns
interrupts and interrupt handlers. Win32 programs under Windows 95
aren't allowed to install interrupt handlers in their code. Nor can they use
interrupts to communicate with other code, even if it's an interrupt handler
in a Win16 DLL. Most code that uses interrupts is for communicating with
hardware devices. Microsoft recommends that you write a VxD to implement
the interrupt code. Your program can communicate with the VxD through the
DeviceIoControl function. If you need to call certain interrupt functions (such
as INT 21h or INT 31h) the VWIN32 VxD provides routines for invoking
those interrupts.

Process managemenf
In Win16, an executing program is known as a task. At any given point in
time, a task is executing at only one spot in its code. (This may seem obvious
until you understand the notion of threads, which I'll describe next.) The
Windows 16-bit KERNEL keeps information about each Win16 task in a

40

segment called a Task Database (or TDB). The selector of a task database is
known as an HTASK and can be passed as an argument to APIs that need
to know which task you're referring to.

How does all this change for 32-bit programs in Windows 95 ? For
starters, a running program is known as a process rather than a task. Each
process runs in its own address space, which can have serious implications
for programmers who are bringing existing Win16 code to the Win32
environment. I'll describe the ramifications of separate address spaces in
"The Windows 95 address space" section. For now, it's sufficient to think
of processes as being unaware of the existence of any other processes. They
can see their own memory and operating-system resources, but they can't
see other processes or the memory of other processes. The underlying reason
for keeping processes apart from each other is so that a buggy or malicious
process can't have an adverse effect on other processes.

This separation of processes is so complete that, in Win32 programs, the
hPrevlnstance parameter to WinMain is always 0, even if other copies of the
program are running. In general, a process can consider itself to be the only
running program in the system. Of course, if you really need to communicate
with or manipulate another process, there are facilities to do so. However,
you need to specifically plan ahead when writing your code to do this.

Each Windows 95 process is associated with a unique value in the system;
this value is informally known as a process ID. A program can obtain its
own process ID via the GetCurrentProcessld function. The process ID is the
closest thing to a Winl6 HTASK. In NT, process IDs definitely do not map
to system data structures, since typical process ID values are numbers like
74, 77, 84, and so on. In Windows 95, process IDs have much higher values
that are seemingly random. However, as you'll see in Chapter 3, a process
ID can be put through a magical transformation to get a pointer to the
actual process database structure that KERNEL32.DLL uses to keep track
of the process.

When working with Windows 95 processes, you usually don't use a
process ID. Instead, most process-related APl functions expect a HANDLE
parameter, informally known as an hProcess. An hProcess has no direct cor-
relation to something like a Winl6 task database. Unlike process IDs, there
can be multiple distinct hProcess values, each of which refers to the same
process.

41

KERNEL32 object handles
Handles permeate the Win32 APl. A

handle is a magic value that you obtain
from the operating system and pass back
to APl functions when you need something
done. Theoretically, a HANDLE value is
meaningless to the application program.
Only the operating system knows how to
interpret it. (However, as you Win16 pro-
grammers probably know, almost all the
handle values in Win16 programs can be
interpreted as selector values or near
pointers.)

When working with the KERNEL32
APIs, most handles you work with belong
to a small group of handles that l call
KERNEL32 handles. KERNEL32 handles
have special attributes, such as being

able to be passed to functions like
WaitForSingleObject. KERNEL32 object
handles include process and thread han-
dles, file handles, mutex handles, and
many more. Chapter 3 describes the vari-
ous KERNEL32 handle types.

A KERNEL32 HANDLE is valid only
within the process that owns it. Attempting
to use a HANDLE from one process in
another process is meaningless. Although
handles are theoretically opaque, with
enough underlying knowledge of the
process-related data structures, it's possi-
ble for an application program to convert
a handle into a usable object pointer.
Chapter 3 shows how you can convert a
KERNEL32 handle into a usable pointer.

The most fundamental process function in Windows 95 is CreateProcess,
which is analogous to the Winl6 WinExec and LoadModule functions.
WinExec and LoadModule still exist in Windows 95, but under the surface
they're a wrapper around a call to CreateProcess. If you need to query or
manipulate the spawned process later, you'll want to use CreateProcess
because it returns an hProcess HANDLE to you.

Since WinExec and LoadModule have no notion of an hProcess
HANDLE, they can't return an hProcess. In fact, after these two functions
call CreateProcess, they immediately close the hProcess that CreateProcess
returned. They do this to prevent system resources allocated for that process
from being tied up unnecessarily. It's important to remember that closing a
handle doesn't mean that you're terminating the process. Rather, you're giv-
ing up access to the process via that particular handle. The operating system
takes care of cleaning up its process-related resources when the process termi-
nates and all outstanding handles to the process have been closed.

Besides creating a process, another way to get an hProcess is to call
OpenProcess with a valid process ID. With an hProcess in hand from either
method, you can do some basic process querying and manipulation. Under
the category of process control, a program can terminate another process
with TerminateProcess and affect the execution priority of other processes
with SetPriorityClass.

42

It's interesting to learn that Windows mirrors certain KERNEL objects
like tasks and modules on both the 16- and 32-bit side of the fence. In the
area of processes and tasks, each Win32 process has a 16-bit task database
(TDB) that's linked into the TDB chain. If you walk the task list with
TOOLHELP, you'll see that in addition to the 16-bit tasks, there's also a
TDB for each Win32 program that's running. You may recall that a TDB
has 8 bytes near the end that stores the module name of the file that created
the task.

In addition to TDBs for 16- or 32-bit processes, there's also a PSP for
all TDBs in Windows 95, including TDBs for Win32 processes. Unlike
Windows 3.x, the PSP in a Windows 95 TDB does not necessarily immedi-
ately follow the TDB in memory. Between the 100h-byte-long TDB and the
PSP is a region that holds the current directory. This area is sufficiently
large to hold a directory using the long filename and pathnames that
Windows 95 supports. In Windows 3.x, the current directory was stored in an
area only 65 bytes long inside the TDB. Chapter 7 describes this in more detail.

Thread management
Threads are an exciting new feature that Windows 95 brings to the party. A
thread is an instance of execution through program code. In simpler terms,
threads allow a program to be executing in more than one place in its code
simultaneously. It's like having multiple CPUs, each executing a different
part of the program. On a single-processor system (Windows 95 supports
only uniprocessor systems), threads only appear to execute simultaneously.
Under the hood, the Windows 95 scheduler switches the CPU between all
the various threads in the system. This is known as timeslicing, since the
hardware's built-in timer notifies the operating system at regular intervals,
whereupon the operating system may choose to schedule a different thread.
Incidentally, although 16-bit programs show up as a thread in the list of
system threads, only Win32 applications can create additional threads in
their process.

A thread can be switched away from for two reasons. The first reason is
that the thread might do something that needs another thread to execute first.
In this case the thread yields the CPU to another thread. (This happens trans-
parently clown inside the system DLLs, so you don't need to worry about it.)
The second reason occurs when a thread has executed long enough and it's
time to give other threads a chance. The Windows 95 thread scheduler uses a
sophisticated algorithm that gives the most CPU time to the threads that need
it the most. The CPU uses the hardware clock to interrupt the operating system

43

t i m e s l i c e

at periodic intervals. Inside the hardware timer interrupt handler, the scheduler
decides if another thread should run; if so, it switches to the other thread. In
Windows 95, the timeslice is 20 milliseconds, meaning the scheduler code
could theoretically switch between 50 threads in one second. This is close
enough to simultaneous for most people.

Every thread is associated with a process. When the operating system
creates a new process, it also sets up an initial thread for it. Threads execute
in the memory context of the process they're associated with. All threads in
a process share the process's resources. For the remainder of this discussion,
I'll use the word "resource" to mean something provided by the operating
system rather than the much narrower definition of resource as a dialog, a
cursor, and the like. Process resources include a memory context, file han-
dles, and a current directory.

Processes generally don't alter or use the resources of another process.
However, multiple threads within a process can conflict in their use of a
process resource. Thus, resource sharing can be a mixed blessing. For
example, your program may have a code sequence that modifies several
global variables. If a thread is switched away from in the middle of the
sequence, the next thread would be using those global variables while
they're in an inconsistent state. Doing multithreaded programming success-
fully requires you to identify all the resources within a process that could get
messed up if a thread switch occurred while in the middle of manipulating
them. These resources need to be guarded by synchronization mechanisms
such as critical sections to make sure they aren't corrupted by an ill-timed
thread switch. Critical sections and other thread synchronization mechanisms
are discussed in the following section.

Although threads share process resources, each thread also has certain
resources that are private to itself. The most important of these is a stack.
No, each thread doesn't have its own SS register and stack segment. Instead,
each thread has a dedicated region of address space within the address space
of the process that owns the thread. By default, each thread is assigned 1MB
of address space for its stack. This size can be overridden either in the exe-
cutable file's .DEF file STACK line or by specifying a nonzero stack size when
the thread is created by a call to CreateThread. I mentioned earlier that
Windows 95 doesn't actually use up a whole megabyte of RAM for each
thread stack. Instead, Windows 95 uses a mechanism known as a "guard
page" to know when to commit additional memory in the stack's address
range. Guard pages are an example of structured exception handling, which is
discussed later in this chapter in the "Structured exception handling" section.

Another vital per-thread resource is the thread's register set. Whenever
the scheduler switches away from a thread, the operating system saves a
copy of the thread's register values at the time of the interruption. The use-
ful but little known GetThreadContext APl allows you to retrieve and
modify a thread's registers. While normal programs usually don't need to
do this, reading and modifying registers is the lifeblood of debuggers.

Inside the operating system, each thread has a unique value known as a
thread ID. As with process IDs, Windows 95 thread IDs have relatively high
values but definitely aren't 32-bit linear addresses. However, most thread APl
functions don't work with thread IDs. Instead, these functions expect a HAN-
DLE, commonly known as an hThread. An hThread is meaningful only within
the process that owns the thread. There can be multiple hThread values, each
of which refers to the same thread. The same thread can be referred to by mul-
tiple hThread handles; some of these handles are valid in that thread's process,
whereas others are valid in the context of a different process.

If you're starting to notice a parallel between threads and processes, that's
good. Remember: Process and thread IDs are unique values within the system.
No two threads or processes can have the same ID value. Handles are a differ-
ent story. Each process and thread can be referred to by multiple hProcess or
hThread handles. The handles might refer to a different process or a thread
within in a different process. Or, the handle might be self-referential, and
refer to its own process or thread.

Process and thread synchronization
One aspect of Win32 programming that will be new to programmers coming
from DOS or Win16 programming is process and thread synchronization.
Synchronization is the means by which a program prevents problems that
would occur if the program were switched away from at an inopportune
time. Although Win16 had multitasking, there were no real synchronization
primitives since the multitasking was cooperative multitasking. A Win16
program will not be switched away from until it gives up control voluntarily.
It does this by calling API functions such as GetMessage and PeekMessage. If
a program calls GetMessage or PeekMessage, it's implicitly saying, "I'm now
in an interruptable state."

Win32 programs, on the other hand, don't have the luxury (or the
curse, depending on how you look at it) of cooperative multitasking. They
must expect and prepare for the CPU to be switched away from at the worst
possible moment. In a related vein, a proper Win32 program shouldn't burn

45

up CPU time by spinning in a polling loop, waiting for some expected event
to happen. The Win32 APl has four main synchronization objects that
allow for both of these needs to be met:

* Events
* Semaphores
* Mutexes
* Critical sections

With the exception of critical sections, the synchronization objects are
system global objects and will work with threads that are in different
processes, as well as within the same process. Thus, these synchronization
mechanisms can also be used to synchronize the actions of separate
processes, in addition to threads within the same process.

Events

The first type of synchronization object is an event. Events, as their name
implies, are centered around some specific action occurring in another
process or thread. You use an event when you want your thread to block
until the desired action occurs. The term block means to suspend execution
of the thread until some specified condition or conditions are met. Blocking
is efficient because the scheduler doesn't waste any CPU cycles on threads
that are blocked.

A program obtains a handle to an event object with CreateEvent or
OpenEvent. The program then calls WaitForSingleObject, passing it the
event handle and an optional timeout period. The thread will then block
until some other thread in the current process or another process signals
that the event has occurred. The other thread indicates that the desired
actions have occurred by calling SetEvent or PulseEvent. After the event has
been signaled, the thread that is blocked wakes up and continues execution.

You might want to use an event, for example, when one thread will be
using the results of a sort being performed by another thread. A bad way to
implement this would be to have the sorting thread set a global variable flag
when the sort completes. The other thread spins in a loop, constantly check-
ing the flag to see if it's been set yet. This wastes a lot of CPU cycles in the
polling thread. Doing the same thing using events is simple. The sorting
thread creates an event to represent when the sort is finished. The other
thread calls WaitForSingleObject, passing it the event handle created earlier.

46

S e t E v e n t ,

 47

This causes the thread to block and not waste any CPU cycles. When the
sorting thread completes the sort, it calls SetEvent, causing the other thread
to wake up and resume execution. Not only has the CPU been used efficiently,
we've avoided concurrency problems by preventing a thread from using data
that may not be sorted yet.

This example used the simplest cases of the synchronization APIs. Besides
WaitForSingleObject, there's also WaitForMultipleObjects, which allows a
thread to block until a list of event handles has been signaled. In calling
WaitForMultipleObjects, a thread can block until either any event in the
list has been signaled or all the events have been signaled. Getting even
more elaborate, a thread can use MsgWaitForMultipleObjects, which
blocks until either the event conditions have been satisfied or there's a
waiting window message. Other functions block until the blocking conditions
are satisfied or a file I/O operation has completed. No doubt about it, there's
a lot of flexibility here.

Semaphores
The second type of synchronization object is the semaphore. Semaphores
are useful when you want to restrict access to a particular resource or restrict
a section of code to a certain number of threads. A good analogy for a
semaphore is the hall pass that most of us remember from school. At any
given time there can only be a few students in the hall. If you want to go
somewhere and all the hall passes are in use, you have to wait until one of
the outstanding hall passes comes back. Then you can acquire the hall pass
and leave. In Win32 programming, acquiring a semaphore is like taking
control of one of the hall passes.

To use a semaphore, one thread calls CreateSemaphore to get a HANDLE
to the semaphore. The call to CreateSemaphore includes a count of how many
threads can be using the resource or code simultaneously. If the semaphore will
be used within only one process, other threads can get at the HANDLE via
a global variable. If the other threads are in another process, they'll call
OpenSemaphore to get a HANDLE they can use. When a thread needs access
to the shared resource, it passes the resource to WaitForSingleObject (or one of
its variations such as WaitForMultipleObject). If the semaphore hasn't been
claimed by the maximum number of threads already, the wait function simply
bumps up the usage count of the semaphore and the thread continues. On the
other hand, if the semaphore is already maxed out, the thread that called the
wait function will block until some other thread releases its claim to the sema-
phore. A thread indicates that it's done using a semaphore by passing its handle
to ReleaseSemaphore.

Mutexes

The third type of synchronization object is the mutex. The term "mutex" is
a contraction of the term "mutual exclusion." A program or set of pro-
grams uses a mutex when it wants only one thread at a time to access a
resource or section of code. If one thread is using the resource, other threads
are excluded from that same resource. One way to view a mutex is as a
semaphore with a usage count of one. Using a mutex is very similar to using
a semaphore. Each of the create, open, and release semaphore functions has
mutex counterparts. When a thread needs to acquire a mutex, it calls one of
the functions in the WaitForXXX family.

Critical sections

The fourth type of Win32 synchronization objects are critical sections. Unlike
the other types of synchronization objects, critical sections can be used only by
threads within the same process. Critical sections are for preventing multi-
ple threads from executing through the same section of code simultaneously.
Relative to the other synchronization mechanisms, critical sections are rela-
tively cheap and easy to use. A critical section can be thought of as a light-
weight mutex that's only valid within a single process. To use a critical
section, a program either allocates or declares a global variable of type
CRITICAL_SECTION. Before a critical section can be used for the first
time, its fields need to be initialized by calling InitializeCriticalSection. After-
wards, a thread enters the critical section by calling EnterCriticalSection. A call
to LeaveCriticalSection tells the operating systems that it's okay for another
thread to enter the critical section.

As I just mentioned, critical sections are relatively cheap to use. In
Windows 95, if a thread calls EnterCriticalSection while no other threads
are in it, EnterCriticalSection only needs to adjust and set some fields in the
CRITICAL_SECTION structure. Only if another thread is already in the
critical section will EnterCriticalSection call up into the VWIN32 VxD to
cause the thread to block.

The WaitForXXX Functions

Now that I've covered the four primary methods of thread and process syn-
chronization, I want to mention a few other ways to synchronize threads.
Besides event, semaphore, and mutex handles, the WaitForXXX family of
functions will accept several other handles. (These handles are the KERNEL32

48

handles described in the "KERNEL32 object handles" sidebar.) Passing a
process HANDLE to one of the WaitForXXX functions causes the thread to
block until the process specified by the HANDLE terminates. If the process has
already terminated, the Wait function returns immediately. Likewise, passing a
thread HANDLE to a WaitForXXX function suspends the thread until the
HANDLE's thread terminates.

Another HANDLE that the WaitForXXX functions can block on is the
file change notification HANDLE. A file change HANDLE can be used to
determine when a specified change is made to a given directory and, optionally,
in its subdirectories. Yet another HANDLE that the WaitForXXX functions
accept is a file HANDLE for the console input device. Once there is unread
input in the console input buffer, the Wait function returns and the calling
thread resumes execution.

Module management
After processes and threads, the remaining key KERNEL concept that I'll
mention is the module. A module is the in-memory version of the code,
data, and resources of an executable file or DLL. Each process has a module
for the EXE file. Every DLL used by a process is also a separate module. If
two or more processes use the same DLL, they share the same DLL module.
Likewise, if two copies of a process are running, both copies share the same
EXE module.

In Winl6, each task is created from the code and data in a New
Executable/NE) format executable file. Winl6 keeps a copy of the exe-
cutable's header in a segment known as a module database. The selector of
this segment is called an HMODULE. Each Winl6 DLL also has a module
database because Winl6 executables and DLLs share the same file format.
Winl6 programs pass HMODULEs to APl functions that need to know
which particular executable or DLL file you're referring to.

Windows 95 creates 32-bit processes from a Portable Executable (PE)
file. The PE format is an updated version of the old UNIX Common Object
File Format (COFF) format. Chapter 8 goes over the PE format in exquisite
detail, so I'll skip a detailed discussion here.

The closest equivalent to a Winl6 module database in Windows 95 is
the header portion of a program or DLL's PE file. The header of each EXE
or DLL appears in memory because Windows 95 uses memory mapped files
to load the program's code and data. I discuss memory mapped files in the
"Memory mapped files" section later in this chapter. For now, think of a
memory mapped file as a place in memory where the operating system has
read in portions of a file (or possibly an entire file).

49

A Windows 95 HMODULE value is nothing more than the linear
memory address to where the loader memory mapped the file. Given an
HMODULE and a small amount of calculation, you can convert the
HMODULE into a pointer to the PE header. With a pointer to the header
address, a program can do some additional lookups to find the address of
the code, data, and resources for that module in memory.

Winl6 is somewhat sloppy about the difference between an HMODULE
and an HINSTANCE, although they really are different. A Winl6 HIN-
STANCE is the selector value of a task's or DLL's DGROUP segment.
However, in Winl6, an HINSTANCE is also frequently used to differentiate
between two different tasks. In 32-bit Windows 95 processes, an HMODULE
and an HINSTANCE are the same thing -- the base address of the module
in memory.

As with Win32 processes and Winl6 tasks, Windows 95 stores information
about a module on both sides of the 16- and 32-bit fence. Each 32-bit process
module has a corresponding 16-bit NE module database. However, the 16-bit
representation of these modules is minimal. Not all fields in these special 16-bit
HMODULE segment are filled in. I call these minimal HMODULEs "pseudo-
HMODULEs." Pseudo-HMODULEs don't appear in the normal linked list of
16-bit modules. If you walk the list of modules with TOOLHELP, the pseudo-
HMODULEs don't show up. The SHOW16.EXE program from Chapter 7
shows how to find the 16-bit module databases for Win32 EXEs and DLLs.

The Windows 95 address space
A major architectural difference between Windows 95 and NT is that in
Windows 95, 16- and 32-bit applications play in the same virtual machine
and address space. To increase system stability, NT runs 16-bit Windows
applications in a separate virtual machine called Windows on Windows
(known informally as WOW). (NT 3.5 and later can also run each 16-bit
Windows program in its own distinct virtual machine if desired.) The down-
side to NT's implementation is that it separates 32-bit processes from 16-bit
processes, address-space-wise. This makes it harder to thunk between 32-
and 16-bit code. In an ideal world you wouldn't need to use thunks.
Unfortunately, the reality is that a lot of useful 16-bit Windows DLLs won't
be immediately available in a 32-bit version.

From the perspective of a 16-bit application, the address space is
unchanged from Windows 3.1. All 16-bit applications continue to use ring
3 16-bit selectors from a common local descriptor table (LDT). These pro-
grams can continue to access and share memory with other 16-bit applications

50

G M E M _ S H A R E

51

through selector values. This works because all addresses used by 16-bit
programs are within regions of the address space shared by all programs.
One 16-bit task can always see the memory of another 16-bit task, assuming it
has a valid selector that points to the other task's memory. A page of memory
might be marked not present by the virtual memory manager, but touching that
memory will bring it back in transparently to the task that touches it. Although
Microsoft recommends allocating memory with GMEM_SHARE when you
intend to share it between tasks, Windows 3.x programs habitually ignored this
advice; 16-bit programs under Windows 95 can continue to do so.

The address space story for 32-bit processes is vastly different. As in
Windows NT, the private memory of each 32-bit Windows 95 process is in
the CPU's page mapping tables only when that process is the current process.
When the scheduler switches to another 32-bit process, the private memory
of the first process is no longer accessible to any other process. Doing this
makes it almost impossible for one task to scribble on another task's memory,
either accidentally or intentionally.

Because Win16 tasks allocate their code and data in the shared memory
region, at any given time the current 32-bit Windows 95 process can see all
the memory in use by 16-bit programs. However, a 32-bit process can't see
the memory of other 32-bit processes. There's only one process memory con-
text mapped in at one time. Looking through the opposite end of the telescope,
16-bit code can see all of the shared system memory, as well as the memory of
the current Win32 process. (It would be rather difficult to thunk between 16-
and 32-bit code if this weren't the case.)

Protecting processes from one other is generally a good idea, but some-
times you really do need shared memory. The primary way to share memory
between processes is with memory mapped files. The name memory mapped
files is somewhat of a misnomer since you can use them without involving
any disk files. An interesting architectural difference between NT and
Windows 95 involves the visibility of file mappings. In NT, a memory
mapped file is accessible only to processes that have called
CreateFileMapping and MapViewOfFile for that particular file. In addition,
the file's memory region can be based at different virtual addresses in differ-
ent processes. In Windows 95, once a program creates a memory mapped
file, that memory region is accessible to all programs. Thus, a Windows 95
memory mapped file is always at the same virtual address in all processes.
This no doubt simplifies the virtual memory management code in Windows
95. I'll talk more about memory mapped files later, in the section titled
(would you believe?) "Memory mapped files."

m e m o r y

52

Native Windows 95 applications dispense with the use of selectors in
application code. Windows 95 initializes all 32-bit programs with the same
code and data selectors at startup. The application itself never needs to
change the segment registers. (The Windows 95 system DLLs change the
segment registers temporarily during thunks down to 16-bit code.) For
instance, when I run Win32 applications, each program uses a ring 3 LDT
code selector with a value of 0x013F. This selector has a base address of 0
and a limit of 0xFFFFFFFF (4GB). The data selector that all Windows 95
applications have in the DS, ES, and SS registers is somewhat unusual. It's
an expand-down selector with a limit of less than 1 MB.

Until Windows 95, expand-down selectors were rarely encountered, so
a bit of explanation is in order. The limit of an expand-down selector (or
descriptor) is the lowest offset that a program can use with that selector.
The highest usable offset is the end of memory addressable with that selec-
tor. In Windows 95, the data segment selector is a 32-bit LDT selector with
a base address of 0. This means that the valid address range when using that
selector is between a value less than 1 MB and 4GB. Windows 95 makes the
lowest addresses in 4K of a virtual machine inaccessible because it causes
programs with NULL pointer errors to GP fault rather than silently over-
write memory.

The use of the same selectors for all 32-bit processes often confuses
programmers coming from a 16-bit background. How can you use the same
code selector with two different programs? As I mentioned previously,
Windows 95 uses the CPU's page mapping features to map physical RAM
to linear addresses. Each process has its own set of page mapping tables.
Whenever Windows 95 switches tasks, it changes the CPU's page mapping
tables to reflect the new process's memory layout. Thus, even though two
programs have the same selector, they will have entirely different code at
the same linear address. That's why an address by itself is useless without
knowing which process it refers to.

 Windows 95 memory management
In most regards, Windows 95's 32-bit memory management architecture is
very similar to NT's on the surface. Under the hood, KERNEL32 relies
heavily on services provided by VMM32.VXD to implement the Win32
memory management APIs. On the 16-bit side of the fence, KRNL386 now
also calls directly into the VWIN32 VxD in VMM32 for low-level services

such as allocating large memory regions and pagelocking. In Windows 3.1,
KRNL386 used DPMI functions from WIN386 for many (but not all) of the
same services.

At the level where most programmers work every day, the big news
in Win32 and Windows 95 is no more segments! By moving to 32-bit
programming, you can finally forget all about near and far pointers. You can
also forget about GlobalLock, LocalLock, and anything related to memory
models. Everything in a Windows 95 32-bit program is small model. That
is, the 32-bit small model. Of course, if you want to perform tricks with the
memory manager, the Win32 APl and Windows 95 have a whole new set of
functions to delight the low-level hacker.

In Windows 95, the lowest level of memory manipulation is provided
by the VirtualXXX functions, which are described in detail in Chapter 5.
VirtualAlloc lets you allocate large chunks of address space with 4K granu-
larity (the size of an 80386 page). Although there are important differences,
the closest equivalent to VirtualAlloc in Windows 3.1 programming is
GlobalAlloc. Both functions are intended for allocating large blocks of
memory. Also, the granularity of both functions makes their system over-
head relatively high. You probably wouldn't want to use either function in
place of malloc or new.

At the same time you allocate address space with VirtualAlloc, you
can optionally bind that address space to physical RAM by using the
MEM COMMIT flag. Why wouldn't you want an address space allocation
to be backed up by memory immediately? Sparse memory is the main reason
you wouldn't want to do this. For example, your program might need a
great deal of memory for storage (on the order of megabytes). You don't
know how much memory you need beforehand. In this situation, you could
VirtualAlloc a chunk of address space large enough to be confident you
won't need more memory. As your program uses up more and more of the
address range, you can commit memory as needed by making additional
calls to VirtualAlloc. See the "Structured exception handling" section later
in this chapter for more details on automating this procedure. Incidentally,
this commit-only-when-needed algorithm is precisely how Windows 95
implements large program stacks while not wasting memory on pages that
are never touched.

Higher-level Windows 95 memory management comes in the form of
heap functions (which are described in Chapter 5). When Windows 95 creates
a new 32-bit process, it creates a heap default for it within its address space.
The 32-bit heap is roughly equivalent to a 16-bit Windows local heap, since
every process has one. However, the 32-bit heap certainly isn't limited to

53

H e a p A l l o c

54

64K! Windows 95 supports multiple heaps, so you need to pass a handle to
the heap function when you want to allocate, free, or otherwise manipulate
a heap memory block. A program retrieves the handle to its default process
heap with the GetProcessHeap API. This heap handle is nothing more than
the starting address of the heap.

Unlike the VirtualXXX functions, allocations from the Win32 heap
functions have a much smaller granularity (4 bytes in the retail build rather
than 4KB). The overhead for each allocation appears to be only 4 bytes as
well. This makes the HeapAlloc function a suitable replacement for malloc (or
a quick way to implement your own malloc). The 4-byte overhead comes
from a DWORD immediately preceding the address returned by HeapAlloc().
Ignoring the bottom 2 bits, this DWORD holds the size of the block imme-
diately following it.

While Win32 presses forward, there are still issues of backward com-
patibility. Thousands of 16-bit programs use GlobalAlloc and LocalAlloc.
Can they be ported easily? Yes! Microsoft kept most of the important global
and local heap functions in the Win32 API so that calls to those functions
wouldn't need to be changed in the transition to 32 bits. However, the
meaning of the APIs and their underlying implementation has changed. First
and foremost, the global and local heap functions are essentially identical.
You can use GlobalAlloc to allocate a block of memory and use LocalFree
to release it. Second, the global and local heap functions are implemented
using the 32-bit process heaps I mentioned earlier. Because of this, calling

HeapAlloc(GetProcessHeap(), // Heap Handle
0, // Flags

0x100); // bytes requested

should return the same pointer as if you had called

Loc>alAlloc(LMEM_FIXED, 0x100);

HeapAlloc always returns a usable pointer when successful, so all blocks
allocated with HeapAlloc are equivalent to LMEM_FIXED. Fixed heap blocks
can sometimes lead to fragmentation. As in Win16, you need to call LocalLock
with a moveable block handle to get a usable pointer. It's a little-known fact
that in Win16, moveable block handles always have bit 1 set, so their handle
values always end in 2, 6, 0xA, or 0xE. Also, if you treat a moveable handle as
a pointer to a pointer, you can dereference it to get the current address of the
block associated with the handle. Microsoft's commitment to backward com-
patibility can be seen here because these same rules apply to the 32-bit heaps.

to occur.

55

The mappings between the local heap functions and the new Win32
HeapXXX functions are very simple. HeapAlloc and HeapFree replace
LocalAlloc and LocalFree. Likewise, HeapReAlloc and HeapSize take over
from LocalReAlloc and LocalSize. HeapCreate corresponds roughly to using
GlobalAlloc to grab a global heap block, followed by a call to LocalInit to
set up a heap inside that block. There is no direct Win16 equivalent to
HeapDestroy. In Win16, if you're done with a heap you created, you'd likely
just get rid of the heap segment with GlobalFree. Chapter 5 describes memory
management in much more detail.

Memory mapped files
One of the coolest features in Win32 and Windows 95 is memory mapped
files. There is no Winl6 equivalent to memory mapped files, and 16-bit
tasks under Windows 95 can't use them. Memory mapped files have three
main uses in Windows 95. The first and most obvious use is to enable you
to use pointers to easily read and write data from a disk file. The file map-
ping assigns a section (or all) of a file on disk to a range of memory in the
virtual address space. When you read or write to a memory address within
that address space region, the operating system reads or writes the equivalent
byte within the disk file.

The second use of memory mapped files is as a way to share memory
between different Win32 processes. A process can set up a file mapping for
a NULL file to reserve a block of address space without assigning it to a
particular disk file. Other processes can then open up their own view of this
file mapping. The physical memory that's connected to the mapping's range
of addresses can be made visible to other processes. A process that wants to
share memory with the first process merely needs to request a view into the
same file mapping. No disk files need be involved for this memory sharing
to occur.

The third use of memory mapped files is for module loading. When the
Windows 95 32-bit loader needs to load an executable or DLL, it uses mem-
ory mapped files to map regions of the executable into the process's address
space. Since memory mapped files can be made visible in other processes, it's
relatively easy and efficient for Windows 95 to share an EXE or DLL's code,
data, and resources between two or more processes. Working from values
stored in the PE file, the Windows loader maps various sections of the
executable to specific starting addresses in memory. Chapter 8 describes this
in more detail.

(0 d h)) .

56

Structured exception handling
One of the most useful but misunderstood components of the Win32 and
Windows 95 architecture is structured exception handling. Before
Windows 3.1, there was no formal mechanism in the Windows APl for a
program to handle interrupts. Windows 3.1 introduced TOOLHELP. DLL,
which was a great step forward, but calling it structured is a bit of a stretch.
TOOLHELP. DLL intercepts a small but useful set of interrupts such as the
breakpoint interrupt (INT 3) and the GP fault (exception 13 (0dh)). When
an exception occurs, TOOLHELP's internal handler gets control. The handler
sets up a consistent stack frame and then calls handler functions installed by
tasks that want an interrupt callback.

While TOOLHELP. DLL allows a lot of flexibility, it also leaves a lot
of room for problems. Each task with an interrupt callback can see all the
interrupts and exceptions that come through TOOLHELP. The callback
function can indicate to TOOLHELP whether TOOLHELP should call the
other interrupt callback functions that come later in the list. Thus, one task
can prevent another task from seeing interrupts that it might be depending
on. In addition, if the interrupt callback handler is buggy, it can cause
nested GP faults and other system-crashing behavior. For 32-bit processes,
Windows 95 replaces this "every task for itself" way of doing things with a
much more well-defined way for a process to handle exceptions.

Other than debuggers, why would a process want to handle exceptions?
One example is a process that needs to do an operation that might cause a
GP fault or a division by zero. If the process knows how to recover from
that situation, it shouldn't be terminated by the operating system. Another
example is a process using sparse memory. A program might need to use a
large amount of memory, but not know exactly how much memory before-
hand. Using the VirtualAlloc function, the program can reserve a large
enough range of virtual address space. When the process accesses a page of
memory in that range that isn't backed up by physical RAM, the CPU gen-
erates a page fault. Using structured exception handling, a Win32 process
can handle the page fault by assigning RAM to that page of memory, and
then telling the operating system to restart the faulting instruction.

Technically, structured exception handling is built in to the operating
system and is independent of any particular language. However, structured
exception at the operating-system level is very messy and complex. In fact,
at the time of this writing, I'm not aware of any formal documentation on
this topic that's generally available. For these reasons, most programmers let
their compiler and its runtime libraries put a pretty face over structured

H K E Y _ D Y N _ D A T A

57

exception handling. For more information about the details of the
Windows 95 implementation of structured exception handling here, see
Chapter 3.

When a process doesn't handle an exception in any of its handlers, the
exception gets passed to a default operating-system handler. This handler's
action is to terminate the program and clean up unfreed resources and open
handles. In a move to improve robustness, Windows 95 implements this
sequence using a separate thread. The idea is that when a thread has unex-
pectedly blown up (with an access violation, for instance), the thread's con-
text might be in an unstable state. By doing the cleanup in a separate thread
with a known good context, the Windows 95 developers hope to cut down
on the number of hard system crashes.

The registry
Before Windows NT, both the system and programs stored their persistent
information in a morass of .INI files. (Remember those huge WIN.INI files?
Remember having no idea how most of those entries got there?) Windows
95 uses a registry to take a big step toward moving this mass of information
into a central location.

In Windows 95, information that you would have put into an .INI file
in Windows 3.1 should instead be stored in the registry. The registry is a
hierarchical database of information. (The Windows 95 REGEDIT program,
in Figure 2-2, shows the registry hierarchy.) The top level has a small set of
predefined "key" nodes; each key node has named subkeys below it. At any
point in the hierarchy, a subkey can have one or more values (text or binary
data) or additional subkeys. There's an extensive set of APIs (for example,
RegCreateKeyEx, RegQueryValue, and so on) for adding, deleting, modifying,
and searching the registry.

The six predefined, top-level keys in Windows 95 are as follows:

* HKEY_CLASSES_ROOT
* HKEY_CURRENT_USER
* HKEY_LOCAL_MACHINE
* HKEY_USERS
* HKEY_CURRENT_CONFIG
* HKEY_DYN_DATA

V M M _ S e r v i c e

58

 Figure 2-2
 The Windows 95 REGEDIT program shows the registry hierarchy.

Of particular interest is the HKEY_DYN_DATA key (see Figure 2-2).
Chasing this key down several nodes leads to quite a bit of useful information.
For example, the subkey HKEY_DYN_DATA\PerfStats\StartStat\ leads you to
a value with the name KERNEL\CPUUsage. Another value under that same
key is VFAT\ReadsSec.

Note that the registry is actually implemented in VMM.VXD. By putting
the registry code in the first VxD that's loaded (VMM.VXD), the information
in the registry can be accessed and used by VxDs themselves. You can see this
for yourself by looking in the VMM.H file from the Windows 95 DDK. In
the file, you'll find that the following VxD services are available for use by
other VxDs:

// Registry APIs for VxDs

/*MACROS*/
VMM_Service (_RegOpenKey)

VMM_Service (_RegCloseKey)

VMM_Service (_RegCreateKey)

l i s t b o x

59

VMM_Service (_RegDeleteKey)

VMM_Service (_RegEnumKey)
VMM_Service (_RegQueryValue)
VMM_Service (_RegSetValue)
VMM_Service (_RegDeleteValue)
VMM_Service (_RegEnumValue)
VMM_Service (_RegQueryValueEx)
VMM_Service (_RegSetValueEx)

At the Win32 APl level, the registry functions are implemented in
ADVAPI32.DLL. In Windows 95, that file is relatively small. Digging
under the covers to find out why, you'll see that all the registry functions
are just wrappers around calls to the VMM registry functions. Of course,
since ADVAPI32.DLL is in ring 3 code, it can't call the VMM functions
directly. Instead, it uses the same Win32 VxD services (described earlier)
that KERNEL32 uses for other purposes. (These VxD services are described
in Chapter 6.)

Additions to USER
What's new in the windowing system in Windows 95? For starters, there are
now numerous new extended window styles that give Windows 95 programs
that sculpted, three-dimensional look. Some of the new styles include

Style
WS_EX_MDICHILD
WS_EX_TOOLWINDOW
WS_EX_CLIENTEDGE
WS_EX_RIGHT
WS_EX_LEFTSCROLLBAR

Purpose
Creates an MDI child window.
For toolbar windows.
Window has a sunken edge.
Window text is aligned on the right.
The scrollbar is on the left.

Another exciting new addition for many developers is a new set of con-
trois. The new control types are as follows:

Control type
Animate
DragListBoxes
Header

Purpose
Displays .AVI files
Drags listbox items between lists
Header bar

H o t K e y

60

Control type
HotKey
ImageList
ListView
Progress
Property Sheets
RichEdit
StatusWindow
TabControl
ToolBar
Tooltips
TrackBar
TreeView
UpDown

Purpose
HotKey control
List of images
List view
Progress gauge
Edit item properties
Rich format text
Status window
Tabbed dialog
Customizable bitmap-button toolbar
Balloon-style help
Customizable column-width tracking
Tree view
Up and Down arrow increment/decrement

Unlike the standard controls (that is, those that existed in Windows 3.1),
these new controls aren't implemented in USER.EXE. Instead, they're
implemented in COMCTL32.DLL and COMMCTRL.DLL. As a result,
these new controls are available only to 32-bit processes, leaving 16-bit
programs excluded from the party.

System information and debugging
The Win32 debugging APl that Windows 95 implements is much more formal
than what's available for Win16. A 16-bit debugger under Windows 3.1 or
Windows 95 will typically use TOOLHELP to install interrupt and notification
callbacks. By watching the interrupt and notification streams, the debugger can
sense what the debuggee is doing. However, the debugger's callbacks need to
filter out events that were for other processes or that aren't of interest to a
debugger. In addition, when the debuggee hits a breakpoint or causes an
exception, the debugger's exception handler needs to spin in some sort of loop
until the debugger wants the child to resume execution again. In short, 16-bit
debuggers are messy.

The Windows 95 debug APl is centered around the WaitForDebugEvent
function. After creating or attaching to a process, the debugger calls
WaitForDebugEvent, passing in a pointer to a DEBUG_EVENT structure.

D L L s

61

This function blocks until something occurs in the debuggee that the debug-
ger cares about. The debug events that WaitForDebugEvent can return are
shown in Table 2-4.

Table 2-4
Debug events that WaitForDebugEvent can return

Debug event Description

EXCEPTION_DEBUG_EVENT Tells the debugger of breakpoints, access
violations, and other exceptions.

CREATE_THREAD_DEBUG_EVENT Enable the debugger to keep track of the
and EXIT_THREAD_DEBUG_EVENT debuggee's threads.

LOAD_DLL_DEBUG_EVENT and
UNLOAD_DLL_DEBUG_EVENT

Keep the debugger informed of which DLLs
the child is using. A debugger can use these
notifications to load and unload symbol tables
for the DLLs on the fly.

OUTPUT_DEBUGSTRING_EVENT Enables you to see your OutputDebugString
messages. (In fact, it's the only way to see
these messages.)

For more details, refer to the discussion of
OUTPUT_DEBUG_STRING_EVENT and the
WaitForDebugEvent function in this section.

CREATE_PROCESS_DEBUG_EVENT Tells the debugger that the program being
and EXIT_PROCESS_DEBUG_EVENT debugged has spawned another process,

or has terminated.

RIPEVENT This message doesn't appear to ever be
generated.

Associated with each debug event is a structure containing detailed
information about the event. A debugger can use these notifications to
do things such as load and unload symbol tables for the DLLs on the fly.
The OUTPUT_DEBUG_STRING_EVENT should be of interest to more
than just debugger developers. Under Win32, this is the only way to see
your OutputDebugString messages. Put another way, you must be running
your program under a debugger (or something similar) that uses the
WaitForDebugEvent function. In Win16, any program could see all the
OutputDebugString messages in the system by simply tapping in to the
TOOLHELP NotifyRegister stream. That's all that the Win16 DBWIN
program does.

W a i t F o r D e b u g E v e n t

62

Whenever WaitForDebugEvent returns to the debugger with an event, all
activity in the child process is frozen. The debugger doesn't need to worry
about suspending all the child's threads. Instead, it does whatever processing
it needs to with the event and eventually calls the ContinueDebugEvent func-
tion, which lets the debuggee process resume execution. The heart of a Win32
debugger is a loop that calls WaitForDebugEvent and ContinueDebugEvent in
a loop until the debugger receives an EXIT_PROCESS_DEBUG_EVENT.

In addition to knowing about events in the debuggee, the debugger
also needs a way to poke and prod at the debuggee's registers and memory.
The ReadProcessMemory and WriteProcessMemory functions (see
Chapter 5) fill the bill for accessing the debuggee's memory. Likewise,
GetThreadContext and SetThreadContext (see Chapter 3) let the debugger
read or write the register set of a particular thread in the debuggee.

Besides providing information about interrupt and system events, the
Windows 3.1 TOOLHELP. DLL also provided a convenient way to iterate
through various system data structures, such as modules, tasks, and heaps.
In Windows 95, these data structures have changed significantly for 32-bit
programs. To its credit, Microsoft implemented a 32-bit version of
TOOLHELP. These TOOLHELP32 functions are defined in TLHELP32.H,
and are listed here:

CreateToolhelp32Snapshot
Heap32ListFirst
Heap32ListNext
Heap32First
Heap32Next
Toolhelp32ReadProcessMemory
Process32First
Process32Next
Thread32First
Thread32Next
Module32First
Module32Next

These APl functions are similar, but certainly not identical, to the
Win l6 TOOLHELP. DLL functions. Therefore, if your 16-bit code uses
these TOOLHELP functions, you'll have a bit of porting to do. Also,

W i n l 6

unlike the Winl6 TOOLHELP. DLL, which is separate from KRNL386,
the TOOLHELP32 functions are implemented in KERNEL32.DLL,
which is where they belong.

One problem with implementing these system information functions in
Windows 95 is that Windows 95's pre-emptive multitasking will screw things
up unless special care is taken. For example, in the middle of walking through
the thread list, the enumerating thread might get switched away from. Before
that thread gets back control, the thread list may have changed. To prevent
this and similar problems, the TOOLHELP32 functions have the concept of
a snapshot. When you want to walk through a list (such as the process list),
you first create a snapshot by calling CreateToolhelp32Snapshot, which fills
in a buffer with a completely consistent set of information about the system
state. You then pass the snapshot handle to the TOOLHELP32 enumeration
functions, which extract the relevant information from the buffer filled by
CreateToolhelp32SnapShot.

Noticeably missing from the TOOLHELP32 functions (when compared
to the Winl6 TOOLHELP. DLL) are functions for walking the window
classes, obtaining information on system heap usage, and performing a
stack trace for another process. However, there are other ways of doing
these things in Windows 95. My article on the new TOOLHELP32 func-
tions in the September 1995 Microsoft Systems Journal describes the
TOOLHELP32 functions in more detail and suggests other ways of
accomplishing things that the TOOLHELP32 functions don't provide.

"DIRTY LITTLE SECRETS" ABOUT WINDOWS 95

Before finishing this chapter, I thought I'd throw in a list of bad design
decisions and embarrassing information that Microsoft probably won't
be publicizing anytime soon.

Many issues that I could talk about in this section have already been
discussed elsewhere in this chapter or in other books or articles. Into this
category, I put things like the following:

*

*

Remnants of real mode DOS code are still being used.
The shared memory address spaces (below 4MB, above 2GB) are almost
completely unprotected. Both Win1 6 and Win32 applications can scribble
all over sensitive system data areas.

63

K E R N E L 3 2 . D L L .

64

* The Winl6Mutex in conjunction with badly behaved 16-bit tasks can
affect the overall system multitasking.

* Despite claims to the contrary, KERNEL32 does call KRNL386.
(However, the magnitude of the number of calls down to KRNL386 is
worth noting and is discussed in Chapter 6.)
Instead of talking about these topics again, I'd like to focus on some

other interesting issues in Windows 95 - - issues that until now have gone
largely unnoticed. The following list gives you a brief preview of each topic
discussed in this section:

* New anti-hacking code tries to prevent you from accessing undocumented
KERNEL32 functions.

* The lack of cooperation and communication between the Windows NT
and Windows 95 teams results in fewer Win32 functions in both NT
and Windows 95.

* The free system resources calculation changed to make it look like
Windows 95 has dramatically more USER and GDI heap space, even
though it doesn't.

* Additions to 16-bit code were quietly made even though Microsoft
publicly states that 32-bit code is the way to go.

Anti-hacking code
Unauthorized Windows 95 made extensive use of undocumented functions
in KERNEL32.DLL. Although there obviously weren't header files for these
functions, the functions appeared in the import library for KERNEL32.DLL.
Calling these functions was as simple as providing a prototype and linking
with KERNEL32.LIB.

In subsequent builds of Windows 95--after Unauthorized Windows 95
came out--these functions disappeared from the import library for
KERNEL32.DLL. (Surprise! Surprise!) At the same time, these function
names disappeared from the exported names of KERNEL32.DLL. These
undocumented functions were still exported, however. The difference is
that they were exported by ordinal only.

Now, normally this would have been only a small nuisance to work
around. You should be able to simply call GetProcAddress and pass in the
desired function ordinal as the function name (0 in the HIWORD, the
ordinal in the LOWORD) and get back the address. In a normal, sane world,

this would work. However, at some point during the beta, Microsoft added
code to GetProcAddress to see if it's being called with the ordinal form of the
function. If so, and if the HMODULE passed to GetProcAddress is that of
KERNEL32.DLL, GetProcAddress fails the call. In the debugging version of
KERNEL32.DLL, the code emits a trace diagnostic: "GetProcAddress:
kernel32 by id not supported."

Now, let's think about this. Since the undocumented functions aren't
exported by name, you can't pass the name of a KERNEL32 function to
GetProcAddress to get its entry point. And GetProcAddress specifically
refuses to let you pass it an ordinal value. The Microsoft coder responsible
for this abomination really didn't want people calling these undocumented
KERNEL32 functions. Apparently, the only way you can call these functions
is if you have the magic KERNEL32 import library, which Microsoft isn't
supplying with the Win32 SDK. (Instead a stripped version of the library is
being included.)

Never fear. As you'll see later in the book, I make extensive use of the
KERNEL32 undocumented functions (for good, not evil). With a little bit
of work, I was able to coerce the Visual C++ tools to create a KERNEL32
import library that contains these "documentation-challenged" functions.
Appendix A contains information about these functions and an import
library for them.

Another instance of anti-hacking code put into Windows 95 is the
Obsfucator flag. In early versions of Windows 95, GetCurrentProcessld and
GetCurrentThreadld returned pointers to the relevant process and thread
database structures, which are described in Chapter 3. Shortly after
Unauthorized Windows 95 came out, these functions started returning val-
ues that most definitely weren't pointers. A bit of investigative work
revealed that the return value was the original pointer value, but XOR'ed
with a seemingly random value. Where does this random value come from?
Each time the system boots up, it uses the system clock to compute a ran-
dom value. Interestingly, in the debug build of KERNEL32.DLL, this ran-
dom value is named "Obsfucator." Seeing as how the KERNEL32 coders
misspelled "obfuscator" as "obsfucator," it's doubtful whether the KER-
NEL32 sources were subjected to a spell check.

As with the GetProcAddress code, there's no reason for this XOR trick
in GetCurrentThreadld and GetCurrentProcessld, other than to attempt to
prevent people from getting at system data structures. While Microsoft is
certainly allowed to try and hide these things, they shouldn't complain when
users who really need this information go in and dig it out anyway. Chapter
3 describes a technique for calculating the Obsfucator value at runtime so
you can access the thread and process database structures.

65

The Win32 APl farce
While Microsoft would like you to believe that there's one big happy Win32
API, internally the NT and Windows 95 teams don't communicate too well.
One result of this lack of coordination is that the number of Win32 functions
available both in NT and Windows 95 suffered needlessly. The following
three "exhibits" serve to prove my point.

Exhibit I consists of the new Toolhelp32 functions. I've heard from
many sources that the NT management team has vowed never to implement
them. Yet if you look closely at the TOOLHELP32 functions, you'd find
there's just a handful of functions. Of primary interest are the process and
thread enumeration functions. This information can be extracted from the
Windows NT registry, as the PVIEW program from the Win32 SDK plainly
shows. The question in my mind is: Why didn't the Windows 95 team simply
implement the same registry keys that NT provides so that PVIEW could
work on both? Or, why couldn't the NT team write a layer on top of the
registry functions and put the Toolhelp32 functions on Windows NT? If
either side really wanted to, it could come up with a portable Win32 API way
to do system information enumeration. As I'm finishing this book, I've
heard rumblings from a member of the NT team that the TOOLHELP32
functions might appear in a future version of Windows NT.

Exhibit 2 consists of the heap functions. There are several Win32 heap
functions that Windows 95 left unimplemented, although implementing them
probably wouldn't have been more than an hour's worth of work. The prime
example is the HeapWalk function from Windows NT. This function isn't
implemented in Windows 95. Yet, if you look in TLHELP32.H, you'll find
two functions that do exactly the same thing: Heap32First and Heap32Next.
Rather than simply implementing an existing Win32 APl, the Windows 95
coders went off and implemented two entirely new functions. The NT team
will no doubt say that they're not going to support those functions. Lunacy!

Exhibit 3 consists of the HeapLock function. In Windows NT, this
function simply acquires the mutex of a specified Win32 heap. As you'll
see in Chapter 5, Windows 95 has a function that does exactly that.
However, the KERNEL32 development team didn't export that function.
Thus, the most likely reason the HeapLock function isn't implemented in
Windows 95 is because somebody didn't feel like renaming the existing
function to HeapLock and exporting it from KERNEL32.DLL.

The point is, while Microsoft is trying to convince everybody to write
to the standard Win32 APl, two teams at Microsoft are implementing only

what they feel like. This will only hurt Microsoft in the long run. I've filed
my share of WINBUG reports and sent numerous e-mails. It's now up to the
market to see what happens to the supposedly unified Win32 API.

Free system resource fudging
If, after booting Windows 95, you immediately bring up the Windows 95
Explorer and then go to the HelplAbout Windows 95 dialog box, you'll see
a free system resources value that's quite high; a typical value is 95 percent.
This is a much higher value than you'd see under Windows 3.1. Did
Windows 95 suddenly gain a whole bunch of free memory in the 16-bit
USER and GDI heaps from which the free system resources are calculated?
No! In fact, many new items were added to USER's DGROUP segment. If
anything, the free system resources should have gone down or stayed about
the same in Windows 95.

So what's the story? As I describe in Chapter 4, during the Windows 95
startup sequence, the Explorer causes the desktop window to calculate correct,
Windows 3.1-like values for the free system resources. All future calls to
GetFreeSystemResources are then biased by these initial values. Thus, when
the Explorer says that there's 95 percent of the system resources available, it
means 95 percent of the resources after the Explorer and other programs
have started. This change in the way free system resources are calculated is
a blatant attempt to make Windows 95 look better than Windows 3.1 in
the eyes of the nontechnical user.

Win 16 isn't dead
Although Microsoft is strongly pushing everybody to move to Win32, much
of the underlying support for the Win32 APIs is in 16-bit code. That's no
secret and not worth bringing up again. However, Microsoft isn't making
much noise about all the new APl functions that were added to the 16-bit
DLLs. In many cases, these functions are 16-bit equivalents to documented
Win32 APIs. I'm talking about useful functions like CreateDirectory and
GetPrivateProfileSection. In some cases, these functions were silently added
to the 16-bit WINDOWS.H without fanfare. In other cases, the functions
are exported from the 16-bit DLL, but no prototype is given in the appro-
priate .H file. In these cases, the Win32 documentation and some common
sense can usually get you through.

67

If Microsoft isn't publicizing these 16-bit additions, just who's supposed to
be using them? If everyone should be writing Win32 code, why is Microsoft
adding new Win16 APIs? It certainly looks like Microsoft knows that Win16
will continue to have a fairly long life even after Windows 95 ships. Yet it's
telling developers that Win16 is a dead end and that Win32 is the only way to
go. Personally, I agree that users should focus on Win32 programming if possi-
ble. But trying to force them toward Win32 programming in this manner
seems like a bad way to go.

SUMMARY

Windows 95 is most definitely its own operating system. While a large part of
Windows 95's code is derived from the Windows 3.1 code base, Windows 95's
16-bit code has been reworked to remove many 16-bit restrictions as well as to
handle the demands of Win32 multithreading. Windows 95 is not Win32s,
either. Windows 95 has threads and multiple address spaces and is much more
architecturally sound than Win32s. Nor is Windows 95 an NT Lite. Windows
95's code is optimized for performance and minimal memory consumption on
the Intel X86 CPUs. NT's focus is on portability and robustness. Although the
Windows 95 and NT architectures differ by quite a bit in some key areas,
they're both equally important in Microsoft's operating system strategy - - and
they'll continue to be important for several years to come.

68

LES

MODULES

PROCESSES AND

THREADS

M
ost people have a favorite color. Call me sick, but I have a
favorite data structure. Actually, to be more precise, I have

a favorite collection of three tightly connected data structures that
make up the very core of ring 3 Windows 95. The structures I'm
referring to are the module, the process, and the thread. When
these structures are taken as a whole, it's hard to find any signifi-
cant Windows API function that doesn't come into contact with
them. Don't believe me? Take the ShowScrollBar function. The
first parameter is the HWND of the window with the scrollbar.
Every HWND is associated with a specific message queue. And,
as you'll see later, in Windows 95, every message queue is associ-
ated with a thread. Thus, at some point during the ShowScrollBar
code, the information in a thread data structure will be needed.

In this chapter, we'll be going over the core data structures
of modules, threads, and processes. As we look at these struc-
tures, we'll often encounter auxiliary data structures that bear
further investigation. For example, each process contains a
pointer to a handle table (much like the handle table in a DOS
Program Segment Prefix [PSP]). While looking at handle tables,
we'll come across the all-important KERNEL 32 object. Likewise,
when looking at threads, it's hard to ignore the presence of the
Thread Information Block (TIB). The TIB turns out to play a vital
part in structured exception handling.

p s e u d o c o d e

70

This chapter is just brimming with information: Besides describing the
three key data structures, I also throw in pseudocode for various Win32
functions that directly relate to the data structures. This will give you an
opportunity to see these data structures in action, as well as to see how
KERNEL32 deals with issues like thread synchronization. As a final bonus,
I provide a discussion of the WIN32WLK program at the end of this chapter.
WIN32WLK, which is a program I wrote to help me study the key data
structures in a live situation, allows you to easily browse through all the
processes, threads, and modules in the system and examine the individual
data fields. Plus, wherever reasonable, WIN32WLK also lets you follow
references. For instance, a thread database contains a pointer to its owning
process. Double-clicking on that field updates the display to show the
fields of the owning process database.

If you're a Windows 3.x programmer, you're probably already familiar
with the concepts of modules and tasks. In Win32, the concept of a task
has been broken up into two components, the process and the thread. Other
than that, the concepts of Win16 and Win32 modules and tasks/processes
seem very similar on the surface. Under the hood, though, they're quite dif-
ferent. A Win32 module database has no resemblance to a Win16 module
database, and a Win16 task structure doesn't look anything like a Win32
thread or process data structure.

An interesting part of the Windows 95 architecture not found in Windows
NT is the "mirroring" of information on both sides of the Win16/Win32 fence.
In Windows 95, every program that starts up (be it 16- or 32-bit) shows up as
both a Win16 task and a Win32 process. That's right, you can walk the task
list with the Win16 TOOLHELP. DLL and see Win32 programs in the list.
Likewise, you can walk the process list with the Win32 TOOLHLP32 func-
tions and see Win16 programs in the list. Besides the task/process mirroring,
Windows 95 also maintains Win16 module information for every EXE or
DLL loaded, regardless of whether it's 16- or 32-bit. Unfortunately, the Win16
TOOLHELP. DLL is unable to "see" the Win16 module databases that
Windows 95 creates for Win32 modules. However, the SHOW16.EXE pro-
gram in Chapter 7 is able to find them. While this chapter and WIN32WLK
concentrate on the Win32 side of things, Chapter 7 and SHOW16.EXE give
the perspective from the Win16 side.

Before plunging into the details of modules, processes, and threads, I'm
obligated to point out that this information isn't sanctioned by Microsoft.
Microsoft would prefer that you not embed information about these data
structures in your own code. Their solution for applications that simply
must deal with modules, threads, and processes is the TOOLHELP32 API
defined in TLHELP32.H.

0 x 4 0 0 0 0 0

71

The TOOLHELP32 functions provide limited access to certain fields of
information within the module, thread, and process data structures that
Microsoft has deemed it "safe" for you to know. It's important to stress that
the access is read-only access. As is often the case, what Microsoft deems to
be "safe" is sufficiently less than what system-level programmers like me
need to know. For example, TOOLHELP32 provides no way to enumerate
through a processes handle table. If you need that level of detail, you'll have
to go in and get the information directly, as the WIN32LWLK programs
does. Still, if it's at all possible for you to use TOOLHELP32 instead of
grabbing the data directly, do so. Remember, partying on system data
structures is something that should be left to trained chimpanzees (urn.. .
I mean professionals!).

WIN32 MODULES

As in Win16, a Win32 module represents the code, data, and resources for
an EXE or DLL that's been loaded by the Win32 loader. Thus, every module
in memory directly correlates to a file somewhere on disk. An EXE or DLL
by itself isn't a module. Rather, the loader reads the information from a file
into memory and creates the module from that information. One of the nice
features of Win32 Portable Executable (PE) files is that loading them into
memory is relatively simple. The loader creates a module by using memory
mapped files to map selected regions of the PE file into linear memory.
(Important point: Despite popular belief, the loader doesn't simply map the
entire PE file into memory in one big chunk.) The operating system keeps all
the top-level information about a loaded module in a structure that I call a
module database. Chapter 8 describes the PE header and the module data-
base in great detail.

When referring to loaded modules, applications use HMODULEs (handles
to modules). In Win16, an HMODULE is just the global heap handle of the
segment containing a 16-bit module database. (Chapter 7 describes the
Win16 modules in detail.) In Win32, there are no segments (at least not that
the program knows about), so some other way of referring to a loaded mod-
ule is needed. The scheme that Microsoft uses is to make an HMODULE one
and the same as the starting linear address in memory where the Win32 loader
memory mapped the PE file. For example, most EXE programs are loaded at
address 0x400000 (4MB) by the Win32 loader, so their HMODULE is
0x400000. Yes, this does mean that multiple EXEs can have the same

H M O D U L E

72

HMODULE when running at the same time. This situation isn't a problem,
however, because Windows 95 and NT maintain separate address spaces for
each process. A Win32 HMODULE is valid only in the process context in
which the module is loaded. (Chapter 5 will discuss process contexts in detail.)

A module database falls very near the beginning of where the EXE or DLL
was loaded into memory, and contains information such as where the code and
data sections in the file were loaded into memory. The code and data in a
module are more than just what a compiler generates from your program
code. Other data areas in the module are the imports table, the exports table,
and the resource directory. The imports table (usually the .idata section) tells
the loader not only which DLLs the module needs to load, but also which
individual functions should be imported. The exports table is the inverse of
the imports table, and tells the operating system the addresses (and possibly
the names) of the functions that the module exports. The resource section
contains a directory-like hierarchy that the system uses to quickly find where a
specific resource can be found in memory. The module database contains the
information for finding these tables, as well as the required version of the
operating system, whether it's a console mode application, and so forth.

Putting on our eye shields and firing up the acetylene torches, let's cut into
the module database and see what Microsoft is trying to hide from us. Surprise,
surprise! The format of a module database turns out to be documented, and
right under our nose.

In Win32, a module database is nothing more than the PE header from an
EXE or DLL. Looking in WINNT. H, you'll find the IMAGE_NT_HEADERS
structure, which is composed of a DWORD and two substructures. The
information in an IMAGE_NT_HEADERS struct is exactly what Windows
95 uses internally to find the code, data, and resources in a loaded EXE or
DLL file.

While I could spill out the details of every field in an IMAGE_NT_HEADERS
struct for several pages, I'm not going to. Why not? Because the details of
the IMAGE_NT_HEADERS struct and PE files are sufficiently important to
warrant their own chapter. (If you've already read the table of contents and
decided to skip over Chapter 8, the PE format chapter, you might think again.
I didn't include that chapter simply because I like dissecting file formats.)

The Win32 philosophy dictates that each process has its own list of
modules. If a process hasn't implicitly linked to DLL or loaded the DLL
via the LoadLibrary, then the process is unable to see the DLL module in
memory, even if another process has loaded it. This is quite a difference
from Winl6, where a loaded module is visible to all tasks, even if they
don't have any references to the DLL. Although the idea of each Win32

M O D R E F s

73

process having its own list of modules is good in terms of security and
robustness, it isn't practical from the standpoint of attempting to save
space with shared code and resources. After all, if you have three instances
of WINHELP running, the WINHELP code shouldn't be loaded three
times, right?

KERNEL32 is faced with a tough choice. From the application's perspec-
tive, each process is supposed to have its own module list. From KERNEL32's
point of view, it's easier to share code and data by maintaining a single global
list of modules (like Win16 does). Whenever a new process starts up, or a new
DLL is requested to be loaded, KERNEL32 can quickly check the single global
list and see if the EXE or DLL has already been loaded. If so, KERNEL32 can
simply implement the module's reference count. If not, KERNEL32 needs to
create a new module in memory.

Two data structures provide the solution that KERNEL32 uses to maintain
a global list of modules while making it appear that each process has its own
module list. The first data structure, the IMTE (Internal Module Table Entry),
is used by the KERNEL32 code that needs to treat the module list as a global
list. The other data structure, the MODREF, is used by the KERNEL32 code
that deals with each process having its own module list. MODREFs are
discussed in "The MODREF structure" section a bit later in the chapter.

IMTEs (Internal Module Table Entries [?])
As shown in Figure 3-1, the global KERNEL32 module list is really nothing
more than an array of pointers to IMTEs. In the pseudocode that comes later
in the chapter, I've given the name pModuleTableArray to this array of pointers
to IMTEs. The block of memory holding the pointer array is allocated from
the KERNEL32 heap, which is a regular HeapAlloc style heap (as I describe
in Chapter 5). As new modules are loaded or unloaded from the memory,
KERNEL32 dynamically grows or shrinks the block of memory holding
pModuleTableArray via the HeapReAlloc function. When KERNEL32
creates a new IMTE, it looks for a free element in pModuleTableArray. If
KERNEL32 finds one, it sticks the pointer to the IMTE into that free element.
The index of that array element becomes important later, when we look at
MODREFs. The first element in pModuleTableArray (array index 0) is for
the KERNEL32.DLL module.

I M T E

74

 Figure 3-1
The global module list is an array of pointers to IMTEs.

To quickly recap, each nonzero element in the pModuleTableArray rep-
resents a loaded EXE or DLL in the system. Each of these nonzero elements
is a pointer to an IMTE (or a PIMTE, as I'll use throughout the pseudocode).
While the format of an actual module database is documented (it's just an
IMAGE_NT_HEADERS struct), the format of an IMTE isn't (at least not
until now).

The IMTE structure
The MODULE32.H file from the WIN32WLK sources contains a C-style
definition for an IMTE struct. Each IMTE has the following fields:

00h DWORD un1
This field appears to hold some sort of flags.

75

04h PIMAGE_NT_HEADERS pNTHdr
This pointer points to an IMAGE_NT_HEADERS structure in memory.
However, the structure it points to is simply a copy of the IMAGE_NT_
HEADERS structure that appears just above the module's base address in
memory. The memory for the structure pointed to by this field is allocated
from the KERNEL32 heap, so it's always visible in the contexts of all
processes. In contrast, the primary IMAGE_NT_HEADERS that's located
near the module's base address may be below 2GB, so it's accessible only
to processes that have loaded that module. By making a copy of the
IMAGE_NT_HEADERS that's accessible in all contexts, KERNEL32 can
easily locate the information for any loaded module without calling up into
ring 0 to switch memory contexts.
08h DWORD un2

The meaning of this WORD is unknown. It appears to always be set to -1.
0Ch PSTR pszFileName
The pszFileName field contains a pointer to the complete filename for the EXE
or DLL the module was created from. For example, the string C:\WINDOWS\
SYSTEM\KERNEL32.DLL is returned by the GetModuleFileName function.
The GetModuleHandle function compares this string to the search string
passed to it as a parameter. The memory holding this filename string is
allocated out of the KERNEL32 heap.
10h PSTR pszModName
This PSTR points to a string with the module's module name. In Win32, a
module name is just the name of the EXE or DLL with any path information
stripped off. For example, the module name for the C:\WINDOWS\CALC.EXE
program when loaded into memory is CALC.EXE. The GetModuleHandle
function also compares this string to its parameter string. This pszModName
PSTR actually points inside the pszFileName string (see offset 0Ch). For
instance, in the previous example, it would point to the CALC.EXE after
the second \.
14h WORD cbFileName
This WORD is the number of characters in the pszFileName string from offset
0Ch. It's used inside GetModuleHandle to quickly see if the pszFileName
string could match the input search string.

b a s e A d d r e s s / M o d u l e

76

16h WORD cbModName
This WORD is the number of characters in the pszModName string from
offset 10h. It's also used inside GetModuleHandle to quickly see if the
pszFileName string could match the input search string.

18h DWORD un3
The meaning of this DWORD is unknown.
1 Ch DWORD cSections
This field is the number of sections (.text, .idata, and so on) that this module
contains. This value can also be extracted from the IMAGE_NT_HEADERS
structure pointed to by offset 04h (described previously in this list of fields).

20h DWORD un5
The meaning of this field is unknown. It's usually 0, but in one instance
(COMCTL32.DLL), it contains a pointer to a block in the KERNEL32 heap.
24h DWORD baseAddress/Module Handle

The baseAddress DWORD contains the base address where the module
was loaded. In Win32, the base address for a module is the same as its
HMODULE and HINSTANCE, so this field can also be interpreted as the
module's HMODULE or HINSTANCE. For EXEs, the base address is
almost always 0x400000. For system DLLs, the base address is above 2GB,
in the shared memory region. See Chapter 8 for a detailed description on
base addresses and locating the module database from them.

28h WORD hModule16
This WORD contains a selector whose linear address points to a Win16 NE
module database. (The format of an NE module database is described in
Chapter 7.) The NE module database for Win32 applications contains
important information about where the resources can be found in the
Win32 module in memory. This is most likely necessary because the
resource manipulation code is in the Win16 KRNL386 and USER.EXE.
It's important to note that the hModule16 selector was not allocated via
Win16 GlobalAlloc functions, so this selector won't appear like a Win16
global memory handle. For this and other reasons, the Win16 TOOLHELP
is unable to see the NE modules created to mirror each Win32 module.

W i n 3 2 - b a s e d

Threads 77

The GetModuleUsage function is obsolete. It is provided to simplify porting
of 16-bit Windows-based applications. Each Win32-based application runs in
its own address space.

Which are you gonna believe? The documentation, or what KERNEL32
really does?
2Ch DWORD un7

The meaning of this DWORD is unknown. However, it typically contains a
valid pointer to a KERNEL32 heap block.
30h PSTR pszFileName2

This PSTR (and the following three fields) are somewhat of a mystery. They
appear to serve the same function as do offsets 0Ch through 16h. This field
(pszFileName2) points to a different copy of the complete path for the asso-
ciated EXE or DLL. The strings pointed to by pszFileName (offset 0Ch) and
pszFileName2 appear to always be the same.
34h WORD cbFileName2

This field contains the length of the string pointed to by pszFileName2. It
should always have the same value as cbFileName (offset 14h).
36h DWORD pszModName2

This field points to the module name (that is, the base filename) portion of
the pszFileName2 string. This field is the equivalent of the pszModName
field (offset 10h).
3Ah WORD cbModName2

This field contains the length of the string pointed to by pszModName2. It
should always have the same value as cbModName (offset 16h).

2Ah WORD cUsage

This field contains the reference for the module count. For instance, the
module database for CALC.EXE would contain the value 3 if there were
three copies running.

If there were a GetModuleUsage function in Win32, it almost certainly
would report the value of this field. However, here's what the Win32 SDK
documentation has to say about this topic:

M O D R E F

78

The fact that an IMTE maintains two separate pointers to the module's
filename and module name is strange. I'm not sure what purpose this serves.
Still, there is a bit of good news in the area of module names: In Win16, an
EXE or DLL's module name is the first entry in the resident names table,
and is set in the linker .DEF file. Even here, though, there's a problem
because the Win16 loader assumes that the module name is the same as the
base filename when determining if a module is already loaded. An EXE or
DLL whose module name differs from its EXE or DLL filename can screw
up the Win16 loader and cause strange problems such as module name
space collisions, in which two or more completely unrelated DLLs have the
same module name. For example, if you have two DLLs with the same
name, but in different directories, the Win16 loader will load only one of
them. An attempt to load the other DLL causes the loader to merely incre-
ment the reference count of the first module. Bad move!!! Since the Win l6
loader can't distinguish between like-named DLLs in different directories,
this situation can cause strange crashes -- most often on a poor, unsuspecting
end-user's machine.

Luckily, in Win32, the module name problem is mostly gone. A Win16
module name that you would pass to GetModuleHandle is one and the
same as the EXE or DLL's filename. Thus, program A can load FOO.DLL
from the \BAR directory, while program B can load its FOO.DLL from the
\BAZ directory.

One situation Microsoft hasn't addressed, however, occurs when a program
attempts to use two different DLLs with the same name at the same time. For
example, program A implicitly links to FOO.DLL, and the loader finds
FOO.DLL in the kBAR directory. Later, the program does a LoadLibrary on
C:\BAZ\FOO.DLL. Does C:\BAZ\FOO.DLL get loaded, or does the reference
count for C:\BAR\FOO.DLL go up? Microsoft's documentation doesn't say.
However, in discussions I've had with the coder of the Windows 95 loader, he
claims that two distinct copies of FOO.DLL are loaded in memory. I've seen
this behavior myself while browsing the module list in SoftIce/W.

The MODREF structure
Now that you've seen how KERNEL32 maintains a global array of modules
(pointers to IMTEs), we can bring the rest of the puzzle together. Earlier, I
described how each process has its own list of modules and is unaware of
other modules loaded by other processes. The glue that connects the per-
process module lists to the global module table is the MODREF structure.

P M O D R E F

79

The per-process module list is just a linked list of MODREF structures. The
MODREF list for each process (with the exception of the strange KERNEL32
process) contains a MODREF for the process's EXE, as well as MODREFs
for each Win32 DLL used by the process. The memory for each MODREF
comes from the KERNEL32 heap, which is in the shared memory area above
2GB. Thus, even though MODREFs enforce the notion that the module list
is per-process, the MODREF lists themselves are actually globally accessible.
The fact that the WIN32WLK program can walk the module list for each
process is proof of this.

The head of the MODREF list is kept in the process database (which
we'll discuss later). Each MODREF structure contains an index into the
pModuleTableArray table. Figure 3-2 shows the relationship between
MODREFs and IMTEs.

 Figure 3-2
 Per-process MODREFs and the global IMTE table.

The MODULE32.H file from the WIN32WLK source includes a C
structure definition for the known fields of a MODREF structure. The
following fields are known:

00h PMODREF pNextModRef
This pointer points to the next MODREF structure in the current process's list
of MODREFs. The end of the list is indicated by a NULL pointer in this field.
Enumerating the list of modules that a process knows about is as simple as

I M T E s .

80

getting the head MODREF node from the process database and then walking
through the list. The WIN32WLK program on the disk that accompanies this
book shows an example of how to do this.
1 0h WORD mteIndex

This WORD is a zero-based index into the global array of pointers to
IMTEs. (In the pseudocode in this chapter, this array is referred to as
pModuleTableArray.)

18h PVOID ppdb
This pointer is a PPROCESS_DATABASE (a pointer to a PROCESS_
DATABASE struct). It provides a "back link" from a MODREF to the
process that owns the MODREE We'll look at PROCESS_DATABASEs
later in the chapter.

Since Windows 95 has to make it look like each process has its own
unique module list, the module-related APIs like GetModuleHandle don't
immediately start with the global module table (pModuleTableArray). Instead,
they work only with those global module table entries that are referenced in
the process's MODREF list. For example, the GetProcAddress function looks
only at modules that are in the MODREF list of the current process. Even if
the module was already loaded by another process, GetProcAddress won't
attempt to locate the function in that module unless that module is also in the
MODREF list of the current process.

MODULE-RELATED APl FUNCTIONS

Now that you've seen how KERNEL32 manages a global list of loaded
modules while still keeping a per-process module list, let's look at a few
Win32 functions that involve module databases.

GetProcAddress and IGetProcAddress
GetProcAddress is a key function in Win32 programming because it's the
method by which you dynamically hook up to DLLs loaded on the fly
(as opposed to DLLs linked-to implicitly). Given a module identifier (an
HMODULE) and a function identifier (either its name or export ordinal),
GetProcAddress returns the entry point address for that function. To do this,

GetProcAddress must first locate the specified module database in memory
and then walk through the exported function table to find the address.

The actual GetProcAddress code is nothing more than a parameter vali-
dation layer. It verifies that the lpszProc parameter is either a string or an
import ordinal. The code distinguishes between the two types of function
specifiers by looking at the high WORD of the lpszProc parameter. If the
high word is 0, then the low WORD is the export ordinal and no further
validation can be done. If the high WORD is nonzero, the lpszProc is
assumed to be a PSTR and the code scans the string, looking for a NULL
terminator. If the PSTR is bad, an exception occurs during this scanning,
and a structured exception handler catches the exception and returns 0
(failure) to the caller. (We'll look at structured exception handling later in
this chapter, in the discussion of threads.) If the execution successfully
makes it through the tests, control jumps to the IGetProcAddress routine,
which is where the real meat of the GetProcAddress code resides.

Pseudocode for GetProcAddress

/ / Parameters:

// HMODULE hModule

// LPCSTR lpszProc

Set up structured exception handling frame.

if (lpszProc > 0x10000) // Values < 0x10000 contain ordinals in the

{ // low WORD, so they aren't valid LPSTRs.

AL : 0

EDI = lpszProc

REPNE SCASB

// Touch all the bytes in the lpszProc routine

// up to a NULL. If it faults, the exception

// handler will catch it and return FALSE.

Remove structured exception handling frame.

goto IGetProcAddress

IGetProcAddress directs the steps of finding an exported function at a
high level, leaving the grunge work to two lower-level functions I'll describe
next. IGetProcAddress first does some thread synchronization to make sure
the current thread won't get interrupted at an inopportune moment. Next,
the routine calls MRFromHLib to get back a pointer to a MODREE
MRFromHLib is a KERNEL32 internal routine that scans through the

81

p r o c e s s ' s

82

process's list of MODREFs, looking for a module with an HMODULE
matching what was passed to MRFromHLib. IGetProcAddress then uses the
module table index in the MODREF structure to look up the IMTE of the
associated module.

Phase two of IGetProcAddress is where KERNEL32 looks up the
desired function address. Since IGetProcAddress can be passed either an
export ordinal (in the low WORD) or a string pointer, it determines which
form was passed and calls the appropriate lower-level routine to look up
the function. If an export ordinal was passed, IGetProcAddress calls
x_FindAddressFromExportOrdinal; if a string pointer was passed, it calls
x_FindAddressFromExportName. In either case, if the lower-level functions
don't find the specified function, IGetProcAddress spits out an error diagnostic
and returns 0.

Up until the beta 3 of Windows 95, IGetProcAddress didn't make any
special exceptions to looking up functions in a module. In beta 3 (a.k.a. the
"Windows Preview Program" release), IGetProcAddress acquired a truly
distasteful snippet of code. The new code can't be construed as anything
other than anti-hacking code.

Specifically, IGetProcAddress won't allow you to obtain a function's
address by its export ordinal if and only if you're looking for a KERNEL32.DLL
function. Why would Microsoft do such a ghastly thing? In KERNEL32.DLL
there are a good many undocumented functions that are exported by ordinal
only (see Appendix A for some of their names). Since these function names
aren't in KERNEL32.DLL, they won't be in the KERNEL32 import library.
Thus, applications can't call these supposedly Microsoft-reserved functions
directly. In Unauthorized Windows 95, Schulman wrote several programs
that called undocumented KERNEL32 functions -- in later builds of
Windows 95, those programs broke. Was this breakage intentional on
Microsoft's part? You decide for yourself.

Since beta 3, the direct approach to calling undocumented KERNEL32
functions no longer works. However, there are lots of smart programmers
out there. They know that you can get a function's address with
GetProcAddress and call it through the returned function pointer. If you
know the export ordinal of the undocumented function, you're set, right?
Nope! The horrible section of code in IGetProcAddress blocks attempts to
use undocumented KERNEL32 functions by disallowing GetProcAddress
to be used with a KERNEL32.DLL export ordinal. Thus, even if Schulman
were to try to use GetProcAddress to fix his broken programs, he wouldn't
get far. The plot thickens...

m u n g e d - u p

8 3

Personally, I think this munged-up IGetProcAddress is childish. Any
Windows 95 system programmers worth their salt could write their own
version of GetProcAddress, given the information on the PE module format
in Chapter 8. An alternative approach I took was to use a .DEF file with the
Visual C++ LIB.EXE to create a KERNEL32 import library with the undocu-
mented functions. The WIN32WLK program later in the chapter uses this
import library. Appendix A describes my Windows 95 undocumented
KERNEL32 functions import library.

Let's return to a discussion of the rational code in IGetProcAddress.
After successfully finding the specified function address, you'd think that
IGetProcAddress would be done. Not so fast. For some odd reason, when a
process is loaded for debugging under Windows 95, calls to system DLLs
(those DLLs loaded above 2GB) first go through special code stubs that the
loader builds on the fly. The purpose of these stubs is to prevent application
debuggers from stepping into ring 3 system DLLs. For functions that are
implicitly linked to, the loader handles everything behind the scenes. However,
a program that calls GetProcAddress and then calls through the pointer would
ordinarily bypass these stubs. Therefore, GetProcAddress checks to see if the
program is being debugged; if the address that IGetProcAddress would ordi-
narily return is above 2GB, IGetProcAddress looks up the corresponding stub
address and returns that address instead.

The final bit of IGetProcAddress checks to see if the specified function
was found. If not, it sets the error value that GetLastError returns to
ERROR_PROC_NOT_FOUND. Finally, IGetProcAddress leaves the critical
section that it entered at the beginning of the function.

Pseudocode for IGetProcAddress

// Parameters:

// HMODULE hModule

// LPCSTR lpszProc

// Locals:

// PTHREAD DATABASE

// FARPROC

// PMODREF

// PIMTE

ptdb

pfnProc //

pModRef

pimte

Return value

pfnProc = O; // Initial return value

// Synchronization stuff

_EnterSysLevel(ppCurrentProcessId ->crst):

p M o d R e f

84

// Get a pointer to the MODREF that represents the module

// specified by the hModule param, MRFromHLib() just scans

// through the MODREF list, looking for a MODULE whose HMODULE

// matches the HMODULE passed in.

pModRef = MRFromHLib(hModule);

if (!pModRef) // If the MODREF wasn't found, bail out.
{

InternalSetLastError(ERROR_INVALID_HANDLE);

_DebugOut(SLE_MINORERROR, "GetProcAddress: %x not a Module handle",

hModule);

if (x_LoaderDiagnosticsLevel > 2)

dprintf("On ..\peldr.c Failure Path line %d\n", linenumber);

goto done; }

// Get a pointer to the IMTE fop the specified module by looking

// it up in the pModuleTableArray.

pimte = pModuleTableArray[pModRef->mteIndex];

if (lpszProc < 0x10000) // Looking for a specified export ordinal.

if (hModule == hModuleKERNEL32)

{
InternalSetLastError(ERROR_NOT_SUPPORTED) ;

_DebugOut("GetProcAddress: kernel32 by id not supported",

SLE_MINORERROR);

if (x_LoaderDiagnosticsLevel > 2)

dprintf("On ..\peldr.c Failure Path line %d\n", line hum);

goto done;
}

// Scan through the module database, looking for the function

// with the specified export ordinal.

pfnProc = x_FindAddressFromExportOrdinal(pimte->pNTHdr, lpszProc);

if (!pfnProc) // Function not found? Spit out an error message.

{
pModRef = MRFromHLib(hModule, lpszProc)

_ D e b u g O u t (

85

}

}

else
{

_DebugOut(SLE_MINORERROR,

"GetProcAddress(%s, %d) not found"

pModuleTableArray[pModRef->mteIndex]->pszModName,

lpszProc);

// Looking for a specified function name.

// Scan through the module database, looking for the function

// with the specified name.

pfnProc = x_FindAddressFromExportName(pimt e->pNTHdr, O, lpszProc);

if (!pfnProc) // Function not found? Spit out an error message.

{
pModRef = MRFromHLib(hModule, lpszProc)

_DebugOut(SLE_MINORERROR,

"GetProcAddress(%s, %s) not found"

pModuleTableArray[pModRef ->mteIndex] ->pszModName,

lpszProc);

// If the function is in a shared, system DLL (i.e., it's above 2GB),

// *AND* if the process is being debugged, change the returned

// function address to point to the bizarre pre API stubs that

// KERNEL32 sets up. These stubs sit between the call to the

// API and the actual API code.

if ((pfnProc >= 0x80000000) && (pfnProc != &DebugBreak))

if (ptdb ->pProcess2 ->WaitEventList

&& !ppCurrentTDBX ->MustCompleteCount)
{

pfnProc = DEBCreateDll(ppCurrentTDBX ->TopOfStack, pfnProc)

// If the function is going to return a failure, set the GetLastError code.

if (pfnProc == 0)

InternalSetLastError(ERROR PROC NOT FOUND);

done:
// Undo the synchronization stuff.
LeaveSysLevel(ppCurrentProcessId ->crst);

return ESI;

R t l A l l o c a t e H e a p

86

x_FindAddressFromExportOrdinal
The x_FindAddressFromExportOrdinal function (my name, not Microsoft's)
is one of the core routines of KERNEL32. Not only is it called from
GetProcAddress, but it's also called by the PE loader when fixing up calls to
functions in implicitly loaded DLLs. Simply put, this routine is the one-stop
shop for looking up exported function addresses in KERNEL32.DLL.

The x_FindAddressFromExportOrdinal function relies heavily on infor-
mation found in the IMAGE_NT_HEADERs and .edata section of the PE
file that was mapped into memory to make the module. (Again, I'll stress
that this is why Chapter 8 on PE files is very important reading, even if you
don't intend to directly work with PE files.)

Although there's a fair amount of code in x_FindAddressFromExport-
Ordinal, the function is conceptually pretty simple. In the export table (the
.edata section) of a module, you'll find an array of RVAs (relative virtual
addresses) for the exported functions in the module. This array is known as
the export address table. The first element in the array contains the RVA for
export ordinal 1, the second element contains the address for export ordinal
2, and so on. The only thing x_FindAddressFromExportOrdinal should
have to do is index into the array to get an RVA, then add the module's load
address to make the RVA into a usable linear address. There are two twists
to the above scenario, however.

The first (and unobvious) twist is that x_FindAddressFromExportOrdinal
needs to account for the ordinal base. In PE files, the export ordinal with
the lowest number is used as a base value. This allows the export address
table to be smaller than it would ordinarily be. For example, let's say a DLL
exports functions with ordinal 100 through 109. In a simple implementa-
tion, there would be 110 entries in the export address table, but only the
last 10 would be used. To save space in the above scenario, the linker sets
the ordinal base to 100, so it can create an export address table with only
10 elements. When looking up an exported function, x_FindAddressFrom-
ExportOrdinal has to remember to bias the export ordinal value by the
ordinal base to get a true array index.

The other twist in x_FindAddressFromExportOrdinal has to do with
forwarded functions. Forwarded functions are explained in more detail in
Chapter 8. For now, it's sufficient to know that a forwarded function is a
sort of alias for an exported function in another DLL. For example, in
Windows NT, the HeapAlloc function in KERNEL32.DLL is forwarded to
RtlAllocateHeap in NTDLL.DLL. The address that the export address table
contains for a forwarded function is always inside the .edata section. The

D a t a D i r e c t o r y [I M A G E _ D I R E C T O R Y _ E N T R Y _ E X P O R T]

87

address isn't that of the exported function. Rather, the address points to a
string such as NTDLL.RTLAllocateHeap. If x_FindAddressFromExportOrdinal
sees this happen, it breaks the string into its module name and function
name components and calls GetProcAddress with those values. In case
you're wondering, yes, this does make GetProcAddress recursive if called

to search for a forwarded function.

Pseudocode for x_FindAddressFromExportOrdinal
/ / Parameters:
// PIMAGE_NT_HEADERS pNTHdr

// DWORD ordinal

// Locals:
/ / char szForwardedModule[MAX PATH] // 0x260

// PIMAGE EXPORT DIRECTORY pExpDir;
// PDWORD pFunctionArray;

// DWORD imagebase;

// DWORD retAddr;

// DWORD exportDirSize

// Get the size of the export table out of the NT header.

exportDirSize =
pNTHd r->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].Size

// If no functions are exported, bail out immediately.

if (exportDirSize == 0) {

InternalSetLastError(ERROR_MOD_NOT_FOUND);

if (x_LoaderDiagnosticsLevel > 2)

{
dprintf("On ..\peldr.c Failure Path line %d\n" line number);

return 0;

// Get the address where the module is loaded in memory

imagebase = pNTHdr ->OptionalHeader. ImageBase;

// Get a pointer to the export table.

pExpDir = pNTHdr ->OptionalHeader.
DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT]

+ imagebase;

.VirtualAddress

G e t P r o c A d d r e s s

88

// Get a pointer to the array of exported function addresses.

pFunctionArray = imagebase + pExpDir->AddressOfFunctions

// If the ordinal requested is greater than the number of exported

// functions, bail out. Make sure to take the ordinal base into account.

if (pExpDir ->NumberOfFunctions <= (ordinal - pExpDir->Base))

return 0;

// Read RVA of the exported entry out of the array (again, taking

// the ordinal base into account).

retAddr = pFunctionArray[ordinal pExpDir ->base];

// Bias the RVA extracted from the table by the image base to convert the

// RVA into a usable linear address.

if (retAddr)

retAddr += imagebase;

// See if the found address is within the export directory. If so,

// it's a forwarded DLL, and the address is a pointer to the name

// of the function that it's forwarded to.

//

// If the address isn't within the export directory, we're done, Return

// the found address to the caller.

if ((retAddr < pExpDir) || (retAddr >= (pExpDir + exportDirSize))

{

PSTR pszForwardedFunctionName

HMODULE hForwardedMod;

Copy the DLL name pointed at by retAddr into the szForwardedModule

local variable, stopping when a '.' is reached. Point

pszForwardedFunctionName at the character after the '.'

hForwardedMod = IGetModuleHandleA(szForwardedModule)

if (!hForwardedMod)

{

_DebugOut(SLE_MINORERROR, "Unable to find forwarded DLL %s",

szForwardedModule);

retAddr = O;

goto done;

}

// Call GetProcAddress to get the real address of the forwarded

// function in the DLL that contains it. Yes, this does make

// GetProcAddress recursive if it's a forwarded function.

retAddr = IGetProcAddress(hForwardedMod, pszForwardedFunctionName);

x _ F i n d A d d r e s s F r o m E x p o r t N a m e

89

if (!retAddr) // Oops! Didn't find the forwarded function.

_DebugOut(SLE_MINORERROR, "Unable to find forwarded export %s.%s",

szForwardedModule, pszForwardedFunctionNa•e);

}

} done:

return retAddr;

x_FindAddressFromExportName
The x_FindAddressFromExportName function is a companion to the
x_FindAddressFromExportOrdinal function. The primary difference
between the two functions is that x_FindAddressFromExportName starts
with a function name rather than with its import ordinal. The first part
of the routine is similar to the x_FindAddressFromExportName code
because both functions need to set up the same pointers to various
locations in memory.

The meat of the x_FindAddressFromExportName code is where it searches
through the array of exported names, looking for a match with lpszProc para-
meter. If the function finds a matching string, the code uses the AddressOf-
NameOrdinals array to convert the string array index to an export address
table index. At this point, x_FindAddressFromExportName could simply go
and look up the RVA of the exported function and return it to the caller.
However, doing this would cause it to skip over the special-case code in the
x_FindAddressFromExportOrdinal function (that is, the code that handles
the ordinal base and the debugging stubs). Therefore, the routine passes the
export ordinal it found to the x_FindAddressFromExportOrdinal function to
let it do its thing. Whatever x_FindAddressFromExportOrdinal returns is
what x_FindAddressFromExportName returns.

To put all this in simpler terms, a function address can be looked up either
by name or by ordinal value. However, under the hood, the address always
ends up being located using the export ordinal. When you pass a string name
to GetProcAddress, or import a function by name, KERNEL32 merely injects
an extra step to convert the string name to its export ordinal.

P s e u d o c o d e

90

Pseudocode for x_FindAddressFromExportNarne

/ / Parameters:

PIMAGE_NT_HEADERS pNTHdr

DWORD hintNameOrdinal

PSTR lpszProc

//

//

//

//

//

//

//

Local

//

//

//

//

//

S:

PIMAGE EXPORT DIRECTORY pExpDir;

DWORD imagebase;

PDWORD pNamesArray;

PWORD pNameOrdinalsArray;

DWORD cbProcName

DWORD numNamesMinusl

DWORD nameOrdinal

DWORD curTestingNameOrdinal

if (hintNameOrdinal != some number) { // ???

CheckDll();

// If no functions are exported, bail out immediately.

if (0 == pNTHdr ->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].Size)

{

if (x_LoaderDiagnosticsLevel > 2)

dprintf("On ..\peldr.c Failure Path line %d\n", line number);

error_return:

InternalSetLastError(ERROR_MOD_NOT_FOUND);

if (x_LoaderDiagnostiesLevel > 2)

dprintf("On ..\peldr.c Failure Path line %d\n", line number);

}

return 0 ;
}

// Get the address where the module is loaded in memory.

imagebase = pNTHdr ->OptionalHeader. ImageBase;

// Get a pointer to the export table.

pExpDir = pNTHdr ->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_EXPORT].VirtualAddress

+ imagebase;

n u m N a m e s M i n u s l

// Get a pointer to the array of PSTRs for the exported function names.

pNamesArray = imagebase + pExpDir ->AddressOfNames;

// Get a pointer to the array that correlates names array indices

// to indices in the export address table.

pNameOrdinals = imagebase + pExpDir->AddressOfNameOrdinals;

// If no names were exported, bail out.

if (pExpDir->NumberOfNames == 0)

{

if (x LoaderDiagnosticsLevel > 2)

{

dprintf("On ..\peldr.c Failure Path line %d\n", line number):

/

return 0;

91

// Calculate how many names are exported.

numNamesMinus1 = pExpDir->NumberOfNames - 1;

curTestingNameOrdinal = 0;

cbProcname = strlen(lpszProc)

// It appears that the function can be passed a "hint" ordinal

// that may or may not be the ordinal of the actual function

// we're looking for. Check to see if the name of the function that

// corresponds to the hint ordinal is the same string as was passed

// in the lpszProc parameter. If so, we know the ordinal, and we

// can skip the linear search through all the function names that comes

// later.

if (numNamesMinusl >= hintNameOrdinal)

{

// Uses CompareStringA() with SystemDefaultLangID as the LCID to

// see if the strings match.

if (!GlorifiedStringCompare(imageBase + pNamesArray[hintNameOrdinal])) {

ordinal = hintNameOrdinal;

goto FoundOrdinal }

if (numNamesMinusl < 0)

goto error return:

G e t M o d u l e F i l e N a m e

92

// Scan through the array of function names PSTRs, looking for a

// string that matches the passed-in lpszProc parameter.

A nasty little piece of code iterates through the entries in the

"AddressOfNames" array. Each entry is compared (REP CMPSB) with the

lpszProc string.

if a match is found

set nameOrdinal to the index of the matching string in the

AddressOfNames array

goto to FoundOrdinal

if a match isn't found

goto error return:

FoundOrdinal:

return x FindAddressFromExportOrdinal(

pNTHdr, pNameOrdinalsArray[nameOrdinal] + pExpDir ->Base

GetModuleFileName and IGetModuleFileName
The GetModuleFileName function takes an HMODULE as input, and returns
the complete path to the EXE or DLL that the module was created from. The
GetModuleFileNameA code itself is very small, and is just a parameter valida-
tion stub. After verifying that the lpszPath parameter (where the file name will
be returned) is valid, GetModuleFileName jumps to IGetModuleFileName.

IGetModuleFileName would be simpler if it didn't have to concern
itself with ANSI versus OEM filenames. The SetFileApisToANSI and
SetFileApisToOEM functions in KERNEL32 let the caller specify whether
the filenames should use ANSI characters or OEM characters. Internally,
Windows 95 stores all the filenames in their ANSI form, and converts
them to and from the OEM character set as needed. The meat of the
IGetModuleFileName function is flanked by code that does this conversion.

Aside from the issue of filenames, the core of IGetModuleFileName is
fairly simple. All it needs to do is copy the complete filename from the cor-
rect IMTE into the output buffer. However, because each process thinks it
has its own module list, IGetModuleFileName can't simply go search the

O E M

93

pModuleTableArray to find the module it's looking for. Instead, IGetModule-
FileName uses the MRFromHLib function to find the MODREF for the
module. (I briefly described the MRFromHLib function earlier in the dis-
cussion of GetProcAddress.) With the MODREF for the desired module,
IGetModuleFileName uses the MODREF's mteIndex field to index into the
pModuleTableArray and get the IMTE pointer. Once it has the IMTE
pointer, all that remains is to copy the string pointed to by the IMTE's
pszFileName field into the buffer passed to GetModuleFileName.

Pseudocode for GetModuleFileNameA

/ / Parameters:
// HMODULE hinstModule

// LPTSTR lpszPath

// DWORD cchPath

Set up structured exception handling frame

*lpszPath += 0; // Harmlessly write to lpszPath. If a fault occurs,

// the exception handler will catch us and return

// failure.

Remove structured exception handling frame

goto IGetModuleFileNameA

Pseudocode for IGetModuleFileNameA

// Parameters:

// HMODULE hinstModule

// LPTSTR lpszPath

// DWORD cchPath

// Locals:

/ / DWORD fOem

// DWORD retValue

// PMODREF pModRef

retValue = 0;

EnterSysLevel(ppCurrentProcessId ->crst);

// Deal with OEM stuff (if SetFileApisToOEM is somehow involved).

f O e m = x_AreFileApisOEM():

f O e m94

if (fOem)

{

// Calls k32CharToOemA and some other things.

SomeFunction(lpszPath, 1);

if (cchPath) // Null out the return path string.

*lpszPath = 0;

if (hInstModule == 0) // The HMODULE was 0. We want the EXE's name.

{

pModRef = ppCurrentProcessId ->pExeMODREF }

else // We were passed a specific HMODULE to look for.

// Scan through the process's MODREF list, looking for a module

// with an HMODULE that matches the hInstModule parameter.

pModRef = MRFromHLib(hInstModule):

if (pModRef == 0) // Oops! Didn't find the module.

{

InternalSetLastError(ERROR INVALID_PARAMETER);

if (x_LoaderDiagnosticsLevel > 2)

dprintf("On ..\peldr.c Failure Path line %d\n", line number); }

else { // We found the module.

PIMTE pimte;

// Get a pointer to the IMTE by looking it up in the global module

// table array.

pimte = pModuleTableArray[pModRef->mteIndex];

if (echPath) // Are we supposed to write anything out?

retValue = pimte->cbFi]eName;
if (retValue >= cchPath)

retValue = cchPath - 1;

// Copy the path name to the output buffer.

memmove(lpszPath, pimte->pszFileName, retValue)

lpszPath[retValue] = 0; // Null terminate it.

~ f O K T o S e t T h r e a d O e m ;

95

if (fOem) // If fOEM'ing, convert the output buffer to OEM.

ppCurrentProcessId ->flags &= ~fOKToSetThreadOem; // Turn off flag.

if (cchPath)

// Also calls k32CharToOemA and some other things.

SomeOtherFunction(lpszPath, 1)

LeaveSysLevel(ppCurrentProcessId->crst

return retValue;

GetModuleHandle and IGetModuleHandle
The GetModuleHandle function performs the inverse operation of the
GetModuleFileName function. Given a module name, the function returns
the HMODULE (or base address, if you prefer) of that module. Unfortunately,
the Microsoft documentation is somewhat vague about what the module name
consists of. However, the pseudocode that follows will clear that problem all
up. In a nutshell, the module name can be either a base filename or a complete
path name to the EXE or DLL file. Also, in either case, the name can option-
ally omit the extension it: the file's extension is .DLL. Thus, the following are
all valid module names for C:\WINDOWS\SYSTEM\USER32.DLL:

USER32
USER32.DLL
C:\WINDOWS\SYSTEM\USER32
C:\WINDOWS\SYSTEM\USER32.DLL

The actual GetModuleHandle code is very short; it just validates the
lpszModule parameter to make sure it's a valid string pointer. If it is,
GetModuleHandle jumps to IGetModuleHandle. Like IGetModuleFileName,
the core of IGetModuleHandle is bracketed by code that performs the ANSI
to OEM string conversions (if necessary). The core portion of the code first
uppercases the module name that was passed to it so that the code can do

f O e m

96

faster case-sensitive compares later on. Next, IGetModuleHandle checks to
see if the filename has a file extension (for example, .EXE or .DLL). If not, the
code tacks on a .DLL extension.

The remaining core code consists of calls to two helper functions:
x_GetMODREFFromFilename and x_GetHMODULEFromMODREE
First, x_GetMODREFFromFilename scans through the list of MODREFs
for this process until it finds one with a matching file name, and then
returns a pointer to that MODREE Next, x_GetHMODULEFrom-
MODREF takes the PMODREF and returns the associated HMODULE for
it. These helper functions are described in the following two sections.

Pseudocode for GetModuleHandleA

// Parameters:

// LPCTSTR lpszModule;

Set up structured exception handling frame

if (lpszModule)

REPNE SCASB till a zero is found
// Read each byte of the name to

// make sure it's valid. The

// exception handler will catch

// us if something's wrong.

Remove structured exception handling frame

goto IGetModuleHandleA

Pseudocode for IGetModuleHandleA

/ / Parameters:
/ / LPCTSTR lpszModule;

/ / Locals:
// DWORD myLocal

// BOOL fOem

// DWORD retValue

// char szBuffer[260]

// PMODREF pModRef

pszFileExtension = 0;

fOem = x_AreFileApisOEM();

if (fOem)

lpszPath, 0);

91

// Calls k32OemToCharA and some other things.

lpszProc = SomeFunction(lpszHodule, 0);

if (lpszModule == 0) // Asking for the EXE.

retValue = x_GetHModuleFromMODREF(ppCurrentProcessId ->pExeMODREF);

lse // Caller specified a module name.

strcpy(szBuffer, lpszModule);

x_UppercasePathName(szBuffer, &pszFileExtension):

if (pszFileExtension == 0) // If no extension found, tack

{ // on ".DLL".

strcat(szBuffer, ".DLL")

lse

if (*pszFileExtension == 0)
*(pszFileExtension 1) = 0;

// Strip off a trailing

// present.

' ' if

pModRef = x_GetMOOREFFromFilename(szBuffer);

retValue = x_GetHMODULEFromMODREF(pModRef);

if (retValue == 0)

InternalSetLastError(ERROR_MOD_NOT_FOUND);

(fOem)

ppCurrentProcessId ->flags &= ~fOKToSetThreadOem;

// Also calls k32CharToOemA and some other things.

SomeOtherFunction(lpszPath, 0);

// Turn off flag.

return retValue

x _ G e t M O D R E F F r o m F i l e n a m e

98

x_OetMODREFFromFilename

The x_GetMODREFFromFilename function (my name) scans through the
linked list of MODREFs for a process, comparing the filename of each
module to the lpszModName parameter passed to the function. If a match
is found, x_GetMODREFFromFilename returns a PMODREE Otherwise, it
returns NULL.

It's interesting to discover that x_GetMODREFFromFilename can do
not just one, not just two, but up to four string comparisons between the
input string and the MODREF's filenames. In the first comparison,
x_GetMODREF-FromFilename compares the input string to just the base
filename for the MODREF (for example, to KERNEL32.DLL). If that fails,
x_GetMODREF-FromFilename compares the input string to the complete
path pointed at by the MODREE If that fails, the function will do up to two
more comparisons: the third to the secondary copy of the base filename, and
the fourth to the secondary copy of the complete path name stored in the
MODREE If any of these comparisons succeed, the function returns a
pointer to the matching MODREF.

To speed up the comparisons, x_GetMODREFFromFilename first
calculates the length of the input string. Because the lengths of the strings
pointed at by the MODREF struct are also stored in the MODREF,
x GetMODREFFromFilename first compares the input string length to
the MODREF string length. If they don't match, the function doesn't have
to bother doing a string comparison for that particular MODREF string.

Pseudocode for x_GetMODREFFromFilename

// Parameters:

// PSTR lpszModName

// PMODREF pModRef:

// PIMTE pimte;

// DWORD nameLen;

nameLen = strlen(lpszModName);

pModRef = ppCurrentProcessId ->MODREFlist;

if (!pModRef)

return 0;

w h i l e (p M o d R e f)
{

pimte = pModuleTableArray[pModRef ->mteIndex]

H M O D U L E .

99

if

{
nameLen == pimte ->cbModName)

if (0 == strcmp(lpszModName, pimte ->pszModName)

break; // Found itl!!

nameLen == pimte ->cbFileName)

f (0 == strcmp(lpszMedName, pimte ->pszFileName)

break; // Found it]I!

if (nameLen == pimte ->cbModName2)
{

if (0 == strcmp(lpszModName, pimte ->pszModName2))

break; // Found it!!!
}

if (nameLen == pimte ->cbFileName2 /
{

if (0 == strcmp(lpszModName, pimte ->pszFileName2))

break; // Found it!!!

// We didn't find it in any of the above comparisons. Try

// the next module in the list.

pModRef = pModRef ->pNextModRef;

// When we get here, we've either found a PMODREF with the right name,

// or pModRef == 0;

return pModRef;

x_GetHModuleFromMODREF
The x_GetHModuleFromMODREF function takes a PMODREF as an input
parameter, and returns the HMODULE (or base address) of the correspond-
ing module. The work required to do this is minimal. From the MODREF
structure it was passed, the function extracts a pointer to the module data-
base (an IMAGE_NT_HEADERS struct). One of the fields in an IMAGE_NT_
HEADERS is the base load address of the module, which, as we now know,-
is the same as the HMODULE.

P s e u d o c o d e

100

Pseudocode for x_GetHModuleFromMODREF

// Parameters:

// PMODREF pModRef

// Locals:

// PIMAGE_NT_HEADERS pNTHdr

// PIMTE pimte;

if (pModRef == 0)

return 0;

pimte = pModuleTableArray[pModRef ->mteIndex];

pNTHdrs = pimte ->pNTHdr

return pNTHdr ->ImageBase; // The load address (image base) is

// the same as the HMODULE.

KERNEL32 OBJECTS

At this point I'd like to jump headfirst into the discussion about processes and
threads, but I can't do that until I explain the concept of objects. I'm talking
about what I call KERNEL32 objects (or K32 objects for short). Although
just about anything for which KERNEL32 allocates memory from its heap
could be considered "an object," I have a specific definition in mind here.

K32 objects are key system data structures that come from KERNEL32's
heap. There are numerous types of K32 objects, and they all start with a
common header. One way to determine whether or not something is a K32
object is to ask, "Do applications have handles to these objects?" For
example, applications can have file handles or event handles, so files and
events are K32 objects. On the other hand, I've seen no evidence that
application code ever has handles to things like MODREFs or IMTEs.
Thus, MODREFs and IMTEs aren't K32 objects.

Every K32 object starts out with a common header that has the
following format:

00h
The type of the object. This value determines how subsequent members of
the structure should be interpreted.

K 3 2 O B J _ S E M A P H O R E

101

04h DWORD

The reference count of the object. This value determines how many times
other code is referencing an object. For example, when you call GetFile-
InformationByHandle(), the reference count of the file object that you're
asking about goes up by one upon entry to the function. Before the function
returns, it decrements the file object's reference count.

By now, you're probably dying to know what type of K32 objects there
are. So, without further adieu, here's the list:

K32OBJ_SEMAPHORE (0xl)
K32OBJ_EVENT (0x2)
K32OBJ_MUTEX (0x3)
K32OBJ_CRITICAL_SECTION (0x4)
K32OBJ_PROCESS (0x5)
K32OBJ_THREAD (0x6)
K32OBJ_FILE (0x7)
K32OBJ_CHANGE (0x8; see FindFirstChangeNotification)
K32OBJ_CONSOLE (0x9)
K32OBJ_SCREEN_BUFFER (0xA)
K32OBJ_MEM_MAPPED_FILE (0xB; see CreateFileMapping()
K32OBJ_SERIAL (0xC)
K32OBJ_DEVICE_IOCTL (0xD; see DeviceloControl)
K32OBJ_PIPE (0xE)
K32OBJ_MAILSLOT (0xF)
K32OBJ_TOOLHELP_SNAPSHOT (0xl0; see
CreateToolhelp32Snapshot)
K32OBJ_SOCKET (0x11)

For the remainder of this chapter, our primary focus is on the process and
thread objects (IDs 5 and 6). A process database is just a K32_PROCESS
object, and a thread database is just a K32_THREAD object. As you'll see in
the "What's a Process Handle? What's a Process ID?" section, a process
handle table is simply an array of pointers to various K32 objects of the types
shown above. Throughout KERNEL32 and VWIN32.VXD, the code checks
the first DWORD of a supposed object to make sure that it's really dealing
with an object of the type it thinks it's dealing with.

A

102

If you're familiar with the Win16 kernel, you might notice that unlike
Win16 tasks and modules, the 8-byte Win32 object headers don't have any
fields for storing linked list pointers. In Win16, once you find the first task
or module in the list, you have everything you need to walk the rest of the
list. In Windows 95, KERNEL32 has its own section of code (LSTMGR.C)
that maintains lists of K32 objects.

WINDOWS 95 PROCESSES

At this point in the book, it's time to drag out the usual hackneyed definition
of what a process is, so let's get it over with. A process is a unit of ownership.
That is, processes own things. A process owns memory (actually, it owns a
memory context). A process owns file handles that the application code can
use to read and write files. Processes own threads (which Itl define fully in the
"Threads" section later in this chapter). Processes own a list of DLL modules
that have been loaded into the process's memory context. I could go on, but I
think you get the idea.

Note that a process does not represent execution (threads represent the
execution of code), and a process is not an EXE file. Before it's loaded, an
EXE file on disk is just a program. Only when it's loaded into memory does
Windows 95 create a process. On the other hand, every process is associated
with a disk file (although there is the strange case of the KERNEL32.DLL
process, which you'll see in the WIN32WLK section at the end of this chapter).

When Windows 95 creates a new process, it also creates a new memory
context for the process's threads to execute in. In addition, Windows 95
creates an initial thread of execution for the process. If needed, the process
can create additional threads. The system also creates a file handle table in
which the process can keep a list of open handles. Finally, and most impor-
tantly for the discussion in the next couple of paragraphs, Windows 95
creates a process database to represent the process.

A process database is a K32 object that contains a vast quantity of
information about the process. (We'll look at the fields in "The Windows 95
Process Database (PDB)" section.) The process database memory is allocated
out of KERNEL32's heap, so all process databases are visible to all tasks
(assuming they know where to look; that's the tricky part that I'll show how
to do in the WIN32WLK source).

Process database highlights include a list of threads, a list of loaded
modules, the heap handle of the default process heap, a pointer to the

G e t C u r r e n t P r o c e s s

103

process handle table, and a pointer to the memory context that the process
runs in (see Chapter 5). And those are just a few of the highlights; there are
many, many more. In fact, if you buy now, we'll also throw in a list of mem-
ory mapped files, a pointer to the parent process, a list of available thread
local storage slots, and a pointer to the environment block. Just send $49.95
to KERNEL32.DLL at 1 Microsoft W a y . . .

WHAT'S A PROCESS HANDLE?

WHAT'S A PROCESS ID?

Before I go one step further, I want to clear up the widespread confusion
regarding process handles versus process IDs. Two similar sounding Win32
routines -- GetCurrentProcess and GetCurrentProcessld - - tend to confuse
a fair number of programmers. The difference between the two functions is
actually rather simple, once you understand what's going on.

A process handle is essentially the same thing as a file handle. It's an
"opaque" value with no significance as a pointer to anything. Internally, the
system uses K32 object handles (such as process or file handles) as an index
into the process handle table. The value returned by indexing into the process
handle table array is an actual pointer to a K32 object. However, since appli-
cations aren't given direct access to their handle tables, a process handle is
useless, except as a magic cookie to pass to certain routines that expect it.

Remember that since each application has its own handle table, it's entirely
possible that different processes will have the same process handle within their
own process context. For example, normally each process has a process handle
open for itself, and that handle value is 1. The implication that should be
drawn is that a process handle is not a way to differentiate between different
processes. Another example: If an application opens another process handle
for its own process, it would then have two different handle values that both
identified the same process.

Further proof that a process handle is not suitable for identifying which
process you're working with can be found in the GetCurrentProcess code:

Pseudocode for GetCurrentProcess

// Normally this function does nothing. It appears to be there

// for the benefit of the KERNEL32 developers.

x_LogSomeKernelFunction(function number for GetCurrentProcess);

return Ox7FFFFFFF;

* * p p C u r r e n t P r o c e s s

104

That's it! Ignoring the call to the logging function, GetCurrentProcess
does nothing more than return a fixed value (0x7FFFFFFF). No matter
what process calls GetCurrentProcess, it'll always get back 0x7FFFFFFF.
The value 0x7FFFFFFF is a "magic" value that KERNEL32 interprets to
mean "use the current process." In routines where KERNEL32 expects a
process handle, it checks for the value 0x7FFFFFFF and substitutes what-
ever the current process is. Need any more proof that process handles are
useless except when used within their own context? I didn't think so.

Let's now turn to the process IDs. As noted in Unauthorized Windows 95,
early versions of Windows 95 up through beta 1 used the address of the
process database as a process ID. Since process databases are kept in shared
memory accessible by all processes, the address of a process database is guar-
anteed to be a unique value throughout the system. Unauthorized Windows
95 made extensive use of the GetCurrentProcessld function to get a pointer
to the current processes database, from which it then extracted key fields.
Unfortunately, the Microsoft KERNEL32 coders crashed that particular
party as we can see in a more recent version of GetCurrentProcessld:

Pseudocode for GetCurrentProcessId

x_LogSomeKernelFunction(function number for GetcurrentProcessId);

return PDBToPid(ppCurrentProcess);

Again, ignoring the logging function, GetCurrentProcessld boils down
to passing a global variable (ppCurrentProcess) to the PDBToPID function.
Let's stop and examine this point closely, since it's extremely important for
understanding the rest of the chapter. The ppCurrentProcess global variable
is a pointer to a pointer to the current process database. Put in C notation,
this means that **ppCurrentProcess points to the current process database.

The reason you have to indirect through this pointer twice is one of the
fascinating things you'll find out in Chapter 6. For now, just remember that
the ppCurrentProcess pointer is a global variable in KERNEL32.DLL that
allows KERNEL32 to find the process database of the current process. (To
keep things simple, when I show the ppCurrentProcess variable being used
in the pseudocode, I pretend that it's just a pointer to the process database,
not a pointer to a pointer.)

So, if KERNEL32 has a pointer to the current process database handy,
why doesn't GetCurrentProcessId just return it? For an answer, let's look at
the PidToPDB function:

l i k e

105

Pseudocode for PDBToPid

// Parameters:

// PROCESS DATABASE * ppdb

(ObsfucatorDWORD == FALSE

_DebugOut(

return 0;

"PDBToPid() Called too early! Obsfucator not yet"

"initialized!");

(ppdb & 1)

_DebugOut("PDBToPid: This PDB looks like a PID (0%lxh) Do a"

" s t a c k trace BEFORE reporting as bug,");

Here's the key! XOR the obsfucator DWORD with the process database

pointer to make the PID value.

return ppdb ^ ObsfucatorDWORD;

Oh really? Yes. The term "Obsfucator" comes straight from the Microsoft
binaries (and yes, "Obsfucator" is misspelling; it should be "Obfuscator").
Other than checking to make sure that a valid process database pointer was
passed, the only essential thing PDBToPID does is XOR the current process
database pointer with the ObsfucatorDWORD. This is an obvious attempt
on Microsoft's part to keep hackers from prying into the internals of system
data structures. However, as H1 show in the WIN32WLK code at the end of
this chapter, this is only a small, temporary obstacle (hint: think about the
transitive properties of a binary XOR).

Incidentally, if you're wondering where the ObsfucatorDWORD value
comes from, you'll be dismayed to know that it's calculated at runtime each
time the system starts up. This prevents a simple attack on the problem of
getting a real pointer to a process database. To compound matters, not only
are process databases "guarded" by this obsfucator DWORD, but so are
thread databases. I'll show you later how the GetCurrentThreadld function
is uncannily similar to the GetCurrentThreadld function.

To sum up, a process handle is like a file handle. It's opaque, and mean-
ingless outside the process context in which it's defined. A process ID, on the
other hand, is a unique value across all processes. It's essentially a pointer to
a process database structure, even though Microsoft has taken steps to

D W O R D

106

"obsfucate" that fact (their choice of words, not mine}. The WIN32WLK
program at the end of the chapter shows the magic translation formula to
convert a process ID into a usable pointer.

If you've seen the TOOLHELP32 Process32First and Process32Next
functions, you may have noticed the th32ProcessID fields in the
PROCESSENTRY32 structure. Are these related in any way to the values
returned by GetCurrentProcessId? Fortunately, the answer is yes! The
WIN32WLK program takes advantage of this to let TOOLHELP32 handle
some of the dirty work of iterating through the system's processes and threads.

THE WINDOWS 95 PROCESS DATABASE (PDB)

In Windows 95, each process database is a block of memory allocated from
the KERNEL32 shared memory heap. KERNEL32 often uses the acronym
PDB instead of the longer term "process database." Unfortunately, in Win16,
PDB is a synonym for the DOS PSP that all programs have. Is this confusing?
Yes! For the purposes of this chapter, I'll use PDB in the KERNEL32 sense of
the term. Each PDB is considered to be a KERNEL32 object as evidenced by
the value 5 (K32OBJ_PROCESS) in the first DWORD of the structure. The
PROCDB.H file from the WIN32WLK program gives a C-style view of the
PDB structure. Let's look at the fields in detail:

00h DWORD Type
This DWORD contains 5, the KERNEL32 object type for a process.

04h DWORD cReference
This DWORD is the reference count for the process. This is the number of
things that are currently using the process structure for something (for
example, they have an open handle for the process).

08h DWORD un 1
The meaning of this DWORD is unknown. It may be a standard part of a
KERNEL32 object header. It appears to always be 0.
0Ch DWORD pSomeEvent
This DWORD is a pointer to an event object (K32OBJ_EVENT). Event
objects are passed to functions like WaitForSingleObject. It appears that this
event is what is actually waited on when you pass a process handle to one
of the WaitForSingleEvent family of functions.

1 0h DWORD TerminationStatus

This DWORD is the value that would be returned by calling
GetExitCodeProcess. The process exit code is the value returned from the
main or WinMain functions. Alternatively, it can be specified when a
process calls ExitProcess or TerminateProcess. While a process is still
actively running, its exit code is 0x103 (STILLACTIVE).

14h DWORD un2
The meaning of this DWORD is unknown. It appears to always be 0.

18h DWORD DefaultHeap
This DWORD contains the address of the default process heap.
GetProcessHeap returns this value for the current process.
1Cb DWORD MemoryContext
This DWORD is a pointer to the process's memory context. A memory
context contains the page directory mappings necessary to provide a process
with its own private region in the 4GB address space. Chapter 5 describes
memory contexts in more detail.

20h DWORD flags
These flags are described in the following table:

107

f N e a r l y T e r m i n a t i n g

108

Flag name and bit value Description (when available)

fServiceProcess For example, MSGSRV32.EXE.

0x00000100

fLoginScriptHack Might be a Novell network Iogin process.

OxO0000800

fSendDLLNotifications

0xO0200000

fDebugEventPending For example, stopped in a debugger.

OxO0400000

fNearlyTerminating

OxO0800000

fFaulted

Ox08000000

fTerminating

Ox 10000000

fTerrninated

0x20000000

flnitError

0x40000000

fSignaled

Ox80000000

24h DWORD pPSP
This DWORD holds the linear address of the DOS PSP created for this
process. This field is set for both Win16 and Win32 processes. The linear
addresses in this field are always below 1MB (the maximum address that
real mode DOS code can reach). See also field 28h.
28h WORD PSPSelector
This WORD is a selector that points to the DOS PSP for this process. Both
Win16 and Win32 applications have DOS PSPs. See also field 24h.
2Ah WORD MTEIndex
This WORD contains an index into the global module table (pModuleTable-
Array). The IMTE referenced by indexing into the module table is the IMTE
for this module. IMTEs and the global module table were discussed earlier
in the chapter.

a d d r e s s

109

2Ch WORD cThreads
This field is the number of threads belonging to this process.

2Eh WORD cNotTermThreads
This field holds the number of threads for this process that haven't yet been
terminated. In all instances seen to date, this WORD always has the same
value as field 2Ch.
30h WORD un3
The meaning of this WORD is unknown. It appears to always be 0.

32h WORD cRing0Threads
This WORD holds the number of ring 0 threads as managed by VMM.VXD.
For normal applications, this value is the same field 2Ch (cThreads). However,
in the case of the special KERNEL32.DLL process, this field is one more than
the cThreads field.
34h HANDLE HeapHandle
This DWORD holds the handle of the HEAP that handle tables (and possi-
bly other things) belonging to this process should be allocated from. This
field appears to always contain the KERNEL32 shared heap handle.

38h HTASK W16TDB
This DWORD holds the Win16 Task Database (TDB) selector associated
with this process. Both Win16 and Win32 applications have Task Database
selectors and maintain valid task databases.
3 Ch DWORD MemMapFiles
A pointer to the head node in the list of memory mapped files in use by this
process. Each memory mapped file is represented by a node in the list. The
format of each node is:

DWORD

DWORD
Base address of the memory mapped region

Pointer to next node, or 0

40h PENVIRONMENT_DATABASE pEDB
This DWORD is a pointer to the environment database. The environment
database contains the current directory, the environment, the process com-
mand line, the "standard" handles (for example, stdin), and other items. I'll
describe the format of the environment in "The Environment Database"
section later in this chapter.

6 0 h

110

44h PHANDLE_TABLE pHandleTable
This field is a pointer to a process handle table. All handles (be they file
handles, event handles, process handles, or so on) go into the handle table.
The DOS/Winl6 equivalent of a Win32 handle table is the DOS System File
Table (SFT). (See Schulman et al.'s Undocumented DOS, 2nd ed.)

However, the DOS SFT applies to the entire system, whereas a Win32
process handle table applies only to its owning process. The Win32 handle
table layout is described in the "Process Handle Tables" section.
48h PPROCESS_DATABASE ParentPDB
This DWORD is a pointer to the PROCESS_DATABASE for the process
that created this process. Typically the parent process is EXPLORER for
applications launched via the GUI. MSGSRV32 is the parent of the initial
"service" processes and EXPLORER.EXE.
4Ch PMODREF MODREFIist
This field points to the head of the process's module list. This is the linked
list of MODREFs described earlier in "The MODREF structure" section.

50h DWORD ThreadList
A pointer to the list of threads owned by this process. This list is a listmgr.c-style
list. (The exact format of this type of list is unknown to me.)
54h DWORD DebuggeeCB
This DWORD appears to be a debuggee context block. When a process is
being debugged, this field points to a block of memory above 2GB. This
block includes a pointer to the debuggee's process database.
58h D W O R D LocalHeapFreeHead
This DWORD points to the head of the free list in the default heap for the
process. Chapter 5 describes the format of process heaps and the free list.

5Cb DWORD InitialRing0ID
The meaning of this DWORD is unknown. It appears to always be 0.

60h CRITICAL_SECTION crst
This field is a CRITICAL_SECTION used by various API functions for syn-
chronizing threads within the same process. Much of the pseudocode you'll
see later on shows this critical section in action.

9 8 h

111

78h DWORD un4[3]
These three DWORDS appear to always be set to 0, and their meaning is
currently unknown.
84h DWORD pConsole
If this process uses the console (that is, if it's a text mode process), this DWORD
points to the console object (K32OBJ CONSOLE) used for output.
88h DWORD tlsInUseBits1

These 32 bits represent the status of the lowest 32 TLS (Thread Local Storage)
indexes. If a bit is set, the TLS index is in use. Each successive TLS index is
represented by successively greater bit values; for example:

TLSindex:0 = 0x00000001
TLSindex:l = 0x00000002
TLSindex:2 = 0x00000004

Thread local storage is discussed in detail in the "Thread Local Storage"
section later in this chapter.
8Ch DWORD tlsInUseBits2
This DWORD represents the status of TLS indices 32 through 63. See the
previous field description (88h) for more information.
90h DWORD ProcessDWORD
The meaning of this field is currently unknown, although there is an
undocumented API (GetProcessDword) that retrieves its value.
94b PPROCESS_DATABASE ProcessGroup
This field is either 0 or points to the master process in a process group.
Process groups are collections of processes that belong together. When the
group is destroyed, all processes in that group are destroyed. Normally, each
process is considered to be in its own group, and this field points to the
process's own PDB (a circular reference). If a process is being debugged, it
belongs to the debugger's process group.
98h DWORD pExeMODREF
This field points to EXE's MODREF (module list entry). MODREFs were
described earlier. Typically, the EXE's MODREF is the head MODREF in
the list, so this field usually matches field 4Ch unless the process has loaded
additional DLLs via LoadLibrary or LoadModule.

D W O R D

112

9Ch DWORD TopExcFilter
This DWORD holds the "Top Exception Filter" for the process. This is the
routine that will be called if no other exception handlers choose to handle
an exception. This value is set via the SetUnhandledExceptionFilter func-
tion. Structured exception handling is discussed later in the chapter.
AOh DWORD
This DWORD holds the scheduling priority for this process. Windows 95
supports 32 priority levels, grouped into four classes. The following priority
classes are supported in Windows 95, shown with the normal priority level
for that class:

Idle 4
Normal 8
High 13
Realtime 18

Within each class, the priority can vary both below and above the default
priority level. Priority levels are described in more detail later in this chapter.
A4h DWORD HeapOwnList
This field points to the head of the linked list of heaps for the process. By
default, each process has a single heap; the handle for that heap is retrieved
by calling GetProcessHeap. However, a process can create additional heaps
by calling HeapCreate. These heaps are put into the linked list of heaps for
the process when they're created. Chapter 5 discusses this topic in much
more detail.
A8h D W O R D HeapHandleBlockList
Moveable memory blocks in the process heap are managed via moveable
handle tables embedded within the heap. This field is a pointer to the head
of the moveable handle table list within the default process heap. Chapter 5
describes moveable handle tables in detail.
ACh DWORD pSomeHeapPtr
The exact meaning of this field is unknown. It's normally 0, but when not,
it's a pointer to a moveable handle table block in the default process heap.
See also field A8h.

2 1 h s

B0h DWORD pConsoleProvider
This field is either 0, or a pointer to a KERNEL32 console object
(K32OBJ_CONSOLE). It appears to always be 0 for console mode Win32
processes but is nonzero for the WINOLDAP process. WINOLDAP is the
Windows process for managing DOS programs within Windows.
B4h WORD EnvironSelector
This WORD holds a selector that points to the process's environment.
This selector's base address is the same value as the linear address in the
pszEnvironment field in the Environment Database (see field 40h).

B6h WORD ErrorMode
This field contains the value set by the SetErrorMode function. SetErrorMode
in KERNEL32 thunks down to KRNL386's SetErrorMode, so this field
merely reflects the Win16 error mode value for the process. The documented
error mode values are:

SEM_FAILCRITICALERRORS
SEM_NOALIGNMENTFAULTEXCEPT
SEM_NOGPFAULTERRORBOX
SEM_NOOPENFILEERRORBOX

B8h DWORD pevtLoadFinished
This DWORD points to a KERNEL32 Event object (K32OBJ_EVENT). It
appears that this event is signaled when the process has finished loading.

BDh WORD UTState
The meaning of this field is unknown, but based on the name, it probably
has something to do with Universal Thunks. It's usually set to 0.

Of special note in all these process database fields is the number of
DOS-related fields. There's both a PSP selector and a linear address for the
DOS PSP (which just happens to always be below 1MB). Given the number
of occasions that windows reflects INT 21hs down into Virtual 86 mode
DOS- style code, this isn't entirely surprising. (See Unauthorized Windows 95,
Chapter 8, for a thorough proof that dispatching INT 21hs to DOS isn't
entirely surprising.) It's unlikely that the Windows NT process database
equivalent contains PSP information for all processes. It sure looks like DOS
just won't die, at least not on platforms evolved from Windows 1.x code.
Now that we've seen what a process database looks like, let's look at some
pseudocode for some process-related functions.

L P D W O R D

114

GetExitCodeProcess and IGetExitCodeProcess
GetExitCodeProcess retrieves the termination status of the process specified
by the hProcess handle passed in. The main function is just a validation
layer that verifies that a valid pointer was passed as the second parameter.
The real code is IGetExitCodeProcess. After some standard thread synchro-
nization and logging code germane to many process-related functions, the
code takes the hProcess parameter and looks up the associated pointer to a
PROCESSDATABASE. Since hProcess is a handle, this means indexing into
the process's handle table and retrieving the process pointer, x_Convert-
HandleToK32Object handles this chore along with incrementing the usage
count of the process database.

With a PPROCESS_DATABASE pointer in hand, the function extracts
the value of the TerminationStatus field and stores it to the caller-specified
buffer. To clean up, IGetExitCodeProcess decrements the usage count of the
process object and leaves the "must complete" state it entered previously.

Pseudocode for GetExitCodeProcess

// Parameters

// HANDLE hProcess;

// LPDWORD lpdwExitCode:

Set up structured exception handling frame

if (lpdwExitCode) // If a non null pointer was passed, verify

EAX = *lpdwExitCode; // that the DWORD it points to can be written.

Remove structured exception handling frame

goto IGetExitCodeProcess;

Pseudocode for IGetExitCodeProcess

// Parameters

// HANDLE hProcess;

// LPDWORD lpdwExitCode;

// Locals:

// PPROCESS_DATABASE ppdb;

// BOOL retValue;

retValue = TRUE; // Assume successful return.

x_EnterMustComplete() ; // Prevent us from being interrupted.

// Increments ptdbx ->MustCompleteCount.

p p d b

x_LogSomeKernelFunction(function number for GetExitCodeProcess);

// Get a pointer to the PROCESS_DATABASE struct

ppdb = x_ConvertHandleToK320bject(hProcess, 0x80000010, O);

if (ppdb)

{

// Save away exit status.

*lpdwExitCode = ppdb->TerminationStatus;

x_UnuseObjectWrapper(ppdb); // Decrement usage count.

else // Opps! No process database.

retValue = FALSE;

// Call the API logging function again (???).

x_LogSomeKernelFunction(function number for GetExitCodeProcess);

LeaveMustComplete(); // Decrements ptdbx ->MustCompleteCount.

return retValue;

115

SetUnhandledExceptionFilter
SetUnhandledExceptionFilter sets the address of the function that KERNEL32's
UnhandledExceptionFilter function calls when no other exception filters
have elected to handle an exception (what a mouthful!). The function
stashes away the current value of the TopExcFilter field in the process data-
base, then replaces that value with the value of the parameter passed in. The
function returns the previous value of TopExcFilter.

Pseudocode for SetUnbandledExceptionFilter
// Parameters:

// LPTOP_LEVEL_EXCEPTION_FILTER lpTopLevelExceptionFilter

// Locals:

// LPTOP_LEVEL_EXCEPTION_FILTER prevValue;

// Save old value.

prevValue = ppCurrentProcess ->TopExcFilter;

// Stuff in new value.

ppCurrentProcess ->TopExcFilter = lpTopLevelExceptionFilter;

return prevValue; // Return old value,

I n t e r n a l S e t L a s t E r r o r (

116

OpenProcess
OpenProcess takes a process ID and returns a handle that refers to that process.
This handle can then be passed to functions like ReadProcessMemory and
VirtualQueryEx. When you combine this function with TOOLHELP32's
ability to give you a process ID for any process in the system, you have a
potent combination. It's somewhat strange that Windows 95 allows you to
open a process handle but not a thread handle. Perhaps Microsoft thought
that the havoc that could be created with a thread handle was just too great
to allow.

OpenProcess first converts the process ID parameter to a PPROCESS_
DATABASE. Because the algorithm for converting a process ID to a process
pointer is identical to converting a thread ID to a thread pointer, OpenProcess
checks to make sure it has a PPROCESS_DATABASE pointer. (Some knuckle-
head might otherwise pass in a thread ID and screw things up.) The next
part of OpenProcess is where the flags parameter is tweaked to ensure that
it has only legal and/or required flags set. Finally, OpenProcess calls an
internal function that allocates a slot in the current process's handle table
and places the PPROCESS_DATABASE pointer into that slot.

Pseudocode for OpenProcess

// Parameters:

// DWORD fdwAccess;

// BOOL fInherit;

// DWORD IDProcess;

// Locals:

// PPROCESS_DATABASE ppdb;

// DWORD flags;

x_LogSomeKernelFunction(function number for OpenProcess);

// Convert the process ID to a ?PROCESS_DATABASE.

ppdb = PidToPDB(IDProcess)

if (! p p d b)

return 0;

if (ppdb ->Type != K320BJ_PROCESS) { // Make sure thread ID not passed.

InternalSetLastError(ERROR INVALID PARAMETER);

return 0;
}

f F i l e A p i s A r e O e m ;

117

flags = fdAccess & OxOO1FFFBF;

if (fInherit)

flags |= 0x80000000;

flags |= PROCESS_DUP_HANDLE;

// Turn off all non-allowed flags.

// Flags like PROCESS_QUERY_INFORMATION

// and PROCESS_VM_WRITE are allowed.

// Always pass. PROCESS_DUP_HANDLE

// Allocates a new slot in the handle table of the current process.

// The slot contains the ppdb pointer.

return x_OpenHandle(ppCurrentProcess, ppdb, flags);

SetFileApisToOEM
The SetFileApisToOEM function changes the way the file-related KERNEL32
functions interpret filenames. By default, KERNEL32 uses ANSI strings
for the filenames. By calling SetFileApisToOEM, a program can change
this to use OEM character strings. For an example of this in action, see
the GetModuleFileName and GetModuleHandle functions earlier in this
chapter.

Internally, the function couldn't be much simpler. It grabs a pointer to the
process database for the current process and turns on the fFileApisAreOem
flag in the flags field.

Pseudocode for SetFileApisToOEM
x_LogKernelFunction(function number for SetFileApisToOEM)

ppCurrentProcess->flags |= fFileApisAreOem;

THE ENVIRONMENT DATABASE

At offset 40h in the process database is a pointer to a vital data structure
that also contains process-related information. The name that KERNEL32
uses internally for this pointer is pEDB, which I interpret to mean "pointer
to Environment Database." As with the PROCESS_DATABASE structure,
I've given the layout of an ENVIRONMENT_DATABASE in the PROCDB.H
file. Let's look at these fields now:

u n 2

118

00h PSTR pszEnvironment

This field points to the process environment. The environment is the standard
DOS-style environment (string=value, with semicolons between multiple items,
as in string=value;string=value). The process environment is in a block of mem-
ory in the per-process data area, and usually resides just above where the EXE
module loads.
04h DWORD un 1

The meaning of this DWORD is currently unknown. It appears to always
have a value of 0.
08b PSTR pszCmdLine
This field points to the command line passed to CreateProcess to start this
process. In most cases, the command line is just the complete filename for the
process's EXE. In several cases, though, it's a pointer to an empty string (\0).
0Ch PSTR pszCurrDirectory
This field is a pointer to the current directory of the process.
10h LPSTARTUPINFOA pStartuplnfo
This pointer points to the process's STARTUPINFOA structure, which
is defined in WINBASE.H. A STARTUPINFOA structure is passed to
CreateProcess to specify the process's window size, title, standard file
handles, and so forth. This field points to a copy of that structure.
14h

This
used

HANDLE hStdln

is the file handle the process uses for the standard input device. If not
(for instance, if this is a GUI application), the handle value is -1.

18h

This
used

HANDLE hStdOut

is the file handle the process uses for the standard output device. If not
(for instance, if this is a GUI application), the handle value is -1.

1Ch
This
used

HANDLE bStdErr

is the file handle the process uses for the standard error device. If not
(for instance, if this is a GUI application), the handle value is -1.

20h DWORD un2

The meaning of this field is unknown. It seems to always be 1.

D W O R D

119

24h DWORD InberitConsole
Presumably this field indicates whether the process is inheriting the console
from its parent process (as opposed to getting its own console). See the
CREATE_NEW_CONSOLE flag to the CreateProcess function. In my
observations, this field was always 0.
28h DWORD BreakType
This field most likely indicates how console events (CTRL+C, and so on.)
should be handled. In the programs I ran, it was usually 0, but it's occasionally
set to 0xA.
2Ch DWORD BreakSem
Normally this field is 0, but if an application calls SetConsoleCtrlHandler, this
DWORD points to a KERNEL32 semaphore object (K32OBJ_SEMAPHORE).

30h DWORD BreakEvent
Normally this field is 0, but if an application calls SetConsoleCtrlHandler,
this DWORD points to a KERNEL32 EVENT object (K32OBJ_EVENT).

34b DWORD BreakThreadlD
Normally this field is 0. However, if an application calls
SetConsoleCtrlHandler, this DWORD points to the thread object
(K32OBJ_THREAD) of the thread that installed the handler.

38h DWORD BreakHandlers
Normally this field is 0. However, if an application calls
SetConsoleCtrlHandler, this DWORD points to a data structure allocated from
the KERNEL32 shared heap. This data structure is a list of the installed con-
sole control handlers.

Let's now look at some more pseudocode for a few process functions,
this time related to the ENVIRONMENT_DATABASE we've just looked at.

GetCommandLineA
There's really not much to comment on in the GetCommandLineA code. The
function returns the command-line pointer that's stored in the environment
database.

Pseudocode for GetCommandLineA

return ppCurrentProcess ->pEDB.pszCmdLine

G e t E n v i r o n m e n t S t r i n g s

120

GetEnvironmentStrings
There's not much to say about GetEnvironmentStrings, either. Like
GetCommandLineA, it just returns the relevant pointer from the environ-
ment database. However, it's interesting to note that the actual implemen-
tation and the SDK documentation say two different things. The SDK
documentation says:

When GetEnvironmentStrings is called, it allocates memory for a block of

environment strings. When the block is no longer needed, it should be called

FreeEnvironmentStrings.

Although this may be the case for Windows NT, it's certainly incorrect
for Windows 95.

Pseudocode for GetEnvironmentStrings

return ppCurrentProcess->pEDB.pszEnvironment

FreeEnvironmentStringsA
The FreeEnvironmentStringsA function is a bit more interesting. Since
GetEnvironmentStrings doesn't really allocate any memory, there's nothing
that FreeEnvironmentStringsA has to do. However, just for sport, the func-
tion checks the input parameter string to see if it matches the pointer to
the environment from the environment database. If they don't match,
FreeEnvironmentStringsA sets the LastError value to ERROR_INVALID_
PARAMETER.

Pseudocode for FreeEnvironmentStringsA

/ / Parameters:
// LPSTR lpszEnvironmentBlock;

x_LogSomeKernelFunction(function number for FreeEnvironmentStringsA);

if(
{

ppCurrentProcess->pEDB.pszEnvironment != lpszEnvironmentBlock)

InternalSetLastError(ERROR_INVALID_PARAMETER);

return FALSE;

return TRUE;

) ;

121

GetStdHandle
GetStdHandle is just as straightforward as you probably imagine it to be.
Given a device ID to look for (stdin, stdout, or stderr), the function retrieves
the associated file handle from the environment database. If a bogus device
ID was passed, the function fails and sets the last error code.

Pseudocode for GetStdHandle

// Parameters:

// DWORD fdwDevice

// Locals:

// PENVIRONMENT_DATABASE pEDB;

pEDB = ppCurrentProcess->pEDB;

if (fdwDevice == STD_INPUT_HANDLE)

return pEDB->hStdIn;

else if (fdwDevice == STD_OUTPUT_HANDLE)

return pEDB->hStdOut;

else if (fdwDevice == STD_ERROR_HANDLE)

return pEDB->hStdErr;

InternalSetLastError(ERROR_INVALID_FUNCTION);

return 0xFFFFFFFF:

SetStdHandle
SetStdHandle is just a tad more interesting than GetStdHandle. The code first
verifies that the handle is a valid KERNEL32 object handle. How does it do this?
By calling x_ConvertHandleToK32Object, which returns a pointer to the associ-
ated KERNEL32 object if the handle is a valid handle. SetStdHandle never uses
the K32 object pointer, though - - a simple test for a NULL value is all that's
required. After verifying the hHandle parameter, the remaining code stuffs the
hHandle into the appropriate field in the environment database structure.

P s e u d o c o d e

122

Pseudocode for SetStdHandle

// Parameters:

// DWORD IDStdHandle

// HANDLE hHandle

// Locals:

// PVOID pK320bject;

// PENVIRONMENT_DATABASE pEDB;

if (hHandle == STD_INPUT_HANDLE)

{

pK32Object =

x_ConvertHandleToK320bject(hHandle, 0x00002140, 0x00000020);

}

else if ((hHandle == STD_OUTPUT_HANOLE) || (hHandle == STD_ERROR_HANDLE))

pK320bject =

x_ConvertHandleToK320bject(hHandle, 0x00002140, 0x00000110);

else {

InternalSetLastError(ERROR_INVALID_FUNCTION);

return FALSE; }

if (pK320bject)
{

pEDB = ppCurrentProcess->pEDB;

if (IDStdHandle == STD_INPUT_HANDLE)

pEDB->hStdIn = hHandle;

else if (IDStdHandle == STD_OUTPUT_HANDLE)

pEDB->hStdOut = hHandle;

else

pEDB->hStdErr = hHandle;

} return TRUE;

PROCESS HANDLE TABLES

At offset 44h in a PROCESS_DATABASE is a pointer to the handle table for
that process. In this section, I use the term handle to indicate things that can
be referenced via the process handle table. Besides file handles, Windows 95
also creates handles to other system objects. Processes, threads, events, and

0 x 3 0

123

mutexes are just a few examples. In fact, there can be handles for any of the
KERNEL32 objects listed in the "KERNEL32 Objects" section earlier in
this chapter.

A handle value is theoretically "opaque." That is, the handle value can't
tell you anything about what it's referring to. For instance, given the handle
value 5, you can't tell whether it's a file handle or a mutex handle. However,
once you understand process handle tables in Windows 95, you can easily
correlate a handle value to what it's referring to.

A handle table for a Windows 95 process is quite simple. The first
DWORD of the table is the maximum number of handle table entries in the
current table. The default at process startup is 0x30 (48) handles. This doesn't
mean, however, that a process is limited to 48 open handles. When a process
opens more handles than will fit in the current handle table, KERNEL32.DLL
reallocates the handle block of memory so the handle table can be grown. The
increments appear to be in multiples of 0x10. For example, after outgrowing
the initial 0x30 handle entries, the reallocated handle table has 0x40 entries.
There doesn't appear to be a significant upper limit on the number of handles.
I wrote a small program to open file handles in a loop, and it allocated well
over 255 handles (the old DOS limit) before I stopped it.

Immediately following the first DWORD of the handle table is an array
of 8-byte structures. Each structure consist of two DWORDS:

DWORD flags
DWORD pK32Object

The second field (pK32Object) is a pointer to one of the 17 possible types
of KERNEL32 objects that I described earlier in the "KERNEL32 Objects"
section. The first DWORD is access control flags for that object. The meaning
of the flags depends on what type of object the entry points to. For instance,
if the entry points to a process object (K32OBJ_PROCESS), the flags are
the PROCESS_xxx flags from WINNT. H (PROCESS_TERMNATE,
PROCESS_VM_READ, and so forth).

At this point, you might be suspecting what a handle value represents. If
you're guessing that the value of a handle is an index into the process handle
table, you're right. Once you know that, you can easily match up a handle
value with the type of KERNEL32 object that it refers to. An unused handle
table entry is filled with O's in both DWORDs. When allocating a new handle,
KERNEL32 uses the index of the first empty slot in the table. Although
browsing through a process handle table isn't suggested programming
practice, the WIN32WLK program provides this capability. When using
Win32Wlk, note the number and type of handles used by KERNEL32.

m u t e x e s ,

124

THREADS

Now that you've seen modules and processes, we can complete our tour of
fundamental KERNEL32 data structures by looking at threads. Although
processes primarily represent ownership of things like file handles, an address
space, and so on, threads represent the execution of code through modules.
You see how all the pieces are interrelated? It's hard to isolate just one and not
drag in the others. For example, in the earlier description of processes, I had
to have forward references to threads and synchronization objects.

At an abstract level, threads are a convenient way to keep various portions
of your program running while other portions are waiting for some external
action to occur. By splitting up the various tasks that a process performs into
threads, you can usually eliminate things like polling loops. Polling loops waste
much of the CPU's time executing the same code repeatedly while waiting for
some event (like a key press) to occur.

At any given time, a thread is in one of three basic states. The first state
is when the thread is actually running. The actual CPU registers are where
the thread's registers are kept. When a thread is in the running state, all
other threads in the system are suspended.

The second state is the "ready to run" state. In this state, there's no reason
why the thread couldn't be running -- except that some other thread is
currently using the CPU. In due time, the ready-to-run thread will get
control of the CPU.

The third state is the blocked state. When a thread is blocked, it's wait-
ing for something to happen. Until that thing happens, the scheduler won't
allow the thread to execute. The things that a thread blocks on are called
synchronization objects. The Windows 95 synchronization objects are critical
sections, mutexes, events, and semaphores.

I described the basic functionality of the Windows 95 synchronization
objects in Chapter 2, so I won't repeat myself here. In this book, I don't give
the same full treatment to the inner workings of synchronization objects that
I give to processes, threads, and modules. There are many good books, such
as Jeffrey Richter's Advanced Windows, that go over the details of using
synchronization objects; consult them if you'd like more information on this
topic. In this book, however, you'll just have to assume that synchronization
objects exist and that they work as described.

Initially, every process starts out with one thread. If the process wants, it
can create additional threads so that the CPU can execute through different
sections of the process's code at the same time. The standard example that's

V M M

125

wheeled out at this point is that of a word processor. When it comes time
for a word processor to print, the program spins off another thread that
handles all the printing chores. This allows the primary thread to continue
interacting with the user, so he or she can continue working while the
printing takes place in the background.

Of course, if you're familiar with basic CPU architecture, you know
that a machine with just one CPU can't really execute in more than one
location at the same time. The illusion of multiple threads running simulta-
neously is provided by the VMM scheduler, which uses a hardware timer
and a complex set of rules to very quickly switch between different threads.

Microsoft claims that Windows 95 uses a timeslice of 20 milliseconds for
scheduling. That is, in the absence of other factors (like thread priorities),
each thread will run for 20 milliseconds before the system suspends it and
starts up a different thread. I'll talk a little bit more about thread scheduling
in the "Thread Priorities" section. However, I'll state up front that this book
doesn't provide an in-depth discussion of thread scheduling and the VMM
scheduler. As with synchronization objects, this is a topic for another book
and another time.

Like processes, every thread is represented internally in KERNEL32.DLL
by a block of memory allocated from the shared KERNEL32 heap. This
memory block holds all the information KERNEL32 needs to maintain for a
thread. (Actually, the block contains a few pointers to information outside the
block, but you get the idea.) This memory block is called a thread database
(TDB) in this book. (Note that, at different times, Microsoft has used TDB to
mean Task Database and Thread Database.) As with process databases, a
thread database is a KERNEL32 object. Its first DWORD contains the value
6, branding the block as a K32OBJ_THREAD object.

If you're an advanced programmer who's poked around in the DDK or
used WDEB386 or Softlce/W, you may have encountered another thread-
related data structure called a THCB (Thread Control Block). THCBs are
the ring 0 representation of threads. In Windows 95, threads are represented
by separate ring 0 and ring 3 data structures. The ring 0 components, such as
VMM.VXD, work with threads primarily via thread control blocks. The ring
3 components, such as KERNEL32.DLL, primarily use the thread database
that I'll discuss in the upcoming section called "The Thread Database." This
chapter describes ring 3 thread behavior and mechanics, and doesn't attempt
to cover the ring 0 side of threads.

Although processes are the primary K32 object that owns things, threads
also own (or are associated with) certain items. The first thing that springs
to mind when asked, "What would a thread own?" is a register set. As I

E I P

mentioned earlier, at any given time a thread is either executing or not exe-
cuting (pretty obvious, huh?). When a thread is executing, its register set is
stored in the CPU's registers. That is, the thread's EIP value is the value in the
EIP register. When a thread isn't executing, its registers need to be stored off
into memory somewhere. Therefore, each thread has a pointer to a memory
buffer where the thread's register values are stored when it's not executing.

Another thing every thread is associated with is a process. All the threads
in a process share access to the things that a process owns. For instance, a
process owns a memory context and has a private address space. All the
threads in the process run in the same address space. A process also has a
handle table for referring to files, events, consoles, memory mapped files,
and so on. All threads in the process share the same handle values. For
example, if handle value 3 refers to a memory mapped file, any thread in
the process can use handle value 3 to refer to that memory mapped file.

Threads also own many other things. Each thread has its own stack area,
its own window message queue, its own set of Thread Local Storage values,
and its own structured exception handling chain. (In case you don't know
what the latter two items are, I'll be describing them shortly.) In addition, a
thread also acquires and releases ownership of the various synchronization
objects that the thread uses during its execution. We'll go through all the things
a thread owns when we look at the layout of a thread database a bit later.

WHAT'S A THREAD HANDLE?

WHAT'S A THREAD ID?

Earlier in the chapter, I described the difference between a process handle and
a process ID. It turns out that the description I gave could easily be repeated
for thread and handles and thread IDs. Just replace the word "process" with
the word "thread" and you're all set. If you're at all unsure about the differ-
ence between a process handle and a process ID, go back and reread the
"What's a Process Handle? What's a Process ID?" section, since I'm going to
give just the summarized version for threads here.

The GetThreadHandle function returns a constant value (a "pseudohandle"
in Microsoft-speak) that can be used wherever a true thread handle can
be used:

p t d b

127

Pseudocode for GetCurrentTbread

x_LogSomeKernelFunction(function number for GetCurrentThread);

return OxFFFFFFFE;

Like GetCurrentProcessId, the GetCurrentThreadId would return a
pointer to the current thread database, except that the KERNEL32 coders
intentionally obfuscate (or obsfucate, which is the Microsoft misspelling)
the return value:

Pseudocode for GetCurrentTbreadld

return TDBToTid(ppCurrentThread);

How does KERNEL32 obfuscate the thread return value? Let's look:

Pseudocode for TDBTo Tid

// Parameters:

// THREAD DATABASE * ptdb

if (ObsfucatorDWORD == FALSE) {

DebugOut("TDBToTid() Called too early! Obsfucator not yet"

"initialized!");

return 0; }

if (ptdb & 1)

{

_DebugOut("TDBToTid: This TDB looks like a TID (0%]xh) Do a"

"stack trace BEFORE reporting as bug,");
}

// Here's the key! XOR the obsfucator DWORD with the thread database

// pointer to make the TID value.

return ptdb ^ ObsfucatorDWORD;

If this looks amazingly similar to the PDBToPID function earlier in the
chapter, you're right. KERNEL32 uses a single ObsfucatorDWORD to
"convert" process and thread database pointers into IDs. Once you figure
out what the ObsfucatorDWORD value is (and keep in mind that Microsoft

D W O R D

128

misspelled it), you can use it to convert either process or thread IDs into
useful pointers. Again, this isn't recommended programming practice, but
for the purpose of understanding how the system works, there's not much
of an alternative.

THE THREAD DATABASE

The thread database is a KERNEL32 object (type K32OBJ_THREAD) that's
allocated from the KERNEL32 shared heap. Like process databases, the
thread databases aren't directly linked together in a linked-list fashion. The
THREADB.H file from the WIN32WLK sources has a C-style structure defi-
nition for a thread database. The format of a thread database is as follows:
00h DWORD Type
This DWORD contains 6, the KERNEL32 object type for a thread.

04h DWORD cReference
This DWORD contains the reference count for the thread. This is the num-
ber of things that are currently using the thread structure for something (for
example, they have an open handle for the thread).
08h PPROCESS_DATABASE pProcess
This PROCESS_DATABASE is a pointer to the process this thread belongs to.

0Ch DWORD pSomeEvent
This DWORD is a pointer to an event object (K32OBJ_EVENT). Event
objects are passed to functions like WaitForSingleObject. It appears that this
event is what's actually waited on when you pass a thread handle to one of the
WaitForSingleEvent family of functions.
1 0h DWORD twExcept
This DWORD is a pointer to the head of the structured exception handling
chain. (Structured exception handling is a whole topic unto itself, so I'll defer
a discussion of it until later in the chapter.) Note that this field also marks
the beginning of a TIB (thread information block) structure nested within the
task database. The TIB structure is also described later in this chapter.

W 1 6 T D B

129

14h DWORD TopOfStack
This DWORD holds the maximum (topmost) address in the stack area allo-
cated for this thread. The typical amount of address space reserved for each
thread's stack is 1MB.
18h DWORD StackLow
This DWORD holds the lowest page aligned address in the stack area that
this thread's stack is using. In a sense, this field is a low water mark -- by
subtracting this field from the TopOfStack field, you can get a sense of how
much stack the thread uses.
1Ch WORD W16TDB
This WORD holds the Win16 global memory handle (essentially, a selector)
for the Win16 task database. As Chapter 7 explains, each process (be it
Win16 or Win32) has both a 16-bit task database segment and a Win32
process database.
1Eh WORD StackSelector16
Win32 code needs to switch to a 16-bit stack before it can thunk down to
16-bit code. This WORD in the thread database holds the selector that
KERNEL32 sets up as the 16-bit stack selector when thunking down to
16-bit code.
20h DWORD SelmanList
A pointer to the SelmanList for this thread. (Selman is short for "Selector
Manager.") The Selman component of KERNEL32 seems to be responsible
for managing lists of selectors that threads can allocate for various uses (for
instance, thunking between 16- and 32-bit code).
24h DWORD UserPointer
The precise meaning of this DWORD is unclear. However, the documentation
for the TIB structure says this field is available for use by application programs.
Remember, the TIB structure is nested within the thread database structure.

28h PTIB p TIB
This field points to the thread information block (TIB) for this thread. In
Windows 95, the TIB is within the thread database, so this pointer points
to another field in this thread database (the pvExcept field at offset 10h,
to be exact).

0 x C 0 0 0 0 0 0 0 ,

130

2Ch WORD TIBFlags
This WORD contains flags for this TIB. These flags are known:

Flag name and bit value Description

TIBF_WIN32 This thread is from a Win32 application.

OxO001

TIBF_TRAP Some sort of exception handling.

OxO002

2Eh WORD Win 16MutexCount
This field is somehow related to the Win16Mutex (which is also known as
the Win16Lock). Normally, this field is -1 for Win32 threads and 0 for
Win16 threads.
30h DWORD DebugContext
If the process associated with this thread is being debugged, this field points
to a debug context structure. The format of this structure is unknown, but it
appears to have register values for the debuggee process in it. If the process
isn't being debugged, this DWORD is 0.
34h PDWORD pCurrentPriority
This field points to a DWORD that contains the current priority level of the
thread. The DWORD that this field points to is above address 0xC0000000,
which places it squarely in VxD land.

38h DWORD MessageQueue
The low WORD of this DWORD holds a Win16 global heap handle for the
thread's message queue. Message queues are how window messages move
through the system; they are described in Chapter 4. This field is closely
related to the W16TDB field at offset 1Ch.
3Ch PDWORD p TLSArray
This pointer points to the thread's TLS array. The entries in this array are
used by the TlsSetValue family of functions. TLS is described later in this
chapter. The actual memory for the TLS array comes a bit later in the
thread database.
40h PPROCESS_DATABASE pProcess2
This DWORD contains a pointer to the process that this thread is associated
with. It seems to always be a duplicate of the pointer at offset 08h in the
thread database.

f C a n c e l E x c e p t i o n A b o r t

131

44h DWORD Flags
This DWORD holds various flags for the thread. The following values

are known:

Flag name and bit value Description

fCreateThreadEvent Set if the thread is being debugged.

OxO0000001

fCancelExceptionAbort

0x00000002

fOnTempStack

0x00000004

fGrowaUeStack

0x00000008

fDelaySingleStep

0x00000010

fOpenExeAslmmovabJeFile

0x00000020

fCreateSuspended CREATE_SUSPENDED flag to CreateProcess.

0x00000040

fStackOverflow

0x00000080

fNestedCleanAPCs APC = Asynchronous Procedure Call

0x00000100

fWasOemNowAnsi A N S I / O E M file functions

0x00000200

fOKToSetThreadOem A N S I / O E M fiJe functions

0x00000400

48h DWORD TerminationStatus
This is the value that would be returned by calling GetExitCodeThread. The
thread exit code is the value returned from the function where thread execu-
tion begins. Alternatively, it can be specified when a thread calls ExitThread
or TerminateThread. While a thread is still actively running, its exit code is
0x103 (STILL_ACTIVE).
4Ch WORD TIBSelector
This WORD is an extremely important field. It contains a selector that refer-
ences the current thread's TIB (thread information block). The TIB contains
vital information, such as the head of the exception handler chain for the

D W O R D

132

thread. As Windows 95 switches between threads, it updates the FS register
to contain this value. By doing this, the current thread can always look up
information about itself by using the memory pointed at by the FS register.

4Eh WORD EmulatorSelector
This WORD might be a selector that points to a block of memory with
information about the current 80387 emulator state for the thread. This
data area probably includes an FSAVE-style structure. On machines using
a math coprocessor, this field is always 0.
50h DWORD cHandles

The meaning of this DWORD is unknown. It appears to always be 0.
54h DWORD WaitNodeList
If the thread is waiting for one or more events to be signaled, this field
points to a linked list of event nodes stored up in VxD land. Each node
holds a pointer to an event object and a pointer to the thread that's
waiting on the event.
58h DWORD un4
The meaning of this DWORD is unknown. It's typically either 0 or 2.
5Ch DWORD Ring0Thread

This DWORD holds a pointer to the ring 0 Thread Control Block (THCB)
for this thread.
60h PTDBX pTDBX
This field points to a TDBX structure. The TDBX structure is VWIN32.VXD's
representation of a thread. The TDBX structure is described in more detail in
Chapter 6.
64h DWORD StackBase
For Win32 threads, this DWORD holds the lowest possible address that the
thread's stack can use. By subtracting this value from the maximum stack
address (offset 14h), you can calculate how much address space has been
reserved for the stack. For Win16 threads, this field is 0.
68h DWORD TerminationStack

Based on its name, this field contains the ESP value that the thread's termi-
nation should initially use. For Win32 threads, this value is the same as the
TopOfStack value (offset 14h). For Win16 threads, this field holds an
address just below the shared KERNEL32 heap.

C u r r e n t S S

6Ch DWORD EmulatorData
Presumably, this field is a 32-bit linear address for the thread's 80387 emula-
tor data. If so, this field is related to the EmulatorSelector field (offset 4Eh).

70h DWORD GetLastErrorCode
This DWORD holds the value that GetLastError returns for the current
thread. This value can be set by calling SetLastError.
74h DWORD DebuggerCB
If a thread is acting as a debugger thread (that is, if it's calling WaitFor-
DebugEvent), this field contains a pointer to a block of information used by
the debugger. The information in this field includes pointers to the debugger's
process database, thread database, and the debuggee's thread database.
78h DWORD DebuggerTbread
If this thread is being debugged, this field contains a non-NULL value. The
meaning of the value isn't known because it's too low to be a valid pointer.
7Ch PCONTEXT TbreadContext
This pointer points to an Intel CONTEXT structure as defined in WINNT. H.
This structure holds the register values for the thread when the thread isn't
the currently running thread. This structure is read from and written to with
the GetThreadContext and SetThreadContext functions. This field is only
non-zero when the process is being debugged.
80h DWORD Except16List
The exact meaning of this DWORD is unknown, although from the name,
it would appear to have something to do with exception handling. In my
tests, it was always 0.
84h DWORD ThunkConnect
The exact meaning of this DWORD is also unknown. From the name, you
might think it has something to do with thunking. In my tests, it was always 0.
88h DWORD NegStackBase
If you add the value of this field to the StackBase field (offset 64h), you'll
get FFEF9000. Don't ask me why.
8Ch DWORD CurrentSS
This DWORD holds a 16-bit stack selector for thunking from 32-bit code
down to 16-bit code. This field appears to be related to the very similar
StackSelector16 field (offset 1Eh). The difference in usage between the two
fields is currently unknown.

133

134

90h DWORD SSTable
This field is a pointer to a memory block containing information about the
16-bit stack to be used when thunking down to 16-bit code.

94h DWORD ThunkSS16
This DWORD contains yet another selector value used for thunking. In some
threads, it matches the value in the StackSelectorl6 field (offset 1Eh), while
in other threads it has the same value as the CurrentSS field (offset 8Ch).
98h DWORD TLSArray[64]
The TLSArray field is an array of 64 DWORDs. Each DWORD holds the
value that TLSGetValue returns for a given TLS ID. For instance, the first
DWORD in the array is returned by TLSGetValue(0). The second DWORD
is returned by TLSGetValue(1), and so on. TLS is described in a subsequent
section of this chapter.
198h DWORD DeltaPriority
This DWORD holds the difference in priority of this thread as compared to
the priority class of the owning process. Typical values for this field would be:

THREAD_PRIORITY_LOWEST -2
THREAD_PRIORITY_BELOW_NORMAL - 1
THREAD_PRIORITY_NORMAL 0
THREAD_PRIORITY_HIGHEST 1
THREAD_PRIORITY_ABOVE_NORMAL 2

19Ch DWORD un5[7]
This stretch of DWORDs appears to always be 0. The meanings are unknown.

1B8h DWORD pCreateData16
If nonzero, this field points to a structure with two 32-bit pointers:

00h pProcesslnfo -- a PPROCESS_INFORMATION
04h pStartuplnfo -- a PSTARTUPINFO

In all my testing, however, the pCreateData16 pointer was always 0.
1BCh DWORD AHSuspendCount
This field is incremented each time SuspendThread is called and decremented
each time ResumeThread is invoked.

D W O R D

135

1C0h DWORD un6
The meaning of this DWORD field is unknown.
1C4h DWORD WOWChain
This field presumably has something to do with WOW (Windows On
Windows) support in Windows 95. WOW is the method by which
Windows NT runs 16-bit applications in their own protected address
space, which keeps them from potentially crashing 32-bit applications.
The field was always 0 during testing.
1C8h WORD wSSBig
Based on the name, this field contains a flat 32-bit selector for use as a stack
segment. However, the field was always 0 during testing.

1CAh WORD un7
The meaning of this WORD is unknown. It may be just filler to keep the
subsequent fields DWORD aligned.
1CCh DWORD Ip16SwitchRec
The meaning of this DWORD is unknown, but based on the name, it probably
has some connection to Win16 thunking.
1D0h DWORD un8[5]
These five DWORDS appear to always be 0. Their meaning is unknown.
1E4h DWORD pSorneCritSect1;
This field points to a critical section object (K32OBJ_CRITICAL_SECTION).
The critical section is different for each process. The purpose of this particular
critical section is unknown. This field seems to always have the same value as
pSomeCritSect2 (described below).
1E8h DWORD pWin16Mutex;
This pointer points to the Win16Mutex in KRNL386.EXE.
1ECh DWORD pWin32Mutex;
This pointer points to the Krn32Mutex in KERNEL32.DLL.
1F0h DWORD pSomeCritSect2;
This field points to a critical section object (K32OBJ_CRITICAL_SECTION).
The critical section is different for each process. This field seems to always
have the same value as pSomeCritSectl (described earlier in the structure).

2 0 0 h

136

1F4h DWORD un9
This DWORD's meaning is currently unknown. It appears to always be
set to 0.
1F8h DWORD ripString
From the name, you might think this field is a PSTR for a string that will be
used during a FatalAppExit RIP. However, in almost all cases, this field is 0,
and when nonzero, it doesn't point to a character string.
200h DWORD LastTlsSetValueEIP[64]
This array of 64 DWORDs is a parallel array to the primary TLS array at
offset 98h in the thread database. Each DWORD in this array corresponds
to a TLS index value, and each contains the EIP where the corresponding
TLS indexed value was last set from. The EIP value is retrieved from the
stack frame set up by TlsSetValue.

A final note on the thread database: There's more than one way to get a
pointer to a thread database. Besides the XOR'ing trick I alluded to earlier,
each Win16 task database also contains a pointer to a thread database. At
offset 54h in a Winl6 task database is the linear address of the thread database
for the task/process's first thread.

THE THREAD INFORMATION BLOCK (TIB)
Within the thread database, certain fields are immensely useful to running
programs. In fact, they're so useful that the Win32 architecture makes them
immediately accessible without looking them up in the thread database
structure. These fields are encompassed in a structure called the Thread
Information Block (or TIB, as KERNEL32 refers to it). The fields of a
Windows 95 TIB encompass offsets 10h through 3Ch in a thread database.

How does application code access the TIB? If you've looked at much
assembly language output for compiled Win32 code, you've probably
noticed that the FS segment register is used quite a bit. Wait a minute! Isn't
Win32 supposed to remove segments from the programming picture?
Although the answer is yes, under the hood the Win32 architecture
(Windows NT, Windows 95, and Windows Win32s) dedicates the FS
register to pointing at the thread information block for the current thread.
As it turns out, Win32 wasn't the first operating system to do this. OS/2 2.0
did it long before Win32 arrived on the scene. As you might suspect, when
Windows 95 switches threads, the scheduler has to update the FS register to
contain the selector that points to the new thread's TIB.

F S

137

The primary use of the FS register and the TIB is to add entries to the
structured exception handling chain (which I'll describe later in the chapter).
The head of the structured exception handling chain is at offset 0 in the TIB,
so when you see assembler code using FS:[0], you know it's doing something
related to structured exception handling.

Two other fields in the Windows 95 TIB that are used quite extensively
are the pvQueue and pvTLSArray fields (offsets 28h and 2Ch, respectively).
The pvQueue field contains the queue handle for the current thread's message
queue. This field is used frequently by USER.EXE's windowing system code,
because in Windows 95 things like the focus window are stored on a per-thread
basis. The pvTLSArray field points to the thread local storage array in the
thread databases. The compiler vendors use it in conjunction with the .tls
section in the executable file to provide transparent per-thread global variables.

Although the layout of the TIB structure can be inferred from the thread
database structure, it bears a brief summarization here. A C structure
definition can be found in TIB.H from the WIN32WLK sources. A formal
Microsoft definition for the first couple of items is in the NTDDK.H file
from the Windows NT 3.5 DDK (along with a stern warning that the fields
must be compatible with OS/2 2.0). This is apparently a remnant from the
early days of NT, when Microsoft was still trying to give the impression that
it cared about OS/2. (See Z. Pascal Zachary's book Showstopper for some
interesting stories on this particular topic.)

The TIB fields in Windows 95 are as follows:

00h DWORD pvExcept
04h DWORD TopOfStack
08h DWORD StackLow
0Ch WORD W16TDB
0Eh WORD StackSelector16
10h DWORD SelmanList
14h DWORD UserPointer
18 h PTIB pTIB
1Ch WORD TIBFlags
1Eh WORD Win16MutexCount
20h DWORD DebugContext
24h PDWORD pCurrentPriority
28h DWORD MessageQueue
2Ch PDWORD pTLSArray
30h DWORD pProcess (process database pointer)

1 0 h

138

For a description of each of the fields, add 10h to the offset and look up
that offset in "The Thread Database" section earlier in the chapter. Note
that only some of these fields are common across all Win32 platforms.

THREAD PRIORITIES

The core scheduler in the Windows 95 Virtual Machine Manager (VMM)
has no real knowledge of processes. Instead, it concentrates on scheduling
the threads with the highest priority, without regard to what process they're
in. Put another way, processes don't really have a priority. Still, to the end-
user of these thread scheduling services (that is, to the application program-
mer), it's a useful abstraction to think of processes as having a priority. The
SetPriorityClass and SetPriorityClass functions act as interpreters between
the two views of process/thread priorities.

At any given time, the thread with the highest priority that isn't wait-
ing on something is the thread that's going to be run. To ensure a smoothly
running system and prevent many problems, the system changes the
priority of threads on the fly. For instance, a thread's priority may be
temporarily boosted when an I/O operation it's waiting for completes.
Going into thread scheduling in any more detail than this could easily
require a large chapter of its own. Therefore, I'm going to put off a
detailed discussion of thread priorities for another book (or perhaps a
future magazine article).

Within the Windows 95 VMM scheduler, there are 32 distinct priority
levels. These 32 levels are broken into four groups, known as priority
classes. Each priority class is associated with a specific priority level that is
the default priority for threads of that priority class. Within the priority
class, threads can vary from two below the default priority to two above.
(There are also some special cases such as THREAD_PRIORITY_LEVEL,
where a thread's priority can be bounced entirely out of its priority class.)
Unless specifically instructed to do otherwise, when the operating system
creates a process, the new process is given the
NORMAL_PRIORITY_CLASS.

The four priority classes, their default priority values, and their range of
priority values are as follows:

p t d b ;

139

Priority Default value Range of priority level

IDLE_PRIORITY_CLASS 4 2 - 6

NORMAL_PRIORITY_CLASS 9 or 7 6 - 10

(9 if foreground process;

7 otherwise)

HIGH_PRIORITY_CLASS 13 11 - 15

REALTIME_PRIORITY_CLASS 24 16 - 31

The thread priority of 1 is a special case. Threads that are nominally
of the IDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS, or
HIGH_PRIORITY_CLASS can be set to priority level I via the
SetPriorityClass function.

As a side note on Windows 95 priority levels, the 32 levels in the
Windows 95 scheduler don't correspond numerically to the values for the pri-
ority classes in WINBASE.H. For example, NORMAL_PRIORITY_CLASS is
0x20 in WINBASE.H. Windows 95's KERNEL32.DLL maps these values to
the appropriate Windows 95 thread scheduler priority value.

GetThreadPriority
GetThreadPriority is a simple function. Given a thread handle (which can
be for any thread in any process), the code converts the handle into a
pointer to the process database for that thread. Assuming the handle con-
version went smoothly, GetThreadPriority returns the value of the
DeltaPriority field (offset 198h) in the thread database. All this code is
wrapped by an EnterSysLevel and LeaveSysLevel to prevent problems with
an inopportune thread switch.

Pseudocode for GetTbreadPnonty

// Parameters:

// HANDLE hThread:

// Locals:

// PTHREAD_DATABASE ptdb;

// DWORD retValue;

x_LogSomeKernelFunction(function number for GetThreadPriority);

_EnterSysLevel(pKrn32Mutex);

S e t T h r e a d P r i o r i t y

140

retValue = Ox7FFFFFFF;

ptdb = x_ConvertHandleToK320bject(hThread, 0x20.

if (ptdb)

retValue = ptdb->DeltaPriority;

LeaveSysLevel(pKrn32Mutex);

0);

Set Th read Priority
The SetThreadPriority code is broken up into four parts. First, the function
converts the thread handle into a thread database pointer. Second,
SetThreadPriority validates the passed-in new priority to see if it's within the
allowable range. Third, the code uses the internal CalculateNewPriority func-
tion to convert the input priority parameter into one of the 32 thread priori-
ties used by the Windows 95 scheduler. We'll look at CalculateNewPriority
in the next section.

Finally, SetThreadPriority calls VWIN32.VXD to inform the ring 0
components of the new priority. The mechanism by which KERNEL32
calls into ring 0 is the VxDCall functions (for example, VxDCall0). Ring 3
components invoke Win32 VxD services by using VxDCall. In this case,
VWIN32.VXD provides a ring 3 callable service to set a thread's priority.
Win32 VxD services are new in Windows 95 and play a key part in the ring
0-ring 3 interactions. In fact, the new Windows 95 Win32 VxD services
are so important that much of Chapter 6 is devoted to describing them.
Because Win32 VxD services will be covered thoroughly a bit later in the
book, I won't dwell on the actual mechanics of VxDCall in this chapter.

Pseudocode for SetThreadPriority
// Parameters:

// HANDLE hThread

// int nPriority;

// Locals:

// PTHREAB DATABASE ptdb;

// DWDRD retValue;

x_LogSomeKernelFunction(function number for SetThreadPriority);

EnterSysLevel(pKrn32Mutex);

x _ C o n v e r t H a n d l e T o K 3 2 0 b j e c t (

141

ptdb = x_ConvertHandleToK320bject(hThread, 0x20, 0);

if (ptdb)

{

if ((nPriority < THREAD_BASE_PRIORITY_MIN)

&& (nPriority > THREAD_BASE_PRIORITY_MAX))

if(

{

(nPriority != THREAD_BASE_PRIORITY_LOWRT)

&& (nPriority != THREAD_BASE_PRIORITY_IDLE))

InternalSetLastError(ERROR_INVALID_PRIORITY);

goto error;

ptdb->DeltaPriority = nPriority;

if (ptdb->RingOThread)

DWORD newAbsPriority = CalculateNewPriority(ptdb, ptdb->pProcess2);

// Call into VWIN32 to do the real work.

// Set_Thread_Win32_Pri == OxOO2A0021

VxDCallO(Set Thread_Win32_Pri, ptdb->RingOThread, newAbsPriority)

retValue = TRUE;

else
{

error:

retValue = FALSE;

_LeaveSysLevel(pKrn32Mutex):

return retValue;

CalculateNewPriority
The CalculateNewPriority function encapsulates the rules for thread priorities
in the Windows 95 scheduler. Given a process and a thread, it calculates the
priority level (within the range of 1 - 31) that the thread should have. From
the process database, the function extracts the priority class for the thread

u p p e r L i m i t

142

(normal, idle, high, or realtime). To this base priority, it adds the thread's
delta priority. The delta priority is typically in the range of +- 2. After adding
the priority class priority to the thread's delta priority, the code makes sure the
new priority is within the expected bounds. It's worth noting that realtime pri-
ority threads get special handling here; that's because the range of realtime
priority levels is greater than the ranges of the other priority classes.

Pseudocode for CalculateNewPriority

// Parameters:

// PTHREAD_DATABASE ptdb;

// PPROCESS_DATABASE ppdb;

// Locals:

// DWORD baseProcPri

// DWORD sum

// DWORD upperLimit, lowerLimit

baseProcPri = ppdb->BasePriority;

if baseProcPri != 4) &&

baseProcPri != 8) &&

baseProcPri != 13) &&

baseProcPri != 24))

x_Assertion2(" ..\priority.c");

sum = ptdb->DeltaPriority + ppdb->BasePriority;

if (ppdb->BasePriority == 24) // Real time class thread?

{

upperLimit = 31

lowerLimit = 16

}

else // Other priority class.

{
upperLimit = 15

lowerLimit = 1

}

if (upperLimit >= sum)

upperLimit = sum

if (lowerLimit <= upperLimit)

return upperLimit;

else

return lowerLimit;

r e t V a l u e

143

SetPriorityClass
The SetPriorityClass function lets the caller change the priority class for all the
threads of a process. The function starts by converting its hProcess parameter
into a PPROCESS_DATABASE pointer. Using the pointer, the function deter-
mines the process's current priority class. If it's the same as the new priority
class, the function bails out because there's nothing to be done.

If the new priority class is different from the previous class, SetPriorityClass
plugs the default value for the new priority class into the BasePriority field of
the process database. But wait, there's more! Earlier, I mentioned that the
notion of process priority classes is just an illusion, since the VMM scheduler
concerns itself only with threads, and not with processes. To bridge the two
views of priority levels, SetPriorityClass loops through each of the threads in
the process and calls into VWIN32.VXD to set the new priority for each
thread.

There's one slight twist to note here. Threads can have priorities that
differ slightly from the default class priority. This difference is kept in the
"DeltaPriority" field of the thread database (we'll look at this field later).
SetPriorityClass has to take into account each thread's priority delta when
calculating the new priority value for the thread. The CalculateNewPriority
function (just described) does this calculation.

Pseudocode for SetPriorityClass

// Parameters:

// HANDLE hProcess

// DWORD fdwPriority

// Locals:

// BOOL retValue

// PPROCESS_DATABASE ppdb;

// PTHREAD_DATABASE ptdb;

// DWORD newPriority

// PK320BJECTLISTENTRY pKB20bject;

x_LogSomeKernelFunction(function number for SetPriorityClass);

_EnterSysLevel(pKrn32Mutex);

ppdb = x_ConvertHandleToK320bject(hProcess, 0x10, 0);

if (ppdb)

{

retValue = TRUE;

f d w P r i o r i t y

144

if (fdwPriority == NORMAL_PRIORITY_CLASS)

goto SetNormal;

if (fdwPriority == IDLE_PRIORITY_CLASS)

goto SetIdle;

if (fdwPriority == REALTIME_PRIORITY_CLASS)

goto SetHigh;

if (fdwPriority == HIGH_PRIORITY_CLASS)

goto SetRealTime;

// None of the allowable priorities was specified, so bomb out.

retValue = FALSE;

InternalSetLastError(ERROR_INVALID_PRIORITY);

goto done;

SetNormal:

if (ppdb_>BasePriority == 8)

goto done;

ppdb->BasePriority = 8;

goto SetIt;

// No change from previous state?

SetIdle:

if (ppdb->BasePriority == 4)

goto done;

ppdb->BasePriority = 4;

goto SetIt;

// No change from previous state?

SetHigh:

if (ppdb->BasePriority == 13) // No change from previous state?

goto done;

ppdb->BasePriority = 13;

goto SetIt;

SetRealTime:

if (ppdb->BasePriority == 24) // No change from previous state?

goto done;

ppdb->BasePriority = 24;

SetIt:

// Start looping through all the threads for this process.

pK320bject = x_GetNextObjectInList(ppdb->ThreadList, 0);

while (pK320bject)

{
ptdb = pK320bject->pObject;

p K r n 3 2 M u t e x

145

if (ptdb->Ring0Thread)

I

// Calculate the new priority , taking into account the

// process's base priority and the thread's relative priority

newPriority = CalculateNewPriority (ptdb , ppdb) ;

// Call into VWIN32 to do the Dirty Deed (Done Dirt Cheap).

// VxDCall ID == 0x002A0021

VxDCall0(Set_Thread_Win32_Pri, ptdb->RingSThread, newPriority);

pK320bject = x_GetNextObjectInList(ppdb->ThreadList, 1);

}

I

else

{

retValue = FALSE;

}

done:

_LeaveSysLevel(pKrn32Mutex);

return retValue;

GetPriorityClass
The GetPriorityClass function returns the priority class for the specified
process. After changing the hProcess parameter into a PPROCESS_
DATABASE, the function retrieves the priority class from the process
database. This priority level should be in the range of 1 - 31, which is
different from the xxx_PRIORITY_CLASS #define's in WINBASE.H.
Therefore, GetPriorityClass converts the VMM scheduler priority level
into the corresponding xxx_PRIORITY_CLASS flag.

Pseudocode for GetPnontyClass

// Parameters:

// HANDLE hProcess

// Locals:

// DWORD retValue;

x_LogSomeKernelFunction(function number for GetPriorityClass);

A P I s

146

retValue = 0;

EnterSysLevel(pKrn32Mutex);

ppdb = x_ConvertHandleToK320bject(hProcess, 0x10, 0);

if (ppdb)

{

if (ppdb_>BasePriority == 4)

retValue = IDLE_PRIORITY_CLASS;

else if (ppdb->BasePriority == 8)

retValue = NORMAL_PRIORITY_CLASS;

else if (ppdb->BasePriority == 13)

retValue = HIGH_PRIORITY_CLASS;

else if (ppdb->BasePriority == 24)

retValue = REALTIME_PRIORITY_CLASS;

_LeaveSysLevel(pKrn32Mutex);

return retValue;

THREAD EXECUTION CONTROL

The Win32 API provides a small set of APIs for modifying and querying the
execution status of other threads. At a low level, one thread can read and
write the registers of another thread (assuming the first thread has a valid
handle for the other thread). On a broader level, there are Win32 functions
that let you freeze and thaw the execution of other threads. Let's look at
these thread control functions now.

GetThreadContext and IGetThreadContext
GetThreadContext enables one thread to obtain a copy of the register values
of another thread. At any given time, a thread is either executing or is sus-
pended. While a thread is in the suspended state, its register values are kept
in a data structure known as a thread context. The GetThreadContext func-
tion lets you read the values in a suspended thread's thread context structure.
As input, SetThreadContext takes a copy of a thread context structure (a
CONTEXT in WINNT. H).

p t d b ;

147

The actual GetThreadContext is just a parameter validation layer. It verifies
that the pointer passed in points to memory of sufficient size to hold a
CONTEXT structure. If so, the code jumps to the internal IGetThreadContext
routine.

IGetThreadContext is a convoluted routine. It starts by converting the
hThread parameter into a thread database pointer. Then, it calls the
x_ThreadContext_CopyRegs to copy the input register set into the ring 3
CONTEXT structure for the thread. (x_ThreadContext_CopyRegs is
described in the next section.) In addition to copying the register in the ring
3 CONTEXT structures, IGetThreadContext also calls into VWIN32.VXD
to get the ring 0 version of these register. The reasons why there are both ring 0
and ring 3 versions of the registers isn't entirely clear.

After filling in the input CONTEXT structure, GetThreadContext verifies
that the CS and flags registers contain valid values. (In this case, valid means
that the CS register is set to the selector used to execute ring 3 code.) The flags
register test is a simple check to make sure the V86 mode flag isn't on.

Pseudocode for GetThreadContext

// Parameters:

// HANDLE hThread

// LPCONTEXT lpContext

Set up structured exception handling frame

Touch the first and last bytes that lpContext point to.

If a fault occurs, it's considered a bad pointer, and the exception

handler returns FALSE;

Remove structured exception handling frame

goto IGetThreadContext;

Pseudocode for IGetTbreadContext

// Parameters:

// HANDLE hThread

// LPCONTEXT lpContext

// Locals:

// PTHREAD_DATABASE ptdb;

// BOOL retValue

// DWORD errCode;

l p C o n t e x t

148

retValue = TRUE;

x_CheckNotSysLevel_Win16_Krn32_mutexes();

x_LogSomeKernelFunction(function number for GetThreadContext);

EnterSysLevel(pKrn32Mutex);

ptdb = x_ConvertHandleToK320bject(hThread, 0x20, O);

if (!ptdb)

{

retValue = FALSE;

}

else // Found a valid process database.

{
// Is there a valid ThreadContext field in the thread database?

if (ptdb->ThreadContext)

x_ThreadContext_CopyRegs(lpContext->ContextFlags,
pdtb->ThreadContext, lpContext);

else // ThreadContext is 0 in the thread database.

{
if (ptdb->DebugContext && ptdb->DebugContext. SomeField)

// Are floating point or debug regs specified?

if (lpContext->ContextFlags
& (CONTEXT_FLOATING_POINT | CONTEXT_DEBUG_REGISTERS))

{

ptdb->DebugContext.ThreadContext.ContextFlags

= (CONTEXT_FLOATING_POINT | CONTEXT_DEBUG_REGISTERS)

// Call VWIN32 to do the copying.

// _VWIN32_Get_Thread_Context == 0x002A0814

retValue = VxBCallO(_VWIN32_Get_Thread_Context,

ptdb->Ring0Thread,

&ptdb->DebugContext.ThreadContext)

if (retValue == 0)

goto error;

x_ThreadContext_CopyRegs(lpContext->ContextFlags,
&ptdb->DebugContext.ThreadContext,

lpContext);

USER AND GDI
SUBSYSTEMS 4

I
t's a bit strange to start out a chapter with an apology, but
that's exactly what I'm about to do. As the chapter title

implies, I'm going to dig into and describe various facets of the
Windows 95 USER and GDI components. The USER module
contains all the code responsible for passing messages around
the system and for managing windows. GDI is the core of the
Windows graphics system. Putting a window on the screen
requires an intense amount of cooperation between USER and
GDI. Therefore, as you can probably imagine, describing just
the topmost layer of the USER and GDI modules could easily
encompass two books. That's why I'm going to beg off even
attempting to describe how USER and GDI do much of their
magic. Instead, this chapter focuses on how the Windows 95
USER and GDI modules have evolved from their 16-bit
Windows 3.1 roots and have drawn from the Windows NT
USER and GDI components.

Windows 95 features significant new USER and GDI-like
functionality (such as the new common controls) that I can't
even hope to cover in this book. I even half-jokingly suggested
to my technical reviewer that there's probably a market for a
book titled something like WndProc Internals. In that (purely
hypothetical) book, there'd be detailed pseudocode listings for
all the standard system window procedures (for example, the

186

button window, the tooltips windows, and so on). The closest we'll come to
that topic in this chapter is the desktop window procedure, for which I'll
show pseudocode a bit later on.

So, given that you now know what's not going to be covered, what
exactly is there to talk about? Lots, as it turns out. Just reimplementing the
basic code of the Windows 3.1 USER and GDI to accommodate the demands
of the Win32 APl put these modules through gut-wrenching changes. If you're
basically comfortable in your understanding of the way things worked under
Windows 3.1, this chapter should help you make a transition in your mental
model to the new way things work in Windows 95. I'm going to partition the
chapter into two major parts (yes, you guessed it: USER and GDI). The USER
portion of this chapter turned out to be much larger because USER's changes
were more dramatic. Plus, once you understand Windows 95's changes to
USER, it's not much harder to grasp how GDI has changed.

THE WINDOWS 95 USER MODULE

Throughout the writing of this book, I've struggled to categorize the changes
to USER into neat compartments. As it turns out, the changes to the USER
subsystem can't easily be placed into one or two specific categories. The
Windows 95 USER component is neither fish nor fowl. The vast majority of
the code for the messaging system resides in the 16-bit USER.EXE file, yet there
is 32-bit code scattered throughout this 16-bit module. Some parts of the
16-bit USER.EXE are virtually identical to Windows 3.1, while other pieces
have been radically reworked and bear no resemblance to the 3.1 USER.

The USER component of Windows 95 also includes the 32-bit
USER32.DLL that Win32 EXEs and DLLs interface with. You may have
heard that USER32.DLL is just a bunch of thunks down to the 16-bit
USER.EXE. Although the vast majority of functions in USER32 are just
thunks to 16-bit code, there are also nontrivial functions implemented in
USER32.DLL with nary a thunk in sight. We'll see several examples of this
later on.

Trying to put neat boxes around the design and implementations of the
16-bit USER.EXE and 32-bit USER32.DLL just doesn't seem possible. The
best that I can say is that the Windows 95 coders did their best to balance
the twin goals of backward compatibility and adherence to the Win32
specification as set forth by Windows NT. In many cases, backward com-
patibility and Win32 APl adherence are at odds with one another. This

187

resulted in the inevitable design compromises and decisions that nobody is
particularly happy with. ("Class, can you say Win16Mutex?") All things
considered, though, I think the Windows 95 USER team did an admirable
job of balancing the twin requirements of compatibility and the Win32 API.
I doubt many programmers would want to take on such a task for themselves,
nor would they do as good a job.

To get a feel for the Windows 95 USER component, it helps to look at
USER in Windows 95's Win32 siblings. The Windows NT USER is fully
32 bit, and its primary requirement is to properly implement the Win32
APl. Backward compatibility is nice but not absolutely essential. The 16-bit
USER.EXE component in Windows NT is implemented by thunks up to
the real USER code in NT's USER32.DLL.

On the other side of Windows 95, the (mostly forgotten) Win32s attempts
to provide as much of the Win32 API as possible while residing atop the relent-
lessly 16-bit Windows 3.1 USER.EXE. No changes to the 16-bit USER.EXE
are allowed for Win32s. The poor Win32s coders had to live with the majority
of their base code being frozen a year before the initial version of Win32s
shipped. (Talk about requirements being cast in stone!)

So where does the Windows 95 USER system fall between these two
points? While the Win32 purists (myself included) would have liked to have
seen Windows 95 go the Windows NT route, it wasn't an option. Windows
95 is intended as the mass-market successor to Windows 3.1, and sacrificing
backward compatibility simply wasn't an option. There are just too many
existing programs out there that rely on the idiosyncrasies and quirks of the
16-bit USER.EXE. (A typical Microsoft comment at this point would be
"See, we told you not to use undocumented stuff!")

Besides introducing incompatibilities with existing programs, Microsoft
makes another case for keeping the core of USER's functionality in the 16-bit
USER.EXE. Specifically, code size. In general, 32-bit code takes up more
space because of the increased size of the operands for many instructions.
(To be fair, this particular issue has been hotly debated, and one can come
up with numerous examples where a particular operation can be imple-
mented in fewer bytes by using 32-bit instructions.) On the whole, however,
the Microsoft coders felt that reimplementing USER's functionality in pure
32-bit code would bloat the code size by something like 40 percent. Given
that Windows 9.5 is supposed to run just as badly on a 4MB machine as
Windows 3.1 (oops, the Microsoft marketeers would want me to say "just
as well"), redoing USER as pure Win32 code (as Windows NT did) wasn't
an option for Windows 95.

188

So, given that a real Win32 USER subsystem was out, the Windows 95
team did the next best thing. They started with the Windows 3.1 USER.EXE
code and, unlike the Win32s team, were allowed to modify it. Since
Windows 95's design necessitates at least an 80386, the Windows 95 USER
team went hog wild with USER.EXE. There are 32-bit instructions all
throughout USER.EXE's 16-bit code segments. (That's why you find so many
size-override opcodes (66h) in the Windows 95 USER.EXE code segments.)

The fact that USER.EXE uses 32-bit data offsets throughout much of its
16-bit code bears a closer look. Much of USER's code is written in C, and,
as you probably know, C compilers for the PC use memory models when
generating their code. A regular 16-bit C compiler like Borland C++ emits
16-bit code instructions, which use segments and access data with 16-bit
offsets. Even if the 16-bit compiler is allowed to generate 32-bit instructions,
the generated code still won't generate instructions that index more than
64K into a segment.

In contrast, 32-bit compilers use the flat memory model. In the flat model,
PC C compilers forget that segments exists. The code they generate never
explicitly references the code selector, data selector, or stack selectors (the
CS, DS, and SS registers). The code in Windows 95's USER.EXE looks like
a hybrid of the 16-bit and flat memory models. That is, USER.EXE's code
resides in 16-bit segments, and the code explicitly uses segment registers. On
the other hand, the USER code also contains instructions that address more
than 64K into a segment. Consider the following code snippet from
USER.EXE:

1ACA: NOV AX,SEG 0021:0000

1ACD: NOV ES,AX

1ACF: NOV EAX,ES:[062E]

1AD4: CMP WORD PTR ES:[EAX+46],BX

1AD9: JNE 1ADC

1ADB: RET

The size of the instructions (such as the 3-byte first instruction) prove
that this is 16-bit code. The first two instructions explicitly set up a segment
register to grab a global variable at offset 062Eh in USER's DGROUP. But
then the fourth instruction uses the EAX register as part of an address
calculation. In actual execution of this code, EAX does in fact contain a
value greater than 128K. Never before have I seen a compiler that can generate
what is fundamentally 16-bit code at the same time it uses 32-bit offsets to
data. It makes me wonder if the Windows 95 USER team used a special
compiler developed by the languages division of Microsoft. (Update: An

189

unnamed source told me after I had already written this chapter that such a
compiler actually exists at Microsoft.)

Although many changes to the 16-bit USER.EXE were made simply to
provide increased capacity (since running out of heap space was a chronic
Windows 3.1 problem), many of the changes in the 16-bit USER.EXE were
made solely to support the demands of the Win32 APl. (Put another way,
the Windows 95 team had to catch up to the NT team.) For example, the
Win32 AttachThreadInput function, which associates the input state of one
thread with that of another thread, has no Win16 counterpart. There simply
wasn't anything even remotely like it in any prior 16-bit version of Windows.
Yet Windows 95's 16-bit USER.EXE dutifully contains code that implements
AttachThreadInput. USER.EXE is a modest DLL and doesn't export
AttachThreadInput, yet USER32.DLL does support it. If you look closely,
though, the AttachThreadInput code in USER32.DLL is little more than a
thunk down to USER.EXE. USER32.DLL gets all the glory for providing
its part of the Win32 APl, while the Cinderella 16-bit USER.EXE does all
the work.

Yet another example of where the 16-bit USER.EXE acts on behalf of its
Win32 counterpart is with resources. As you'll see in Chapter 8, the resources
stored in a Win32 Portable Executable (PE) file are organized in a completely
different format than in the 16-bit New Executable (NE) file layout. Yet, as
Chapter 7 shows, the 16-bit NE module database that Windows 95 creates
for 32-bit modules contains a pointer to the base of the resources within the
Win32 module in memory. Here's why: The 16-bit USER.EXE has taken on
the burden of supporting both the old 16-bit NE format resources as well as
the new Win32 PE format resources. The resources-related functions in
USER32.DLL are relegated to the role of thunking down to USER.EXE.

USER32 thunking example
Since I'm on the subject of thunking, now is a good time to explain how
thunking works in Windows 95. Windows 95 relies heavily on thunks
between 16- and 32-bit code, so to really understand the Windows 95
architecture, there's no avoiding thunks. Let's look at an example of a
typical function that USER32 uses to thunk clown to the 16-bit USER.EXE.
The function I've chosen to show is SetFocus. SetFocus takes one parameter,
and this parameter (an HWND) doesn't require any translation of its value
to be used by the 16-bit code. (In Windows NT, this is a different story
altogether, but that's a subject for some future book.)

190

The SetFocus function

The SetFocus function in USER32 is similar to many other USER32 functions
that thunk down to USER.EXE. In the debug version of USER32, the code
starts out by calling a logging function. If a particular flag is set somewhere
in USER32's data area, this function emits the string "[F] SetFocus' to the
debug port. The important part of the USER32 SetFocus code is loading the
CL register with an index into what is essentially a jump table of 16:16
addresses. In the case of SetFocus, the index value is 0x7E. That means that
the 0x7E'th entry in the table is a 16:16 pointer to the 16-bit version of
SetFocus.

After loading CL with 0x7E, SetFocus JMPs to a small routine that I've
named ThunkToUSER16_One_Param. This small code is a common entry
point for USER32 routines that take one parameter and thunk down to the
16-bit USER.EXE. All that ThunkToUSER16_One_Param does is push the
calling function's parameters and thunk index onto the stack and then call
another routine that I've named CommonThunk (and described next).

Pseudocode for SetFocus (32 -> 16)

LogWin16ThunkFunction1("[F] SetFocus"):

CL = 0x7E // Thunking index for SetFocus.

goto ThunkToUSER16_One_Param

Pseudocode for ThunkToUSER16_One_Param

// Parameters:

// DWORD param1

// DWORD thunkIndex // Actually in GL register.

return CommonThunk(param1, thunkIndex);

The CommonThunk code is so simple that trying to express it in C
pseudocode would actually obscure its operation. For some unknown rea-
son, the code for this routine resides in USER32's data area. Perhaps this
code is built on the fly during startup. In any event, the routine's operation
is extremely simple. First, it takes the thunk index (for example, 0x7E for
the SetFocus function) and uses it as an array index into a table of 16:16

191

pointers. The routine retrieves the appropriate 16:16 address out of the
array and places that into the EDX register. Finally, CommonThunk JMPs
to the QT_Thunk routine in KERNEL32.DLL (which is described next).

Code for CommonThunk

// This code actually resides in USER32's data area.

XOR ECX,ECX

MOV CL,[EBP - 04]

;; 0 out ECX.

;; Grab the thunk index (pushed by

;; ThunkToUSER16_One_Param).

MOV EDX,[8014E264+4*ECX] ;: Index into the array of 16:16 pointers

;; into the 16 - bit DLLs. Put the appropriate

:; 16:16 pointer (e.g., SetFocus) into EDX.

MOV EAX,offset KERNEL32!QT_Thunk ;; Jump to the QT_Thunk routine

JMP EAX ;; in KERNEL32.DLL.

The QT_Thunk function

The QT_Thunk function is exported from KERNEL32.DLL. QT_Thunk is
a general-purpose function that's used by Win32 code that needs to thunk
down to Win16 code. In other words, its use isn't restricted to just KERNEL32
or USER32. In fact, if you look at the assembler output from the Win32
SDK's thunk compiler (THUNK.EXE), you'll see that it references and uses
the QT_Thunk routine.

The QT_Thunk routine is quite obviously coded in assembler and is
optimized for both space and speed. I briefly debated showing the raw
assembler version of the function in this section. However, it quickly became
obvious that the code would be impenetrable except to a very small group of
assembler hackers. Therefore, what you'll see in the following pseudocode is
a mix of C pseudocode and assembler. I did my best to convey the intent of
a fairly complex routine. If you really want to see what goes on, by all
means, set a breakpoint on QT_Thunk in SoftIce/W (or some other system
debugger) and step through it. I guarantee that you won't wait long for the
breakpoint to be hit.

Looking at the routine from orbit (as a certain Microsoft employee
would say), the job of QT_Thunk is simple: Take the 16:16 address passed
into it in the EDX register and transfer control to that address. Of course,

192

nothing is ever that simple, and there are other issues that need to be taken
care of. For starters, saving away the address that execution should return
to after the 16-bit code finishes would be very helpful. Likewise, it's a very
good idea to switch the stack from a flat 32-bit stack selector to a 16-bit
selector.

Moving in a bit closer to the routine (a "helicopter view," if you will),
QT_Thunk is divided into five distinct phases. First, in the debug version,
the code calls a routine that logs the call (assuming the right logging flag is
set, which it usually isn't). This section of code also verifies that the Thread
Information Block (TIB) selector (see Chapter 3) is the same as the FS register.
If not, the routine complains (in the debug version, that is).

Phase 2 of QT_Thunk pushes the 16:16 address that's the ultimate target
of the thunk onto the stack. (We'll come back to this in phase 5.) Phase 2 also
handles the preservation of the return address and the 32-bit register variables.
The 32-bit return address that control returns to after the 16-bit code completes
is stored in an area of the stack that won't be touched. The register variables
that are saved away are ESI, EDI, and EBX. These are the commonly used
register variables that Win32 compilers expect will be preserved (see Chapter 3).

Phase 3 of QT_Thunk relates to acquiring the Win16Mutex. As almost
everybody knows by now, whenever 32-bit code thunks down to 16-bit
code, the operating system needs to acquire the Win16Mutex. The
Win16Mutex is just a run-of-the-mill mutex semaphore that happens to
reside in KRNL386.EXE's data segment. By forcing all Win32 code that
thunks down to 16-bit land to acquire the Win16Mutex, Windows 95 can
guarantee that only one thread at a time is executing through the Win16
system DLLs (as well as other 16-bit bit DLLs).

This is how Microsoft got around the problem of the 16-bit system
DLLs being written without multithreading in mind. The whole subject of
the Win16Mutex has been highly controversial, and I could easily write an
entire chapter on just this topic. I'll talk a bit more about this in the
"Messaging System Changes" section, but here I'm simply going to say that
the QT_Thunk routine is one of the places where Windows 95 acquires the
Win16Mutex.

Phase 4 of QT_Thunk is where the routine switches from the flat 32
stack used by the Win32 code to a 16:16 stack for use by the Win16 code.
Since Win32 threads typically have 1MB stacks, and the ESP at the time of
the thunk could be anywhere within that 1MB, you can see that switching
to a 16:16 stack could be tricky. It's not sufficient to just allocate a 16-bit
stack selector during the thread's startup and set its base address at that
time. Instead, during the thunk to 16 bits, the QT_Thunk routine may need

193

to adjust the base address of the stack selector used by the thread when
executing in 16-bit code. The base address of the 16-bit selector is set so that
it points to the same general linear address region that the ESP register was
using prior to the thunk. After fiddling with the stack selector as necessary,
QT_Thunk figures out an appropriate 16-bit SS:SP combination and loads
those values into the SS and SP registers.

Phase 5, the final phase of QT_Thunk, is to transfer control to the
intended 16:16 address that's the target of the thunk. As I showed in phase 2,
the 16:16 target address was stored in EDX upon entry to QT_Thunk and
was subsequently pushed on the stack. QT Thunk jumps to the 16:16 address
via the standard RETF trick. Before transferring control to that address,
though, the QT_Thunk code zeros out all the nonessential segment registers
(DS, ES, FS, and GS). It wouldn't do to hand the target 16:16 function a DS
register set up with a nice, juicy flat 32 selector for the function to scribble
on. It's expected that the 16:16 function will set up the segment registers
however it needs to.

Pseudocode for QT_Thunk

// On entry, EDX contains the i6:i6 address to transfer control to.

//

// Phase 1: logging and sanity checking
//

if (bit 0 not set in FS:[TIBFlags])

goto someplace else; // Not interested in that here.

PUSHAD // Save all the registers.

SomeTraceLoggingFunction("LS", EDX, 0); // EDX is 16:16 target.

// Make sure that the FS register agrees with the TIB register stored
// in the current thread database.

if ((ppCurrentThread ->TIBSelector != FS)

&& (ppCurrentThread != SomeKERNEL32Variable))

{ _DebugOut(SLE_MINORERROR,

"32=>16 thunk: thread=%lx, fs=%x, should be %x\n\r",

ppCurrentThreadId, FS, ppCurrentThread->TibSelector); }

POPAD // Restore all the registers.

S S : E S P

194

//

// Phase 2: saving away the return address and register variable registers
//

POP DWORD PTR [EBP-24] // Grab return address off the stack

// and store it away for later use.

PUSH DWORD PTR [someVariable] // ???

PUSH EDX // Push 16:16 address on the stack. The RETF

// at the end will effectively JMP to it.

MOV DWORD PTR [EBP-04],EBX // Save away the common

MOV DWORD PTR [EBP-08],ESI // compiler register variables.

MOV DWORD PTR [EBP-0C],EDI

//

// Phase 3: Acquiring the Win16Mutex
//

PUSHAD, PUSHFD // Save all registers.

_CheckSysLevel(pWin16Mutex)

POPFD, POPAD // Restore all registers.

FS:[Winl6MutexCount]++;

if (FS:[Win16MutexCount] == 0)

GrabMutex(pWin16Mutex);

PUSHAD, PUSHFD // Save all registers.

_CheckSysLevel(pWinl6Mutex)

POPFD, POPAD // Restore all registers.

//

// Phase 4: Saving off the old SS:ESP and switching to the 16:16 stack
//

Calculate the 16:16 stack ptr. Set EBX for the SUB EBP,EBX instruction below.

MOV DX,WORD PTR [EDI->currentSS] // Load DX with 16 bit SS.

MOV DI,SS // Save away the flat SS value into DI.

// (The callee is expected to preserve it.)

MOV SS,DX // Load SS:(E)SP with the 16 bit stack ptr.

MOV ESP,ESI

SUB EBP,EBX // Adjust EBP for the thunk.

MOV SI,FS // Save away FS (TIB ptr) register into SI.

// (The callee is expected to preserve it.)

J M P

195

//

// Phase 5: Jumping to the 16:16 bit code
//

GS = FS = ES = DS = 0; // Zero out the segment registers.

RETF // Effectively does a JMP 16:16 to the address

// passed in the EDX register,

After the 16-bit code does its stuff, it needs to return to the 32-bit code.
There's a whole other section of code that goes through those motions.
Although I could go through it here, it's not terribly exciting. It's also
important to note that during this example of thunking to 16-bit code, there
weren't any flat 32 pointer parameters that would have needed conversion
to 16:16 addresses. The thunking code for that is understandably more
complex, and we won't get into it here.

32-bit heaps
Perhaps the biggest and most drastic change to the USER subsystem is the
addition of 32-bit heaps. You're probably aware that any Win32 program
can access and use 32-bit heap services provided via the Win32 HeapXXX
API (for example, HeapAlloc, HeapFree, and so on). What you may not
know is that the 16-bit USER.EXE and 16-bit GDI.EXE also use 32-bit
heaps to store certain items. You heard that right. The 16-bit USER.EXE
and GDI.EXE actually thunk up to 32-bit KERNEL32.DLL to allocate
memory from special 32-bit heaps set up especially for the use of the 16-bit
USER and GDI components. Although these particular heaps are intended
solely for USER's and GDI's use, they share the exact same format as a
Win32 program's GetProcessHeap heap. For instance, you can use the
WALKHEAP program from Chapter 5 to walk the USER or GDI 32-bit
heaps (although you would have to locate them first, which I'll show how
to do later).

Why go to all this trouble with 32-bit heaps? In versions of Windows prior
to Windows 95, all allocated memory used by USER and GDI came out of a
standard LocalAlloc style heap with a maximum size of 64K. Needless to
say, this put quite a crimp on how many windowing and graphics system
objects could be kept around at any given time. By moving these large objects
to 32-bit heaps, Windows 95 significantly improves the capacity of the system.
Each of these specially created heaps is 2MB, so capacity shouldn't be a
problem for awhile.

USER.EXE actually uses two separate 32-bit heaps. One of these heaps
stores WND structures. There's a WND structures for every window in the
system. (We'll look at WND structures a bit later in this chapter.) The other
USER 32-bit heap is for storing menus. GDI.EXE has just one 32-bit heap,
which it uses to store fonts and regions. Like WNDs and MENUs on the
USER side, fonts and regions are relatively large, so moving them out of the
16-bit heaps makes sense.

If the addition of 32-bit heaps to the 16-bit components of Windows 95 is
big news, then the location of those heaps is even more interesting. You see,
when accessing data in the 32-bit heaps, USER and GDI don't use the flat
model linear addresses of the items. Instead, USER and GDI continue to use the
same DS selector that they use to access their regular 128K DGROUP. How do
they get away with that? By using a rather interesting arrangement, the 32-bit
WND heap and 32-bit GDI heaps start exactly 128K past the 16-bit DGROUP
area. If this sounds a bit weird, perhaps Figure 4-1 will make it clearer.

As I mentioned earlier, USER and GDI don't use 32-bit flat pointers to
items in their 32-bit heaps. Rather, they store offsets relative to the base
address of the USER or GDI DGROUP selector. These offsets are, of course,
32 bits. For example, USER's 16-bit (128K) DGROUP area has a maximum
size of 64K. The 32-bit WND heap starts 128K past the end of the 16-bit
DGROUP area. That means that the lowest possible WND structure offset
that you would find in Windows 95 is 0x20000. In actual use (as you'll see
in Chapter 5), the first couple of paragraphs of a Win32 heap are used for
bookkeeping, so a more typical WND structure offset would be something
like 0x20924. Since this offset isn't a flat linear address, the offset is meaning-
less unless the selector (that is, USER or GDI's DGROUP) is also known. Of
course, if you know the linear address of USER's or GDI's DGROUP segment,
you can add that value to the offset of an object in a 32-bit heap and access
the data object with a flat linear address. The SHOWWND program introduced
later in this chapter does just that.

Let's prove that the 32-bit WND heap really starts 128K above the reg-
ular DGROUP and that it's really a standard Win32-style heap. To do this,
we'll use Softlce/W. To start out, we need to find the base address of USER's
DGROUP segment. And to find this information, we need to first find USER's
DGROUP handle/selector. As Chapter 7 will show, the DGROUP for a module
can be extracted from the 16-bit module database.

The Softlce/W MOD command applied to USER yields the following:

:mod user

hMod PEHeader Module Name

17CF USER

1857 0147:81537DB8 USER32

EXE File Name

C:\WINDOWS\SYSTEM\user.exe

C:\WINDOWS\SYSTEM\USER32.DLL

196

1 7 C F : 1 8 0

197

 Figure 4-1
USER.EXE's 16 and 32 bit heap configuration.

We now know that USER's module handle is 17CE At offset 8 in a
module database is a near pointer to the 10-byte segment record for the
DGROUP segment, so let's dump that out:

:dw 17cf:8

 0180 10D9 C341 0021 157C 0808 1F42 081517CF:08080088 A.!.|...B...

Okay. At 17CF:180 is the 10-byte segment record for USER's DGROUP.
The last WORD of the segment record is the handle assigned to that segment.
Dumping that segment record gives us:

:dw 17cf:180

17CF:00000180 4042 0B02 0177 157C 16:C6 0005 800C 000F B2..w; |

So, now we know that USER's DGROUP handle is 16C6 (and that the
corresponding selector is 16C7). Let's get the linear address of that selector
with the SoftIce/W LDT command (also, note that the limit of the segment
is greater than 64K):

:ldt 16c6

16C7 Data16 Base:81D09000 Lim=0021FFFF DPL=3 P RW

Knowing that USER's DGROUP is at linear address 0x81D09000, we can
add 0x20000 to it to obtain the starting address of the USER32 window heap.
Let's test this out by feeding the address to the Softlce/W "Heap 32" command:

:heap 32 81d29000

Heap: 81D29000 Max Size: 2048K Committed: 16K Segments: 1

Address Size EIP TID Owner

81D290E0 00000088 BFFA0A27 0001 hpWalk+082D

81D29178 00000058 BFF71AA6 0001 IGetLocalTime+0942

81D291E0 00000058 BFF71AA6 0001 IGetLocalTime+0942

81D29248 0000005C BFF71AA6 0001 IGetLocalTime+0942

81O292B4 00000058 BFF71AA6 0004 IGetLocalTime+0942

81D2931C 00000058 BFF71AA6 0007 IGetLocalTime+0942

81D29384 00000060 BFF71AA6 000A IGetLocalTime+0942

81D293F4 0000005C BFF71AA6 000A IGetLocalTime+0942

81D29460 00000058 BFF71AA6 000A IGetLocalTime+0942

81D294C8 0000005C BFF71AA6 000A IGetLocalTime+0942

81D29534 0000005C BFF71AA6 000A IGetLocalTime+0942

81D295A0 0000005C BFF71AA6 000A IGetLocalTime+0942

81D2960C 0000005C BFF71AA6 000A IGetLocalTime+0942

81D29678 00000058 BFF71AA6 000A IGetLocalTime+0942

... rest of output omitted...

As you can see, SoftIce/W certainly didn't complain about the address we
fed it, and, in fact, it printed out results that look quite reasonable. In partic-
ular, notice how all the blocks are somewhere in the neighborhood of 0x58
bytes. As we'll see later, 0x58 is the minimum size of a WND structure. The
blocks that are slightly bigger can be explained by their use of window extra
words (see the cbWndExtra field in the WNDCLASS structure, which is used
to register a class). By all accounts, it looks like there really is a Win32 heap
residing 128K above the start of USER's DGROUP segment.

At this point, you're probably wondering why the 32-bit heaps start
128K past the end of the USER or GDI DGROUP segments. (You were

198

W N D

199

wondering, weren't you?) Why not start the heap right after the 16-bit
128K DGROUP area ends? Here's the answer in a nutshell: Handles!
Although the WND structures themselves are accessed using 32-bit offsets
from USER's DGROUP, this pesky backward compatibility thing means
that HWNDs must be 16 bits.

In Windows 3.x and earlier, an HWND was nothing more than an offset
into USER's DGROUP segment. Clearly that won't work when the WND
structures are at least 128K into USER's combined 16-/32-bit DGROUP. To
allow a 16-bit value (such as an HWND) to be mapped to a 32-bit offset,
USER and GDI use the 64K region between their 16-bit DGROUP and the
32-bit heaps as a handle table. Specifically, a handle value (like an HWND)
is just an offset into the handle table region. As Figure 4-2 shows, at the
offset pointed to by a handle, you'll find the 32-bit offset (relative to the
appropriate DGROUP) of the actual data.

To prove this point about handle tables, let's again turn to SoftIce/W.
Let's pick the desktop HWND and look it up through the handle table. The
SoftIce/W WND command provides a hierarchical view of the window list,
with the desktop window at the top. In the following output, the desktop
window's HWND is 0x80:

:hwnd
Window Handle hQueue SZ QOwner Class Name Window Procedure

0080(0) 1437 32 MSGSRV32 #32769 17B7:571C

00B4(1) 1A4F 32 EXPLORER Shell_TrayWnd 1457:0140

00B8(2) 1A4F 32 EXPLORER Button 1457:01AE

00BC(2) 1A4F 32 EXPLORER TrayNotifyWnd 1457:01C4

... rest of windows omitted.,.

Now, if what I said earlier is true, we should be able to add the HWND
value to 0x10000 and, at that offset in USER's DGROUP, find a DWORD
with the WND struct's address. 0x10000 + 0x0080 == 0x10080, so let's
dump memory at 16C7:10080:

:dd 16c7:10080

16C7:00010080 0002:0178 0002:01E0 0002:0248 0002:02B4 x

Ignoring the ":" (colon) that SoftIce/W stuck in (it's trying to show the
value as a 16:16 pointer), the offset of the WND struct appears to be at
0x20178. Since USER's DGROUP is at linear address 0x81d09000, this
would place the WND struct at linear address 81D29178. Looking back at
SoftIce/W's walk of the 32-bit user heap that I showed earlier, you can see
that 0x81D29178 is indeed the address of a block in the heap. Once again,
it looks like everything checks out.

H R G N

200

Converting an HWND into a 32-bit
USER32 relative pointer

Offset 0x80

USER 32-bit
window heap

HWND handle table
(64K past start of
USER DGROUP)

 Figure 4-2
The 32 bit offset (relative to the appropriate DGROUP) of the actual data is found at the

 offset pointed to by a handle.

When it comes to GDI's 32-bit heap, this same handle table mechanism
is essentially the same for objects that GDI keeps in the 32-bit heap. For
instance, regions are kept in a 32-bit heap and are referred to by an HRGN
structure. You could apply a similar set of steps to the HRGN to find the
actual linear address of the region structure.

If the handle table region is 64K and each handle is really a pointer to a
4-byte DWORD, that would make the maximum number of handles equal

H e a p X X X

201

to 16384 (65,536/4 == 16,384). Microsoft claims that you can now have up
to 32,767 windows and 32,767 menus, so I don't know how they're coming
up with these numbers. Regardless, what's not mentioned is that other system
limitations will most likely be hit before you manage to create 16 thousand
(or 32 thousand) windows.

Earlier, I mentioned that USER also has a 32-bit menu heap. The menu
heap area and the handle table region are operationally identical to the USER
window heap (although at a different address, obviously). The only thing
missing is a 64K 16-bit DGROUP sitting beneath the handle table. While
you might think it was nice of Microsoft to break menus out into their own
separate 32-bit heap, this isn't as big a change as you might imagine. In
Windows 3.1, menus were already broken out into their own 16-bit heap.
In Windows 95, the only change is that the size of the menu heap increased.
Incidentally, the selector to the base of the menu heap can be found by one
of the UserSeeUserDo subfunctions that I'll describe later in this chapter.

If the 32-bit heaps used by USER and GDI are functionally the same as the
heaps of Win32 applications, it makes sense that the KERNEL32 functions
for operating on Win32 heaps would be used for the USER and GDI heaps
as well. Indeed, this turns out to be the case. When USER allocates memory
for a WND structure, the code that implements the HeapAlloc function in
KERNEL32.DLL is called via a thunk. However, USER and GDI don't thunk
up to KERNEL32 directly. Rather, KRNL386.EXE provides a set of undoc-
umented exported functions that take care of calling the KERNEL32 heap
code. The KRNL386 functions are the following:

KRNL386.209 --
KRNL386.210 --
KRNL386.211 --
KRNL386.213 --

KRNL386.214 --

Local32Alloc
Local32ReAlloc
Local32Free
Local32Translate (Translate a handle into a
16:16 address)
Local32FreeQuickly

Although the function names start with Local32, they really call into the
equivalent HeapXXX function (for instance, Loca132Alloc calls HeapAlloc).
Chapter 5 shows that the Win32 local heap functions are just a thin wrapper
around the Win32 HeapXXX functions. Of special note in the list of KRNL386
32-bit heap functions is function 214. This function appears to create the net
effect of marking a block as free, without actually thunking up to KERNEL32.
However, certain key things aren't done by this routine, such as adding the
block to the free list.

D G R O U P s ,

202

The mysterious
GetFreeSystemResources issue
Having covered 32-bit heaps, we now have enough background information
to look at the mysteriously growing FreeSystemResources issue. I say myste-
rious, because the average FreeSystemResource number seems to have jumped
in Windows 95, although under the hood there doesn't seem to be any reason
for it. We'll look at free system resources early on in this chapter, since to
most nonprogrammers, the "free system resources" are the only notion they
have of USER and GDI. If the free system resources go up, it must be good,
right? Not so fast!

The free system resource number is really just a fancy term for the
amount of memory left in various systems heaps, specified as a percentage.
In Windows 3.1, the free system resources was the smallest value of several
percentages. The percentages in question were the amount of free space in
the USER DGROUP heap, the USER menu heap, the USER string heap
(which is apparently gone or not important in Windows 95), and the GDI
DGROUP heap. Out of those heaps, the heap with the smallest percentage
free became the free system resources.

In Windows 95, the calculation for FreeSystemResources starts out on a
somewhat similar track, but toward the end it takes an unexpected turn. In
a nutshell, the FreeSystemResources in Windows 95 starts out looking like
it's the lowest percentage free among five separate heaps:

1) The USER 16-bit DGROUP heap
2) The 32-bit window heap
3) The 32-bit menu heap
4) The 16-bit GDI heap
5) The 32-bit GDI heap

Since the three 32-bit heaps are all 2MB in size, their percentage free is
usually a ridiculously high value, like 99 percent. Therefore, for all intents
and purposes, they don't count toward the free system resource calculation.
That leaves only the 16-bit USER and GDI DGROUP heaps. Whichever one
has the smaller percentage will dictate the free system resource percentage.
Since there's still quite a few items floating around in the USER and GDI
DGROUPs, they shouldn't have values anywhere near 96 percent free
(which is a typical value you might see in the Explorer About box after
you first start Windows 95).

C A L C ,

203

At this point, I'd suggest you try a small experiment. Boot up Windows 95
and immediately start up CALC, or Explorer, or some standard application
that comes with the system. Choose Help|About to get the About dialog
that displays the free system resource value. Typically, under Windows 95
you'll have a value like 96 percent. If that sounds a little high, you're right.
As you'll see in the pseudocode for GetFreeSystemResources later on, neither
USER nor GDI have anywhere near 96 percent free in their heaps.

So just what exactly is going on here? To make a long story short,
Windows 95 is "cooking the books." Rather than simply report the lowest
percentage free among the heaps, the Windows 95 free system resources is a
relative number. You're no doubt asking, "Relative to what?" The Windows 95
free system resources value that is reported is a percentage relative to how
much was free after the system booted. Specifically, after the system has
booted and Explorer has done its thing, Windows 95 takes a snapshot of what
the real percentage free is. Subsequently, when you query the system for the
free system resources, it reports the percentage free, relative to the original
snapshot value.

Let's look at an example. Say that Windows 95 is up and running and the
true free system resource value (à la Windows 3.1) is 75 percent. Let's also say
that, at some later point, you've started some applications, and there's now
only 50 percent free in one of the heaps. Windows 95 will report the free sys-
tem resources as 66 percent (50/75) rather than as the true 50 percent. If this
isn't an attempt to put a positive spin on things, I don't know what is. Perhaps
Microsoft feels the need for its customers to believe that Windows 95 really
has eliminated the free system resources problem. Sure, Windows 95 improves
the situation with its 32-bit heaps, but not that much.

Lest I be accused of Microsoft-bashing, here's an alternative explanation
for why Microsoft changed the way that the free system resource value is cal-
culated: There's a well-defined maximum amount of memory that's available
for system resources. The act of starting up and creating windows like the
desktop and the tray window consumes some of this memory. Since there's no
way to reclaim this memory, why report it to the unsuspecting end users? The
new free system resource value can be viewed as being more accurate from the
end users' perspective. If the end users have 50 percent resources free, then
they've used up about half of the available capacity. The end users don't know
(and probably don't care) that the system itself takes up some of the free
system resources.

p e r c e n t a g e

204

The GetFreeSystemResources function

Now that we know basically what's up (pun intended) with the new free
system resource calculation, let's look at the details of how Windows 95
comes up with that value. The GetFreeSystemResources is implemented in
the 16-bit USER.EXE (when necessary, SHELL32.DLL thunks down to it
to get the value it displays in the system utility About boxes). The function
itself is just a standard parameter-validation layer stub like I described in
Chapter 3. After checking that a correct argument was passed to it,
GetFreeSystemResources JMPs to the IGetFreeSystemResources code.

IGetFreeSystemResources has three distinct sections of code. The first
section consists of coming up with percentage-free values for the USER and
GDI components. The USER percentage free is the lowest percentage free of
the USER 16-bit DGROUP, the 32-bit window heap, and the 32-bit menu
heap. The GDI percentage free is done by calling a 16-bit GDI.EXE function
called GDIFreeResources. At the end of this section of code, the function
has one free resource value for USER and another for GDI.

The second section of IGetFreeSystemResources is where the function
does the adjustments that take into account how much USER and GDI heap
space was taken up by system components at startup. The key to this section
of code is two USER.EXE global variables; I've named the variables
base_USER_FSR_percentage and base_GDI_FSR_percentage. These two
values initially start out with a value of 0 in USER.EXE's data segment. If
they're 0 when IGetFreeSystemResources is called, the function doesn't do
any adjustment to the USER and GDI percentage free values it calculated
earlier. However, if these two global variables are nonzero, they contain the
percentage free in the USER and GDI heaps after Windows 95 booted. If
they're nonzero, IGetFreeSystemResources divides the boot-up time version
of these values by the current USER and GDI percentage free values to get a
relative percentage.

When I first saw these global variables, my first question was, "Who the
heck sets them?" Would you believe the Explorer process? (Even if you don't
see the Explorer window on the screen, Explorer is still there as a running
process.) Now mind you, Explorer doesn't reach down into USER's DGROUP
segment and set the base_USER_FSR_percentage and base_GDI_FSR_
percentage values directly. Rather, it lets USER.EXE do it itself. How does it
do this? At some point when Explorer decides that it's sufficiently set up, it sends
a window message with a MSG number of 0x400 (WM_USER) to the desk-
top window procedure. As you'll see later, the desktop WNDPROC handler
for the WM_USER message sets these two global variables. The ramifications

G P I F r e e R e s o u r c e s (

 205

of this are mind boggling. If you have a process or a DLL that calls
GetFreeSystemResources before the desktop WM_USER message is sent,
you'll get a distinctly different value than after the message is sent.

The third section of IGetFreeSystemResources is where the function uses
the parameter passed in. If you specifically request the USER or GDI free
resources (GFSR_USERRESOURCES or GFSR_GDIRESOURCES), the
code returns the appropriate value calculated earlier. If you ask for
GFSR_SYSTEMRESOURCES, the function returns the smaller of the
USER and GDI percentages.

Pseudocode for GetFreeSystemResources

/ / Parameters:

// UINT fuSysResource

/ / Is the input parameter within range?

if ((fuSysResource < 0) || (fuSysResource > 2)

// Calls LogParamError.

HandleParamError(ERR_BAD_VALUE);

// JMP to the real code.

return IGetFreeSystemResources(fuSysResource);

Pseudocode for IGetFreeSystemResources

/ / Parameters:

// UINT fuSysResource

// WORD gdiResourcePercentage, userResourcePercentage

//

// Phase 1: Getting USER and GDI's percentage free
//

if (UserTraceFlags & Ox200)

_DebugOutput(DBF_USER, "GetFreeSystemResources");

userResourcePercentage =

GetPercentFree16BitHeap(hInstanceWin); // Get 16 bit DGROUP % free.

// Call GDI and let it do its heap free calculations.

gdiResourcePercentage = GPIFreeResources(0);

u s e r R e s o u r c e P e r c e n t a g e ;

206

// Take the lesser of the USER's DGROUP and the 32 bit menu heap.

// (Gee, I wonder which one it will be???)

if (GetPercentFree32BitHeap(hMenuHeap) < userResourcePercentage)

userResourcePercentage = GetPercentFree32BitHeap(hMenuHeap);

// Now take the lesser value of the previous calculation and the

// percentage free in the 32-bit window heap.

if (Get?ercentFree32BitHeap(hWindowHeap) < userResourcePercentage)

userResourcePercentage = GetPercentFree32BitHeap(hWindowHeap);

//

/ / Phase 2: Cooking the books
//

// Adjust the percentages so that they're relative to the percent

// free after booting. This might be an attempt to make Windows 95 look

// like it has more free system resources than Windows 3.1.

if (base_USER_FSR_percentage)

{ userResourcePercentage = MulDiv(userResourcePercentage, 0x100,

base_USER_FSR_percentage);

gdiResourcePercentage = MulDiv(gdiResourcePercentage, 0x100,

base_GDI_FSR_percentage); }

if (userResourcePercentage > 99)

userResourcePercentage = 99;

if (gdiResourcePercentage > 99)

gdiResourcePercentage = 99;

//

// Phase 3
//

switch (fuSysResources) {

case GFSR_SYSTEMRESOURCES:
return min(userResourcePercentage, gdiResourcePercentage);

case GFSR_GDIRESOURCES:

return gdiResourcePercentage;

case GFSR_USERRESOURCES:

return userResourcePercentage;

default: return fuSysResources; }

p e r c e n t U s e d ;

207

The GetPercentFree16BitHeap and
GetPercentFree32BitHeap functions

The GetPercentFreel6BitHeap and GetPercentFree32BitHeap functions are
two helper routines used by IGetFreeSystemResources. Both functions expect a
parameter specifying the heap of interest. The GetPercentFree16BitHeap func-
tion uses the undocumented GetHeapSpaces function described in Chapter 5
of Undocumented Windows (Schulman, Maxey, and Pietrek). It considers the
ratio of free space (in K) to total space (also in K) to be the percentage free.

The GetPercentFree32BitHeap is a little more sophisticated. It uses the same
basic code that the Windows 95 16-bit TOOLHELP function exports as the
Local32Info function. This code returns dwMemCommitted, dwTotalFree,
and dwMemReserved fields for the heap in question. The dwMemCommitted
and dwMemReserved fields seem to always be the same, and the dwTotalFree
value is usually right up there in value. After subtracting the dwTotalFree
field from the dwMemCommitted field, the function divides the result by the
dwMemReserved field. Since these values are all nearly equal, the GetPercent-
Free32BitHeap function typically returns values such as 98 or 99 percent.

Pseudocode for GetPercentFree16BitHeap

/ / Parameters:
// HGLOBAL hHeap

// Locals:

// DWORD freeK, totalK

// DWORD myDWORD

myDWORD = GetHeapSpaces(hHeap) ;

freeK = LOWORD(myDWORD) / 1024:

// See Undocumented Windows,

// Chapter 5.

totalK = HIWORD(myDWORD) / 1024:

return (freeK * 100) / totalK

Pseudocode for GetPercentFree32BitHeap

// Parameters:

// HGLOBAL hHeap

// Locals:

// LOCAL32INFO local32Info;

// WORD percentUsed;

E B P

208

// Call the same function that TOOLHELP.DLL's Local32Info uses.

local32Info.dwSize = sizeof(LOCAL32INFO);

if (KRNL386_Local32Info(&local32Info, hHeap) == 0)

return 0;

if (local32Info.dwMemReserved == 0)

return 0;

// Some problem here officer???

percentUsed =

CalculatePercentage(

100 * (local32Info.dwMemCommited - local32Info.dwTotalFree),

local32Info.dwMemReserved);

// percentUsed is typically some ridiculously low value, like 1%. Thus

// this function usually returns 99% free for 32 bit heaps.

return 100 - percentUsed;

Getting Free System Resources from 32-Bit Code:
Thunking Without the Thunk Compiler

Believe it or not, Windows 95 doesn't provide a way for 32-bit applications to get the Free
System Resources (FSR) value easily from a 32-bit program. Even when the standard
Windows 95 utilities display the FSR in their About box, they're getting the value from a 32-
to-16-bit thunk in SHELL32.DLL. If you're writing a 32-bit program and want to calf an
existing 16-bit system bit function (such as GetFreeSystemResources), you could spend a
couple of hours (or days)learning the Windows 95 thunk compiler, and then write a pair of
thunking DLLs. Ugh. There's got to be a better way.

As I discuss in "The SetFocus function" section, USER32.DLL thunks dawn to USER.EXE
all the time, yet it doesn't have separate 16- and 32-bit DLLs for thunking. Instead, the 32-bit
SetFocus code uses the QT_Thunk function, which I described earlier in "The QT_Thunk
routine" section. You can use this very same routine in your own programs, although it's a
bit trickier to use than your standard Win32 APl function. It's an undocumented function
(although you'll see that the THUNK.EXE thunk compiler emits references to it), and it
requires that you use a bit of assembler to call it.

Calling QT_Thunk in your code requires you to do two things. First, you have to put
the 16:16 address to call into the EDX register. Second, you need to ensure that the code
you're calling QT_Thunk from has an EBP stack frame set up and has at least 0x3C bytes
of b c d storage that you're not relying on. This second requirement is because QT_Thunk
builds the convoluted slack frame for calling the 16-bit code in the region below where
your EBP register points at.

E B P

209

To show calling QT_Thunk from your own program, I wrote the FSR32 program, which
uses QT_Thunk to get the free USER and GDI system resources. The code for FSR32 is a
single source file, FSR32.C, and is short enough to show here. To compile FSR32, use the
following Visual C++ command line:

cl fsr32.c k32lib.lib thunk32.lib

Alternatively, you can use the BUILDFSR.BAT file included on this book's source disk.

//==============================

// FSR32 Matt Pietrek 1995

// FILE: FSR32.C
// =========================

#define WIN32_LEAN AND MEAN

#include <windows.h>

#include <stdio.h>

#pragma hdrstop

typedef int (CALLBACK *GFSR PROC)(int);

// Steal some #define's from the 16 bit WINDOWS.H.

#define GFSR_GDIRESOURCES 0x0001

#define GFSR_USERRESOURCES 0x0002

// Prototype some undocumented KERNEL32 functions.

HINSTANCE WINAPI LoadLibrary16(PSTR);

void WINAPI FreeLibrary16(HINSTANCE);

FARPROC WINAPI GetProcAddress16(HINSTANCE, PSTR);

void __cdecl QT_Thunk(void);

GFSR_PROC pfnFreeSystemResources = 0;

in

HINSTANCE hInstUser16;

WORD user_fsr, gdi_fsr;

// We don't want these as locals

// main(), since QT_THUNK could

// trash them...

int main()
{

char buffer[0x40]

buffer[0] = 0; // Make sure to use the local variable so that the

// compiler sets up an EBP frame.

Continued

C : \ N E W B O O K \ U S E R G D I > F S R 3 2 . E X E

210

Continued from previous page

hinstUserl6 = LoadLibrary16("USER.EXE");

if (hInstUser16 < (HINSTANCE)32)
{

printf("LoadLibrary16(failed!\n");

return 1;
}

FreeLibrary16(hInstUser16); // Decrement the reference count.

pfnFreeSystemResources =

(GFSR_PROC) GetProcAddress16(hInstUser16,

"GetFreeSystemResources");

if (!pfnFreeSystemResomrces)
{

printf("GetProcAddress16() failed!\n"

return 1; }

__asm {
push GFSR_USERRESOURCES

mov edx, [pfnFreeSystemResources]

call QT_Thunk

mov [user_fsr], ax

push GFSR_GDIRESOURCES

mov edx, [pfnFreeSystemResources]

call QT_Thunk

mov [gdi_fsr], ax

printf("USER_FSR: %u%% GDI FSR: %u%%\n", user_fsr, gdi_fsr);

return O;

The output from FSR32.C looks like this:

C:\NEWBOOK\USERGDI>FSR32.EXE

USER FSR: 90% GDI FSR: 90%

W N D

211

A couple of things in the FSR32.C code need to be discussed. First, how is FSR32.C
getting the address of the 76-bit GelFreeSystemResources function from 32 bit code?
FSR32.C uses three undocumented KERNEL32 functions (LoadLibrary16, FreeLibrary16, and
GetProcAddress16) to work with the 16-bit system DLLs. Appendix A provides a fairly corn
plete list of the undocumented functions in KERNEL32. In order far FSR32 to successfully link
to these undocumented functions, it needs the K32LIB.LIB import library that you first saw in
Chapter 3. (This library is discussed in Appendix A.)

To ensure that there's enough space on the stack for QT_Thunk to play its funny games
with, FSR32.C declares a local array of Ox40 characters that it doesn't use for anything.
The QT_Thunk code can bash this memory with impunity. Any variables that are important
lo FSR32.C are declared as globals, and so can't be trashed by QT_Thunk. (I learned this
lesson the hard way!)

FSR32.C makes the actual call to QT_Thunk using inline assembler code. The reason
FSR32.C doesn't make a regular C call to QT_Thunk is because EDX needs to be set up with
the) 6:16 addresses to call beforehand. You could theoretically just load EDX with one line
of inline assembler before calling QT_Thunk normally. However, you'd be relying on the
compiler to not trash the EDX register before the CALL instruction executes.

As a final note, be advised that this code doesn't do anything tricky tike passing
pointers to 16-bit code. The Win32 APl functions that thunk down lo 16 bit code, and that
pass pointers to 16-bit DLLs, have elaborate code for setting up alias selectors and so
forth. The main point here is that if you're going to do anything at all tricky, I suggest that
you use the thunk compiler, which really is the proper way of doing things. The above
example passes only one parameter, and thai parameter doesn't require any translation lo
be used by the]6-bi t code. Examples of parameters that would need to be translated
include pointers and window message values. In short, think carefully before you decide to
bypass the thunk compiler, and use Windows 95 thunks directly.

The mixed 16-/32-bit nature of the
windowing system
Earlier, I said that WND structs are stored in 32-bit heaps and that their
offsets, relative to USER's DGROUP, are therefore greater than 64K. I also
said that HWNDs are limited to 16-bit values, so that the region between
the 16-bit DGROUP and the window heap is used as a handle table to convert
HWNDs to usable pointers to WND structures.

At this point, it's important to stress the bi-modality of the windowing
system with regards to this mixing of 16- and 32-bit code/data. The first
thing that needs to be clarified is that the 16-bit HWND values are used

H W N D s

212

throughout the system. It doesn't matter whether or not a Win16 or a
Win32 application is running; the HWNDs being passed around are l 6-bit
values and are offsets into the window heap handle table. Let me state this
again to make it perfectly clear: An HWND is an HWND is an HWND. It
doesn't matter whether you're in Win16 or Win32 code: HWNDs are 16-bit
values, and they are not simply offsets into USER's DGROUP as they were
in Windows 3.1.

Now that you know that HWNDs are truly 16-bit handles everywhere,
I can tell you that internally, USER.EXE often converts these HWNDs into
32-bit pointers and passes those around. These 32-bit pointers are pointers
relative to the USER's DGROUP selector, not flat 32-bit pointers. A perfect
example of where USER uses these special 32-bit pointers is in the WND
struct itself. The first four fields of a WND structure are the window's parent,
owner, child, and sibling windows. In these four fields, USER stores 32-bit
pointers (not 16-bit HWND values) to the appropriate parent, owner, child,
and sibling windows. This is most likely for performance reasons, since USER
would need to convert the HWNDs to a pointer anyhow to traverse through
the window hierarchy. I'll come back to the window hierarchy later on.

Of course, while USER may internally use 32-bit pointers to WND
structures, it still has to use 16-bit HWNDs when interfacing to the outside
world. Therefore, there has to be a quick and easy method to go from a
16-bit HWND to a 32-bit pointer, and vice versa. Indeed, there is. You'll see
this a bit later when we look at some pseudocode for selected windowing
functions (both 16- and 32-bit).

A tough issue that comes up when trying to support both Win16 and
Win32 applications in the same system is the differences in the window
procedures. A Win16 application has a window procedure that, when all
the typedef names have been stripped away, looks like this:

WndProc16(unsigned short hWnd,
unsigned short wMsg,
unsigned short wParam,
unsigned long lParam);

A Win32 application on the other hand, has a WNDPROC that looks
like this:

WndProc32(unsigned long hWnd,
unsigned long wMsg,
unsigned Tong wParam,
unsigned long lParam);

W N D -

213

So the $128,000 question is: What happens when a Win32 applica-
tion does a SendMessage to a window in a 16-bit program? Obviously,
there's going to be some problem unless the parameters are rearranged
and/or truncated. Likewise, if a 16-bit application sends a message to a
Win32 application, most of the parameters pushed on the stack will
need to be widened (the hWnd, wMsg, and wParam parameters). Since
applications can't be expected to handle these details, the job falls to
USER.EXE.

Another related problem is window subclassing. Windows programs
have long subclassed the windows of other applications. The basic idea of
subclassing is that a program uses GetWindowLong(GWL_WNDPROC) to
retrieve the current WNDPROC callback address for a window and store that
value away. Next, the program uses SetWindowLong(GWL_WNDPROC)
to change the window's WNDPROC address to the application's subclass
procedure. Now, here's the problem: The WNDPROC of a window created
by a 32-bit application is a 32-bit linear address. If a 16-bit application
were to change the WNDPROC address of a 32-bit window to a 16:16
address, there's obviously going to be a sticky situation. The 32-bit code for
calling the WNDPROC is expecting a flat 32 linear address, and calling a
16:16 segmented address as a flat 32 linear address is certainly not going
to work.

To prevent these obvious problems, USER.EXE creates a small code
stub for each window that's created with a 32-bit WNDPROC. This stub is
16-bit code and contains the 32-bit linear address for the real WNDPROC
that the Win32 application uses as its WNDPROC. For example, here's the
stub for Explorer's tray window:

:u 1457:140

1457:00000140 PUSH 00401DFA

1457:00000146 PUSH 00030000

1457:0000014C JMP 0127:7555

: A 32 bit WNDPROC address.

And a bit later on in the segment:

:u 1457:156

1457:00000156 PUSH 0040180D

1457:0000015C PUSH 00030000

1457:00000162 JMP 0127:7555

; A 32 bit WNDPROC address.

As you can imagine, the address 0127:7555 is some sort of thunk rou-
tine (in KRNL386.EXE) that converts the parameters for the Win16 WND-
PROC call into parameters of the form that a Win32 WNDPROC expects,

T h e r e f o r e ,

214

and then calls the address specified in the thunk. As for the segment that
these thunks reside in, the segment was allocated from the global heap by
USER.EXE, and a code segment alias selector (0x1457) was created for it.

So what does all this mean? If you look in the WND structure of any
window, you'll always find a 16:16 address given for the WNDPROC.
However, if you look at the memory contents at that 16:16 address, you
can determine whether this is a regular Win16 WNDPROC or a thunk up
to a Win32 WNDPROC. Of course, this has ramifications for the
GetWindowLong(GWL_WNDPROC) function: Depending on whether it's
called from a Win16 program or a Win32 program, it has to respond with
the appropriate address.

Messaging system changes
One of the more dramatic changes in the USER subsystem of Windows 95
(as compared to prior versions) is how window messages are passed around.
I call the code that posts, sends, and processes messages the messaging system.
The best news about the Windows 95 messaging system is that it eliminates
the synchronous nature of messaging for Win32 applications. In 16-bit
Windows, only one task at a time can execute. That task has to explicitly
give up control by calling one of the messaging APIs. Typically, a task yields
by calling GetMessage or PeekMessage in its main loop, although SendMessage
can also cause a task to yield.

The problem with this model is that a task that doesn't regularly yield
(that is, pump messages) prevents other tasks from executing. This has the
effect of hanging the input system. As long as the Winl6 task isn't calling
GetMessage or PeekMessage, nobody else can execute. The task that takes a
krug time to finish some processing renders the rest of the system useless.

When Windows NT came along, the NT team reworked the USER com-
ponent so that yielding and scheduling weren't affected by whether a task
calls GetMessage or PeekMessage. A Win32 program can take its sweet
time processing a message without adversely affecting other processes. After
Windows NT had this functionality, there was no way that Windows 95
could go out the door without also having the same improved behavior.

Of course, if 16-bit applications are to continue to run correctly on
Windows 95, these messaging system changes couldn't be made to apply to
Win16 applications. Too many Win16 applications rely on the cooperative
multitasking model, where an application doesn't yield until it's ready to.
Therefore, only Win32 programs are allowed to process messages at their
own pace (or not process them at all) without affecting the rest of the system.

m u l t i t a s k ,

215

One of the ways that Windows 95 creates this dual mode behavior (Win16
applications cooperatively multitask, while Win32 applications pre-eruptively
multitask) is via the Win16Mutex and thread scheduling. At any given time,
the Windows 95 thread scheduler has scheduled the highest priority thread
that is ready to run. One of the things that can make a thread not ready to
run is when it's waiting to acquire a mutex semaphore (such as the
Win16Mutex).

Whenever a Win16 task is executing, it owns the Win16Mutex (actually,
to be more accurate, when any 16-bit code is executing, the Winl6Mutex is
owned). When there's a Win16 task running, all the old-style rules about
requiring the task to call GetMessage or PeekMessage still apply in order for
another 16-bit task to be able to run. However, just because a Win16 task is
holding the Win16Mutex doesn't mean that the thread scheduler won't
switch away from it. When a Win32 thread is executing through regular
32-bit code, it doesn't need to own the Win16Mutex. Therefore, even if a
Win16 task isn't pumping messages in a timely manner, at least 32-bit
threads can continue to run. Other 16-bit applications are of course blocked.

Now, here's the problem with this setup. Since the messaging system
code is in the 16-bit USER.EXE, a 32-bit application that's using a message
processing loop needs to acquire the Win16Mutex before it can get down to
the Win16 USER.EXE. Therefore, this pre-emptive multitasking is only
partial. If a thread is doing calculations or other work that doesn't require
thunking down to 16-bit DLLs like USER.EXE, the thread is pretty much
impervious to badly behaved applications that don't pump messages.
However, if a Win32 thread needs to call down into USER, GDI, or some
other 16-bit component, it needs to acquire the Win16Mutex, and that
thread is blocked until the Win16Mutex becomes available. Thus, a badly
behaved 16-bit application can still effectively block other applications from
executing (assuming those applications are using messaging system or
related functions).

What we have here in Windows 95 is a pre-emptive multitasking system
with a potential army of Achilles' heels. That heel is Win 16 applications that
don't pump messages in a timely manner. Although you can't get rid of the
Win16Mutex altogether, you can work to eliminate as many Win16 tasks
from your system as possible. By minimizing the time spent with the
Win16Mutex acquired, you're also minimizing the chance that a badly
behaved application will hang the input system.

One of the design improvements that Microsoft claims to have made in
Windows 95 is the addition of a "Raw Input Thread" (a.k.a., the RIT). In all
the Microsoft diagrams that depict messaging coming into the system, inter-
rupt handlers are shown depositing messages into a central system queue.

R I T)

216

Then, a separate thread (the RIT) continually monitors that thread, retrieves
messages, and distributes the message to the appropriate thread's message
queue. (I'll get to the details of message queues in just the next section.)

Although the RIT sounds nice in theory (and is supposedly the way
Windows NT does things), I've been unable to conclusively verify its exis-
tence in Windows 95. I have found a function in KERNEL32.DLL called
DispatchRITInput. However, setting a breakpoint on this routine and
checking the current thread when the breakpoint is hit reveals that it's not
called by a single thread. Rather, a wide variety of application threads are
the current thread when DispatchRITInput is called. Ultimately,
DispatchRITInput thunks down to the DispatchInput routine in the 16-bit
USER.EXE. I tried setting a breakpoint there, and although the breakpoint
went off nearly constantly, it was still called in a variety of different thread
contexts. I tried similar experiments on other internal messaging system
functions in USER and was unable to find a particular routine that was
called only in the context of a single system thread. Eventually, I broke
down and asked one of the Windows 95 developers about the RIT, and he
had this to say:

There is a real RIT but if we can process common stuff on some random

thread, we do that for speed/efficiency instead of scheduling the RIT. That's
why you see DispatchInput being called in a variety of contexts. We only defer

things to the RIT as a last resort.

Unauthorized Windows 95 and the
Win 16Mutex Problem

On page 552 of U n a u t h o r i z e d
W i n d o w s 9 5 , Schulman takes some of my
P C M a g a z i n e and M i c r o s o f t S y s t e m s
Journal articles to task for being somewhat
incorrect about the Win16Mutex. He
quotes several statements I made, including
this one fram PC M a g a z i n e :

. . . the sooner you move your applications to 32 bits, the
better. If a system doesn't have any 16-bit programs run-
ning, the Win16Mutex can't be a source of trouble...

He then goes on to say, "a Windows
95 system (at least Windows 95 Beta-l)
always has two running Win16 tasks,
TIMER and MSGSRV32."

From M i c r o s o f t S y s t e m s J o u r n a l ,
Schulman quotes something I wrote in
M i c r o s o f t Systems J o u r n a l :

The USER and GDI code will execute quickly and release
the Win16Mutex. No 32.bit thread will ever hold and hog
the Win16Mutex far any significant period of time.

W i n 1 6 M u t e x .

 217

He then goes on to show a small
Win32 program (W16LOCK) that in fact
does acquire the Win16Mutex and hold
on to it for as long as desired.

These are both valid points, and
deserve a response. The first point (where-
in a Windows 95 system always has at
least two Win16 tasks) has changed
slightly. In more recent builds, Windows
95 really uses only one 16-bit task,
MSGSRV32. (You may have a 16-bit
MMTASK task on your system, but it 's not
required, and I have terminated it without
adverse system effects.) The one important
Win16 task (MSGSRV32) is the task that
allows you to start programs from the DOS
prompt. To see if MSGSRV32 could really
be a problem, I used Sof i lce/W to set a
hardware write breakpoint on the CurTDB
variable in KRNL386.EXE. The breakpoint
was further qualified to go off only when
the HTASK of MSGSRV32 was written to it.
By doing this, whenever MSGSRV32 (the
lone 16-bit task in the system) became the
active task, the breakpoint would be hit. In
the majority of cases, the only way I was
able to get MSGSRV32 to consistently
become the current task was by starting
applications from a command prompt.
MSGSRV32 also became the current task
very sporadically at other times.

In looking at the code for
MSGSRV32, I didn't notice anything that
would indicate a desire for MSGSRV32 to
hang around and not process messages in

a timely manner. The only thing even close
to this that i saw was when MSGSRV32
fired up another program via WinExec. The
Win16Mutex is held the entire time that the
WinExec call executes. The point here is
thai, yes, it 's true that you can't entirely
eliminate 16-bit applications from
Windows 95. On the other hand,
MSGSRV32 looks like it can be trusted to
not acquire the Win16Mutex and hold on
to it for unduly long periods of time.

As for the second point (the
W16LOCK program that holds and
acquires the Win16Mutex from a Win32
program), my feeling is thai W16LOCK is
a perverse case. Yes, it does expose a
hole in the way that Windows 95 allows
access to system functions and synchro-
nization objects. However, W16LOCK
had to explicitly work to grab the
Win l6Mutex and hold onto it from a
Win32 program. This scenario isn't some-
thing that Win32 applications will just
happen to inadvertently do if they're not
careful. (If they thunk down to 16-bit DLLs,
that's another story.) I concede thai the
Win16Mutex can be a source of trouble
and of system hangs. On the other hand, if
you eliminate nonsystem Win 16 applica-
tions and don't intentionally try to hack the
system, you'll probably never notice the
effect of the Win16Mutex. In other words,
be aware of the Win16Mutex, but don't
lose any sleep over it.

n e x t Q u e u e

218

Per-thread message queues
In Windows 95, each thread can have its own message queue. In a nutshell,
a message queue is the data structure that controls which messages a particular
thread's calls to GetMessage or PeekMessage will retrieve. In Windows 3.1
and earlier, each Win16 task had its own message queue. The message queue
was created shortly after program startup. In Windows 95, each thread has
its own message queue, and the queues are created only when a thread actually
needs one for the first time. Since each Win16 task in Windows 95 has an asso-
ciated thread, each Win16 task continues to have a single message queue.

Let's look at message queues a little more closely, since they're one of the
primary data structures that permeate the USER subsystem. When a thread
calls GetMessage or PeekMessage, it's looking for messages within the queue
of the current thread. The notion of the current thread is implicit within the
GetMessage and PeekMessage code. You can't ask for messages from
another thread's queue. Message queues are also used as part of sending a
message to another program. From USER's perspective, the SendMessage call
is from one message queue to another message queue (although the source
and destination queues may be the same).

I'm not going to go into all the details of GetMessage, PeekMessage, or
SendMessage here. I covered those topics pretty thoroughly in Windows
Internals. While there are some changes in Windows 95 from Windows 3.1,
I didn't feel that repeating much of the same information here would be
beneficial. Instead, I'm going to focus on what changed in Windows 95
from Windows 3.1.

Message queue format
For starters, let's look at what the format of a message queue looks like.
Each message queue is kept in a segment allocated from the 16-bit global
heap by USER.EXE. Each thread database (Chapter 3) and task database
(Chapter 7) contains the selector for the associated message queue. The
known fields of a message queue are given in the MSGQUEUE.H file
included with the SHOWWND program. The details of these fields follow
(note that the three items at the beginning of each entry are the offset, the
type, and the name):
00h WORD nextQueue
This WORD contains the next queue in the list. All the message queues are
kept in a linked list, with the end indicated by a 0 in this field.

D G R O U P)

219

02h WORD hTask

This WORD holds the HTASK that this queue is associated with. As I show
in Chapter 7, even Win32 processes have a 16-bit task database associated
with them.

04h WORD headMsg
This WORD holds a near pointer (relative to USER's DGROUP) to the head
of a linked list of QUEUEMSGs. (QUEUEMSGs are described in the next
section.)

06h WORD tailMsg

This WORD holds a near pointer (relative to USER's DGROUP) to the end
of a linked list of QUEUEMSGs.

08h WORD lastMsg
This WORD holds a near pointer (relative to USER's DGROUP) to a
QUEUEMSG that has been retrieved by a call to GetMessage or
PeekMessage. Exactly which message is undetermined at this time.
0Ah WORD cMsgs
This WORD is the number of messages in this queue waiting to be processed.
(That is, it's the number of QUEUEMSG structures in the linked list pointed
to by offset 04h.)

0Dh BYTE sig[3]

For queues of Win32 application threads, these three bytes hold the ASCII
representation for "MJT" (which perhaps stands for Jon Thomason, a
Microsoft programmer). For the queues of most Win16 applications, these
three bytes are 0.

10h WORD npPerQueue
This WORD is a near pointer (relative to USER's DGROUP) to a
PERQUEUEDATA structure. This structure holds the per-thread active,
focus, and capture windows. I'll describe these concepts and this structure
in the "Per-queue system windows" section.

16h WORD npProcess
This WORD is a near pointer (relative to USER's DGROUP) to a QUEUE-
PROCESSDATA structure. If a process has multiple threads and queues,
this field in all the queues will point to the same QUEUEPROCESSDATA
structure. The QUEUEPROCESSDATA structure contains information such
as the process ID associated with this queue, and will be described later.

D W O R D

220

24h DWORD messageTime
This DWORD holds the value that will be retrieved by a call to GetMessage-
Time (that is, the time that the message was posted). This value is set by
copying it out of the QUEUEMSG structure as each message is retrieved by
GetMessage/PeekMessage.
28h DWORD messagePos
This DWORD holds the value that will be retrieved by a call to GetMessagePos
(that is, the X,Y coordinates of the cursor at the time of the message). This
value is set by copying it out of the QUEUEMSG structure as each message
is retrieved by GetMessage/PeekMessage.
2Eh WORD lastMsg2
This field holds a near pointer (relative to USER's DGROUP) to the last
retrieved QUEUEMSG structure.
30h DWORD extralnfo
This DWORD holds the value that will be retrieved by a call to GetMessage-
Extralnfo. This value is set by copying it out of the QUEUEMSG structure
as each message is retrieved by GetMessage/PeekMessage.

3Ch DWORD threadld
This is thread ID of the thread that is associated with this queue. The relation-
ship between thread IDs and the thread database is described in Chapter 3.

42h WORD exp WinVer
This is the version of Windows this application expects. This is usually either
0x300, 0x30A, or 0x400 to represent Windows 3.0, 3.1, or 4.0. This value is
extracted from the program's executable header at startup. It's used by USER
in certain cases to determine how messages should be processed or which
messages should be sent. In other words, it allows USER to be compatible
with the behavior of multiple versions of Windows.
48h WORD ChangeBits
This value is comprised of various QS_XXX flags representing the various types
of message events that have occurred since the last call to GetQueueStatus. The
following QS_xxx flags are given in WINUSER.H:

QS_KEY 0x0001
QS_MOUSEMOVE 0x0002
QS_MOUSEBUTTON 0x0004
QS_POSTMESSAGE 0x0008

U S E R . E X E

QS_TIMER 0x0010
QS_PAINT 0x0020
QS_SENDMESSAGE 0x0040
QS_HOTKEY 0x0080

The GetQueueStatus returns this field in the low-order word of its returned
DWORD. Chapter 7 of Windows Internals contains much more information
about the QS_xxx flags and their meaning.
4Ah WORD WakeBits

This value is comprised of various QS_XXX flags representing the various
types of messages that are in the queue. The QS_xxx flags are listed in the
previous field's description. The GetQueueStatus returns this field in the
high-order word of its returned DWORD.
4Ch WORD WakeMask

If a thread is blocked, waiting for a message inside a call to GetMessage or
PeekMessage, this WORD hold the QS_XXX flags for the message types it's
waiting for. Typically, applications are blocked inside a call to GetMessage,
so this field would hold QS_ALLINPUT, which is the combination of all the
QS_XXX flags.

50h WORD hQueueSend

If this thread is processing a message that was sent to it by another thread,
this WORD holds the queue handle of the sending thread.
56h WORD sig2

This WORD holds 0x5148, which is the ASCII representation for HQ (which
perhaps stands for Handle Queue?). Each message queue is associated with a
particular thread. Each thread in turn is associated with a process. Therefore,
there can be a many-to-one relationship between message queues and a process.
The messaging system information that's common between all queues in a
process is stored in a structure that I call a QUEUEPROCESSDATA structure.
The QUEUEPROCESSDATA structure is kept in a block allocated from the
16-bit USER heap. The pointer to the QUEUEPROCESSDATA structure is
kept at offset 0x16 in a message queue. In the Windows 95 16-bit TOOL-
HELP.H file, this data structure is marked with the LT_USER_PROCESS
(0x1D) identifier. (Only the debug version of USER.EXE tags the blocks with
a type identifier.)

The known fields in the QUEUEPROCESSDATA structure can be found
in the MSGQUEUE.H file from the SHOWWND program written for this
chapter. The details of these fields follow (note that the three items at the
beginning of each entry are the offset, the type, and the name):

S e t M e s s a g e Q u e u e

222

00h WORD npNext
This field is a near pointer (relative to USER's DGROUP) to the next
QUEUEPROCESSDATA in the system.

02h WORD un2
What this field points to is unknown. However, in the debug version of
Windows, its block is given the type of LT_USER_SUBSYSTEM.

04h WORD flags
Some sort of flags WORD. The meanings are unknown.

08h DWORD processld
This DWORD holds the process ID associated with this queue.

0Eh WORD hQueue
This WORD holds an hQueue value. Its exact significance is not known,
although it may be a back-pointer to the queue created for the thread in
the process.

The QUEUEMSG structure

In Windows 3.1 and earlier, a message queue actually contained the messages
that had been posted to it. A large area toward the end of the queue structure
was basically just an array of MSG structures. Two WORD fields near the
beginning of the queue structure acted as head and tail pointers. Because the
messages were stored in an array, there was a maximum number of messages
that could be stored at any given time in a queue. By default, this value was
eight messages, but it could be upped by calling SetMessageQueue with a
new message count.

Windows 95 totally changes the way messages are stored for a queue. In
a Windows 95 message queue, there's a near pointer to the head of a linked
list of structures, one structure per message. I've dubbed these structures
with the name QUEUEMSG. The QUEUEMSG structures are allocated out
of the 16-bit USER DGROUP. This is rather surprising, since a lot of work
went into moving things out of USER's DGROUP in Windows 95, so
putting message structures in there seems counterproductive. Incidentally,
the Windows 95 16-bit TOOLHELP.H refers to these structures by the
name LT_USER_QMSG (0x1A).

In case you find it hard to believe that the messages for a queue are no
longer kept in an array at the end of the queue, consider the following code
for Windows 95's SetMessageQueue function:

D W O R D

 223

SETMESSAGEQUEUE proc

C0ED: XOR AX,AX

C0EF: INC AX

C0F0: RETF 3702

For those of you who don't read assembler (for shame!), the function
simply returns 1. That's because there's no longer an array of MSG structures
in a queue. In contrast, the Windows 3.1 SetMessageQueue calculated how
big the new queue would have to be (taking into account the number of
messages to be held) and allocated a new global heap block for the queue.

The layout of a QUEUEMSG structure is given in C-style format in the
MSGQUEUE.H file from the SHOWWND program. The details of the known
QUEUEMSG fields follow (note that the three items at the beginning of each
entry are the offset, the type, and the name):
00h WORD I-IWND
This WORD is the window handle (HWND) that this message will be
delivered to.
02h WORD msg
This WORD is the message number. Only the bottom 16 bits of a message
number are stored. This isn't a problem in Win16, where messages are only
16 bits, but for a Win32 application, a message is a DWORD value, so the
top WORD of a Win32 program's message value is lost.

04h WORD wParamLow
For Win16 applications, this field holds the WPARAM value for the message.
For Win32 programs, this field holds the low WORD of the WPARAM value.

06h DWORD IParam
This field contains the LPARAM of the message.
0Ah DWORD messageTime
This DWORD is the time that the message was deposited into the queue.
According to the SDK documentation, the message time is the number of
milliseconds since the system started. This field's value is ultimately returned
by the GetMessageTime function. As part of retrieving this message,
GetMessage and/or PeekMessage copies this value into offset 24h of the
message queue, which is where GetMessageTime retrieves it from.

G e t M e s s a g e

224

0Eh DWORD messagePos
This DWORD contains the X,Y coordinates of the cursor at the time the
message was generated. This field's value is ultimately returned by the
GetMessagePos function. As part of retrieving this message, GetMessage
and/or PeekMessage copies it into offset 28h of the message queue, which
is where GetMessagePos retrieves it from.
12h WORD wParamHigh
For Win32 applications, this WORD holds the high WORD of the WPARAM.
For Win16 programs, this WORD is ignored.
14h DWORD extralnfo
This DWORD contains the extra information that's sometimes associated with
a message. This field's value is ultimately returned by the GetMessageExtraInfo
function. As part of retrieving this message, GetMessage and/or PeekMessage
copies it into offset 30h of the message queue, which is where GetMessage-
ExtraInfo retrieves it from.
18h WORD nextQueueMsg
This is a near pointer (relative to USER's DGROUP) to the next QUEUEMSG
structure in the list. The end of the list is indicated by a 0 in this field.

Per-queue system windows
One of the design concepts espoused in Windows NT is that one process
shouldn't be able to adversely affect the behavior of another process (at
least not without the permission of the other process). Windows 3.1 and
earlier didn't follow this philosophy, especially when it came to the state of
the windowing system. At any given time in Windows 3.1 and earlier, there
was just one active window, one focus window, and one capture window.
Any application could steal the focus away from another by calling
SetFocus. Likewise, a call to SetActiveWindow could change the active
window out from underneath a task that thought it was the active window.

Windows NT solved this problem by giving each application its own
copy of the active, focus, and capture HWNDs. (Actually, this is a bit of a
simplification, but it will suffice for now.) By making these system-state
windows per-application in scope, Win32 programs don't have to worry
about other programs (malicious or not) affecting their behavior. As with
the decoupled messaging system, the idea of per-application system state

n p N e x t

225

windows was such a good idea that it was brought over to Windows 95 as
well. (The fact that this behavior is prescribed by the Win32 APl didn't hurt
matters either.)

The per-queue information is kept in (yet another) structure allocated
from USER's DGROUP segment. (Hey! I thought Windows 95 was supposed
to move things out of USER's DGROUP, not add new items.) The pointer
to the per-queue data area is found at offset 0x10 in a message queue. I've
given the per-queue information structure the name PERQUEUEDATA.
The Windows 95 16-bit TOOLHELP.H refers to this structure as an
LT_USER_VWININFO (type ID = 0x1B).

Incidentally, during the final Windows 95 beta (M8), the March 27th
InfoWorld ran a story with the headline, "Win95 beta lays an egg." Much of
the ensuing controversy arising from that article ultimately ended up related
to the PERQUEUEDATA structure. At the time of the final Windows 95
beta, each PERQUEUEDATA was several hundred bytes in length. As a
result, starting up a large number of threads would quickly fill up USER's
64K DGROUP. Subsequently, Microsoft restructured the PERQUEUEDATA
structure to take up significantly less space, and the controversy died down.

A C-style structure definition for PERQUEUEDATA is given in the
MSGQUEUE.H file from the SHOWWND sample program. The details of
the known fields follow (note that the three items at the beginning of each
entry are the offset, the type, and the name):

00h WORD npNext
This field is a near pointer (relative to USER's DGROUP) to the next
PERQUEUEDATA structure in the system. Apparently, the PERQUEUE-
DATA are kept in a linked list.

06h WORD npQMsg
This WORD is a near pointer (relative to USER's DGROUP) to a QUEUEMSG
structure. (QUEUEMSGs is described in the preceding section.)

14h WORD somehQueue l
This WORD is a message queue handle. Its exact significance is currently
unknown.

16h WORD somehQueue2
This WORD is a yet another message queue handle. Its exact significance is
currently unknown.

D W O R D

226

18h DWORD hWndCapture
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current window with capture for this queue.
1 Ch DWORD hWndFocus
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current focus window of this queue.
20h DWORD hWndActive
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current active window of this queue.

Changes to (H)WND structures in
Windows 95
The WND structure is perhaps the most commonly used system data struc-
ture in Windows 95. For each window in the system (visible or not), there is
a corresponding WND structure. In Windows 3.1, an HWND was a near
pointer to a WND structure in USER's DGROUP. As I described earlier, a
Windows 95 HWND is an offset into an array of 32-bit USER32 relative
pointers to WND structures.

Because each WND structure contains a pointer to its parent window,
its sibling window, and its first child window, you can easily see that windows
are kept in a tree hierarchy. Figure 4-3 shows the tree hierarchy and describes
a little about each "level." At the root of the WND tree hierarchy is the
desktop window. The first level of windows immediately below the desktop
window have styles of WS_OVERLAPPED or WS_POPUP. These are what
what most developers think of as "top-level" or "main" windows. Windows
that are lower in the hierarchy have the WS_CHILD style. The prototypical
child window is a control window in a dialog box/for example, a button).
Because of the window hierarchy, you can start at the desktop window and
enumerate through all the windows in the system, as the SHOWWND.C
program shows. (See "The SHOWWND Program" section later in this
chapter.)

Although this fact isn't commonly known, the Z-order of windows is
determined by their relative positions within the hierarchy. Within a given
group of sibling windows, the window that's first in the list is highest in the
Z-order. The second window in the list is next in the Z-order, and so forth.
For example, all top-level windows (WS_OVERLAPPED and WS_POPUP)

F i g u r e

227

are siblings of one another, and are all children of the desktop window. The
desktop window's first child window (that is, the first WS_OVERLAPPED
or WS_POPUP window) holds the highest rank in the Z-order.

Top-Level Windows
(WS_POPUP and
WS_OVERLAPPED)

 Figure 4-3
The tree hierarchy of W N D structures lets you start at the desktop window and enumerate

 through all the windows in the system.

WND structure details

Although there are definite changes to the WND structure in Windows 95
(relative to Windows 3.1), they're not very dramatic. For the most part, the
ordering of the fields didn't change (although the sizes of certain fields cer-
tainly did). Also, the WND structure has a few new fields in Windows 95.
The primary new field is the WORD that holds the 16-bit HWND value for
that window. This WORD is what allows windows to be easily referred to
by either a 16-bit HWND or a 32-bit USER DGROUP relative pointer.

R E C T S

228

The HWND32.H file from the SHOWWND sources has a C-style defi-
nition for a Windows 95 WND structure. The details of the WND follow
(note that the three items at the beginning of each entry are the offset, the
type, and the name):
00h struct _WND32 * hWndNext

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
sibling of this window. The sibling window is the next window at this level
of the hierarchy that has the same parent window as this window. You can
obtain the 16-bit HWND of the sibling window by calling GetWindow with
the GW_HWNDNEXT parameter.
04b struct _WND32 * bWndCbild

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
first child window of this window. You can obtain the 16-bit HWND of the
first child window by calling GetWindow with the GW_CHILD parameter.
By calling GetWindow(GW_HWNDNEXT), you can obtain child windows
for each subsequent child window.
08h struct _WND32 * hWndParent

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
parent window of this window. You can obtain the 16-bit HWND of the
parent window by calling GetParent. The only window that truly does not
have a parent window is the desktop window.
0Ch struct _WND32 * hWndOwner

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
owner window for this window. The owner window is the window that
receives notification messages (for example, the BN_CLICKED message).
For WS_OVERLAPPED and WS_POPUP windows, the owning window
and the parent window don't have to be the same, although they often are.
For WS_CHILD windows, the parent window always also acts as the owner
window (that is, it receives all notification messages). By calling
GetWindow(GW_OWNER), you can obtain the 16-bit HWND of a
window's owning window.
10h RECTS rectWindow

This field is a 16-bit RECT structure (four short integers) that define the
boundaries of the window (including the nonclient area).

2 6 h

229

18h RECTS rectClient
This field is a 16-bit RECT structure (four short integers) that defines the
boundaries of the client area of the window. The client area is the portion of
window that the application is allowed to draw in using a device context
obtained from BeginPaint or GetDC.
20h WORD hQueue
This field contains the 16-bit global heap handle for the queue that handles
messages for this particular window. The existence of this field proves that
in Win32, windows are bound to a single queue and, hence, to a single
thread. Thus, there is a Win32 GetWindowThreadProcessId function.

22b WORD brgnUpdate
If a portion of this window needs repainting, this field holds an HRGN that
describes the region needing to be updated. Regions are GDI data structures,
and are stored in a 32-bit heap in Windows 95.
24h WORD wndClass
This WORD holds a near pointer (relative to USER's DGROUP) to a
USER_DGROUP_WNDCLASS structure. A USER_DGROUP_WNDCLASS
structure is just the minimum amount of window-class-related information
that USER needs to access frequently. The less frequently accessed class
information is kept in another structure that's kept in a 32-bit heap. We'll
look at the format of the USER_DGROUP_WNDCLASS and this other
structure in the "Changes to Windows 95 window classes" section. To sum
up, this field in the WND structure gives the class type of the window.

26h WORD hlnstance
In most cases, this WORD contains the 16-bit hInstance (DGROUP) for the
application that created the window. However, for edit controls that need to
contain very large buffers (up to 64K), this field holds the DS value that will
be used in the edit control's WNDPROC. Before calling a window procedure,
USER loads this field into the AX register. In some Win16 exported function
prologues, the code expects that AX contains the DS value to be used by the
function. Normally, the DS that a program will want to use is the DGROUP
segment, but in the case of an edit control holding significant amounts of
text, a separate segment can be used.

28h WNDPROC lpfnWndProc
This DWORD holds the window procedure address associated with the
window. It appears to always be a far 16:16 address. If the window's

s c r o l l b a r

230

declared window procedure is in Win32 code, this field holds a pointer to a
16:16 thunk up to the Win32 window procedure.
2Ch DWORD dwFlags
This DWORD holds flags specific to the internal state of the window. The
meanings of individual bits aren't documented.
30h DWORD dwStyleFlags
This DWORD holds the WS_XXX-style flags given in the 16-bit WINDOWS.H
and 32-bit WINUSER.H.
34b DWORD dwExStyleFlags
This DWORD holds the WS_EX_XXX extended-style flags given in the 16-bit
WINDOWS.H and 32-bit WINUSER.H. Windows 95 added several new
extended style flags, which I'll talk more about in the "Other windowing
system changes (or lack thereof)" section.
38h DWORD moreFlags
This field appears to be used as flags. The meanings are unknown.
3Ch HANDLE ctrllD (or hMenu)
For top-level (WS_OVERLAPPED or WS_POPUP) windows, this field holds
the hMenu for the window. Its value is retrieved by the GetMenu function.
For WS_CHILD windows, this field holds the control ID. You're probably
most familiar with control IDs in the context of the controls in a dialog
box. If this window is a WS_CHILD window, this field's value can be
retrieved by GetDlgCtrlId.
40h DWORD some32BitHandle
This WORD is a 32-bit handle for the window's text. The handle is similar
to an HWND, but applies a heap that is neither the window heap nor the
menu heap.
42h WORD scrollBar
This WORD holds information relating to the window's scrollbar attributes.
44h WORD properties
This WORD is the handle for the first window property in the linked list of
properties. Properties are really just atoms, and allow you to bind named
16-bit values to a window. See the GetProp and SetProp functions in the
SDK documentation for more information.

(I c o n T i t l e)

 231

46h WORD hWnd16
This WORD is one of the key fields in the WND structure. It contains the
16-bit HWND value for this window. When the USER code has a 32-bit
pointer to a WND structure, it can grab the contents of this field to return
to code that expects a real 16-bit HWND. This allows USER to internally
pass around 32-bit pointers to WND structures without also passing around
the corresponding 16-bit HWND. Whenever it's needed, the HWND can be
looked up in the WND structure.

48h struct _WND32 * lastActive
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the last
active popup window associated with this window. The GetLastActivePopup
function grabs this value to get a pointer to a WND structure, and then
returns the 16-bit HWND stored at offset 46h in the structure.

4Ch HANDLE hMenuSystem
This field is a handle to the system menu associated with this window. See
the GetSystemMenu function in the SDK documentation for details.

56h WORD classAtom
This WORD holds the atom associated with the class name for this window.
It can either be a regular atom (that is, > 0xC000), or it can be one of the
predefined window class types:

Ox8000 (PopupMenu)

0x8001 (Desktop)

0x8002 (Dialog)

0x8003 (WinSwitch)

0x8004 (IconTitle)

Ox802A ???

// The ALT TAB window.

// In Win 3.X, the title window below an icon.

// The class associated with MMTASK.TSK.

This field (offset 56h) is usually the same as the field at offset 2 in the struc-
ture pointed to by the wndClass pointer (offset field 24h of the WND class).

58h DWORD alternateHD
5Ch DWORD alternateTID
These two fields don't appear to actually contain a process ID or a thread
ID. However, there is a path through the GetWindowThreadProcessId code
which indicates that these fields could contain a PID and a TID.

As a final note on Windows and the WND structure, it often surprises
people when I tell them that creating a window takes absolutely no space
from USER's 64K DGROUP. If you're creating a window from an existing

S D K

232

class, the only data that needs to be allocated is the WND structure itself.
Since WND structures come from a 32-bit heap, there's absolutely no impact
on USER's 16-bit DGROUP from creating a window. To prove this to myself,
I've written programs that created several thousand windows and checked
the free space in USER's DGROUP at various points during the creation of
the windows. In all cases, no memory was allocated during USER's DGROUP
in the course of this process.

Other windowing system changes (or lack thereof)
For some users, one of the biggest disappointments in Windows 95 is that
the maximum of 64K of text in a standard window didn't go away. Given
Windows 95's design goals, this shouldn't be surprising. The code that
manipulates and displays the text for a window is resolutely 16 bit. A good
chunk of the 16-bit USER would have had to have been converted to 32-bit
code to break the 64K limit. Given the size and compatibility risks involved,
it's understandable that the Windows 95 team didn't jump to do this. On
the other hand, Windows NT, which has a fully 32-bit USER and GDI,
doesn't have this limitation. Thus, the limit of 64K of window text is one of
the major end-user discernible differences between NT and Windows 95.

On a positive note, Windows 95 defines numerous new window styles
to give Win32 applications that cool Windows 95 look. The new styles in
WINUSER.H are:

#define WS_EX_MDICHILD 0x00000040L

#define WS_EX_TOOLWINDOW 0x00000080L
#define WS_EX_WINDOWEDGE 0x00000100L

#define WS_EX_CLIENTEDGE 0x00000200L

#define WS_EX_CONTEXTHELP 0x00000400L

#define WS_EX_RIGHT 0x00001000L

#define WS_EX_LEFT 0x00000000L

#define WS_EX_RTLREADING 0x00002000L

#define WS_EX_LTRREADING 0x00000000L
#define WS_EX_LEFTSCROLLBAR 0x00004000L
#define WS_EX_RIGHTSCROLLBAR 0x00000000L

#define WS_EX_CONTROLPARENT 0x00010000L

#define WS_EX_STATICEDGE 0x00020000L

#define WS_EX_APPWINDOW 0x00040000L

(The default in Win 3.1)

(The default in Win 3.1)

(The default in Win 3.1)

I won't bore you by reciting the SDK documentation on what all these new
styles do. However, there's something quite interesting going on regarding
these new styles -- something that's not immediately obvious. If you dig
through the 16-bit WINDOWS.H for Windows 95, you won't find any of

L i s t B o x

 233

these new WS_EX_XXX styles listed. The new WS_EX_XXX styles appear
only in the 32-bit WINUSER.H file. Now, I've been stressing throughout
this chapter that almost all the USER subsystem functionality (including the
windowing system) is implemented in the 16-bit USER.EXE. Something
should be rattling around in the back of your mind here. If the 16-bit
USER.EXE is what implements the windowing system, the 16-bit USER.EXE
must implement these styles -- which are supposedly for 32-bit applications
only. Why the heck can't 16-bit applications use these same new WS_EX_ XXX
styles? As it turns out, there isn't a good reason. In fact, in some informal
testing, I turned up some 16-bit Windows 95 utilities that did in fact use
these new extended styles.

Changes to Windows 95 window classes
Before jumping into a discussion of the changes made to Windows 95 window-
class management, a brief review of window classes is in order. A window
class is a collection of attributes used when creating a window. These attributes
include items such as the window procedure callback address, the window's
style bits, the number of extra data bytes the window needs for auxiliary
storage, and so on. While USER could theoretically get by without using
classes, it would be a real pain to have to specify all those attributes each
time you wanted to create a window. This is especially true for windows
that programs create numerous instances of, such as buttons.

Window classes serve as templates from which specific instances of win-
dows can be created. After the window has been created, some of the class
attributes that were copied to the WND structure can be modified. The prime
example of this is the window procedure address. All windows created from
the same class initially have the same window procedure address. Later on,
a program can use SetWindowLong to change the window procedure of a
specific window. This is exactly what subclassing is.

When Windows starts up, it creates a small collection of a dozen standard
classes:

Button ListBox
ComboBox MDIClient
ComboLBox PopupMenu
Desktop ScrollBar
Dialog Static
Edit WinSwitch

R e g i s t e r C l a s s .

234

Most of these classes will be heavily used by various applications, so it
makes sense to make them common system classes. Additional application-
specific classes can be created by calling RegisterClass. Regardless of whether
you use a standard system class or your own class that you've created, you
must pass a class identifier (typically its name} to the CreateWindow or
CreateWindowEx functions.

In Windows 3.1 and earlier, USER kept all the registered window classes
in the system in a linked list. There were even TOOLHELP functions
(ClassFirst and ClassNext) for enumerating through all the registered
classes. In Windows 95, the linked list of all registered classes is no more.
Sure, there's still a small set of classes that you can get information on via
ClassFirst and ClassNext. However, these classes are only the standard set
of system classes (for example, buttons, listboxes, and so forth). These are
the standard system classes registered by USER during its startup phase (see
Chapter 1 of Windows Internals).

As in Windows 3.x and earlier, the Windows 95 USER still allocates the
space for classes out of its 16-bit heap (so, yes, each new class uses up a
small amount of the available system resources). In the debug version of
USER, the memory allocated for a class structure is preceded by an
LT_USER_CLASS (1) signature.

As part of the move toward the Win32 philosophy of letting processes
know as little as possible about other processes, each Windows 95 32-bit
process now has its own private class list. This private class list includes
classes registered by system DLLs such as COMCTL32.DLL. Each time a
new process uses COMCTL32.DLL, roughly a dozen new classes are regis-
tered. These classes are application-private copies of the classes provided by
COMCTL32.DLL. If you're thinking that all these application-private
classes can quickly suck up space in USER's 64K heap, you're right!

Given that there are application-private class lists, it would be nice to be
able to enumerate them. Unfortunately, neither the 16- nor 32-bit TOOLHELP
APIs provide a method for walking the private class list of a process. To
date, the only way I've been able to find the private class list is to enumerate
through all the windows in the system and retrieve the class pointers from the
WND structures. The class pointer is at offset 24h in each WND structure.
Using the SHOWWND program, you can walk a process's class list by hand
(that is, you have to find the head of the class list and then double-click on
the "next" field of each class in the list).

A C-style definition for a Windows 95 window class structure is given
in the WNDCLASS.H file from the SHOWWND program (see the follow-
ing section). I've named this structure a USER_DGROUP_WNDCLASS.

U S E R _ D G R O U P _ W N D C L A S S

235

This structure contains the minimal set of fields that the 16-bit USER needs
to access frequently. The less frequently used fields of a window class have
moved off into a separate structure in a 32-bit heap. The known fields of a
USER_DGROUP_WNDCLASS follow (note that the three items at the
beginning of each entry are the offset, the type, and the name):

00h DWORD lplntWndClass
This field is a far (16:16) pointer into the window heap. The pointer points
to an INTWNDCLASS structure that I'll describe next. Basically, the
INTWNDCLASS contains the class information that USER doesn't need
immediate access to.
04h WORD hcNext
This WORD holds a near pointer (in USER's DGROUP) to the next class.
The next class is either one of the system registered classes or the next
application private class.

06h ATOM classNameAtom
This WORD holds the atom that describes the class name. It's either a regular
atom (for example, > 0xC000) or a standard class atom (0x8000, 0x8001,
and so on). The GetClassNameFromAtom function in the SHOWWND.C
source file on the accompanying disk shows how to decode these atoms to
class names.

08h DWORD style
This DWORD holds the CS_xxx styles (for example, CS_VREDRAW) for
the class. This field is widened from Win 3.1, where it was only a WORD.

Summing up the fields in USER_DGROUP_WNDCLASS structure, you'll
find that it takes up about 0x0C bytes in USER's DGROUP for each class.
In Windows 3.1, all the information about the WNDCLASS was stored in
USER's DGROUP. In an attempt to free up additional USER DGROUP mem-
ory, Microsoft moved most of the fields in a window class out into a sepa-
rate 32-bit heap. The first field of the USER_DGROUP WNDCLASS con-
tains a far pointer into this heap, and what it points at is a structure that I
call an INTWNDCLASS (INTernal WNDCLASS). The INTWNDCLASS is
similar to, but not identical with, the WNDCLASS structure that you pass
to the RegisterClass function. The format of an INTWNDCLASS is also
given in the WNDCLASS.H header file; the details are as follows:

00h WORD
This field contains the number of current windows that are of this class.

h l c o n

236

04h DWORD lpfnWndProc
This WORD holds the window procedure address for windows of this class.
The act of superclassing involves using SetClassLong to change this field.

08h WORD cbClsExtra
This WORD holds the number of extra bytes that are allocated at the end of
this INTWNDCLASS structure. Applications can use these bytes to store appli-
cation-specific data. These extra bytes are accessed with SetClassWord/Long
and GetClassWord/Long.
0Ah WORD bModule
This WORD holds the 16-bit version of the HMODULE that registered the
class. Note that this differs from the SDK documentation, which refers to
this as an HINSTANCE. USER gets away with this because it routinely
converts HINSTANCE to HMODULEs using the 16-bit GetExePtr routine
described in Chapter 7.
0Ch WORD hlcon
This is the icon associated with windows of this class.

1Eh WORD hCursor
This is the cursor to be used when the mouse is over windows of this class.

1Oh WORD hBrBackground
This is the brush to be used when refreshing the window's background.

12h DWORD lpszMenuName
This is the name of the menu to be used for windows of this class. This field
is usually 0, but it occasionally contains a valid 16:16 pointer.

16h DWORD hlconSm
The small icon associated with windows of this class. If nonzero, this is the
icon used for such things as representing the window on the Explorer
taskbar.
18h WORD cb WndExtra
This WORD holds the number of extra bytes that are allocated at the end of
each window created from this class. Applications can use these bytes to store
per-window data. These extra bytes are accessed with SetWindowWord/Long
and GetWindowWord/Long.

f e r r e t i n g

237

The SHOWWND program
To illuminate most of the data structures I've been talking about up to this
point, I wrote the SHOWWND program. (Of course, I used SHOWWND
myself when ferreting out certain details of the data structures I've described.)
The central focus of SHOWWND is the window hierarchy. You can click
on each window in the system to show the details of that window's various
fields. If a field is a link to another important data structure, you can double-
click on that line to switch to a detailed listing of that data structure. In this
way, the SHOWWND program on the accompanying disk shows the fields of
WND structures, window classes, and message queues. Since all three of these
structures contain links (pointers) to other instances of their structure type,
you can easily follow linked lists of windows, classes, and message queues.

To demonstrate that the data structures really are as I've described them,
SHOWWND uses as few USER functions as possible. Wherever possible, it
directly accesses the data structures. For example, SHOWWND could have
used the EnumWindows and EnumChildWindows to display the window
hierarchy. But that strategy wouldn't have proved that the WND struct looks
the way I've described it. Of course, going into system data structures and
poking around yourself isn't good programming practice, and it should be
avoided if possible. However, for the purpose of showing what's going on
under the hood in USER, it's the only way to prove that I'm not just hand-
waving here.

Like several of the other programs from this book, SHOWWND is a
dialog box with two listboxes. As you can see in Figure 4-4, the listbox on
the left contains a nested hierarchical view of the current windows in the
system. At any point, you can refresh the list by clicking the Refresh button.
The listbox on the right is a "details pane" -- when you select a window in
the left pane, the right listbox updates to show the contents of the selected
window's WND struct.

If you look closely within the righthand listbox, you'll see that several
of the lines are preceded by a + (a plus sign). The + indicates that the line
can be double-clicked to cause the details pane to show the details of
whaever you've clicked on. From within a WND details pane, you can go to
another WND, to the window's class, or to the window's queue. From the
class details pane, you can follow the hcNext pointer to the next class in the
list. The message queue pane works in a similar manner, and lets you walk
the list of message queues.

l i s t b o x e s

238

 Figure 4-4
The SHOWWND program is a dialog box containing two listboxes that show the

 hierarchical structure of the current windows and details about each window.

For the most part, the SHOWWND.C code is pretty straightforward, so I
won't bore you with descriptions of the code or a code listing here. However,
there is one important detail in the code that bears mentioning. SHOWWND
is a Win32 program. And as you no doubt know by now, Win32 programs
can be pre-empted by other threads. As a result, SHOWWND could be in the
middle of its window hierarchy walk and another thread could come along
and change the window hierarchy. Although this would probably be a rare
occurrence, it could happen.

To prevent this from happening, SHOWWND acquires and holds on to
the Win16Mutex during its walk of the window hierarchy. SHOWWND.C
does this by using three undocumented functions: GetpWin16Lock,
EnterSysLevel, and LeaveSysLevel. The GetpWin16Lock function fills in a
DWORD with the address of the Win16Mutex (which is actually in
KRNL386.EXE). By passing this address to EnterSysLevel, a program can
acquire the Win16Mutex and release the mutex with LeaveSysLevel. This
technique is somewhat similar to what the W16LOCK program from
Unauthorized Windows 95 does. The key difference is that W16LOCK is

H W N D

239

using these functions to prove that the system can be deadlocked from a
Win32 application, while SHOWWND uses them to properly handle thread
synchronization issues.

Pseudocode for select 16-bit
USER.EXE functions
Now that we've looked at some of the key 16-bit USER data structures and
USER's use of the new Win32 heaps, let's look at some pseudocode for
some functions in USER.EXE. The following sections are practical in
nature, because I want to show you how these data structures and concepts
are actually put to use.

The IsWindow and IsWindow16 functions in USER. EXE

The IsWindow function takes a 16-bit HWND as a parameter and verifies
whether it's really a valid HWND. The IsWindow code in the debug
USER.EXE is just logging code that emits the name of the function to the
debug port if a certain USER trace mode flag (not documented) is enabled.
The real verification of the HWND happens after IsWindow falls through
into the IsWindowl6 code.

IsWindowl6 starts out by quickly throwing out HWND values that
can't possibly be valid. As I described earlier, HWNDs in Windows 95 are
always a multiple of four, so IsWindow16 returns FALSE for any value that
has either of its lowest two bits set. IsWindow16 also immediately throws
out values that are less than 0x80. Why 0x80? Because the first 0x80 bytes
of the handle table area (at USER's DGROUP base address + 0x10000) are
used for storing other information related to the 32-bit window heap. The
first available window pointer slot in the handle table area is at offset 0x80,
and this slot appears to always be taken by the desktop window. (This
makes sense, because the desktop window is the first window created.)

IsWindow16 next throws out HWND values that are too high. At offset
0x70 in the handle table area is a DWORD that contains the maximum
handle table offset in use. If the HWND passed into IsWindow is bigger
than that value, it can't be a valid HWND, so IsWindow16 returns FALSE.

The final part of IsWindow16 is to use the 16-bit HWND value to look
up the 32-bit pointer to the WND structure. (Remember, the 32-bit pointer
to the WND struct is relative to USER's DGROUP, and isn't a fiat 32
pointer.) IsWindow16 does two checks with the pointer that the HWND

240

value dereferences to. First, the pointer must be greater than 0x10000. (In
the USER32 version of IsWindow, the test is for 0x20000, which is more
accurate.) Second, the pointer that the HWND dereferences to must be
nonzero. If both conditions are met, IsWindow16 returns TRUE, indicating
that the 16-bit HWND is valid.

Pseudocode for IsWindow

// In 16 bit USER.EXE

// Parameters:

// HWND hWnd // The 16 bit version.

Push DS

Load DS with USER's DGROUP

Grab UserTraceFlags WORD from USER's DGROUP

restore USER's DGROUP

if (UserTraceFlags & 0x2000)

_DebugOutput(DBF_USER, "IsWindow");

// Execution falls through to IsWindow16...

IsWindow16 proc

// Parameters:

// HWND

// Locals:

// PWND32

// PVOID

hWnd // The 16-bit version.

pWnd32 // 32 bit USER DGROUP relative pointer to HWND32.

USER_dgroup_base // Base address of USER's DGROUP.

// Pops return address and HWND off the stack, then pushes them

// back on. Supposedly saves space on stack frames.

if (hWnd & 3)

return 0;

// HWND16s must be a multiple of 4.

if (hWnd < 0x80) // HWND16s are always >= 0x80.

return 0;

H W N D

241

// At offset 0x10070 in the USER DGROUP seg is a DWORD with the

// maximum HWND value.

if (hWnd > *(PDWORD)(USER_dgroup_base + 0x10070))

return 0;

// Use the HWND as an offset into the handle table area at

// offset 0x10000 in USER's DGROUP. Grab the pointer stored there.

pWnd32 = *(PDWORD) (USER_dgroup_base + 0x10000 + hWnd);

if (pWnd32 <= 0x10000)

return 8;

// All HWND structs are above 0x1000•.

// Actually, they're above 8x20000, Dut...

if (pWnd32) // if the HWND ptr table contains a nonzero

return TRUE; // entry, we'll say it's a valid HWND.

The GetCapture, GetFocus, and
GetActiveWindow functions

As I mentioned earlier, in Windows 95 the capture, focus, and active windows
are stored on a per-queue basis. Thus, unlike in Windows 3.x, GetCapture,
GetFocus, and GetActiveWindow can't merely scoop the relevant value out
of USER's DGROUP segment. On the other hand, the three HWNDs (actu-
ally USER 32-bit pointers) are stored side by side in the PERQUEUEDATA
structure that I described earlier. This means that the code for retrieving the
three HWNDs can share common code.

The three functions each load a register (called perQueueOffset in the
pseudocode) with the offset of their desired window pointer within the
PERQUEUEDATA structure. The functions then all jump to a common spot
(called Get_XXX_common in the pseudocode). The common code first calls
into KRNL386 to get a pointer to the current thread's message queue. Within
the queue is a pointer to the PERQUEUEDATA structure. With the pointer
to the PERQUEUEDATA in hand, the code adds in the appropriate offset
set earlier by the GetCapture, GetFocus, or GetActiveWindow functions. At
the calculated location is a 32-bit pointer (relative to USER's DGROUP) to
the desired window. All that remains for the common code to do is go to
that WND struct and extract the 16-bit HWND value at offset 46h. This
work is represented in the pseudocode by the call to HWnd32ToHWnd16.

G e t F o r e g r o u n d W i n d o w () ;

242

Pseudocode for GetCapture, GetFocus, GetActiveWindow

// In 16 bit USER.EXE

// Locals:

// PMSGQUEUE pQueue;

// WORD perQueueOffset

// BOOL flag

// PWND32 pWnd

GetCapture proc
perQueueOffset : 0x0018 // Olfset of the capture WND in the PERQUEUEDATA.

flag = FALSE

goto Get_XXX_common

GetFocus proc

perQueueOffset = 0x001C // Offset of the focus WND in the PERQUEUEDATA.

flag = FALSE

goto Get_XXX_common

GetActiveWindow proc

perQueueOffset = 0x0020 // Offset of the active WND in the PERQUEUEDATA.

flag = TRUE

Get_XXX_common:

pQueue = GetCurrentThreadQueue(); // KERNEL.625

if (!pQueue)

INT 3; // Oops! No queue. Break into the debugger.

if (pQueue ->npPerQueue == 0)

INT 3; // Oops! No per queue data. Break into the debugger.

// Using the perQueueOffset value (in the BX register), index into the

// per queue area and extract a USER relative pointer to the desired WND.

pWnd = *(PWND32 *)(pQueue->npPerQueue + perQueueOffset);

if (IpWnd && flag)
{

// If pWnd is 0, but "flag" is set (which

// only happens for GetActiveWindow)...

// Try a second approach to getting the active window. If

// the conditions are right, try calling GetForegroundWindow.

// npCurrentPerQueueData is a USER.EXE global variable.

if (pQueue ->npPerQueue == npCurrentPerQueueData)

return GetForegroundWindow();

// Convert from the 32-bit HWND form to the 16 bit form, and return it.

return HWnd32ToHWnd16(pWnd):

s i z e o f (D W O R D)

The GetWindowThreadProcessld and
IGetWindowThreadProcessld functions

The GetWindowThreadProcessld function is new to the Win32 API. (The
closest equivalent in Windows 3.x was GetWindowTask.) Although the
GetWindowThreadProcessld function is exported by the 32-bit USER32.DLL,
it falls to the 16-bit USER.EXE to implement it. (Will the indignity never end?)
The GetWindowThreadProcessld function is essentially just a parameter
validation layer. The real work is in the IGetWindowThreadProcessld function.
However, before calling IGetWindowThreadProcessId, the code first converts
the 16-bit HWND into a USER32-relative 32-bit pointer, and passes that along.

IGetWindowThreadProcessld has to extract the process ID and thread
ID from two different places. The thread ID that a window is associated
with is stored in the thread's message queue. Since queues are per-thread (and
not per-process as you might think), the process ID isn't stored in the message
queue. Instead, the process ID is stored in the QUEUEPROCESSDATA struc-
ture that I described earlier. IGetWindowThreadProcessId uses the message
queue to get a pointer to the QUEUEPROCESSDATA data, and extracts the
process ID from that structure.

The IGetWindowThreadProcessId code does have a strange bit of code
that I'm at a loss to explain. Apparently, if some flag is set in the QUEUE-
PROCESSDATA structure, the thread ID and processID for the window are
actually stored at the end of the WND structure itself. I was never able find
an example where this was the case.

Pseudocode for GetWindowThreadProcessld

/ / In USER.EXE (believe it or not)

// Parameters:

// HWND hWnd // 16 bit version

// LPDWORD lpdwProcessId // Pointer at which to store the process ID.

// Locals:

// PWND32 pWnd32;

pWnd32 = HWnd16toHWnd32(hWnd): // Convert the 16-bit HWND value into

// the 32 bit pointer version.

// Verify that a valid pointer to at least 4 bytes was passed.

VerifyPtr(lpdwProcessId, sizeof(DWORD))

return IGetWindowThreadProcessId(pWnd32, lpdwProcessId);

D e s k t o p W n d P r o c

244

Pseudocode for IGetWindowThreadProcessId

// Parameters:

// PWND32 pWnd;

// LPDWORD lpdwProcessId

// Locals

// LPMSGQUEUE lpMsgQueue;

// DWORD threadId;

lpMsgQueue = MAKELP(pWnd ->hQueue, 0); // Get a pointer to the window's

// message queue.

if (UserTraceFlags & 0x00042000)

_DebugOutput(DBF_USER, "GetWindowThreadProcessId");

if (lpMsgQueue ->npProcess->flags & 2) // This is rarely the case.
{

processId = pWnd ->alternatePID; // Grab the PID/TID from the WND

threadId = pWnd ->alternateTID; // struct.
}

else // Execution most often comes through here.

{
processId = lpMsgQueue ->npProcess ->processid;

threadId = lpMsgQueue ->threadId;
}

if (SELECTOROF(lpdwProcessId))

*lpdwProcessId = processId;

return threadId;

The DesktopWndProc function

When deciding what functions were worth looking into for this chapter, I
quickly gravitated to the DesktopWndProc function. There were two reasons
for this. First, this function is relatively simple, and I wanted to show a
working system-provided window procedure. Second, DesktopWndProc
contains the code for enabling the free system resource fudging that I talked
about earlier in the chapter.

The first thing to notice about DesktopWndProc is that it's a semi-32-bit
WNDPROC. That is, the hWnd and msg fields are 16 bits, but the WPARAM
is 32 bits (like a WNDPROC in a Win32 program would be). Another
important thing to notice is that the function immediately converts the 16-bit

W M _ L B U T T O N D B L C L K

245

HWND into a USER32 relative 32-bit pointer. It uses this 32-bit pointer for
all its accesses to the WND structure. All the other standard system
WNDPROCs do the same thing in this regard (that is, they use USER
DGROUP-relative 32-bit pointers).

The core of the DesktopWndProc code is a switch statement (no, the
Windows 95 team hasn't switched Windows over to use MFC yet). The
windows messages that DesktopWndProc handles are listed here:

* The WM_USER message: The WM_USER message is the dark horse of
the messages handled by DesktopWndProc. When the desktop receives
this message for the first time (and only for the first time), it calls
GetFreeSystemResources to get the percentage free in both the USER
and GDI heaps. Subsequent calls to GetFreeSystemResources make their
return value relative to the percentage-free values determined here. Who
sends the WM_USER message to the desktop? The Explorer process
itself, after it's done its initialization. The idea of this WM_USER message
is apparently to establish a baseline system resource usage, from which
subsequent calls to GetFreeSystemResources can be compared. While
this sounds reasonable enough, it is a big change from Windows 3.1,
and it would be nice if Microsoft were to describe the change to its
users. As it stands now, the free system resources numbers for the typi-
cal system will look like they've jumped way up when the machine was
updated to Windows 95. Under the hood, though, the change isn't
really that dramatic.

* The WM_ERASEBKGND message: This messages erases the back-
ground and validates the specified rectangle. Nothing exciting here.

* The WM_CANCELMODE message: If there isn't a system modal window,
this handler falls through to the default handler.

* The WM_NCCREATE message: This message handler seems to be used
primarily as a sanity check. The code checks to make sure that there are
no other windows of class desktop. It also verifies that the desktop window
doesn't have a parent window.

* The WM_LBUTTONDBLCLK message: This message handler changes
the message being processed into a WM_SYSCOMMAND message with
SC_TASKLIST as the high WORD of the WPARAM. In Windows 3.1,
a double-click on the desktop would bring up the task manager. In
Windows 95, when DefWindowProc receives the SC TASKLIST command,
it calls into the shell, which in turn brings up Explorer's start menu.

W M _ C A N C E L M O D E :

246

* The WM_QUERYNEWPALETTE and WM_PALETTECHANGED
messages: These two functions call some function in USER that (you
guessed it) probably has something to do with the palette. Any messages
that come through the DesktopWndProc and which aren't handled by the
above handlers fall through the switch statement, and call DefWindowProc.
(And the inner workings of DefWindowProc is probably a book unto itself.)

Pseudocode for Desktop WndProc

// In 16 bit USER.EXE

// Parameters:

// HWND hWnd

// UINT msg

// WPARAM wParam

// LPARAM lParam

// Locals:

// PWND32 pWnd32

// 32 bits, not 16.

// 32 bit pointer, relative to USER DGROUP.

pWnd32 = HWnd16ToHWnd32(hWnd)

if UserTraceFlags & 0x4)
_DebugOutput(DBF_USER, "DesktopWndProc");

switch (msg)
{

case WM_ERASEBKGND:

// Erase the desktop. The function calls:

// FILLRECT, GETCLIPBOX, GETDCORG, GETTEXTEXTENT, LOADSTRING

// LSTRCATN, LSTRLEN, OFFSETRECT, SETBKMODE, SETBRUSHORG.

// SETTEXTCOLOR, SEIVIEWPORTORG, and TEXTOUT.

SomeFunction(wParam); // wParam := HDC to paint with.

ValidateRect(pWnd32 ->hWnd16, 0);

return 1;

case WM_CANCELMODE:

if (HWndSysModal == SomeUserGlobalVar)

return 0;

break;

H I W O R D (

247

case WM_NCCREATE:

// This is the first message through the WND proc.

if (pWnd32 ->wndClass ->cClsWnds != 1)

{
_DebugOutput(DBF_FATAL | DBF_USER, "USER: Assertion failed");

pWnd32 ->elassAtom = DesktopClassAtom; // USER global variable.

if (0 == DefWindowProc32(pWnd32 ->hWnd16, msg, wParam, lParam))

return 0;

// The desktop window better not have a parent!!!

if (0 == pWnd32 ->hWndParent)

return 1;

_DebugOutput(DBF_FATAL | DBF_USER, "USER: Assertion failed");

return 1;

case WM_LBUTTONDBLCLK:

msg = WM_SYSCOMMAND;

HIWORD(wParam) = SC_TASKLIST

break;

case WM_QUERYNEWPALETTE:

case WM_PALETTECHANGED:

if (wParam == hWnd)

SomeFunction();

return 0;

// wParam == HWND that changed the palette.

// Same basic actions as 3.1, including

// calling RedrawWindow().

case WM_USER: // 0x0400 (sent by Explorer)

if (base_USER_FSR_percentage == 0) {

base_GDI-FSR_percentage
= GetFreeSystemResources(GSFR_GDIRESOURCES);

base_USER_FSR_percentage
= GetFreeSystemResources(GSFR_USERRESOURCES);

return 0;

return DefWindowProc32(bWnd32 ->hWnd16, msg, wParam, lParam);

I s W i n d o w

248

USER32 isn't just thunks to USER. EXE
Throughout this chapter, I've emphasized that the real work of the Windows 95
USER subsystem is handled by the 16-bit USER.EXE. It is indeed true that
large portions of USER32 are just thunks down to USER.EXE. However, it
would be wrong to think that USER32 consists of nothing but thunks. In
looking at the USER32 listings, it's readily apparent that Microsoft took
some time to determine which USER routines are heavily called and could
easily be implemented without thunking down to USER.EXE. In a few cases
(such as the ones I'll show next), the Windows 95 team decided that the
additional speed gain from eliminating a thunk warranted using a little extra
code in USER32.DLL. The functions I'll describe in the following sections
are by no means a complete list I rather, they're a representative sample of
the windowing system functions.

The IsWindow function in USER32.DLL

The USER32 version of IsWindow is only slightly more complicated than
the USER.EXE version. Since USER32's IsWindow function could be called
by a Win32 thread that doesn't currently hold the Win16Mutex, the func-
tion uses two helper functions (GrabWin16Mutex and ReleaseWinMutex)
to bracket the call to the core of the routine. The GetWndPtr32 function
(which is described next) is used throughout USER32.DLL. If GetWndPtr32
returns 0, IsWindow returns FALSE, indicating that the passed-in HWND
isn't valid. Otherwise, IsWindow returns TRUE on any nonzero return
value from GetWndPtr32.

Pseudocode for IsWindow

// in USER32.DLL

// Parameters:

// HWND hWnd

// Locals:

// BOOL retValue;

// The 16 bit version.

GrabWin16Mutex();

retValue = GetWndPtr32(hWnd); // Pass 16 bit HWND version.

ReleaseWinl6Mutex():

P s e u d o c o d e

249

Pseudocode for Grab Win16Mutex

EnterSysIevel(pWin16Mutex); // Call KERNEL.97 to acquire the Win16.

Pseudocode for Grab Win 16Mutex

LeaveSysLevel(pWinl6Mutex); // Call KERNEL,98 to release the Win16

// mutex semaphore.

The GetWndPtr32 function in USER32

The GetWndPtr32 function is a general-purpose USER32 internal routine.

Given a 16-bit HWND, it returns a USER32-relative 32-bit pointer to the

WND structure. In terms of how it verifies the 16-bit HWND and looks up the

WND struct, the GetWndPtr32 function is nearly identical to the IsWindow

function in the 16-bit USER.EXE. The only real difference is at the end of the

function: The 16-bit IsWindow returns TRUE or FALSE, while GetWndPtr32

returns a USER32 DGROUP relative pointer to the WND.

Pseudocode for GetWndPtr32

/ / Parameters:
// HWND hWnd // The 16 bit version.

// Locals:

// DWORD retValue;

ConfirmSysLevel(pWin16Mutex); // Make sure we already have acquired

// the Winl6Mutex.

if (!hWnd)

return 0;

// Filter out the 0 HWND case.

if (hWnd & 3)

return 0;

// HWNDs are always multiples of 4.

if (hWnd < 0x80)

return 0:

// The lowest HWND value is 80.

// At offset gx10070 in the USER DGROUP seg is a DWORD with the

// maximum HWND value.

if (hWnd > *(PDWORD)(USER_dgroup_base + 0x00070))

return 0;

W N D

250

// Dereference the DWORD at 0x10080 + the HWND value to get a pointer.

retValue = *(PDWORD) (USER_dgroup_base + 0x10000 + hWnd);

if (retValue < 0x20000)

return 0;

// The HWND(32) heap starts 0x20000 bytes

// into USER's DGROUP. Note the different

// comparison than the one IsWindow16 uses.

// Return a flat PTR to the WND32 structure. The value in the HWND

// table is a USER DGROUP 32 bit relative offset.

return (PWND32) (retPtr + UserDgroupBase);

The GetCapture, GetFocus, and
GetActiveWindow functions in USER32.DLL

Earlier, I presented pseudocode for the GetCapture, GetFocus, and
GetActiveWindow functions as implemented in USER.EXE (see the
"Pseudocode for select 16-bit USER.EXE functions" section). The 32-bit
versions in USER32 are essentially identical in their core implementation.
Two differences bear mentioning, though. The first difference is that the
USER32 versions all acquire and release the Win16Mutex around their
access to the USER data structures. The 16-bit equivalents don't have to do
this, since they're in 16-bit code and, by definition, the Win16Mutex has
already been acquired. The second difference is the absence of error check-
ing in the USER32 versions. The 16-bit versions of these functions check to
make sure there's a queue present before they start rooting around in the
PERQUEUEDATA structure.

Pseudocode for GetCapture, GetFocus, GetActiveWindow

// Locals:

// DWORD perQueueOffset;

GetActiveWindow proc

perQueueOffset = 0x20;

goto GetWndXXX_common

/ / Offset of the active WND in the PERQUEUEDATA.

GetCapture proc

perQueueOffset = 0x18;

goto GetWndXXX_common

// Offset of the capture WND in the PERQUEUEDATA.

GetFocus proc

perQueueOffset = 0x1C

// Fall though...

// Offset of the focus WND in the PERQUEUEDATA.

G e t C a p t u r e ,

251

GetWndXXX_common:

// Locals:

// PMSGQUEUE pQueue;

// PWND32 pWnd:

pQueue = GetCurrentQueuePtr();

GrabWin16Mutex();

if (pQueue ->npPerQueue == 0)

goto SuckHWND16_release_Win16Mutex: // Oops! No per-queue data.

// Extract the USER DGROUP relative 32 bit PWND32 pointer out of the

// per queue data structure.

pWnd = *(PWND32 *) (UserDgroupBase + pQueue->npPerQueue + perQueueOffset);

goto SuckHWND160utOfUserDGROUP;

SuckHWND160utOfUserDGROUP:

// Execution arrives here with a pointer to actual WND32 struct (in EAX).

if (pWnd)
{

pWnd = (WORD)(UserDgroupBase + pWnd ->hWnd16);

// pWnd is now really a 16 bit HWND, not a pointer.

}

SuckHWND16 release Win16Mutex:

ReleaseWin16Mutex():

return pWnd: // Either 0, or a 16 bit HWND.

The GetMessagePos, GetMessageTime, and
GetMessageExtralnfo functions in USER32.DLL
The GetMessagePos, GetMessageTime, and GetMessageExtraInfo functions
in USER32 are essentially identical to their 16-bit equivalents in USER.EXE.
Since the three functions each just grab a single variable from the current
thread's message queue, they all start with a small stub that loads the
desired offset into a register before jumping to a common location. At the
common location, the code gets a pointer to the current thread's queue and
extracts the relevant DWORD from it. Interestingly, these functions don't
bother to acquire the Win16Mutex like the USER GetCapture, GetFocus,

and GetActiveWindow functions do.

S e n d M e s s a g e

252

Pseudocode for GetMessagePos, GetMessageTime, GetMessageExtralnfo

// In USER32.DLL

// Locals:

// DWORD infoOffset

GetMessagePos proc

infoOffset = 0x28;

goto GetMsgXXX_common

GetMessageTime proc

infoOffset = 0x24;

goto GetMsgXXX_common

GetMessageExtraInfo proc

infoOffset = 0x30;

// Fall through...

GetMsgXXX common:

// Locals:

// PMSGQUEUE pQueue;

// Note that this code doesn't grab the Win16Mutex like the GetWndXXX

// functions do.

pQueue = GetCurrentQueuePtr():

/ Add the infoOffset to the base address of the queue, and return

/ the DWORD stored therein.

return *(PDWORD)(pQueue + infoOffset);

The SendMessage function in USER32.DLL

You might be somewhat surprised to discover that I've provided pseudocode
for USER32's SendMessage routine. After all, SendMessage is one of the
most complicated routines in all of the USER subsystem, so it surely must
thunk down to the 16-bit USER.EXE, right? In many cases, that assumption
is correct. However, $endMessage is a heavily used routine, and if the right
conditions are met, it can do its work without ever thunking down to 16-bit
code. We're talking major performance improvement here.

The USER32 SendMessage starts out by acquiring the Win16Mutex. The
code then goes through a long series of tests to see whether this particular
message can be sent safely without getting the real SendMessage (in USER.EXE)
involved. Among the conditions that can disqualify the attempt and force a
thunk down to USER.EXE are the following:

&

253

* The HWND is 0.

* The queue of the destination window is different from the current

thread's queue.

* Certain variables in USER.EXE's DGROUP are nonzero.

If the particular message being sent makes it through the gauntlet of tests
that would force it to thunk down, SendMessage begins setting things up for
the call to the destination WNDPROC. In particular, SendMessage needs the
address of the WNDPROC it'll be calling.

As I've mentioned earlier, the WND structures themselves don't ever store
an actual 32-bit flat pointer to a WNDPROC. Instead, if a WND structure is
a 32-bit window, the WNDPROC address in the WND structure points to a
16-bit code stub that ultimately transfers control up to 32-bit land. Part of that
code stub is the actual 32-bit WNDPROC. The SendMessage code knows
about these special stubs, and reads the 32-bit WNDPROC address out of the
stub itself. Finally, before JMP'ing to the target WNDPROC, SendMessage
releases the Win16Mutex. This whole sequence smacks of being a big kludge,
but if it works and improves performance, why not?

Pseudocode for SendMessage

// 32-bit version in USER32.DLL

// Parameters:

// HWND hWnd

// UINT uMsg

// WPARAM wParam

// LPARAM 1Param

// Locals:

// PWND32 pWnd

// PMSGQUEUE pQueue;

// LPVOID lpvMsgProcThunk // A 16:16 pointer,

// WNDPROC wndProc32

GrabWinl6Mutex();

pWnd = GetWndPtr32(hWnd);

if (!pWnd)

goto ThunkToSendMessagel6;

// No HWND... gotta thunk.

if (!pWnd ->flags & 0x02000000)
goto ThunkToSendMessage16

/ / Some flag ain't set.., gotta thunk.

w n d P r o c 3 2

2 5 4

if (pCurrentTIB ->pvQueue != pWnd->hQueue) // Sending a message to a

goto ThunkToSendMessagel6 // different queue. Gotta

// thunk.

if (SomeVariableInUserDgroup != 0)

goto ThunkToSendMessage16

if (SomeOtherVariableInUserDgroup != 0)

goto ThunkToSendMessage16

// USER's in some funky state.

// Gotta thunk.

// Get a flat pointer to the message queue.

// MapSL takes a selector and an offset, and returns a linear address.

pQueue = MapSL(pCurrentTIB ->pvQueue, 0);

if (pQueue->(Ox6A+OxA) != 0)

goto ThunkToSendMessagel6;

// ??? Gotta thunk.

if (pQueue->(Ox6A+OxlA) != 0)

goto ThunkToSendMessage16;

// ??? Gotta thunk.

// Get a pointer to the thunk code that USER.EXE created for this

// window. Index 2 bytes into the USER message thunk, and grab the

// linear address of the window procedure.

lpvMsgProcThunk = pWnd ->lpfnWndProc;

wndProc32 = *(LPWORD)(lpvMsgProcThunk+2)

ReleaseWin16Mutex(); // Don't need this no more.

// If all went well, jump to the 32-bit window procedure,

// We've successfully avoided the intertask SendMessage contortions,

// and have also avoided thunking down to 16 bit USER.EXE.

goto wndProc32;

ThunkToSendMessagel6:

ReleaseWin16Mutex();

// Well, it looks like we gotta thunk down to

// USER.EXE.

pop return address into EAX

pop hWnd into ECX

push 0

push hWnd

push 0

push returnAddress

// in ECX

// in EAX

goto common thunking code

G e t D I g l t e m

The GetDIgltem function in USER32.DLL

The GetDlgItem function is another of the heavily used functions in Win32,
especially with dialog-related code. Given an HWND and a child control ID,
the function needs to return the HWND of the child control. If you remember
back when I was describing the WND structure, you can see how GetDlgltem
doesn't need to do anything more sophisticated than walk a section of the
WND hierarchy, looking for a window with the right control ID.

The USER GetDlgItem function begins by grabbing the Win16Mutex
(after all, we don't want the WND hierarchy changing beneath us as we're
walking it!). Dialog controls are simply child windows of the dialog window.
Therefore, all GetDlgItem has to do is walk the list of child windows for the
specified dialog and compare the control ID of each window it finds to the
idControl input parameter. This is exactly what GetDlgItem does. When it
finds a WND structure with a controlID field that matches the input para-
meter, the code looks up and returns the 16-bit HWND value found else-
where in the WND structure. Of course, before returning, the function
remembers to release the Win 16Mutex.

Pseudocode for GetDlgItem

// 32 bit version in USER32.DLL

// Parameters:

// HWND hwndDlg

// int idControl

// Locals:

// PWND32 pWnd

GrabWin16Mutex();

pWnd = GetWndPtr32(hwndCtl) // Get a flat pointer to the WND struct,

if (pWnd)

pWnd = pWnd ->hWndChild; / Start at the first child window.

while (pWnd) // While there are child windows...

{
pWnd += UserDgroupBase; // convert USER DGROUP relative pointer

// to a flat pointer.

// Is the control ID of this window what we're looking for?

if (idControl == pWnd ->ctrlID)
{

255

R e l e a s e W i n 1 6 M u t e x () ;

256

pWnd = pWnd ->hWndl6;

break:

pWnd = pWnd ->hWndNext;
/

// Advance to next child window.

ReleaseWin16Mutex();

return pWnd; // This is always either 0 or a 16-bit HWND value.

The GetDIgCtrllD function in USER32.DLL

The GetDlgCtrlID function is the complement of the GetDlgItem function.
Given a 16-bit HWND value, it merely needs to return the control ID stored
in the corresponding windows WND struct. As with GetDlgItem, the code
does all its work while holding on to the Win16Mutex.

The GetDlgCtrlID function couldn't be much simpler. It passes the 16-bit
HWND input parameter to GetWndPtr32 and gets back a USER32-relative
32-bit WND pointer. Assuming it gets back a non-null pointer, the function
retrieves the control ID value from the appropriate offset in the WND struct
and returns it. (And don't forget to free the Win16Mutex!)

Pseudocode for GetDlgCtrllD

// 32 bit version in USER32.DLL

// Parameters:

// HWND hwndCtl

// Locals:

// PWND32 pWnd

// DWORD retValue:

GrabWin16Mutex();

pWnd = GetWndPtr32(hwndCtl

if (!pWnd)

retValue = 0;

else

retValue = pWnd ->ctrlID;

ReleaseWin16Mutex();

); // Get a flat pointer to the WND struct.

// Grab the ctrlID field out of the WNg.

return retValue;

Unicode support in Windows 95 (Huh?)
Believe it or not, Windows 95 does have a smidgen of actual, usable Unicode
support. If you don't believe me, check out the following short program,
which I've titled WIN95UNI.C:

#define UNICODE
#include <windows.h>

int main()

MessageBox(0,
TEXT("Yes! Really!"),

TEXT("Unicode in Windows 95?"),

MB_ICONQUESTION);

return 0;

When compiled, this code produces a Unicode program. We can even
verify it by dumping out the EXE file using PEDUMP from Chapter 8:

Imports Table:

USER32.dll

Hint/Name Table: 00006084

TimeDateStamp: 00000000

ForwarderChain: 00000000

First thunk RVA: 000060D4

Ordn Name

395 MessagegoxW

KERNEL32.dll

Hint/Name Table: 0000603C

TimeDateStamp: 00000000

 rest omitted

There's definitely a call to the Unicode version of MessageBox in there.
What happens when we run it? Check out Figure 4-5.

Just what the heck's going on in Figure 4-5? Windows 95 supposedly
doesn't support Unicode, but as you can plainly see, the WIN95UNI pro-
gram proves that there's some form of Unicode support in there. Here's a
call chain for an invocation of the Unicode MessageBoxW in Windows 95:

MessageBoxW

MessageBoxExW
WideCharToMultiByte // Convert the 2nd parameter to ASCII.

WideCharToMultiByte // Convert the 3rd parameter to ASCII.
MessageBoxExA // Invoke the ASCII MessageBoxEx.

257

W I N 9 5 U N I

258

 Figure 4-5
The WIN95UNI program proves that Windows 95 supports Unicode.

So why does Windows 95 go to the trouble of supporting Unicode (at
least in this minimalist fashion)? One of Microsoft's requirements for its
Windows 95 logo is that programs should degrade gracefully on a system
that doesn't support the full set of capabilities required by the program. One
of the things a program could do is throw up a MessageBox and say "Sorry,
I can't run." By providing a somewhat reasonable implementation of the
MessageBoxW function, Windows 95 lets programs compiled for Unicode at
least get the word out that they may not work (or may not work properly).

The UserSeeUserDo function (USER.EXE)

I couldn't finish this chapter's discussion of the USER subsystem without
describing UserSeeUserDo. This function was introduced in Windows 3.1 as
an undocumented back door to various USER variables and functions. In
Windows 95, the volume of things that can slip through that back door has
been increased. In a way, examining what UserSeeUserDo provides is a good
way to get a handle on the key things the USER architects feel are important.

UserSeeUserDo is implemented in the 16-bit USER.EXE, and takes four
input parameters. The first parameter indicates what UserSeeUserDo should
do, or what variable's value it should return. The interpretation of the remain-
ing three parameters depends on what the first parameter is requesting.

The first three subfunctions allow the caller to allocate, free, or compact
memory from USER's 16-bit DGROUP heap. The next five subfunctions are
for returning the values of various important USER global variables: the menu
heap handle, the head of the system class list, USER's DGROUP handle, the
head of the device context entry chain (see Chapter 6 of Undocumented
Windows), and a pointer to the desktop window. This last variable isn't the
16-bit HWND of the desktop window. Rather, it's a USER32-relative 32-bit
pointer to the desktop window's WND structure.

The final two subfunctions made available by UserSeeUserDo are for
allocating and freeing memory from the new 32-bit heaps that USER uses.

S u b f u n c t i o n

259

Subfunction 10 allocates memory, while subfunction 11 frees it. If the sec-
ond parameter to UserSeeUserDo is nonzero, the code allocates memory
from the 32-bit menu heap. Otherwise, it allocates the memory from the

32-bit window heap.

Pseudocode for UserSeeUserDo

// Parameters:

// WORD wReqType

// WORD paraml, param2, param3

if UserTraceFlags & 0x1000)

_DebugOutput(DBF_USER, "UserSeeUserDo"):

switch (wReqType)
{

case 1:
// Call LocalAlloc. using USER's DGROUP.

return UserLocalAlloc(LT_USER_USEREEUSERDOALLOC, paraml, param3):

case 2:

// Call LocalFree. using USER's DGROUP.

return UserLocalFree(paraml);

case 3:

// Call LocalCompact, using USER's DGROUP.

return LocalCompact(param3);

case 4:

return hMenuHeap: // Handle to the 32-bit menu heap.

case 5:

return PClsList; // Near pointer to first class in list of

// system classes registered by USER.EXE.

case 6:

return DS; // USER's DGROUP.

case 8:

return POCEFirst: // Head of DCE (Device Context Entry) list.

// See "DCE" in Chapter 5 of Undocumented

// Windows.

case 9:
return HWndDesktop: // The USER DGROUP relative 32 bit version.

case 10:
// Allocate memory from either the 32 bit menu or window heaps.

if (param1)

}

260

return Local32Alloc(MenuHeapHandleTableBase, param3, 0, 0, 0);

else

return Local32Alloc(WindowHeapHandleTableBase, param3, 0,0,0)
}

case 11:
// Free memory from either the 32 bit menu or window heaps,

if (param1)
{

return Local32Free(MenuHeapHandleTableBase, param3, 0);
}

else
{

return Local32Free(WindowHeapHandleTableBase, param3, 0);

case 7:

default:

return 1;

}

THE WINDOWS 95 GDI MODULE

After all the new things I've described in Windows 95's USER subsystem, my
coverage of Windows 95's GDI side will probably be anticlimactic if you're
one of those pixel pushers who love GDI. It's not that GDI isn't important.
There are actually many new and exciting things on the graphics side of
Windows 95. Rather, it's just the plain and simple truth that I'm first and
foremost a KERNEL person who doesn't mind digging into USER. Graphics
and the GDI simply aren't as interesting to me. Now that I've provided full
disclosure on my GDI experience, let's move on.

If I could impart only one piece of information about Windows 95's
GDI.EXE and GDI32.DLL, it would be this: These two subsystems are parallel
to the equivalent USER subsystems. Both GDI and USER manage objects
allocated from their heaps. In the case of USER, the primary objects are
windows, menus, and classes. For GDI, the equivalent objects are pens,
brushes, bitmaps, and so on. In Windows 3.1, both USER and GDI were
constrained by their respective 64K heap (although USER.EXE did break
out menus into a separate 64K heap). In Windows 95, both USER and GDI

(H W N D s

261

are still heavily dependent on data structures allocated from their DGROUP
heaps. At the same time, though, both USER and GDI gained access to
Win32 heaps with 2MB of memory in which to stuff large data items. The
layout of the USER DGROUP, handle table area, and 32-bit window heap
translates exactly over to the GDI equivalents, as shown in Figure 4-6.

Figure 4-6
In Windows 95, GDI and USER have a generally parallel structure. Here, you can see

 that the layout of the DGROUP and handle table area of GDI is similar to that of USER.

Just as you access USER's objects with handles (HWNDs and HMENUs),
you also use handles to access GDI objects (HPENs, HBRUSHs, and so on).
Earlier, I described how 16 HWNDs are used to look up 32-bit pointers in
an array to find the actual offset to a WND structure. For GDI objects that

H E A P W A L K

262

are stored in the 32-bit GDI heap, the translation from 16-bit handle to 32-bit
pointer works exactly as it does for HWNDs on the USER side. If the GDI
object that a handle references is allocated from GDI's DGROUP, then the
handle is a regular 16-bit heap local handle, and can easily be dereferenced
to an offset into GDI's 16-bit DGROUP.

The point of all this is to think of USER and GDI as being somewhat
parallel in operation, at least at the level where they manipulate data struc-
tures. If you really understand how the USER code works with regards to
handles and pointers, you can probably dive into GDI code and know
what's going on without too much difficulty.

So what items did the Windows 95 GDI feel compelled to move up into
its 32-bit heap? Well, according to the HEAPWALK program from the
Win32SDK, there are fonts and regions floating around up there. There
are also some additional objects that HEAPWALK (and I, being a relative
neophyte regarding GDI issues) are unable to identify.

Another area where USER and GDI are parallel involves thunking. The
vast majority of the USER subsystem code is implemented in the 16-bit
USER.EXE, and USER32 serves primarily (but not entirely) as thunks down
to that code. The situation with the GDI subsystem is similar, but not identi-
cal. Vast portions of GDI remain implemented in the 16-bit GDI.EXE code.
However, Microsoft added many new GDI-related features having to do
with Win32 support to the GDI subsystem. Some of this new code was done
in the 16-bit GDI.EXE. However, Microsoft claims that some of GDI's new
functionality was put into GDI32.DLL and that GDI.EXE thunks up to it.
The areas that Microsoft says are in GDI32 are the TrueType rasterizer, the
spooler and printing subsystem, and the DIB engine. I haven't yet conclusively
proved that this is true. However, from looking at what goes in GDI32.DLL,
it appears that there is quite a bit of code in GDI32 that's unrelated to simply
thunking down to GDI.EXE.

One especially noteworthy addition to the 16-bit GDI.EXE is 32-bit
code within the 16-bit module. In Chapter 7, I describe a bit in the segment
table entries of 16-bit New Executable (NE) files that tells the Windows 95
loader to make the selector for the segment a 32-bit code selector. That is,
when the CPU loads that selector into its CS register, it's interpreting the
code as 32-bit code rather than as the 16-bit code used by most Win16
applications and DLLs. The 16-bit GDI.EXE uses four such 32-bit segments.
Although there were no exported functions in these 32-bit segments, I
examined the code around the calls to these 32-bit segments from
GDI.EXE, and came to the following conclusions:

G D I . E X E

263

GDI.EXE Segment 0x20:
GDI.EXE Segment 0x23:
GDI.EXE Segment 0x24:
GDI.EXE Segment 0x26:

Bezier stuff
Paths, Enhanced Metafile (EMF) support
??? (unknown)
The string "engine font" appears in this
segment

Microsoft's description of the relationship between the 16- and 32-bit
components of Windows 95 states that Beziers, paths, and enhanced
metafiles are in the 16-bit GDI.EXE. This is consistent with what I found.

GDI objects
One of the keys to being a GDI expert is understanding GDI objects. The GDI
subsystem deals with a dozen or so different object types. Most of them have
their own unique handle name (which you're undoubtedly already familiar
with). For example, a device context (DC) is one type of GDI object, and
you pass an HDC (handle to a DC) to various GDI functions. Likewise, a
pen is a GDI object, and you refer to a specific pen via an HPEN (handle to
a PEN). Functions that accept any particular type of GDI object take HGDIOBJ
parameters. An HGDIOBJ can be considered a base class for more specific
GDI objects like HDCs, HBRUSHs, and so forth. You can find the list of
GDI objects in Windows 3.1 from examining the LT_GDI_xxx #defines in
TOOLHELP. H. Unfortunately, those #defines don't appear to have been
updated for the new GDI object types in Windows 95.

You can tell that GDI tries to deal with its objects in a uniform manner
because it has functions like SelectObject and DeleteObject that don't need
to be told what they're being passed. GDI inspects the object, determines what
type it is, and acts accordingly. How does GDI know the type of a particular
object that's passed to it? Each GDI object starts out with a standard header
that includes a WORD that marks the object as a particular type. The
Windows 95 GDI object list (including the corresponding marker values) is
as follows:

PEN 0x4F47 (1)
BRUSH 0×4F48 {2)

FONT 0x4F49 (3)
PAL 0x4F4A (4)
BITMAP 0×4F4B (5)
REGION 0x4F4C (6)

I s G D I O b j e c t

264

DC 0x4F4D (7)

IC 0x4F4E (8)

// Beyond this point, the markers get a bit sketchy,

// best guess...

METADC 0x4F4F

METAFILE 0x4F50

ENHMETADC 0x4F51

ENHMETAFILE 0x4F52

but here's my

The IsGDIObject function in GDI.EXE

The IsGDIObject function is documented as returning FALSE if the input
GDI object handle (an HGDIOBJ) isn't a valid handle. Interestingly, the
documentation says that if IsGDIObject returns TRUE, the input handle
may not actually be a real GDI object handle. Nonetheless, the documented
purpose of the function is to determine if an HGDIOBJ is invalid. What the
documentation doesn't tell you is that if the input HGDIOBJ parameter is
valid, the return value identifies what type of object was passed in. This can
come in handy for applications like Bounds-Checker/W that need to verify
handles such as HDCs, HBRUSHs, and so forth.

As I mentioned earlier, GDI stores some objects in its 16-bit DGROUP
heap and other objects (fonts and regions) in its 32-bit heap. The first thing
IsGDIObject needs to do is figure out where it should look for the object so
that it can read in the object type WORD (for example, 0x4F47). Luckily,
this isn't hard for GDI to do. GDI objects that are allocated out of the 16-bit
DGROUP heap are allocated with the LMEM_MOVEABLE attribute. To
make a long story short, 16-bit LMEM_MOVEABLE handles always end in
2, 6, 0xA, or 0xE. As you may recall from earlier in the chapter, the handles
for objects in 32-bit USER or GDI heap are always multiples of 4.

Knowing this key distinction between the two types of objects, IsGDIObject
merely needs to examine the second to last bit. If it's set, the handle ends in
2, 6, 0xA, or 0xE and the object was allocated from GDI's 16-bit DGROUP.
If the second to last bit is 0, the handle value ends in 0, 4, 8 or 0xC, so the
object was allocated in the 32-bit GDI heap. In either case, IsGDIObject cal-
culates the address where the object can be found and constructs a pointer
to the object. Using the pointer, IsGDIObject extracts the block type WORD.

With the block type WORD in hand, IsGDIObject then masks off a couple
of the bits, which apparently mean something elsewhere in GDI. The result

of the masking should be a value between 0x4F47 and 0x4F52. If this isn't
the case, this isn't a valid GDI object, so IsGDIObject returns 0. If the block
type WORD is within range, IsGDIObject subtracts 0x4F46 from the value
to make it a one-based value. This is the number that IsGDIObject returns.

Pseudocode for IsGDIObject
// In 16-bit GDI.EXE

// Parameters:

// HGDIOBJ hObj

// Locals:

// PGDIOBJ pObj;

// WORD retValue; // The doc says a BOOL, but it's really an obj type.

// Note that the doc says that this function can return TRUE without

// it really being a GDI object.

if (hObj == 0)

return 0;

// Check for the bonehead case,

if ((hObj & 2) == 0) // Object handles in 32 bit heap are

{ // multiples of 4.

// Use the handle as an offset into the GDI object table that

// starts 0x10000 from GDI's DGROUP. The DWORD there is a PGDIOBJ.

// Actually dereferences through ES. ES points to GDI's DGROUP.

pObj = *(PGDIOBJ)(0x10000 + hObj);

}
else // Object handles that end in 2, 6, A, or E are GDI 16 bit

{ // heap local handles,

// Since the hObj is a moveable handle, it's a pointer to a 16 bit

// local heap handle table entry. The WORD at offset 2 in a

// handle table entry is 0xFF if the block is free. Check for

// this case, and bail out if so.

if (*(NPWORD)(hObj+2) == 0xFF)

return 0 ;

// If we get here, it's (theoretically) an in use handle.

// Dereference the first WORD of the handle table entry to get

// a near pointer to the GDt object within the 16 bit GDI heap,

pObj = *(NPWORD)(hObj);

// If LMEM_DISCARDED (???) flag set in handle flags, then

// the pObj is really a 32 bit heap handle. Go dereference it

// in the table starting 64K into GDI's DGROUP.

265

r e t V a l u e

266

if (*(NPWORD)(hObj+2) & 0x40)

pObj = *(PGDIOBJ)(0x10900 + pObj);

retValue = pObj >ilObjType

retValue &: Ox5FFF; // Mask off the 0x8000 and 0x2000 bits.

retValue = 0x4F46

if (retValue <= 0)

return 0;

/ / Make the object type value 1 based.

if (retValue > 13)

return 0;

// Is the object type out of range?

// Yes? Sorry, you lose. Do not pass Go.

return retValue; // Return value indicates the object type.

The GetObjectType function in GDI32.DLL

In the Win32 API, there is no IsGDIObject function. Luckily, the Win32
API goes one step further and actually provides a function that returns the
type of an HGDIOBJ handle passed into it. The GetObjectType is quite a
bit more sophisticated than IsGDIObject in its probing for the correct type
of the HGDIOBJ passed in.

GetObjectType starts out by probing the HGDIOBJ handle to see if it's
really a selector. The handle for metafile objects is apparently an actual selec-
tor for the data in the metafile. If the HGDIOBJ looks like a selector value,
GetObjectType gropes around inside the segment, and if it finds that certain
fields are what it thinks they should be, it returns the value OBJ_METAFILE.

With this initial selector monkey business out of the way, GetObjectType
enters a section of code that looks remarkably similar to what IsGDIObject
in GDI.EXE does. If the handle value ends in 2, 6, 0xA, or 0xE, GetObjectType
assumes that it's a 16-bit local heap handle for an object in USER's 16-bit
DGROUP. If this turns out to be the case, GetObjectType grabs the
Win16Mutex to prevent a thread from potentially changing the state of the
USER heap or the object being examined. If the HGDIOBJ doesn't end in 2,
6, 0xA, or 0xE, GetObjectType figures the object is a font or a region in the
32-bit heap. In either case, the code creates a 32-bit pointer to the GDI object.

With the pointer to the object, GetObjectType extracts the object type
WORD and goes through the similar masking and subtraction process that
IsGDIObject performs on the object type value. GetObjectType then checks
the object type value to make sure it's within the allowable range, and if not,

0 .

267

returns 0. If the object type at this point is 6 (an HDC), GetObjectType
probes further into the object's data to see if it might be an enhanced metafile
DC or a memory DC. If this is the case, the function returns the appropriate
OBJ_XXX value from WINGDI.H.

The final phase of GetObjectType is to convert the 16-bit object type
values (such as the LT_GDI_xxx values from TOOLHELP. H) into their 32-bit
OBJ XXX equivalents. For some strange reason, the OBJ_XXX values don't
map one-to-one to the object type values stored in the object itself. (This is
probably because the OBJ_XXX values were originally defined by the
Windows NT GDI team, which wasn't basing its code around the Windows
3.1 GDI.EXE.) In any event, the object types need to be converted from the
values that GDI.EXE uses to the OBJ_XXX values that WINGDI.H defines.
This translation step is performed via a lookup array. The final section of
GetObjectType releases the Win16Mutex if it was previously acquired.

Pseudocode for GetObjectType

/ / in GDI32.DLL

// Parameters:

// HGDIOBJ hObj;

// Locals:

// BYTE fHaveWinl6Mutex

// DWORD retValue:

// PGDIOBJ pObj:

fHaveWin16Mutex = FALSE; // We'll only grab the Winl6Mutex if we

// absolutely have to.

Set up a structured exception handling frame in case all this monkey

business goes bad on us.

if (LAR (load access rights) succeeds on hObj)
{

if (access rights indicate a non system, ring 3 descriptor)

WORD MetaFileType;

Use hObj as a selector, and grab the first WORD of the

segment it points to. Call this value MetaFileType.

if (MetaFileType < 1)
{

Grab the WORD at offset 2 in the segment,

if (this WORD == OBJ_METAFILE)
{

d o n e :

268

}
}

Grab the WORD at offset 4 in the segment.

if ((this WORD == 0x100) II (this WORD == 0x300)) {

retValue = OBJ_METAFILE

goto done;
}

// Figure out where the object resides (in GDI.EXE's DGROUP? or n

// the 32 bit GDI heap?).

if (hObj & 2) // Object handles that end in 2, 6, A, or E are GDI

{ // 16 bit heap local handles.

EnterSysLevel(pWin16Mutex);

fHaveWin16Mutex = TRUE;

pObj = ConvertHGDIOBJToPtr32(hObj);

else // Object handles in a 32 bit heap are multiples of 4.
{

// Index into the handle table and grab out the GDIOBJ pointer.

pObj = *(PGDIOBJ) (hGDIHeapHandleTableBase + hObj);

// The GDIOBJ pointer is relative to GDI's DGROUP, so go add the

// offset of GDI's DGROUP to make it a flat pointer.

pObj += GDIDGroupBase;

retValue = pObj ->ilObjType; // Get the object type WORD.

retValue &= 0x5FFF // Mask off the 0x8000 and 0x2000 bits.

retValue == 0x4F47 // Make the value 0 based (so that we

// can do an array based translation later).

if (retValue >= 12) // Out of range? You lose. Do not pass Go.
{

SetLastError(ERROR INVALID HANDLE);

retValue = 0;

goto done:

// If the object is a DC, it could be one of several different subtypes.

// Peek inside the DC structure and see if we can figure out what it is.

if (retValue == 6) // 6 == DC

I
if (pObj[102] != 0) // Is WORD at offset 102 in DC != O ?

{ // Yes? Then it's an enhanced metafile,

retValue = OBJ_ENHMETADC;

goto done;
}

if (pObj[OxE] & 1) // Is bit 1 in the BYTE at offset 0xE turned

{ // on? If so, it's a memory DC.

retValue = OBJ_MEMDC;

goto done;
}

// Convert the 16 bit object type stored in the object into its

// equivalent OBJ_xxx value as given in WINGDI.H.

retValue = ObjectTypeConversionArray[retValue]

// The array conversions are as follows:

Win16 (TOOLHELP.H) Win32 (WINUSER.H)

LT_GDI_PEN(1) OBJ_PEN

LT_GDI_BRUSH(2) OBJ_BRUSH

LT_GDI_FONT(3) OBJ_FONT

LT_GDI_PALETTE(4) OBJ_PAL

LT_GDI_BITMAP(5) OBJ_BITMAP

LT_GDI_RGN(6) OBJ_REGION

LT_GDI_DC(7) OBJ_DC

LT_GDI_DISABLED_DC(8) OBJ_DC

LT_GDI_METADC(9) OBJ_DC

LT_GDI_METAFILE(10) 0

??? (11) OBJ_METADC

??? (12) OBJ_ENHMETAFILE

done:

if (fHaveWin16Mutex)

LeaveSysLevel(pWin16Mutex);

// If we grabbed the Win16Mutex

// earlier, release it now,

remove structured exception handling frame

return retValue;

269

G D I 3 2 . D L L .)

270

New Win32 GDI functions available to
Win 16 applications
As a final note on GDI, I was curious to see how much of the new Win32 API
GDI functionality bled over to the 16-bit side. (It's only natural to wonder
this, seeing as how so many GDI functions new for Win32 are implemented
in the 16-bit GDI.) To figure out if any supposedly Win32-only GDI functions
are available for calling by 16-bit code, all I had to do was dump the exports
from the Windows 95 GDI.EXE and compare it to the exports from the
Windows 3.1 GDI.EXE. After filtering out undocumented functions, what's
left over are GDI functions that were added to the Win32 specification, yet
are callable by Win16 code. The task of comparing the two versions of
GDI.EXE was made almost effortless by the excellent EXEUTIL program
from Undocumented Windows. The command:

EXEUTIL -diff C:\WIN31\SYSTEM\GDI.EXE C:\WINDOWS\SYSTEM\GDI.EXE

gave me a nice delta of the exports between the two versions of GDI. (Only
three undocumented functions were removed from Windows 95's GDI.EXE.)
There were quite a few new exported 16-bit GDI functions that showed up
as being added in Windows 95's GDI.EXE. I filtered out all the undocumented
functions and other exports that don't have equivalents in the Win32 APl.
After some rearranging and grouping, I came up with the 16-bit GDI func-
tions shown in Table 4-1. These functions are exported and presumably are
safe to be called from Win16 code.

Table 4-1
New GDI functions that are callable from Win16 code

Function Type Function Names

Printing ABORTPRINTER, CLOSEPRINTER, ENDDOCPRINTER,
(These functions are all ENDPAGEPRINTER, OPENPRINTERA, STARTDOCPRINTERA,

thunks up to GDI32.DLL.) STARTPAGEPRINTER, WRITEPRINTER

Device-Independent B i t m a p s CREATEDIBSECTION, GETDIBCOLORTABLE,
(These functions appear to be SETDIBCOLORTABLE
implemented in GDI.EXE

C R E A T E H A L F T O N E

271

Function Type Function Names

Enhanced Metafiles
(These functions appear to be
implemented in GDI.EXE
with the aid of 32-bit
code segments.)

CLOSEENHMETAFILE, COPYENHMETAFILE,
CREATEENHMETAFILE, DELETEENHMETAFILE,
GDICOMMENT, GETENHMETABLE,
GETENHMETAFILEBITS, GETENHMETAFILEDESCRIPTION,
GETENHMETAFILEHEADER,
GETENHMETAFILEPALETrEENTRIES,
PiAYENHMETAFILERECORD,
SETENHMETAFILEBITS, SETMETARGN

Line drawing
(These functions appear to be
implemented in GDI.EXE with the
aid of 32-bit code segments.)

GETARCDIRECTION, POLYBEZIER, POLYBEZIERTO,
SETARCDIRECTION

Paths
(These functions appear
to be implemented in GDI.EXE
with the aid of 32-bit code
segments.)

ABORTPATH, BEGINPATH, CLOSEFIGURE,
ENDPATH, FILLPATH, FLATTENPATH, GETMITERLIMIT,
GETPATH, PATHTOREGION, SELECTCLIPPATH,
SETMITERLIMIT, STROKEANDFILLPATH, STROKEPATH,
WIDENPATH

Miscellaneous
(These functions appear to be
implemented in
GDI.EXE.)

CREATEHALFTONE PALE•rE, ENUMFONTFAMILIESEX,
EXTCREATEPEN, EXTCREATEREGION,
EXTSELECTCL/PRGN, GETCHARACTERPLACEMENT,
GETFONTLANGUAGEINFO, GETREGIONDATA

SUMMARY

Throughout this chapter, I've shown the strange, hybrid nature of the
Windows 95 USER and GDI components. While they are quite obviously
derived from their Windows 3.1 predecessors, the Windows 95 USER and
GDI have significant amounts of 32-bit code. The end result is many
improvements that programmers can take advantage of, both in 16- and
32-bit programs. In addition, moving many of the heavily used data
structures (such as WNDs) out of 16-bit heaps makes Windows 95 a
worthwhile upgrade from Windows 3.1, even if you're not interested in
the snazzy new features. While the Windows 95 USER and GDI components
aren't anywhere near as full-featured and robust as their Windows NT
equivalents, the improvements Windows 95 offers are a welcome relief to
frustrated Windows 3.1 programmers.

i d i o -

MEMORY

MANAGEMENT

J
ust as programmers were beginning to get used to the idio-
syncracies and gotchas of memory management under

Windows 3.x, Microsoft rolled out the Win32 APl, which
presents a different set of challenges for the overwhelmed
programmer.

Theoretically, Win32 memory management should be simi-
lar under the three incarnations of Win32: NT, Windows 95,
and Win32s. Given Microsoft's track record in this area, how-
ever, you would expect Windows 95 memory management to
have numerous differences (both subtle and not so subtle) from
NT and Win32s. This is indeed the case. In this chapter, I dis-
sect Windows 95's implementation of Win32 memory manage-
ment. To be fair to Microsoft, note that many of the general
concepts described here also apply to NT and Win32s.

I've divided the various subtopics of memory management
into two categories. The first set of topics relates to issues such
as the process address space, memory contexts, and paging
behaviors (for example, copy on write). Later, I move to the
other set of memory management subtopics: the APls that the
operating system provides for allocation and manipulation of
memory.

If you're looking for information on 16-bit or DOS virtual
machine memory management, this chapter is not what you're

C P U s .

274

looking for. I've chosen to keep this chapter resolutely 32-bit based with
only a few exceptions where absolutely necessary. If you're interested in
Windows 95's 16-bit memory management, see Chapter 2 of my previous
book, Windows Internals. Windows 95's 16-bit memory management is
almost completely unchanged (except for bug fixes) from Windows 3.1.
With these preliminaries out of the way, let's jump into...

WINDOWS 95 PAGE-BASED
MEMORY MANAGEMENT

If you want to have any hope of really understanding the memory architec-
ture of Windows 95, there's simply no way to avoid understanding memory
paging on the Intel 80386 class of CPUs. Although the technique of memory
paging far predates the 80386, we're interested only in how Windows 95
uses paging on the 80386, so I'll speak in 80386-specific terms. If you already
know paging cold, you can skip this section. If memory paging is mysterious
to you or if you need a quick refresher, read on.

Memory paging
The primary reason for paging is to provide a method for the operating
system to collaborate with the CPU to fake programs into thinking that there's
more memory available than is actually installed in the computer. When a
program reads or writes a byte of memory, it may or may not be accessing a
byte of physical RAM. If a program touches an address that doesn't map
directly to a byte of physical RAM, the CPU informs the operating system of
this event. The operating system in turn takes the steps necessary to associate
physical memory to the address that the program attempted to use.

If the total memory usage of all the running programs exceeds the amount
of memory installed in the computer, the operating system may need to yank
a block of RAM away from some other program that's using the memory.
Blindly stealing memory out from underneath a program that's using it is a
recipe for disaster, so Windows 95 arranges for the original contents of RAM
to be saved elsewhere before reassigning the block of RAM. The "elsewhere"
in this case is the computer's hard drive. At any given time, all memory in
use by the operating system and running programs is stored either in RAM
or on a hard drive. (This is a bit of simplification, but it will suffice for now.)

0 x 4 0 0 0 0 1 ,

275

Virtual memory is the commonly used term to refer to this method of simu-
lating memory using paging and space on a secondary storage device such
as a hard drive. One of the fundamental jobs of the Virtual Machine Manager
in Windows 95 (the VMM module in VMM32.VXD) is to provide virtual
memory with a minimum of fuss to application programs.

What confuses many people is that paging affects the CPU's memory
addressing. Without paging, the address that a program tells the CPU to use
will be the same address that goes out on the computer's memory bus. For
example, in a real mode program, you can easily calculate a physical address
from a segment:offset combination by multiplying the segment value by 16
and adding the offset. With paging enabled, a memory address that a program
uses may not be the same address that the CPU sends out to the memory bus.
Paging introduces a level of indirection (actually two levels) to all addresses.
When a program passes an address to the CPU to access, the CPU uses cer-
tain bits of the 32-bit address to look up the physical RAM address that it
should send out to the machine's bus. The tables that the CPU uses to trans-
late addresses are under the operating system's control. Putting the address
translation tables under the control of the operating system allows the oper-
ating system to tell a program to use addresses anywhere in the 4GB range
of memory addressable by a 32-bit address, even though there may not be
physical RAM at a given address.

The term paging comes into play because the CPU doesn't provide this
indirection for each address on a byte-by-byte basis. Rather, the translation
of memory addresses affects 4K chunks of memory. For example, if you use
paging to assign physical RAM address 0x1000 to program address 0x400000,
then RAM address 0x1001 will appear to the program to be at address
0x400001, and RAM address 0xlFFF will be at program address 0x400FFE
However, the next program address (that is, 0x401000) is the start of a new
4K page, so physical address 0x2000 does not necessarily have to be mapped
to program address 0x401000. Program address 0x401000 may be mapped
to a different physical RAM address (for example, 0x6000), or it may not
have any physical RAM mapped to it. All decisions about which pages will
have RAM mapped to them are made by the operating system's paging code.

Besides allowing the operating system to provide virtual memory, the
CPU's support for paging also allows the operating system a great deal of
flexibility in how it should arrange various objects in memory. By objects, I
mean things such as the operating system code, the program's code, the pro-
gram's data areas, and memory mapped files. The memory layout that an
operating system uses is known as its address space layout. I'll describe the
Windows 95 address space shortly.

a d d r e s s a b l e

276

The benefit of paging is that the operating system can spread operating
system objects throughout the entire addressable range of the CPU (in the
case of Intel 386 class CPUs, a 4 billion byte range). The entire addressable
range of memory that the CPU can theoretically access is known as its address
space. Addresses that the CPU will translate because it has enabled paging
are called linear addresses. This differentiates them from the addresses after
the CPU has translated them. These are actual addresses that will go out on
the CPU's bus to the physical RAM. These addresses are known as physical
addresses. The important thing to remember is that in almost all cases,
program and API calls deal with linear addresses, not physical addresses.

With paging support, the operating system can assign various sections
of the address space to particular items and leave room for those items to
grow or to be added to as necessary. For example, when a program starts
up, by default Windows 95 reserves a 1MB range of the CPU's address
space for the program stack. This doesn't mean that Windows 95 will map
1MB of physical RAM to the stack's range of memory addresses. Rather, it
means that the maximum size of the stack is 1MB. Windows 95 will only
map physical memory to those 4KB regions in the stack area that the
program uses.

Paging provides the operating system with the capability to reserve vast
ranges of memory addresses without having to pay for those addresses (with
physical RAM) until they're used. It's like reserving twelve seats for a con-
cert without knowing how many of your friends will show up. If only three
are in your group, you have to pay for only three seats.

At any given time, every 4KB section (page) in the CPU's 4GB address
space is in one of four possible states:

*

*

State 1: Available. This page of memory hasn't been reserved for use by
anybody, and is theoretically available to be allocated. An attempt to
access this memory by reading or writing to it will result in a page fault
exception (exception 14 (0Eh)). I'll describe page faults shortly.
State 2: Reserved. The page is part of a range of memory that somebody
has requested. However, physical RAM is not currently mapped to this
address, nor is any hard drive space reserved to save a copy of its contents.
An attempt to access this memory by reading or writing to it will result
in a page fault exception (exception 14 (0Eh)). Note, though, that the
operating system gives the owner of the page an opportunity to change
the page state to Committed and Present (state 3).

a p p l i c a t i o n d e v e l277

* State 3: Committed and present. This range of addresses has been allo-
cated by somone, and a program is using it to store information. The
CPU's paging mechanism has mapped a 4KB physical block of RAM to this
page's address. Reading or writing to this address will cause the physical
RAM mapped to the page to be read or written. A substate to the com-
mitted and present state is known as pagelocked. A pagelocked page is
committed, present, and guaranteed to never be swapped out. There will
always be physical RAM associated with a pagelocked page until the
page is unpagelocked.

* State 4. Committed and not-present. This is similar to the preceding
state (committed and present). The program has allocated the memory
and is using the memory to store information. The difference is that the
operating system has decided that the RAM mapped to the page was
needed more urgently elsewhere. Therefore, the CPU has copied the
contents of this memory to the hard disk drive and marked the page as
"Not Present."
Like states 1 and 2, a page fault will occur if a memory address within
the page is accessed. The difference is that when a program accesses this
memory, the operating system transparently handles the page fault
exception and remaps a 4KB block of physical RAM to the page. Next,
the operating system reads in the original contents of the page from the
hard disk, and then finally reexecutes the instruction that page faulted.
The result is that the program doesn't have any idea that a page fault
happened. This transparent simulation of RAM using space on a hard
drive is the essence of virtual memory./

Windows 95 provides applicationdevel APIs that enable you to allocate
ranges of memory pages and to change them to have the attributes that I
just described. These are the VirtualXXX (VirtualAlloc, VirtualFree, and so
on) functions, which I describe later in the chapter.

Memory paging versus selectors
If you've programmed for Windows 3.x, you're probably wondering how
paging can be reconciled with selectors. Programs that run in 16-bit pro-
tected mode on the Intel CPU invariably must use selectors to access a section
of memory in the CPU's address space. Each of a Win16 program's code
segments is associated with a selector, as are its data segments and any

G l o b a l A l l o c) .

278

memory blocks it allocates with the global heap functions (for example,
GlobalAlloc). It's impossible to do application-level Win16 programming
without encountering selectors.

The most fundamental information associated with each selector is
where in memory it points to (that is, its base address). On a 386, the base
address of a selector can be anywhere between 0 and 4GB minus 1. In other
words, the selector can potentially point anywhere in the CPU's address
range. However, the base address of a selector is specified as a linear
address, not a physical address. Therefore, the paging mechanism of the
CPU operates underneath the selectors. In both Windows 3.1 and Windows
95, 16-bit code doesn't think about paging and virtual memory support.
Instead, it just assumes that there will be large regions of memory available
to it. The 16-bit global heap management code allocates large pieces of
memory from the ring 0 operating system components and then subdivides
the memory into smaller pieces that it makes accessible to programs
through selectors. The base addresses of selectors do not have to start on a
4KB page boundary, nor does every page beneath a given memory segment
need to be physically present.

,As mentioned, the selector/segment management code doesn't sweat the
details at the paging level. It lets the underlying paging system code provide
virtual memory and assumes that memory will be there when it needs to access
it. Chapter 2 of Windows Internals describes the 16-bit selector/segment
management code in Windows 3.1. This particular aspect of memory
management hasn't changed much in Windows 95.

If you're executing in protected mode, you can't avoid selectors. They're
absolutely required to access memory. The great thing about Windows 95 is
that it requires at least a 386 CPU, and one of the key features of the 386 is
that you can make segments that span the entire 4GB of the CPU's address
space. It's therefore possible to create selectors with base address of 0 and
limits of 4GB. If you load these selectors into the CS and DS registers, you can
effectively forget that segmentation exists. Programs can refer to addresses
in memory with just a 32-bit offset value. In this scenario, the 32-bit offset
is the same as a linear address. The mode of using selectors with a 0 base
address and a 4GB limit has been dubbed the flat memory model (as opposed
to the small, medium, compact, and huge memory models from 16-bit pro-
gramming). Remember, however, that although flat model programs make it
appear that segments no longer exist for Win32 programs, the CPU is still
using segmentation under the hood. This is especially important to remember
if you're going to mix 32-bit code with 16-bit code (which cannot hide the
ugly reality of segments).

V x D s) .

279

With wide open segments that let a program touch any address in the CPU's
address range, you might be wondering how the operating system protects its
internal data structures and other areas of memory that application code
shouldn't be mucking with. This wasn't hard to do in 16-bit programming
because a selector defined a specific starting and ending address that a pro-
gram could touch. Theoretically, the operating system would never hand out
a selector with a base address that would allow an application program to
get at memory that it shouldn't have access to. (However, Windows 3.1 and
Windows 95 don't prevent you from creating your own selectors and going
to town with them. I'll take advantage of this "hole" later in the chapter.)

If a Win32 program uses flat segments, how can the operating system
restrict access to areas that it doesn't want programs to touch? In this case,
instead of relying on segment limits, the operating system sets the attributes
of the pages as appropriate. For example, a program shouldn't be able to
blindly write to and corrupt its code areas. The operating system therefore
sets the page attributes of the code areas to read only. Programs can read
those pages, but attempts to write to them will cause a page fault. Likewise,
a program that gets hold of a trashed pointer will likely write to a page of
memory that's not allocated by anybody.

The operating system marks all pages that aren't specifically owned by
somebody as not-present. Trying to touch one of these addresses also results
in a page fault. In addition, the operating system can mark a range of pages
with the supervisor attribute. Pages with the supervisor attribute can be
accessed only by code running at a high privilege level (that is, certain parts
of the operating system and VxDs). An attempt to access a supervisor page
by a low-life application program results in a page fault. As you can see,
even without segments, Windows 95 can use paging to effectively protect
sensitive areas of memory. The only downside is that the granularity of
memory allocations at the lowest level is in 4KB pages rather than in single
bytes like 16-bit segments.

THE ADDRESS SPACE OF A WINDOWS 95
WIN32 PROCESS

In versions of Windows before Windows 95, all running programs ran in
the same address space. That is, any program could easily read the memory
of another program. More importantly, a program could modify another
program's memory, a potential ticket to a disaster if buggy programs are

4 G B280

involved. For example, a 16-bit Windows program (even on Windows 95) can
get hold of the selector for the 16-bit USER's DGROUP and write random
garbage. Bye-bye windowing system.

Windows 95 is the first mass-market version of Windows that runs each
process (at least each Win32 process) in its own address space. By its own

address space, I mean that a program can see memory owned only by itself.
Memory in use by other processes is not physically accessible. Specifically,
the Windows 95 memory manager uses the CPU's page-based memory
management capabilities to ensure that only memory owned by the current
process is mapped somewhere in the 4GB address range of the CPU.
Physical RAM in use by other processes simply does not show up in the page
tables for the current process. The huge benefit of this is that theoretically a
buggy program can screw up only itself, and won't affect other programs.
Each program gets its own sandbox to play in; if it kicks sand, the only
harmful effect is to itself.

Lest you become too excited by this advance in Windows, this method
of isolating programs from one another for their mutual protection is nothing
new. Operating systems such as UNIX have been doing this for decades.
Windows NT also keeps each Win32 process in its own address space. It was
about time that the desktop operating system that Microsoft was pushing
on the masses obtained this most basic feature of a decent operating system.
(Win32s, the forgotten stepsister in the Win32 family, doesn't use separate
address spaces for each process.)

Although it's important to keep the memory of all programs separate,
certain ranges of memory need to be shared across all processes. That is,
certain pages in the linear address spaces of all processes should map to the
same physical page of RAM. Why would you want this? A perfect example
is for the systems DLLs that each process uses. For instance, every process
at the very minimum requires the use of KERNEL32.DLL. It would be
incredibly wasteful to load a fresh copy of KERNEL32.DLL into memory
for every running process. Therefore, KERNEL32.DLL (and other system
DLLs such as USER32) reside in shared memory. When the operating system
switches around the CPU's page tables because it's about to run a new
process, it leaves the page table mapping for the shared memory regions
alone. I'll describe other examples and needs for shared memory later.

Because Windows 95 keeps the memory for different processes separate
from one another, any discussion of how Windows 95 lays out the 4GB
address space must necessarily include the concept of memory contexts. A

8 0 0 0 0 0 0 0 h

281

memory context is essentially a list of RAM pages and what linear address
they will be be mapped to when a given process is active. Phrased another way,
a memory context is the view of the CPU's linear address that the operating
system gives to a process.

Each process has its own memory context. When the Windows 95
scheduler suspends one process and lets another process execute, Windows
95 must also switch the memory contexts from the original process to that
of the newly scheduled process. Because memory contexts are maintained
on a per-process basis, they're sometimes referred to as a process context.

Memory contexts are also known as address contexts. Whatever you call
them, the important thing to remember is that a memory address by itself is
meaningless unless you specify which memory context it's in.

At the topmost level, the memory layout Windows 95 uses for Win32
processes is simple. In the 4GB address range, Windows 95 reserves the
bottom 2GB (addresses Oh through 7FFFFFFFh) for the application's mem-
ory. Addresses above 2GB (addresses 80000000h through FFFFFFFFh) are
intended for use by the operating system. Within these two halves of the
address space are several subdivisions. Figure 5-1 shows the breakdown of
the various regions in the 4GB address space. If you have the Windows 95
DDK, you might also want to read the "Page Mapping and Address Spaces"
section under the "Arenas" heading in the online help.

The first 4MB of the address space is shared between all processes in the
system virtual machine (VM). Part of this region is the memory below 1 MB,
which includes the memory image of MS-DOS that was loaded as part of
the Windows 95 bootstrap process. Also of interest below 1MB is the lower
portion of the 16-bit global heap. As I described in Chapter 2 of Windows

Internals, all 16-bit heap segments in Windows 3.1 have a linear address
that's either below 1MB or above 2GB. 16-bit heap allocations with the
GMEM_FIXED attribute are allocated from the lowest available address in
the global heap, so the allocated block often ends up with a linear address
below 1MB. You'll find the memory for numerous 16-bit system DLLs in
this first 4MB range of the address space because many of them (such as
KRNL386) need fixed and pagelocked memory. This is an important point
that I'll come back to shortly.

The next region in the 4GB address space is the range from 4MB to
2GB. This is the per-process address space that each Win32 process uses.
Each Win32 process has its code, data, and resources mapped into this
nearly 2GB region. When you switch memory contexts, the effect is to apply

s p a c e .

282

a different set of page mappings to this range of memory. Except in special
cases that the programmer specifies, the physical RAM pages mapped in
this region for use by one process are not accessible by any other processes.
Besides the executable's code and data, this region also contains the code
and data for any application-specific DLLs used by the process. Also in this
region, you'll find the application's heap and stacks for each of its threads.

4GB

3GB

2GB

4MB

Shared

Per process

Shared

 Figure 5-1
The Windows 95 linear address space.

The default load address for Win32 programs in the per-application
area is at the very bottom (4MB). Unless you really understand paging, this
idea can be disconcerting. How can more than one program be loaded at
the same address in memory? The answer is that they share the same linear

283

address, but not the same physical address. In general, a linear address in
one process will not be mapped to the same physical address in RAM.
Because of paging, each process can assume that it has the entire 4MB to
2GB range of addresses all to itself. It can't see the memory of other
processes, nor can they see its memory, even though they may be sharing the
same linear addresses. The magic of paging keeps them physically distinct.

The exception to the preceding rule of keeping separate 4MB to 2GB
regions for each process is when Windows 95 has determined that it's safe
to share the same page of RAM between multiple copies of a program. A
prime example of this is program code because a program usually doesn't
modify its code. If you're running more than one copy of a program,
Windows 95 conserves available RAM by mapping the RAM containing
program code into the address space of all the instances of the processes.

From an operating system purist point of view, it would be ideal if each
16-bit process was kept in its own address space, similar to the way 32-bit
processes are. Unfortunately, a huge number of 16-bit programs rely on the
capability to see the memory of other programs. To remain compatible with
existing 16-bit code, Windows 95 has to allow 16-bit programs to have
greater access to one another than it lets Win32 processes have. Windows
NT 3.5 introduced the capability of running each Win16 process in its own
address space, but it consumes more memory and introduces more complex-
ity. The designers of Windows 95 apparently felt the benefits weren't worth
the price.

A question that intrigued me from the first time I saw Windows 95 was
how 16-bit tasks were able to share their address space while still running
as separate processes. As it turns out, the memory used by 16-bit tasks
always comes from the shared memory regions below 4MB and above 2GB.

Moving now to the the upper half of the 4GB address space, you can see
that Figure 5-1 shows it subdivided into two regions. The range of memory
between 2GB and 3GB is shared across all processes, and is intended for use
by the ring 3 (user level) operating system code. At the lowest addresses in this
range, you'll find the remainder of the 16-bit global heap. Above the global
heap, you'll find the location for memory mapped files. This is interesting,
and bears a further look.

If memory mapped files are in a range of memory shared by all processes,
it would appear that any process can see the memory mapped file, even if
that process hasn't explicitly mapped a view for it. That assumption is
indeed correct. In Windows 95, the act of using a memory mapped file makes

284

that file accessible to all processes. In this aspect, Windows 95 differs from
Windows NT. Windows NT uses a more sophisticated paging model, thereby
causing memory mapped files to be visible only in the memory context of
processes that open up a view into the memory mapped file.

The uppermost portion of the 2GB to 3GB range is where you'll find
the 32-bit system DLLs (KERNEL32, USER32, and so on). To free up as
much space as possible for memory mapped files before running into the
ring 3 system DLLs, Windows 95 adds DLLs to the system from the 3GB
line downward in memory. The following excerpt from the SoftIce/W MOD
command shows this very clearly:

The number in the second column is the load address of the module.
KERNEL32.DLL is the first 32-bit system DLL to load, and loads as close
to 3GB as possible (address BFF70000h) while keeping all of its contents in
the 2GB to 3GB range. Next lower in memory is GDI32.DLL at address
BFF20000, which butts up as close as possible to KERNEL32.DLL.
Although it might seem like these load address are calculated as the DLLs
load, they're not. Microsoft has a program (REBASE.EXE from the Win32
SDK) that determines how much address space each DLL requires, and then
figures out the load address that will cause the system DLLs to be packed
together as closely as possible. After compiling and linking the system
DLLs, the Windows 95 build procedure modifies the DLLs so that they
have the preferred load address that was calculated by REBASE.EXE. The
effect is that these system DLLs load as fast as possible and don't need to
have any relocations applied by the Windows 95 loader.

The final portion of the Windows 95 address space is the range from
3GB to 4GB (C0000000h to FFFFFFFFh). This final gigabyte is the domain
of the ring 0 system components of Windows 95 (that is, the VxDs). This
can be seen by looking at this abbreviated (believe it or not) output from the
SoftIce/W VXD command:

:mod

hMod Base PEHeader Module Name EXE File Name

019F BFF70000 0147:BFF70080 KERNEL32

C:\WINDOWS\SYSTEM\KERNEL32.DLL

01A7 BFF20000 0147:81525AF4 GDI32 C:\WINDOWS\SYSTEM\GDI32.DLL

186F BFEF0000 0147:81525£98 ADVAPI32

C:\WINDOWS\SYSTEM\ADVAPI32.DLL

1827 8FC00000 0147:815270F0 USER32 C:\WINDOWS\SYSTEM\USER32.DLL

285

M i c r o s o f t ' s286

The full output from the SoftIce/W VxD command ran over 360 lines.
On a whim, I totaled the sizes of all the blocks to see roughly how much
memory is consumed by the VxD components. After subtracting the mem-
ory consumed by SoftIce/W, the number of VxD components was in the
neighborhood of a megabyte. Although some of this memory most likely
was pageable, a good chunk of operating system code is hidden at ring 0,
out of the reach of most programmers.

You might think that Windows 95 would use the paging attributes to
protect the VxD region of memory above address 0xC0000000 from prying or
clumsy ring 3 system code. However, this is not the case. Many places in
KERNEL32 keep pointers to variables in the ring 0 components. Likewise,
many places in the VxD code keep pointers to KERNEL32 variables or, even
worse, KRNL386 variables. The worst offender here may be VWIN32.VXD,
which, as Chapter 6 will show, even exports two Win32 VxD service functions
for this purpose. One service passes pointers to places in VWIN32 down to
ring 3, and the other receives ring 3 addresses in KERNEL32 and KRNL386.

SHARING MEMORY

In Win16, the memory of all programs and DLLs is accessible to all other
programs and DLLs. (Win16 uses the same local descriptor table for all
processes.) As a result, it's very easy to share memory between multiple
processes: You simply arrange for two or more programs to get hold of the
same selector. Despite Microsoft's dire warnings, using the GMEM_SHARE
attribute when allocating memory isn't a requirement in Win16.

N T 287

Now contrast this to Windows 95's Win32 memory management, which
keeps all the memory of a Win32 process separate from other processes unless
you specifically take steps to share the memory. Unfortunately, these steps
aren't as simple as specifying GMEM_SHARE. Specifying GMEM_SHARE to
GlobalAlloc won't buy you memory that's shared across mulitiple memory
contexts. (This is typical of Microsoft. GMEM_SHARE has no effect on
memory sharing in Win16 or in Win32. In the 16-bit case, it isn't necessary
because everything is shared, and in the 32-bit case, it's ignored.)

You may have heard some Win32 pundits say that the only way to share
memory in Windows 95 (or NT for that matter) is with memory mapped files.
Although you can share memory with memory mapped files, they're certainly
not the only solution. If all you want to share is a small amount of data
between a few instances of the same program, using memory mapped files is
overkill. In this book, I'll focus on sharing readable/writeable data between
applications. Don't forget, however, that the entire upper half of the 4GB
address space is reserved for system usage and is always visible and shared
between all processes.

At the lowest level, sharing memory between memory contexts is nothing
more than including pages of RAM in the page table mappings of more than
one process. The shared memory pages can map to the same linear address in
each process, or they might map to different linear addresses.

In Windows 95, memory shared through memory mapped files is always
at the same linear address in each process. (The PHYS program, presented
later in the chapter, shows that this is the case.) However, it's dangerous to
make this assumption in your code. One reason is that Windows NT doesn't
guarantee that memory mapped files will be at the same address in each con-
text. Since sharing with memory mapped files is covered in many texts on
Win32 programming, I won't dwell on the details here.

The easiest way to share memory in Win32 programs is not mentioned
in many discussions on Win32 memory management. Specifically, giving the
SHARED attribute to your program's data sections when you link lets you
easily share memory between multiple copies of an EXE or between multiple
users of a DLL. Giving the SHARED attribute to a DLL's data section makes
it functionally the same as the data segment in a Winl6 DLL. Luckily,
Windows 95 gives you the flexibility to share some of your data, while still
having other data that is per-process. You can create multiple data sections
in your EXE or DLL. Put all the data you want to share in one section and
give that section the SHARED attribute. The remainder of your data goes
into another section that you leave with the default attributes (nonshared).

288

The PHYS program does exactly what I've described to show the difference
between shared and nonshared memory.

Normally, the Microsoft compiler puts all your initialized data into a
section of the executable called .data, and leaves the IMAGE_SCN_MEM_
SHARED attribute out of the section's attributes. This causes a new copy of
that data to be created for each process that uses the data. To share memory,
you'll tell the compiler to create a new section. This section can have any
name you want (although only the first 8 characters will be used in the EXE
section table.) For instance:

#pragma data seg("SHAREDAT")

After the #pragma, declare any variables that you want to be shared.
The variables should be initialized; otherwise, the compiler puts them into
the uninitialized data section. You probably weren't intending to make your
uninitialized data shared, so just initialize them and bypass some of the hair-
pulling I went through.

After declaring the variables, if you want to go back to putting data into
the default data section, throw this in at the end of your shared variable
declarations:

#pragma data seg()

Once you've declared all the data you want to be shared, the final step
is to convey your desires to the linker. You can do this in two ways. The
traditional way is to put that section and its attributes into the .DEF file.
For instance:

SECTIONS

SHAREDAT READ WRITE SHARED

Another way is to specify the attributes on the linker command line:

LINK /SECTION:SHAREDAT,RWS <other linker options and files>

In this example, the RWS is interpreted as "Read, Write, and Shared."
I should mention a "buyer beware" warning about sharing your DLL's

data sections. If you initialize your data with the address of another code or
data symbol, you're in for an interesting time if the DLL loads at different
linear addresses in two or more processes. For example, consider this seem-
ingly innocent data declaration in a shared data section:

A d d r e s s O f _ i 289

int i;

int* AddressOf_i = &i;

The problem is that the AddressOf_i can't be known until the DLL loads.
Therefore, the DLL contains a fixup record telling the loader to patch in the
correct value in the AddressOf_i variable. The first time the DLL loads, there's
no problem. Now, consider what happens if another process loads the DLL,
but the DLL can't load at the same linear address in the second process. Because
the AddressOf_i variable is already in use by the first process (it's shared,
remember?), the loader can't go in and patch in the correct value for the second
process. The value of AddressOf_i is wrong in the second process. When I
encountered this problem in my own code, I was able to work around it by
using pointers. In my per-process data variables, I included a pointer to the
shared memory area. Because the pointer was in the per-process area, the
loader always fixed up the pointer value so that it was correct for the current
process.

Beyond explicitly sharing your data, Windows 95 shares other regions of
memory. I've already mentioned that all the memory above a linear address of
2GB is shared between Windows processes. However, Windows 95 also
silently shares certain ranges of memory below 2GB. If you run multiple copies
of an EXE file, or use a DLL in more than one process, it would be wasteful to
load all the code sections for each user of the code. Although code sections
don't have the IMAGE_SCN_MEM_SHARED attribute, Windows 95 loads
only one copy of the code, and uses the CPU's page table to map the code into
the memory contexts of all users of the code.

An exception to this sharing of code sections between multiple processes
occurs when a DLL cannot load at the same base address in each process.
For example, suppose FOO.DLL is used by two different processes. When
process A loads the DLL, it is brought into memory at linear address X.
Process B may use a different group of DLLs (but including FOO.DLL).
When process B loads, some other DLL may be assigned to linear address X
before the loader gets around to loading FOO.DLL. Because address X isn't
available in process B's memory context, FOO.DLL has to be loaded else-
where. If you have control over programs that run into a situation like this,
you can usually solve it by rebasing the DLL to a base address that's not
used in either process.

b r e a k p o i n t s

290

"COPY ON WRITE" IN WINDOWS 95

(OR THE LACK THEREOF)

Knowing that Windows 95 shares code across processes (where possible), a
reasonable question concerns how debuggers handle this. Why is this an
issue? Debuggers set breakpoints by writing breakpoint instructions (INT 3,
opcode 0xCC} into the code. If a debugger writes a breakpoint into a code
page that's shared by two processes, there's a potential problem. The debugger
is debugging only one of the processes, and won't see the breakpoint interrupt
if another process hits the breakpoint instruction. When the operating system
sees the INT 3 in the other process and determines that the process isn't being
debugged, it terminates the process because there was an unhandled exception.
If the memory management code in Windows 95 were to work the way I
described in the last section, you wouldn't be able to debug through DLLs
used by more than one process at the same time - - at least not without causing
all the other processes to terminate abruptly. Nor would you be able to debug
one copy of a program while another copy runs.

Advanced operating systems such as UNIX handle this problem with a
mechanism called "copy on write." In a system with copy on write (such as
Windows NT), the memory manager uses the CPU's paging to share memory
wherever possible, and duplicates a page of memory in RAM only when
necessary.

An example will make this much clearer. Suppose that two copies of a
program are executing and sharing the same code pages (which have the
read-only attribute). One of the processes is being debugged, and the user
tells the debugger to set a breakpoint somewhere in the code. When the
debugger attempts to write out the breakpoint instruction, it triggers a page
fault (the page is read-only). When the operating system sees the page fault,
it first determines that a debugger is trying to read the memory, and that the
request is legitimate. However, the operating system doesn't just let the
write go through to the shared code page. Instead, the system makes a copy
of the affected page, and changes the page table of the debuggee to use the
copy of the original page. Once the page has been copied and mapped, the
system lets the write go through. The write operation affects only the copied
page and leaves the original page alone.

Copy on write isn't limited to shared code. In Windows NT, writeable
data pages start out with the read-only attribute. When the program writes

N T

291

to one of these page, the CPU generates a page fault. The operating system
handler then marks those pages as read/write. Why go through this trouble?
When a second copy of the EXE or DLL is loaded, the memory manager
can share all the data pages that still have the read-only attribute. If these
shared pages are then written to, the copy on write mechanism kicks in and
provides separate RAM pages to each process wherever necessary.

The benefit of copy on write is that memory is shared as efficiently as
possible. The system makes a new copy of a shared page only when necessary.
Unfortunately, copy on write requires a sophisticated memory and page table
management scheme. Apparently, Windows 95's memory manager isn't
sophisticated enough because Windows 95 doesn't directly support copy on
write through paging. This has caused a lot of anguish among the early
adopters of Windows 95. After all, Microsoft is pushing for all Win32 pro-
grams to run on Windows NT as well as Windows 95. It's a pain to do so
when major architectural features such as copy on write are missing from
Windows 95.

In defense of Windows 95, it isn't blindly stupid about the problem of
writing to shared memory. Because something had to be done to make
debuggers usable, Windows 95 supports a pseudo copy on write scheme. In
this scheme, the WriteProcessMemory function takes the place of a page fault
on a shared page. Way down inside WriteProcessMemory, the operating sys-
tem determines whether the address range you're attempting to write lies in
shared memory. If so, the system copies the original page(s) to a new set,
maps the new page(s) to the same linear address in the current process, and
then does the write operation. The PHYS program proves that this pseudo
copy on write is at work.

Although the WriteProcessMemory function is sufficient to allow debug-
gers to debug through most DLLs, it unfortunately doesn't work on the shared
region above 2GB. (It's intentionally crippled.) Because the system DLLs such
as KERNEL32 lie above 2GB in Windows 95, regular application debuggers
can't step through the system DLLs like they can in Windows NT. Go ahead
and try it. Fire up your favorite application debugger under Windows 95 and
try to step into an operating system call. Both the Visual C++ debugger and
Turbo Debugger silently step over these calls even if you're in the disassembly
pane and tell them to step into the call. If you want to step through the
system code in Windows 95, you'll need a debugger that doesn't rely on
WriteProcessMemory, for example, a system-level debugger such as
SoftIce/W or WDEB386.

P H Y S

292

THE PHYS PROGRAM

To demonstrate all the Windows 95 memory management details I've discussed,
I wrote the PHYS program. PHYS doesn't have a fancy user interface, but it
effectively shows the layout of memory, shared memory, and Windows 95's
pseudo copy on write support.

The concept behind PHYS is simple. It finds and displays the linear
addresses of various items in memory (for example, a code section or a
memory mapped file). When just one copy of PHYS is run, it's a crude but
useful demonstration of the Windows 95 process memory layout. The pro-
gram's functionality doesn't stop there, however. Besides showing the linear
addresses of memory objects, it also shows the physical RAM address
mapped to the linear address as well as the page's protection attributes. By
running two or more copies of PHYS, you can see which memory regions
are shared by multiple processes. In addition, PHYS shows writes to a code
page in memory and shows the before and after addresses, proving that
WriteProcessMemory effectively performs a copy on write.

The complete source for PHYS is included in the accompanying disk.
The main workhorse routine is shown in Listing 5-1. ShowPhysicalPages
calculates the linear and physical addresses of various memory objects and
prints them, one to a line. However, PHYS makes no attempt to show every
memory object in its address space. Rather, it shows selected items that I
consider important when indicating the memory layout of a process.

The SbowPbysicalPages functions from the PHYS.EXE program

//note from remo: program text imported via UltraEdit instead of OCRed
// => less errors, syntax highlighting, less time correcting

void ShowPhysicalPages(void)
{
 DWORD linearAddr;
 MEMORY_BASIC_INFORMATION mbi;

 //
 // Get the address of a 16 bit DLL that's below 1MB (KRNL386's DGROUP)
 //
 linearAddr == Get_KRNL386_DGROUP_LinearAddress();
 printf("KRNL386 DGROUP - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the starting address of the code area. We'll pass VirtualQuery
 // the address of a routine within the code area.
 //
 VirtualQuery(ShowPhysicalPages, , &&mbi, sizeof(mbi));
 linearAddr == (DWORD)mbi.BaseAddress;
 printf("First code page - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the starting address of the data area. We'll pass VirtualQuery
 // the address of a global variable within the data area.
 //
 VirtualQuery((&&callgate1, , &&mbi, sizeof(mbi));
 linearAddr == (DWORD)mbi.BaseAddress;
 printf("First data page - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the address of a data section with the SHARED attribute
 //
 MySharedSectionVariable = 1; ; // Touch it to force it present
 linearAddr == (DWORD))&&MySharedSectionVariable;
 printf("Shared section - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the address of a resource within the module
 //
 linearAddr == (DWORD)
 FindResource(GetModuleHandle(0), MAKEINTATOM(1), RT_STRING);
 printf("Resources - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the starting address of the process heap area.
 //
 linearAddr == (DWORD)GetProcessHeap();
 printf("Process Heap - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the starting address of the process environment area.
 //
 VirtualQuery(GetEnvironmentStrings(), (), &&mbi, sizeof(mbi));

 linearAddr == (DWORD)mbi.BaseAddress;
 printf("Environment area - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Get the starting address of the stack area. We'll pass
 // the address of a stack variable to VirtualQuery
 //
 VirtualQuery((&&linearAddr, , &&mbi, sizeof(mbi));
 linearAddr == (DWORD)mbi.BaseAddress;
 printf("Current Stack page - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Show the address of a memory mapped file
 //
 linearAddr == (DWORD)PMemMapFileRegion;
 printf("Memory Mapped file - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));

 //
 // Show the address of a routine in KERNEL32.DLL
 //
 linearAddr == (DWORD)
 GetProcAddress(GetModuleHandle("KERNEL32.DLL"), "VirtualQuery");
 printf("KERNEL32.DLL - Linear:%08X Physical:%08X %s\n",
 linearAddr,
 GetPhysicalAddrFromLinear(linearAddr),
 GetPageAttributesAsString(linearAddr));
}

The memory objects that PHYS shows are a routine in a 16--bit DLL, a memory mapped
file, and a routine in a 32--bit DLL. In addition, the routine also displays the
address of PHYS.EXEs heap and its code, data, shared data, resource, and stack
regions. I choose DGROUP of KRNL32.386 to show that the

p r o c e s s ' s

 295

Win16 DLLs are in fact mapped into the address space of a Win32 process.
(It would be hard to thunk down to them if they weren't.) By showing the
addresses of a memory mapped file and a routine in KERNEL32, I can
demonstrate that they're in the shared ring 3 region between 2GB and 3GB.

Figure 5-2 shows the output from running two copies of PHYS. To
show memory sharing between processes and have meaningful results, it's
important to use the correct sequence, as follows. Run the first instance of
PHYS. When it's paused at the Press any key.., prompt, start the second
copy of PHYS. This guarantees that the second instance will be running at
the same time as the first instance. Finally, switch back to the first instance
and press a key to get the second half of the first instance's output.

For now, let's concentrate on the first set of addresses shown for the
first instance. The addresses are sorted by their linear addresses. Examinine
the correlation between physical and linear addresses. Can't find a corre-
spondence? Don't try too hard because there isn't one. Windows 95 keeps a
pool of available RAM pages, and doesn't try to match physical RAM pages
to any particular linear address.

The first item in the list of addresses is the KRNL386 DGROUP. The
next four items are memory sections in the PHYS.EXE executable. Earlier, |
mentioned that in Windows 95, the default load address for a 32-bit process
is 4MB (0x400000). If you dump out PHYS.EXE's header with PEDUMP
from Chapter 8, you'll find that the code section starts at a relative virtual
address (RVA) of 0x1000. Adding 0xl000 to 4MB yields 0x401000, which
is the address shown in PHYS's output. You can go a step further and
obtain the RVAs of the data section, the shared data section, and the
resource section and verify that adding their RVAs to 4MB gives the same
linear address shown in PHYS's information.

The next item in PHYS's sorted output is the default process heap. At
address 0x410000, it's not too far past the last linear address used by the
code and data sections in the PHYS.EXE module. It looks like KERNEL32
allocates linear memory in a bottom-up fashion. The default size for the ini-
tial process heap in Windows 95 is 1MB+4K. This would make the next
available linear address in the address space appear to be somewhere
around 0x511000. Windows 95 starts each new virtual memory allocation
at a 64K boundary, however, so the next available region would be at
address 0x520000. Surprise, surprise -- that happens to be the address
where the process's environment area starts. It looks like the bottom-up
allocation theory is still holding up.

296

//

// First instance output:
//

***** FIRST INSTANCE *****

KRNL386 DGROUP

First code page

First data page

Shared section

Resources

Process Heap

Environment area

Current Stack page

Memory Mapped file

KERNEL32.DLL

Press any key...

Linear:00036F60

Linear:00401000

Linear:00408000

Linear:0040B000

Linear:0040D088

Linear:00410000

Linear:C0520000

Linear:0063F000

Linear:8233A000

Linear:BFFAF09C

Now modifying the code page

KRNL386 DGROUP

First code page

First data page

Shared section

Resources

Process Heap

Environment area

Current Stack page

Memory Mapped file

KERNEL32.DLL

Linear:00036F60

Linear:00401000

Linear:00408000

Linear:0040B000

Linear:0040D088

Linear:00410000

Linear:00520000

Linear:0063F000

Linear:8233A000

Linear:BFFAF09C

//

// Second instance output:
//

***** SECONDARY INSTANCE *****

KRNL386 DGROUP

First code page

First data page

Shared section

Resources

Process Heap

Environment area

Current Stack page

Memory Mapped file

KERNEL32.DLL

Press any key...

Physical:00245F60

Physical:00BBE800

Physical:006E2000

Physical:0041D000

Physical:00B3F088

Physical:0082A000

Physical:00A2E000

Physical:00ADD000

Physical:0099D000

Physical:004F689C

Physical:00245F60

Physical:00CA1000

Physical:006E2000

Physical:0041D000

Physical:00805088

Physical:0082A000

Physical:00A2E000

Physical:00ADD000

Physical:0099D000

Physical:004F609C

Linear:00036F60 Physical:00245F60

Linear:00401000 Physical:00BBE00

Linear:00408000 Physical:002FF000

Linear:8040B000 Physical:0041D000

Linear:0040D088 Physical:00B3F088

Linear:00410000 Physical:00704000

Linear:00520000 Physical:00809000

Linear:0063F000 Physical:00B95000

Linear:8233A000 Physical:0099D000

Linear:BFFAF09C Physical:004F609C

Read/Write USER

ReadOnly USER

Read/Write USER

Read/Write USER

ReadOnly USER

Read/Write USER

Read/Write USER

Read/Write USER

Read/Write USER

ReadOnly USER

Read/Write USER

Read/Write USER

Read/Write USER

Read/Write USER

ReadOnly USER

Read/Write USER

Read/Write USER

Read/Write USER

Read/Write USER

ReadOnly USER

Read/Write USER

ReadOnly USER

Read/Write USER

Read/Write USER

ReadOnly USER

Read/Write USER

Read/Write USER

Read/Write USER

Read/Write USER

ReadOnly USER

 Figure 5-2
 Combined output from two instances of PHYS.EXE running simultaneously.

Most environments don't contain 64KB of strings, but a rule's a rule, so
the next available address region should be 64KB after the start of the envi-
ronment (that is, at 0x530000.) Looking at the PHYS output, we see the
program's current stack page starts at 0x63F000. At first glance, this would
appear to shoot a hole in my bottom-up theory for address space allocation.
However, a bit more consideration shows that a bottom-up allocation
scheme could still be at work here. Remember, a stack grows from a higher
address to a lower one, so we have to subtract the length of the stack area
from the top of the stack to get the starting address of the stack region. If
the current program stack page is at 0x63F000, and if we haven't used too
much stack space, the end of the stack region should be at 0x640000. The
default program stack size for PHYS.EXE is 1MB, so subtracting 1MB from
0x640000 gives us 0x540000. This is 64KB higher than the 0x530000 my
bottom-up allocation theory would suggest. However, if I call VirtualQuery
for an address within the stack, the AllocationBase value returned by
VirtualQuery is 0x530000. It appears that when the loader calculates the
size needed for the program stack, it is rounding up by 64KB; therefore, a
range of size 1MB+64KB (rather than just 1MB) is allocated. From what I
can see, the bottom-up allocation theory still appears to hold.

After items directly related to program data areas, PHYS shows a memory
mapped file that it creates. The base address of this memory mapped file at
offset 0x8233A000 is well over 32MB into the shared ring 3 region between
2GB and 3GB. Because the 2GB to 3GB region is mapped by all processes,
any program can view (and potentially trash) any memory mapped files.
Yes, even memory mapped files that the process hasn't created a view of.
This is a potential source of bad pointer overwrites in Windows 95.
Windows NT has a more sophisticated memory manager and doesn't allow
this serious breach of address space privacy.

The remaining item in PHYS's output is the address of the VirtualQuery
routine in KERNEL32.DLL. The address (0xBFFAF09C) is pretty close to
the end of the shared 2GB to 3GB region. Why so high an address?
Windows 95 sets the base address of the system DLLs so that they'll be as
high up and as close together as possible. The goal is to keep as much free
space as possible in the 2GB to 3GB region for use by memory mapped files.
You can see this yourself by examining the base address of some system
DLLs such as KERNEL32.DLL, USER32.DLL, and GDI32.DLL.

F i g u r e

298

Examining shared memory with PHYS
To see what regions of memory that Windows 95 shares between processes,
we can run two copies of PHYS and compare their output. That's why
Figure 5-2 has output from two instances of PHYS. Let's compare the first
set of addresses from the first instance of PHYS to the addresses given by the
second instance. In the two sets of addresses, memory blocks that have the
same physical address are shared between the two instances. To make things
easier, I've broken the items into the shared and unshared lists in Figure 5-3.

In shared memory
KRNL386 DGROUP
First code page
Shared section
Resources
Memory mapped file
KERNEL32.DLL

In nonshared memory
First data page
Process heap
Environment area
Current stack page

Figure 5-3
Shared and nonshared regions of memory between two simultaneous instances of a

 32-bit process.

The shared list shouldn't be too surprising. KRNL386's DGROUP and
KERNEL32.DLL are both part of system DLLs, which you would certainly
hope to be shared. PHYS.EXE's code and resources are shared, which means
that Windows 95 is trying to be efficient about using memory. PHYS explicitly
created the two remaining shared items (the shared section and the memory
mapped file) to share memory with other instances. The items in the nonshared
list aren't too surprising either. All of the items are read/write program data. If
Windows 95 were to try and share these memory regions, running multiple
instances of PHYS would quickly cause a crash.

Examining copy on write with PHYS
The final demonstration in PHYS is the pseudo copy on write provided
by WriteProcessMemory. Look at the three lines for the first code page
(condensed in the following):

P H Y S

299

***** FIRST INSTANCE *****

First code page Linear:00481000

Now modifying the code page

First code page Linear:00401000

Physical:00BBE000

Physical:00CA1000

ReadOnly USER

Read/Write USER

***** SECONDARY INSTANCE *****

First code page Linear:00401000 Physical:00BBE000 ReadOnly USER

To make sense of the output, it's vital to remember the sequence of
events while the two copies of PHYS ran. The first and third address lines
are from two different processes, and happened before the code page was
written to. The physical address of the code page in both processes is
0x00BBE000, proving that the page is shared between the two instances.
The middle address line was output after the first instance wrote to the code
page with WriteProcessMemory. Notice how it now has a different physical
address? This shows that WriteProcessMemory changed the underlying
physical RAM page to a different page of memory. Although it's not shown
here, the physical address of the first code page remains at 0x00BBE000 in
the second instance.

Cool stuff in the PHYS program
(for advanced readers)
Lurking under the surface of the PHYS program is some low-level system
code that Microsoft would probably prefer that you didn't know about. In
a well-designed operating system, programs shouldn't be able to access the
mappings between physical memory and linear addresses. Normally, there's
no need for a program to determine these mappings, but this capability is at
the heart of the PHYS program's functionality. Because Windows 95 doesn't
provide a supported way to get at the page mappings, PHYS has to circum-
vent the operating system. Part of PHYS's sidestepping around the operating
system involves executing code at ring 0 (the highest privilege level of the
CPU). Application programs run at ring 3 (the least privileged level), and
are generally kept from getting up to ring 0, except in a precise manner con-
trolled by the operating system. Because the ring 0 code that PHYS needs to
execute isn't sanctioned by the operating system, I had to write a general-
purpose mechanism to call into ring 0 code from a ring 3 Win32 application.
You can easily modify the PHYS ring O-related code and drop it into your
own code.

(P a r t y

300

To map linear addresses to physical addresses, the GetPhysicalAddr-
FromLinear function needs to party with the page tables. (Party is apparently
an official Microsoft term for doing something you're not supposed to.) Page
tables are a complicated topic, and I discuss them briefly in the following sec-
tion, "Memory Contexts." If you don't know what page tables are, for now
just think of them as data structures that describe the mapping between
physical RAM addresses and linear addresses used by programs. The page
tables are maintained by the operating system and used by the CPU. Turning
to the trusty CPU manual, you'll find that the page directory is pointed to by
the CR3 register. Unfortunately, the instruction that retrieves the value of the
CR3 register is privileged. Attempting to call it from ring 3 results in the
CPU generating a general protection fault (exception 0Dh). When Windows
95 sees this fault, it analyzes the instruction and sees that it's a privileged
instruction. Rather than terminating the application, Windows 95 silently
returns control to the application without retrieving the CR3 register value.

What does this mean? Windows 95 is preventing a direct assault on the
page tables from application programs. Sure, I could write a VxD (which
runs at ring 0) to get the CR3 value, but I dislike lots of VxDs floating
around my system. Besides, even if I could get the CR3 value, there's still a
big problem. The CR3 register tells the physical address of the page tables.
There's no good way to convert a physical address into a linear address that
PHYS can use. Short of turning off paging while I use the physical address,
there's not much I can do with the CR3 value.

The next approach is to see whether Windows 95 maps the page tables
to a linear address that ring 3 code can see. As it turns out, Windows 95
does. The full 4MB range of page table entries is always mapped to linear
address 0xFF800000 (8MB before the end of linear memory.) With that
little bit of information, we would seem to be all set. Simply create a pointer
to the page tables and start reading whatever information you want.
Because ring 3 Win32 programs use 32-bit linear addresses, you should
even be able to read the page tables from any arbitrary Win32 program,
right? Not so fast! Although the Windows 95 coders seemingly made the
page tables very susceptible to overwrites from wild pointers, the tables are
not as unprotected as they might appear. Both the page directory and each
page table entry keep a bit (the user/supervisor bit) that indicates whether
the page should be accessible to code at any privilege level or just at ring 0.
The page directory entry that maps the 4MB region used by the page tables
has the user/supervisor bit cleared. This means that the entire 4MB memory
range used for page tables is off-limits to ring 3 code.

R I N G 0 . E X E . 301

Because the Windows 95 page tables are off-limits to ring 3 applications,
we have to execute our code at ring 0 to access the page table. For my May
1993 Microsoft Systems Journal article on ring privilege levels, I wrote
RING0.EXE. RING0 uses some holes in how Windows manages memory
to call 16-bit code at ring 0 from a ring 3 Windows program. The gist of
how RING0 works is with CPU call gates, which provide a method for less
privileged code to call into more privileged code (for instance, from ring 3
to ring 0). Because Windows won't hand you a call gate just for the asking,
RING0 goes into the LDT and creates a call gate itself. To get at the LDT,
RING0 uses the same INT 2Fh subfunction that KRNL386 calls to obtain a
selector pointing at the LDT. (Yes, even in Windows 95!)

After RING0 appeared, Alex Schmidt wrote an excellent article (in Dr.
Dobb's, March 1994) that extended the premise of RING0 to call 32-bit ring 0
code. Alex went so far as to write a method for dynamically loading VxDs
using these call gate tricks. (Luckily, Windows 95 now supports dynamically
loading VxDs without these horrible hacks that Alex and I use.) When I saw
that the PHYS program needed to call ring 0 code, I saw a chance to update
the original RING0 code to be usable from Win32 programs. Among other
things, this meant making a 32-bit call gate rather than a 16-bit call gate. The
results of the effort are in the PHYS program on this book's disk.

Using this generic mechanism of calling ring 0 code from a Win32 applica-
tion is a little tricky, but not overly so. The code in GetPhysicalAddress-
FromLinear in Figure 5-4 is a good example. First, you need to create a call
gate selector by calling the GetRing0Callgate function. This function is just
the front-end portion of a Windows 95 thunk down to 16-bit code. Down
in the 16-bit portion of GetRing0Callgate, the code creates the 32-bit call
gate that will be used later up in 32-bit land. There are two parameters to
GetRing0Callgate. The first is the 32-bit linear address of the code that you
want executed at ring 0. The second parameter is the number of DWORD
parameters to pass on the stack to the code that executes at ring 0.

Once you have the call gate selector, the next step is to store it into a
6-byte far pointer (a.k.a. an FWORD). Six bytes? Yes. In 32-bit mode, a
far call is made through a 16-bit selector combined with a 32-bit offset.
Because the offset is 32 bits, it's implicit that the selector will be for a 32-
bit segment, much like the flat selectors used by Win32 programs. Getting
back to the subject at hand, we need to make a far call using the call gate
selector in order for the CPU to switch to ring 0. In Figure 5-4, the code
stores the call gate selector into the high WORD of a 6-byte array (3 WORDs).
The offset portion of the pointer isn't important because the CPU ignores it

G e t R i n g 0 C a l l g a t e ,

302

and instead loads EIP from the offset in the call gate descriptor. After cre-
ating the pointer, the code uses inline assembler to call through an fword
pointer (because the C compiler knows only about 32-bit near calls). I
bracketed the call gate call with cli and sti to prevent interrupts in the ring
0 code. This eliminates the problem of switching to a safe stack once we're
in ring 0 code.

DWORD GetPhysicalAddrFromLinear(DWORD linear)

{

if (!callgatel)

callgatel = GetRing0Caltgate((DWORD)_GetPhysicalAddrFromLinear, 1

);

if (callgatel)

WORD myFwordPtr[3];

myFwordPtr[2] = callgatel;

__asm push [linear]

__asm cli

__asm call fword ptr

__asm sti

[myFwordPtr]

 Figure 5-4
PHYS. EXE calling through a callgate in 32-bit

Because of the contortions required to get to ring 0 from a Win32 program,
there are a few reasons why I wrote the ring 0 PAGETABL.ASM code in
assembler. First, the 16:32 far call to the ring 0 code caused the CPU to put
8 bytes on the stack, rather than the normal 4. Therefore, after setting up an
EBP frame, the first parameter is at EBP+0Ch rather than at EBP+08. More
importantly, when the code returns to ring 3, it needs to do a 16:32 RETF
rather than a 32-bit near return. Like a 16:32 far call, a 16:32 RETF is
something that the compiler doesn't know how to generate.

To sum up calling ring 0 code from a Win32 application, first write the
ring 0 code (most likely in assembler), taking into account the caveats just
mentioned. Next, in your program, call GetRing0Callgate, passing it the
name of your ring 0 routine and the number of arguments. Then create a
16:32 far pointer with the call gate, and call through the pointer. Finally,
when you no longer need to call the ring 0 routine, delete the call gate by
calling FreeRing0Callgate. It's not elegant, but it's better than being at the
mercy of the operating system.

D W O R D s .

303

MEMORY CONTEXTS (ADVANCED STUFF)

Although it's fine to talk abstractly about memory contexts, at some point
the rubber must meet the road. Windows 95 needs to maintain data struc-
tures that keep track of which pages of RAM should be mapped to linear
addresses in a given process. To understand memory contexts in Windows 95,
you need to understand the CPU's paging mechanism at a low level. I'll give
a warp speed overview of 80386 paging that omits some of the more advanced
details. If you're interested in a precise description of paging, refer to the Intel
manuals or other books on the 386 architecture.

The 80386 class of CPU uses two levels of lookup tables to translate a
linear address to a physical address that goes out on the address bus. The
first lookup table is the page directory. It is 4KB and can be viewed as an
array of 1024 DWORDs. Each DWORD in the page directory array con-
tains the physical address of another 4KB block known as as a page table.
Like the page directory, the page table is an array of 1024 DWORDs. Each
DWORD in the page table array contains the physical address of a 4KB
block of memory.

To use the page directory and page tables, the CPU breaks up a 32-bit
linear address into the three components shown in Figure 5-5. The CPU
uses the top 10 bits of the address as an index into the page directory. The
next lower 10 bits of the address are an index into a 4KB page table. Which
page table do these bits index? None other than the page table pointed to by
the page directory that the CPU found in the previous step. The address in
the page table is a physical address aligned on a 4KB boundary. The final
part of the calculation is to take the bottom 12 bits of the linear address and
use them as an offset into the memory pointed to by the page table.

In simpler terms, the top 10 bits of the address index into an array that
contains 1024 pointers to other arrays. The second 10 bits of the address
index this secondary array to get a physical address. The low 12 bits of the
linear address are added to this physical address to get the final physical
address.

How does the CPU know where to find the page directory? The page
directory is pointed at by the CR3 register, one of the special registers intro-
duced on the 80386. A brute force method of implementing memory con-
texts would be to simply create a page directory and 1024 associated page
tables for each processs, changing the CR3 register to point at each
process's page directory as needed.

4 G B
304

 Figure 5-5
 How the CPU converts a linear address to a physical address.

The problem with this approach is that to map the entire 4GB address
space would require 1024 page tables, each 4KB in size. This would take
up 4MB of memory per process, obviously not an effective use of RAM.
Therefore, to change memory contexts, Windows 95 sets up a single 4MB
region of memory, and modifies the entries within the page directory to
quickly change the page mappings.

If you're concerned that 4MB still sounds like a lot of memory to use just
for paging, don't be. At the page directory level, the operating system can tell
the CPU that an entire 4KB page table isn't present in memory, thereby elimi-
nating the need to map a 4KB block of physical memory to the page table.
Windows 95 doesn't use anywhere near 4MB of memory to manage paging.
The Windows 95 page directory and page tables are mapped into a 4MB

F F 8 0 0 0 0 0 h ,

305

region of memory that's 8MB from the end of the 32-bit address space. Put
another way, they don't use the last 4MB of the address space, but they do
use the 4MB before that. This range of memory starts at FF800000h, and
can be viewed in SoftIce/W. The page directory itself is stored in a page
within this 4MB range.

You can easily find the linear address of the page directory by dumping
out the CR3 register with the SoftIce/W CR command. On my machine,
CR3 contains 6EE000h. The CR3 register contains a physical address, so
you'll need to find the associated linear address if you want to view it. The
SoftIce/W PHYS command is handy for this purpose. The PHYS command
searches the page tables to find all linear addresses that correspond to a
given physical address. The command PHYS 6EE000 yields two linear
addresses. The second of these addresses is FFBFE000h, which is in the
4MB range of memory reserved for page tables.

Given that we can find the page directory in SoftIce/W, we should be
able to prove or disprove what I said about context switching by setting a
hardware write breakpoint in the page directory. If the breakpoint doesn't
go off, context switching is probably accomplished some other way. If it
does go off, it's a strong indicator that context switching is accomplished by
manipulating the page tables. Also, the location of the write should give us
a clue as to what's responsible for switching contexts.

Running this simple experiment in SoftIce/W confirms that the page
directory is being written to on a regular basis. To see this, back up a few
instructions from where the write occurs, as shown in the following
SoftIce/W code window output:

_ContextSwitch

0028:C0084856 MOV EAX,[C001084C]

0028:C000485B MOV EDX,[ESP+04]

0028:C000485F CMP EAX,EDX

0028:C0004861 JZ C0004893

0028:C0004863 PUSH ESI

0028:C0004864 PUSH EDI

0028:C0004865 MOV EDI,FFBFE000

0028:C000486A MOV ECX,[EDX+04]

0028:C000486D MOV ESI,[EDX]

0028:C800486F REPZ MOVSD

0028:C0004871 MOV ECX,[EAX+04]

0028:C0004874 SUB ECX,[EDX+04]

0028:C0004877 JBE C0004880

0028:C0004879 MOV EAX,[C00107E0]

0028:C000487E REPZ STOSD

0028:C0004880 XCHG EDX,[C001084C]

A d d r

306

0028:C0004886 MOV EAX,EDX

0028:C0004888 MOV ECX,[C0010CDC]

0028:C000488E MOV CR3,ECX

0028:C0004891 POP EDI

0028:C0004892 POP ESI

0028:C0004893 RET

The core of the _ContextSwitch routine is the REPZ MOVSD and
REPZ STOSD instructions. The three MOV instructions leading up to the
REPZ MOVSD are setting up things to copy a region of memory from one
location to another. The fact that the destination address is FFBFE000h
(which as we saw earlier is in the page directory) is a tip-off that the routine
is blasting a new set of page table mappings into the page directory. Each
DWORD it copies corresponds to one of the 1024 possible page tables.

It's also interesting that the number of DWORDs moved isn't a hard-
coded number. Rather, the code loads ECX with the number of DWORDs
(page table mappings) each time. The effect of the second REPZ STOSD isn't
as obvious. It's comparing how many DWORDs were just copied with the
number of DWORDs copied the previous time ContextSwitch was called. If
the number of DWORDs just copied is less than the previous time, there will
be extra page table entries for the previous memory context, which the new
context shouldn't be allowed to see. Therefore, if necessary, the REPZ STOSD
blast over these remaining page directory entries with a value indicating a
non-present page table.

SoftIce/W helpfully put the label _ContextSwitch at the top of the code list-
ing. It turns out that the _ContextSwitch routine is one of the VMM services in
the VMM VxD. Its address appears in the table of VMM services that are
pointed to by a field in VMM's Device Descriptor Block. So where did
SoftIce/W come up with this name? See the VMM.INC file from the
Windows 95 DDK. Each line that starts with VMM_Service is service routine
provided by the VMM VxD. Near the end of the list you'll find the routine
_ContextSwitch. Also of interest in the vicinity of _ContextSwitch in
VMM.INC are the _PageModify and _PageModifyPermissions functions.

Having found the _ContextSwitch routine in VMM, we can see that
Windows 95 must be keeping a set of page mappings for each memory context,
as well as a count of the number of pages. As luck would have it, we can
verify this with the SoftIce/W Addr command:

F R E E C E L L ,

307

In this list, the FREECELL, WINMINE, MMTASK, and HEAPWALK
programs are all Win 16 programs. Interestingly, even though Win 16 programs
can always see one another, Windows 95 treats them as separate processes
and memory contexts. However, this is academic because the code and data
segments in Win16 programs are always loaded in the shared memory areas
(0 - 4MB and above 2GB). Thus, Win16 programs can always see each other,
even though they technically have different address contexts.

All the remaining processes in the ADDR list are either 32-bit or unknown.
The column labeled "Tables" is misleading because it's the number of page
directory entries that make up the memory context. Each page directory maps
1024 page tables, each of which maps a 4K region. Thus, each page directory
entry corresponds to 4MB of linear address space. Notice how the 16-bit pro-
grams use only two page table entries. This is because 16-bit programs have no
need for memory in the Win32 per-process data area (0x00400000 -
0x7FFFFFFF). Win32 processes, on the other hand, need separate page map-
pings for that entire range, even if most of the pages are marked not-present.

The "handles" for each memory context looks suspiciously like a linear
address. Let's dump out memory at the location given by a handle value.
For this test, I arbitrarily chose the first context (handle COFE5D04 for
KERNEL32):

:dd c0fe5d04

0030:C0FE5D04 C103C6F8 00000004 C0FD4D1C C103C9B0 M

A D D R

308

Hmmm... We can easily match up the first and second DWORDs to the
SoftIce/W ADDR output. The first DWORD (C103C6F8) is what the ADDR
command reports for the PGTPTR (Page Table Pointer) value. The second
DWORD (00000004) matches up with the value in the Tables column. If you
go back and study the _ContextSwitch code, you can see that _ContextSwitch is
expecting a pointer to a data structure in the format we're seeing here: a pointer
to the page directory entries to copy, followed by the number of entries to copy.

The fourth DWORD found when dumping out our memory context
handle (in the preceding example, C103C9B0) can also be found easily in
the ADDR output. It happens to be the context handle of the next context
in the ADDR list. (Further exploration confirms that the contexts are kept
in a linked list.) What about the third DWORD (COFD4D1C)? It looks like
it could be a pointer, so let's dump it:

:dd c0fd4d1C

0030:C0FD4D1C 00000400 0007FFFF C0E0E310 C0E0E31C

Interesting! If you multiply the first and second DWORDs by 0x1000
(the size of a page), you get the values that the ADDR command reports as
the minimum and maximum address for the memory context. It looks like
we've found the core of Windows 95's context management.

If you're interested in digging deeper into Windows 95 memory contexts,
the DDK is indispensible. Unlike the SDK documentation, the DDK doesn't
try to hide much from the programmer. The DDK says that memory contexts
are created by _ContextCreate in VMM.VXD and destroyed by
_ContextDestroy. By writing VxD code, you can actually create, switch to,
and destroy your own memory contexts. Of course, hooking things up so
that the rest of Windows 95 knows what you're doing is a bit more work!

Some other cool VMM functions to check out are _CopyPageTable and
_PageAttach. _CopyPageTable lets you obtain the logical-to-physical mappings
for a memory context without going into the page tables as I did in the
PHYS program. The _PageAttach function documentation describes how
it's used to make memory in one context map to the same linear address in
another context. This is the mechanism by which Windows 95 shares code
and data between multiple copies of a process.

W i n 3 2 . T h e

309

THE WINDOWS 95 MEMORY APIs

The Windows 95 memory management functions are built in layers. At
each level (other than the bottom layer), the functions depend on the
functions in a lower layer. I've come to think of Windows 95's memory
management as consisting of four levels of code. At the lowest level, the
Virtual Machine Manager (VMM) provides functions for allocating
large regions of memory and manipulating pages within those regions.
Application programs don't call these APls directly. Rather, KERNEL32.DLL
uses the VMM memory functions on behalf of the higher-level memory
APl functions.

The next layer up contains the VirtualXXX functions provided by
KERNEL32: VirtualAlloc, VirtualFree, and VirtualProtect. These functions
are implemented in terms of the lower-level VMM functions. The VirtualXXX
functions provide applications with the capability to manage large regions
of memory on the page granular level.

Moving up another notch, we come to the KERNEL32 HeapXXX
functions. The HeapXXX functions include HeapAlloc, HeapFree, and
HeapCreate. They are roughly equivalent to the C runtime library mem-
ory functions (malloc, free, and so on). In fact, in the Windows NT SDK
runtime library DLL, malloc is just a wrapper around the HeapAlloc func-
tion.The topmost layer of memory management functions contains the
LocalXXX and GlobalXXX functions. Unlike in Winl6 programs, the
LocalXXX and GlobalXXX functions are essentially identical. For
instance, GlobalAlloc and LocalAlloc are the same function; KERNEL32
exports both functions using the same address in its code. The LocalXXX
and GlobalXXX functions are really just a layer atop the lower-level
HeapXXX functions. There's not much of a reason to keep GlobalAlloc
and LocalAlloc around in Win32. The memory functions no longer work
with selectors like the Win16 GlobalAlloc does. Nor is memory allocated
out of the application's data segment as it is with the Win16 LocalAlloc.
The main reason why the GlobalXXX and LocalXXX functions are in
Win32 is to ease existing Win16 applications to Win32.The rest of this
chapter is mostly an in-depth look at the Windows 95 Win32 memory
management APl, divided into four layers. With the exception of the low-
est level of functions in the VMM VxD, I'll give pseudocode for every
memory management function. In some cases, a Win32 function may not
be implemented in Windows 95 or may just map to another function. I'll
note these cases as well.

r e i n i t i a l i z e s

310

THE VMM FUNCTIONS

The lowest level memory management code in Windows 95 lies in VMM.VXD.
Within VMM are VxD functions that reserve, commit, decommit, and free
pages of the linear address space. VMM also contains VxD functions for
querying the status of pages, managing memory contexts, and installing
page fault handlers, and it provides heap functions for use by VxDs. Table
5-1 contains the DDK description for the majority of the VMM memory
management-related functions.

Table 5-1

DDK Descriptions of VMM Memory Management Functions

VMM Function Name Purpose

_PageReserve Reserves a range of linear addresses in the current context
without allocating any physical storage.

_PageFree Frees the specified memory block.

_PageCommit Commits physical pages to a range of linear addresses.

_PageDecommit Decommits physical storage from a specified range of
linear addresses.

_PageAttach Maps a range of linear pages in the current memory context to
 the same physical storage that those pages are mapped to in a
specified context (the source context).

_PageFlush Writes a range of committed pages to the backing file by calling
 the appropriate pager function. This service does not mark the
pages as not-present.

_PageModilyPermissions Modifies the permissions for pages in the specified range.

_PageQuery Retrieves information about a range of virtual pages. The
information is in the same format that VirtualQuery returns.

_PagerRegister Informs the system of a new type of pager.

_PagerQuery Retrieves information about a registered pager.

_ContextCreate Creates a new memory context. The tasking and scheduling
components of Windows 95 use this service to create a private
linear address space for a new W i n 3 2 application.

_ContextDestroy Destroys a memory context created by the _ContextCreate
service.

_ContextSwitch Changes the current memory context. The current memory context
 determines the mapping of pages in the private arena.

_GetCurrentContext Determines the current memory context.

_HeapAJJocate Allocates a block of memory from the system heap.

_HeapReAIIocate Reallocates or reinitializes a memory block in the system heap.

_HeapFree Frees an existing memory block in the system heap.

0 x 0 0 0 1 0 0 0 7

311

If you're familiar with VxDs, you're probably thinking that this table of
VMM memory-related functions is nice, but what does it have to do with
ring 3 application code? After all, regular ring 3 programs can't just call any
VxD function that happens to come along. I've shown Table 5-1 for a good
reason: Each of the functions is callable by ring 3 applications, just not
directly.

It turns out that the Windows 95 coders felt that this set of functions
was vital to KERNEL32.DLL. As such, they implemented Win32 VxD ser-
vices for each of the functions. Win32 VxD services are a new mechanism in
Windows 95 that allows ring 3 application code to call into VxDs using a
C-style calling convention (no registers need apply). They are not related to
Windows NT services, which are really just special-purpose processes.

Chapter 6 describes Windows 95 Win32 VxD services in more detail.
Here, it's sufficient to know that each Win32 VxD service provided by a
VxD such as VMM is identified by a unique number. The high WORD is
the VxD device ID, and the low WORD is an index into the device's Win32
VxD service table. Figure 5-6 shows the Win32 VxD service IDs for the
VMM functions listed in Table 5-1. Chapter 6 describes Win32 VxD services,
and has a more complete list of service IDs.

0x00010000
0x00010001
0x00010002
0x00010003
0x00010004
0x00010005
0x00010006

_PageReserve
_PageCommit
_PageDecommit
_PagerRegister
_PagerQuery
_HeapAllocate
_ContextCreate

0x00010007 _ContextDestroy
0x00010008 _PageAttach
0x00010009 _PageFlush
0x0001000A _PageFree
0x0001000B _ContextSwitch
0x0001000C _HeapReAllocate
0x0001000D _PageModifyPermissions
0x0001000E _PageQuery
0x0001000F _GetCurrentContext
0x00010010 _HeapFree

 Figure 5-6
VMM's Win32 VxD service IDs for calling ring 0 VMM functions.

B F F A O O B 7 :

312

To call one of these VMM functions through a Win32 service, KERNEL32
simply pushes the arguments on the stack, followed by the Win32 VxD ser-
vice number. It then calls the VxDCall function (referred to as VxDCall0 in
Unauthorized Windows 95). For example, the _PageReserve function in
VMM.VXD is prototyped like this:

ULONG EXTERNAL _PageReserve(ULONG page, ULONG npages, ULONG flags);

The following KERNEL32 loader code shows how _PageReserve would
be called from ring 3:

BFFAOOA6: PUSH 10 ;; PR STATIC from VMM.INC

BFFAOOA8: MOV EAX,DWORD PTR [EBP 000000F4]

BFFAOOAE: ADD EAX,OOOOOFFF

BFFAOOB3: SHR EAX,OC ;; Round up to 4K boundary

BFFAOOB6: PUSH EAX

BFFAOOB7: PUSH 80000400 ;; PR PRIVATE from VMM.INC

BFFAOOBC: PUSH 00010000 ;; VWIN32 call 00010000 : _PageReserve

BFFA00Cl: CALL VxDCallO

I haven't provided pseudocode for these VMM functions, as I did for
the higher-level memory management APIs. Application programs don't call
them directly. Instead, think of them as the fundamental building blocks
that the ring 3 memory management functions are built upon. I've listed
them here because some readers don't have the Windows 95 DDK, which
lists and describes these functions. I also didn't want to ignore them entirely,
and handwave over the VxD functions in the following sections.

THE WIN32 VIRTUAL FUNCTIONS

At the lowest level of memory management in the Win32 API, you'll find the
virtual functions (such as VirtualAlloc and VirtualProtect). The virtual func-
tions are for allocating and managing memory in large chunks. In Windows
95, the granularity of the virtual functions is 4KB, making them unsuitable
for replacing malloc and new in the C/C++ runtime library. For the most
part, the virtual functions are a thin layer over the VMM functions. You'll
see this momentarily when I present pseudocode for the virtual functions.

V i r t u a l A l l o c
313

The closest equivalent to the virtual functions in Win16 is the global heap
functions (for instance, GlobalAlloc). Both the Win16 global heap functions
and the Win32 virtual functions let you allocate vast regions of memory that
you manage however you want. Unlike the global heap functions, though, the
virtual functions don't use selectors to reference memory. Instead, the virtual
functions deal with memory in 4KB chunks and don't use selectors. Also, the
Win16 global heap functions let you allocate memory regions as small as
20h bytes.

VirtualAlloc
VirtualAlloc is several functions in one. At any given time, the VMM memory
manager considers each page of linear memory to be either free, reserved, or
committed. The VirtualAlloc function enables you to change the state of a
range of pages in one direction (from free toward committed). VirtualAlloc
can change pages from free to reserved, or from free to committed. In addition,
it can change previously reserved pages to the committed state.

The last state change - - from reserved to committed - - is particularly
valuable for implementing sparse memory and stacks. In this scenario, a
program first uses VirtualAlloc to reserve a block of memory sufficiently
large to meet any demands made on the program. The program then sets up
a structured exception handler that looks for page faults in the reserved mem-
ory range. As these page faults occur, the program calls VirtualAlloc a second
time. This time, the VirtualAlloc call changes the page that caused the fault
from the reserved state to the committed state. In this way, a program can
"allocate" huge amounts of memory without requiring physical RAM to
back it up at the time of the allocation. Only the memory pages that end up
being touched have physical RAM mapped to them.

Normally, VirtualAlloc is used by the operating system and programs to
allocate memory in the application's address space (that is, below 2GB).
However, VirtualAlloc has an undocumented flag (0x8000000) that allows
it to grab regions of memory above 2GB. Memory above 2GB is shared by
all applications, so this is an undocumented method of sharing memory
across processes. You can do the same thing with the documented memory
mapped file functions. In fact, from a cursory examination, it appears that
the address range used for memory mapped files is equivalent to what
VirtualAlloc returns with the 0x8000000 flag.

The Win32 VirtualAlloc rounds down to the nearest 64K boundary when
reserving memory. Indeed, memory blocks allocated from VirtualAlloc always

f d w A l l o c a t i o n T y p e

314

appear to be aligned. However, VirtualAlloc's code doesn't do this rounding.
Instead, the rounding occurs in the _PageReserve function used by VirtualAlloc.

VirtualAlloc begins by checking whether the requested memory range is too
large. Too large in this context means 2GB to 4MB. This is the size of the linear
address reserved for per-application memory. VirtualAlloc then calculates the
number of pages needed to span the memory region. When determining how
many pages are needed, VirtualAlloc rounds the starting address down to the
nearest 4KB and the ending address up to the next 4KB. Thus, if you request a
2-byte region that covers the last byte of one page and the first byte of the next,
VirtualAlloc will try to reserve two pages.

Next up for VirtualAlloc is to handle the various flags it was passed in
the fdwProtect parameter. First, the code looks for the undocumented
0x8000000 flag, which tells it to allocate the memory in the shared region
above 2GB. VirtualAlloc ignores the MEM_TOP DOWN flag, and turns it
off if passed. Afterward, the function tests to see whether you passed only
the MEM_COMMIT or MEM_RESERVED flag. Any bits besides those two
flags trigger a debug version warning. Finally, the code calls the mmPAGEToPC
function, which is a helper function (described in the next section) that converts
the fdwProtect parameter flags to the flags used by VMM's _PageReserve.

At this point in the code, the function splits into two pieces. One section
executes if the user doesn't care at which address the memory is reserved. The
other section handles the case where the user specified a specific address to
reserve or commit to. In either case, if memory is to be reserved, VirtualAlloc
calls Win32 service 00010000, which is a wrapper around the VMM
_PageReserve function. After reserving the memory (if necessary), and if the
caller specified the MEM_COMMIT flag, VirtualAlloc calls Win32 service
00010001, which is a wrapper around VMM's _PageCommit routine. If the
caller specified a specific address to commit memory to, VirtualAlloc checks to
make sure the address is below 0xC0000000, which is the start of VxD land.

Throughout all this code, VirtualAlloc conscientiously checks the return
values from _PageReserve and _PageCommit. If anything fails, the code emits
a debugging diagnostic, then falls through to a single exit point. This exit point
executes only in the failure case, and frees the pages previously reserved.

Pseudocode for VirtualAlloc
// Parameters: note from remo: sorry for the ugly places of the brackets:

// LPVOID lpvAddress PageGenie2000 lost most of them due to a bug and with

// DWORD cbSize Acrobat 3 you simply can't put them where you want.

// DWORD fdwAllocationType

// DWORD fdwProtect

" V i r t u a l A l l o c :

// Locals:

// DWORD address, startPage

// OWORD sizeInPages;

// DWORD pcFlags;

// BOOL fReserve;

// Returned from mmPAGEToPC

if (cbSize > 0x7F000000) { // 2GB - 4MB

_DebugOut("VirtualAlloc: dwSize too bigXnXr",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

return 0;
}

address = lpvAddress;

// Calculate how many pages will be spanned by this memory request.

sizeInPages = lpvAddress & OxOOOOOFFF;

sizeInPages += cbSize;

sizeInPages += OxOOOOOFFF;

sizeInPages = sizeInPages >> 12;

startPage = PR_PRIVATE; // 0x80000400h from VMM.INC This value can

// be either an actual page number or a PR_ equate.

if (fdwAllocationType & 0x8000000)

{

startPage = PR_SHARED;

fdwAllocationType &= ~0x8000000;}

// Undocumented shared mem flag.

// 0x80060000 in VMM.INC.

// Don't need this flag anymore.

fdwAllocationType &: ~MEM_TOP_DOWN; // Ignore the MEM_TOP_DOWN flag.

// You can specify MEM_COMMIT and/or MEM_RESERVE, but no other flags

// (the undocumented one above notwithstanding).

if ((fdwAllocationType != MEM_COMMIT)

&& (fdwAllocationType != MEM_RESERVE)

&& (fdwAllocationType != (MEM_RESERVE | MEM_COMMIT)))

{

_DebugOut("VirtualAlloc: bad flAllocationTypeNnNr"

SLE_WARNING + FStopOnRing3MemoryError)

InternalSetLastError(ERROR INVALID PARAMETER);

return 0; }

// Convert the fdwProtect flags into the PC

// VMM.VXD. Pseudocode follows this function.

pcFlags = mmPAGEToPC(fdwProtect);

flag values used by

316

if (pcFlags == -1)

return 0;

// Something wrong?

if (lpvAddress == 0) // Don't care where the memory is allocated.

{

// Reserve the memory block, startPage should be either

// PR_PRIVATE or PR_SHARED.

lpvAddress = VxDCall(_PageReserve, startPage, sizeInPages, pcFlags);

if (lpvAddress == -1) {

_DebugOut("VirtualAlloc: reserve failed\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

return 0; }

// If caller is just reserving, we're finished.

if (!(fdwAllocationType & MEM_COMMIT)

return lpvAddress;

// Caller has specified MEM_COMMIT.

if (VxDCall(_PageCommit,lpvAddress>>12

return lpvAddress; // Success!

sizeInPages, 1, 0, pcFlags))

// Oops. Something went wrong. Tell the user, then fall through

// to the code to free the pages.

_DebugOut("VirtualAlloc: commit failed\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

} else { // Caller specified a particular address to allocate/commit at.

if (address > OxBFFFFFFF) {

_DebugOut("VirtualAlloc: bad base address\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_ADDRESS);

return 0; }

fReserve = fdwAllocationType & MEM_RESERVE;

if (fReserve) {

// Call VMM _PageReserve to allocate the memory. Note that

// the caller-specified lpvAddress is rounded down to the

// nearest 4KB page. Note that it's not down to 64KB like

// the doc says. However, PageReserve still rounds it down.

lpvAddress=VxDCall(_PageReserve,address>>12, sizeInPages pcFlags)

if (lpvAddress == -1) {

_DebugOut("VirtualAlloc: reserve failed\n",

SLE_WARNING + FStopOnRing3MemoryError)

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

return 0; }

// Hmmm...It turns out that KERNEL32 will complain if you

// didn't specify an address aligned on a 64KB boundary!

if (lpvAddress != (address & 0xFFFF0000))

_DebugOut("VirtualAlloc: reserve in wrong place 1\n\r",

SLE_ERROR);

} if (!(fdwAllocationType & MEM_COMMIT)

return lpvAddress;

lpvAddress &= OxFFFFF000;

if (VxDCall(PageCommit,lpvAddress>>12, sizeInPages, 1 0, pcFlags)

return lpvAddress;

else
{

_DebugOut("VirtualAlloc: commit failed\n",

SLE_WARNING + FStopOnRing3MemoryError)

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

if (!fReserve)

return 0; }

// Unreserve the memory allocated earlier.

} VxDCall(PageFree, lpvAddress & OxFFFF0000, 0);

return_0:

lpvAddress = 0;

return_lpvAddress:

return lpvAddress;

318

mmPAGEToPC
The mmPageToPC function is used by VirtualAlloc, VirtualProtectEx, and,
by extension, VirtualProtect. The function converts the PAGE_ flags from
WINNNT. H (such as PAGE READONLY) into the equivalent PC_ flags.
The PC_ (Page Commit) flags are defined in VMM.INC, and are used with
VMM's _PageCommit function.

One of the flags used by Windows 95 indicates that a particular page is
a guard page. When the operating system receives a page fault when accessing
a guard pages, the operating system needs to commit additional memory at
the bottom of the stack to allow the stack to grow downward. However,
you apparently can't request a guard page with VirtualAlloc, because
mmPageToPC filters out the PAGEGUARD bit. The function also ignores
the PAGE_NOCACHE flag by turning it off. The bulk of mmPageToPC is
a simple mapping of the various PAGE_ flags. In all cases except for
PAGE_NOACCESS, the converted flags contain the PC_USER bit, which
means the page will be accessible by ring 3 (user level) code. If the page should
be writeable, the PC_WRITEABLE flag is OR'ed into the returned flags. Put
another way, with the exception of PAGE_NOACCESS, all the PAGE_ flags
map to PC_USER or PC_USERIPC_WRITEABLE. Any bits other than those
corresponding to the PAGE_ flags cause mmPageToPC to complain in the
debug version and cause the VirtualAlloc or VirtualProtect(Ex) call to fail.

Pseudocode for mmPAGEToPC

// Parameters:

// DWORD PAGE_flags;

// Locals:

// DWORD retValue;

if (PAGE_flags & PAGE_GUARD) {

_DebugOut("mmPAGEToPC: PAGE_GUARD flag not supported\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_CALL_NOT_IMPLEMENTED);

return -1; }

PAGE_flags &= ~PAGE_NOCACHE;

if (PAGE_flags == PAGE_NOACCESS)

return 0;

// Turn off the PAGE_NOCACHE flag.

(

if (PAGE _flags == PAGE _READONLY)

return PC_USER;

if (PAGE_flags = = PAGE_READWRITE)

return PC_USER | PC_WRITEABLE;

if (PAGE _flags == PAGE _EXECUTE)

return P C _ U S E R ;

if (PAGE _flags == PAGE_EXECUTE _READ)

return PC _USER;

if (PAGE_flags == PAGE_EXECUTE_READWRITE)

return PC_USER | PC _WRITEABLE;

if (PAGE flags == PAGE_EXECUTE_WRITECOPY)

return PC _USER;

DebugOut("mmPAGEToPC: extra fdwProtect flags\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR _INVALID _ PARAMETER);

return -1;

VirtualFree
VirtualFree performs the mirror image functionality of VirtualAlloc. (No
kidding. Really?) It can change pages from committed to reserved, commited
to free, or reserved to free. The first portion of VirtualAlloc checks to ensure
that it was passed valid address and size parameters. The address must be
below 3GB, and the size must be smaller than the value 2GB minus 4MB
(the size of the private application area).

You can pass either the MEM RELEASE or MEM_DECOMMIT flag
to VirtualFree, but not both. MEM_RELEASE causes VirtualFree to call
VMM's _PageFree function to decommit (if necessary) and unreserve the
entire range of pages. In this mode, you must pass 0 as the size, which causes
_PageFree to free the entire block allocated earlier through VirtualAlloc.
Passing MEM_DECOMMIT makes VirtualFree call VMM's _PageDecommit
to decommit the specified block of pages.

320

Pseudocode for VirtualFree

// Parameters:

// LPVOID lpvAddress

// DWORD cbSize

// DWORD fdwFreeType

// Locals:

// DWORD decommitPageSize

// Is range to free bigger than 2GB-4MB? Fail if so.

if (cbSize > Ox7FC00000) {

_DebugOut("VirtualFree: dwSize too big\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_ADDRESS);

return 0; }

// Are pages in VxD land? If so, something's wrong.

if (lpvAddress > OxBFFFFFFF) {

_DebugOut("VirtualFree: bad base address\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_ADDRESS);

return 0; }

i f (f d w F r e e T y p e == M E M _ R E L E A S E) {

if (cbSize != 0) {

_DebugOut("VirtualFree: dwSize must be 0 for MEM_RELEASE\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

return 0; }

// Unreserve the range of memory.

return VxDCall(_PageFree, lpvAddress, 0);

if (f d w F r e e T y p e == M E M _ D E C O M M I T) {

if (cbSize == 0) {

321

return 1;

_DebugOut("VirtualFree: dwSize == 0 not allowed with MEM_DECOMMIT\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

// Calculate how many pages will be affected.

} decommitPageSize = lpvAddress & OxOOOOSFFF;

decommitPageSize += cbSize;

decommitPageSize += 0x00000FFF;

decommitPageSize = decommitPageSize >> 12;

return VxDCall(_PageDecommit, lpvAddress >> 12, decommit?ageSize, 0);

} _DebugOut("VirtualFree: bad dwFreeType\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER)

return 0;

VirtualQueryEx
VirtualQueryEx is perhaps one of the niftiest functions in Windows 95. It
provides a wealth of information about the type of memory at a particular
address. For instance, given an arbitrary address in a process's address
space, VirtualQueryEx can tell you which EXE or DLL owns that memory.
VirtualQueryEx is at the heart of the Windows NT PWALK program,
which shows a memory layout map for a given process.

VirtualQueryEx wasn't originally slated to be in the Windows 95 Win32
subset. This came as a shock to developers of system-level programming tools
such as debuggers. Luckily, the Windows 95 developers took heart, perhaps in
part due to persistent whining by yours truly and others, and included
VirtualQueryEx in the Windows 95 APl.

VirtualQueryEx fills in a MEMORY_BASIC_INFORMATION structure
with information about a particular address. The structure looks like this:

PVOID BaseAddress;

PVOID AllocationBase;

DWORD AllocationProtect;

DWORD RegionSize;

DWORD State;

DWORD Protect

DWORD Type;

322

The fields of this structure are described in the Win32 documentation.
However, one field requires further explanation here. The AllocationBase
field sounds pretty dry, but it's usually the most important field of the lot.
Technically, it contains the base address of the original memory range allo-
cated by VirtualAlloc. More importantly, when the lpvAddress parameter to
VirtualQueryEx falls anywhere within an EXE or a DLL module, AllocationBase
is the base address of the EXE or DLL. That is, AllocationBase is the same
as the EXE or DLL's HMODULE/HINSTANCE. The PWALK program
from the NT SDK uses this bit of knowledge to walk the address space of a
process and label the various regions with the name of their owning EXE or
DLL. Debuggers can use this capability to figure out which EXE or DLL is
associated with a fault address.

VirtualQueryEx is essentially just a call to VWIN32.VXD's Win32 service
40h (VxDCall 0002A0040). This service in turn calls the VMM _PageQuery
function. In the DDK, _PageQuery is described as taking a parameter to a
MEMORY_BASIC_INFORMATION structure. Perhaps to prevent an inop-
portune thread switch from returning inconsistent values in the MEMORY_
BASIC_INFORMATION structure, VirtualQueryEx grabs the Krn32Mutex
upon entry and releases the mutex on exit. It does this with the undocumented
KERNEL32 _EnterSysLevel and _LeaveSysLevel functions.

The VWIN32 service 43h, which fills the MEMORY_BASIC_INFOR-
MATION structure, is more than just a wrapper around a _PageQuery call.
At this writing, I can't tell exactly what it's doing. However, it appears that
this wrapper code needs to know the address of the ring 0 stack for the cur-
rent thread in the process that's being queried. Therefore, before calling the
VWIN32 service, VirtualQueryEx uses the hProcess parameter to get a pointer
to the process structure (see the section titled "The Process Database" in
Chapter 6). From there, VirtualQueryEx extracts the thread database of the
process's current thread to pass to the VWIN32 service. Interestingly, in
several step-throughs of VWIN32 service 43h, I never found a case where
the code did anything other than call _pageQuery.

Pseudocode for VirtualQueryEx

// Parameters:

// HANDLE hProcess;

// LPCVOID lpvAddress; // Address of region.

// PMEMORY_BASIC_INFORMATION pmbiBuffer; // Address of information buffer.

// DWORD cbLength; // Size of buffer.

// Locals:

// DWORD pProcess: // Pointer to process structure.

// DWORD ptdb; // Per thread database.

// DWORD retValue:

323

// Function that emits function names and parameters to the KERNEL

// debugger if a KERNEL32 global variable is TRUE (off by default).

x_LogKernelFunction(number indicating the VirtualQueryEx function);

_EnterSysLevel(Krn32Mutex);

retValue = 0;

pProcess = x_GetObject(hProcess, 0x80000010, 0);

if (pProcess)

{

if (ppCurrentProcessId == pProcess)

ptdb = ppCurrentThreadId;

else

ptdb = SomeFunction(pProcess->threadList, 0);

if (ptdb && (lpvAddress < OxC0000000))

// Call into the VWIN32 VxD to do the real work.

// VWIN32 ultimately calls the VMM PageQuery function.

retValue = VxDCall(OxOO2A0040, ptdb->ringO hThread,

lpvAddress, pmbiBufer, cbLength);

x_UnuseObjectSafeWrapper(pProcess);

} _LeaveSysLevel(Krn32Mutex);

return retValue;

VirtualQuery and IVirtualQuery
The VirtualQuery function is just a special case of the VirtualQueryEx function.
VirtualQuery retrieves information about a specific addresss in the current
process context, whereas VirtualQueryEx works on any process.

The VirtualQuery code does almost nothing of value; it's just a parameter
validation layer. VirtualQuery's code merely checks that a pointer to a
buffer large enough to hold a MEMORY_BASIC_INFORMATION was
passed in. Assuming the test succeeds, VirtualQuery jumps to the start of
the IVirtualQuery code. VirtualQuery's validation of the parameters before

324

jumping to an internal routine that does the real work is typical of many
functions in the system DLLs (for instance, VirtualProtect, described later).

Other than some logging code in the debug version, IVirtualQuery is
nothing more than a call to VirtualQueryEx with the current process's
pseudohandle as the first parameter. Note that in Windows 95,
IVirtualQuery calls VirtualQueryEx. Contrast this to Win32s, where
VirtualQueryEx is just a call to VirtualQuery. The key difference is that all
processes share the same address space in Win32s, so VirtualQuery should
be equivalent to VirtualQueryEx.

Pseudocode for VirtualQuery

// Parameters:

// LPCVOID lpvAddress; // Address of region.

// PMEMORY_BASIC_INFORMATION pmbiBuffer; // Address of information buffer.

// DWORD cbLength; // Size of buffer.

Set up structured exception handler frame

// Make sure that the beginning and end of the MEMORY BASIC INFORMATION

// structure is acccessible.

*(PBYTE)pmbiBuffer += 0;

*(PBYTE)(pmbiBuffer+0x1B) += O;

Remove structured exception handler frame

goto IVirtualQuery;

Pseudocode for IVirtualQuery

// Parameters:

// LPCVOIO lpvAddress; // Address of region.

// PMEMORY_BASIC_INFORMATION pmbiBuffer; // Address of information buffer.

// DWORD cbLength; // Size of buffer.

// Function that emits function names and parameters to the KERNEL

// debugger if a KERNEL32 global variable is TRUE (off by default).

x_LogKernelFunction(number indicating the VirtualQuery function);

// Let VirtualQueryEx do the real work. Ox7FFFFFFF is the process

// pseudohandle that GetCurrentProcess() would return.

return VirtualQueryEx(0x7FFFFFFF, lpvAddress, pmbiBuffer, cbLength);

325

VirtualProtectEx
The VirtualProtectEx function changes the access protection of a committed
page or range of pages. It acts on any process for which you have a process
handle. The key difference between VirtualProtectEx and VirtualAlloc is
that VirtualProtectEx assumes you've already committed the pages that
you're changing access to. VirtualAlloc, on the other hand, allows you to
allocate, commit, and specify the access of a page or pages in one shot.

VirtualProtectEx's code is straightforward. Just as with the other virtual
functions I've described, it starts out with some error checking. The code
verifies that the range to be modified is less than 2GB minus 4MB, and that
the starting address is below 0xC0000000. The heart of VirtualProtectEx is
the call to VWIN32 service 0x3E This service ultimately calls VMM.VXD's
_PageModifyPermission service. As in VirtualQueryEx, the VWIN32 call
for some reason expects a pointer to the ring 0 stack of the current thread
for the specified process. There's a chunk of code for determining this ring 0
stack that's identical to what we found in VirtualQueryEx. Also as with
VirtualQueryEx, VirtualProtectEx grabs and holds on to the Krn32Mutex
during the VWIN32 call.

The VWIN32 service 0x3F call returns the previous state of the altered
pages when the call succeeds. However, the state is given in terms of VMM's
PC_ flags, rather than the PAGE_ style flags that the caller expects.
VirtualProtectEx therefore does a quick conversion. Finally, if the caller
specified a pointer to store the old page attributes, the code copies the
PAGE_ flags to that location.

Pseudocode for VirtualProtectEx

// Parameters:

// HANDLE hProcess:

// LPVOID lpvAddress;

// DWORD cbSize;

// DWORD fdwNewProtect;

// PDWORD pfdwOldProtect;

// Locals:

// DWORD pcPlags;

// DWORD pProcess, ptdb;

// DWORD oldProtectFlags

// Address of region of committed pages.

// Size of the region.

// Desired access protection.

// Address of variable to get old protection.

// Returned from mmPAGEToPC.

// Function that emits function names and parameters to the KERNEL

// debugger if a KERNEL32 global variable is TRUE (off by default).

x_LogKernelFunction(number indicating the VirtualProtectEx function);

c b S i z e

326

if (cbSize > 0x7FC00000)

{

_DebugOut("VirtualProtect: dwSize too big\n\r",

SLE _WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR _INVALID _ADDRESS);

return 0;

} if (lpvAddress > OxBFFFFFFF) {

_DebugOut("VirtualProtect: bad base address\n\r",

SLE _WARNING + FStopOnRingBMemoryError);

InternalSetLastError(ERROR _INVALID _ADDRESS);

return 0;

} pcFlags = mmPAGEtoPC(fdwNewProtect);

if (pcFlags == -1)

return O;

// Were invalid flags passed?

_EnterSysLevel(Krn32Mutex);

pProcess = x_GetObject(hProcess 0x80000010, 0);

if (!pProcess) {

LeaveSysLevel(Krn32Mutex)

_DebugOut("VirtualProtectEx Invalid process handle\n",

SLE WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

return 0;

} if (pProcess == ppCurrentProcessId)

ptdb = ppCurrentThreadId;

else

ptdb = SomeFunction(pProcess->threadList, 0);

if (ptdb && (lpvAddress < 0xC0000000))

{

// Call into the VWIN32 VxD to do the real work The VWIN32

// service calls VMM's PageModifyPermissions,

oldProtectFlags = VxDCall(OxOO2AOO3F, ptdb->ring0_hThread,

lpvAddress, cbSize, 0, pcFlags)

} else

{

 327

oldProtectFlags = some uninitialized local variable; // ???

} x_UnuseObjectSafeWrapper(pProcess);

_LeaveSysLevel(Krn32Mutex);

if (oldProtectFlags == -1) {

_LeaveSysLevel(Krn32Mutex);

_DebugOut("VirtualProtect: ModifyPagePermission failed\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

return O;

// This section is sort of a quick and-dirty "PCPAGETomm". It converts

// the PC flags returned by the VWIN32 service into MEM flags.

} if (oldProtectFlags & PC_USER) // PC_USER flag set

if (oldProtectFlags & PC_WRITEABLE)

oldProtectFlags = PAGE_READWRITE;

else

oldProtectFlags = PAGE_READONLY;

} else // PC_USER flag not set

oldProtectFlags = PAGE_NOACCESS;

// If the caller specified a pointer to a DWORD as the last param,

// fill it in with the old flag's value.

if (pfdwOldProtect)

*pfdwOldProtect = oldProtectFlags;

VirtualProtect and IVirtualProtect
VirtualProtect is a simplified version of VirtualProtectEx that works with only
the current process. The VirtualProtect code is just the validation layer, with
the real code in IVirtualProtect. The only validation performed in VirtualProtect
(as opposed to the checks in VirtualProtectEx) is to determine whether the
pfdwOldProtect pointer is either a valid DWORD pointer or 0.

The IVirtualProtect code is just a wrapper around a call to Virtual-
ProtectEx. The hProcess it passes is the pseudohandle that represents the
current process (0x7FFFFFFF). In the debug version, IVirtualProtect also
calls a function that logs certain API calls to the debug terminal.

328

Pseudocode for VirtualProtect

// Parameters:

// LPVOID lpvAddress: // Address of region of committed pages.

// DWORD cbSize; // Size of the region.

// DWORD fdwNewProtect; // Desired access protection,

// PDWORD pfdwOldProtect; // Address of variable to get old protection.

Set up structured exception handler frame

// If nonzero, verify that the pointer to DWORD where the previous

// protection flags will be stored is valid.

if (pfdwOldProcect)

EAX = *pfdwOldProtect;

Remove structured exception handler frame

goto IVirtualProtect;

Pseudocode for IVrtualProtect

// Parameters:

// LPVOID lpvAddress; // Address of region of committed pages.

// DWORD cbSize; // Size of the region.

// DWORD fdwNewProtect; // Desired access protection.

// PDWORD pfdwOldProtect; // Address of variable to get old protection

// Function that emits function names and parameters to the KERNEL

// debugger if a KERNEL32 global variable is TRUE (off by default).

x_LogKernelFunction(number indicating the VirtualProtect function

// Let VirtualProtectEx do the real work. Ox7FFFFFFF is the value that

// GetCurrentProcess() would return.

return VirtualProtectEx(Ox7FFFFFFF, lpvAddress, cbSize, fdwNewProtect,

pfdwOldProtect);

VirtualLock and VirtualUnlock
The VirtualLock and VirtualUnlock functions aren't implemented in
Windows 95. In Win32 platforms that do support them (that is, Windows
NT), they allow a process to pagelock a range of pages. The system guarantees

329

that physical RAM will always be assigned to those pages. This is useful
for situations where you can't afford a page fault (such as a time-critical
device driver).

In Windows 95, both VirtualLock and VirtualUnlock jump to the
CommonUnimpStub code. CommonUnimpStub is a short section of code
that all unimplemented Win32 APIs are supposed to go through. The effect
of CommonUnimpStub is twofold. First, in the debug version, KERNEL32
emits a diagnostic to the debug terminal. For instance:

*** Unimplemented Win32 API: VirtualLock

The second thing CommonUnimpStub does is to clear the appropriate
number of parameters off the stack. In the case of VirtualLock/Unlock, it's
8 bytes. Because CommonUnimpStub handles APIs that have various numbers
of parameters, the number of bytes to be popped off needs to be given to
CommonUnimpStub. This is accomplished through a value placed in the CL
register. The value placed in CL is a bitfield encoding, rather than the number
of bytes to pop off.

Pseudocode for VirtualLock

EAX = "VirtualLock"

CL = 12

JMP CommonUnimpStub

Pseudocode for VirtualUnlock

EAX = "VirtualUnlock"

CL = 12

JMP CommonUnimpStub

THE WIN32 HEAP FUNCTIONS

In Win32, Microsoft has finally put fairly decent heap management code in
the operating system. The DOS memory allocation scheme created blocks
that were often too big, and was too slow for general use as a heap. In Win16,
the GlobalAlloc function has a minimum allocation size of 20h bytes, and

330

runs out of the 8192 selectors too quickly. The Win16 LocalHeap functions
are somewhat suited for small allocations, but are limited to allocating at
most 64KB from a heap. In addition, there's no support for leak tracking or
memory overrun detection in these functions.

The Win32 heap functions are far superior to the allocation schemes of
prior Microsoft operating systems. In the retail build of Windows 95, the
overhead per-block is only 4 bytes, and you can create a heap up to a theo-
retical maximum size of 2GB minus 4MB. In addition, Windows 95's Win32
heaps maintain four separate free lists for blocks of varying sizes to prevent
excessive fragmentation. Yet another advantage of Windows 95's Win32
heaps occurs only in the debug version. In this mode, each allocated block is
tagged with additional information that enables you to easily find overruns,
memory leaks, and who allocated the memory. See the description for in-use
blocks in the debug version of Windows 95 later for more information on
how this additional information is used. Unfortunately, the only way to
enable heap block overrun checking is by using an obscure, Windows
95-only function called HeapSetFlags. At the time of this writing, this func-
tion doesn't appear in any Microsoft documentation that I've seen, but I've
been told it will be forthcoming. I described the HeapSetFlags function in my
October 1995 Microsoft System's Journal column. (I found out about the
HeapSetFlags function too late to include a description of it in this chapter.)

In addition to these nifty features, Windows 95 allows applications to
support multiple heaps in the same process. This makes it convenient to
group all your memory allocations of a certain type in one heap. (This is
often a good strategy for avoiding heap fragmentation.) Because Windows
95 supports multiple heaps, you always have to pass a heap handle to the
Win32 heap functions. The heap handle identifies which heap you want to
operate on. This heap handle turns out to be nothing more than the linear
address of the start of the specified heap.

Yet another nice feature of Windows 95's heaps is that they can grow
beyond their initial reserved size if you want them to. In this situation,
KERNEL32 allocates additional blocks of linear address space and associates
the block with the heap. I call these additional memory blocks subheaps.
Figure 5-7 shows an admittedly complex process heap setup that contains
multiple heaps, with some of the heaps using subheaps.

The list of Win32 heap functions include HeapAlloc, HeapFree, and
HeapReAlloc. You'd think that just these basic functions would be a natural
choice for compiler vendors who need to implement the malloc, realloc, free,
new, and delete functions. This isn't the case though. Both Borland and
Microsoft bypass the Win32 heap functions in their runtime libraries in

o £

331

favor of their own heap implementations. One notable exception is the Win32
SDK runtime library (CRTDLL.DLL). The malloc and free functions in
CRTDLL.DLL use HeapAlloc and HeapFree, respectively. Different versions
of CRTDLL ship with Windows NT and Windows 95.

Update: As this book was going to press, I found that Visual C++ 4.0
uses the Win 32 heap functions for its C/C++ runtime heap.

Heap created
with HeaoCreate

Another heap created
with HeapCreate

Default process heap
(GetProcessHeap)

 Figure 5-7
A process with multiple Win32 heaps.

In the layer above Windows 95's Win32 heap services, you'll find the
GlobalAlloc and LocalAlloc functions. GlobalAlloc and LocalAlloc are
implemented in terms of the HeapAlloc family of functions. LocalAlloc isn't
just a wrapper around HeapAlloc though. The reason for this is that Win16
programmers played some nasty games with LocalAlloc'ed blocks such that
the Windows 95 Win32 version of LocalAlloc needs to remain backward
compatible. I'll describe this in detail in the upcoming section, "The Win32
Local and Global Heap Functions." Moving downward to the layer below
Windows 95's Win32 heap function, the code directly uses the memory
management Win32 VxD services provided by VMM. However, I didn't see

332

anything in these functions that couldn't have been implemented with the
virtual functions I've already described. For this reason, I think of the
Win32 heap functions as being a layer atop the Win32 virtual memory
functions. Interestingly, the VMM _HeapXXX functions that provide heap
functionality to VxDs use the same format for the heap structures that
KERNEL32 uses for ring 3 processes.

The Win32 heap header and heap arenas
All the components of a Windows 95 heap are created from regions of
memory reserved through the VMM _PageReserve WIN32 VxD service. The
heap region is divided into two sections. At the start of the heap region is a
header. This header (which we'll get to shortly) contains the information for
managing the heap, such as the free lists, the size of the heap, and the heap
creation flags. Immediately following the heap header are the heap's mem-
ory blocks. Each heap block begins with an arena structure that contains
information about the block that follows. The start of each heap block is
contiguous with the end of the preceding block. The blocks extend to the
end of the allocated heap region, although not every page in the heap region
needs to be physically committed. Figure 5-8 shows a typical heap layout.

As mentioned, every heap block, be it free or in-use, starts with a standard
arena structure. The format of the arena differs between the debug and
release builds of Windows 95. In addition, additional fields are present if
the block is a free block. This leads to four variations in the arena layout:
retail free, retail in-use, debug free, and debug in-use. The first field, however,
is common to all arenas.

Every heap arena starts with a DWORD that contains the size of the
block. The size includes the space taken up by the arena itself. However,
you can't simply take the first DWORD in an arena and use it as the
block size. Why not? Because some of the bits in the arena's first DWORD
are used for items unrelated to the block's size. The high byte of this
DWORD is always 0xA0. The meaning of 0xA0 isn't clear. My guess is
that it's a bit pattern that allows KERNEL32 to tell whether an arena has
been overwritten. The other bits not used for holding the block size come
about because the size of all heap blocks is always a multiple of 4 bytes.
This frees up the bottom 2 bits (values 1 and 2) for use as flags. The
meaning of these flags are:

D W O R D

333

1 - - The block is free. A 0 value for this bit indicates that the block is allocated.
2 - - The block preceding this block is free. This bit should end up being set

only in allocated blocks. When the current block is freed, it can be
coalesced with the preceding free block. If this bit isn't set, the preceding
block isn't free, so there's no need to attempt to coalesce the blocks.

Taking all these bits into consideration, it's easy to figure out the size of a
heap block. Simply do a bitwise AND of the arena's first DWORD with the
value 0x5FFFFFFC. This turns off all the bits in the DWORD not used for
the size. An easier way to think of this in C notation is to do a logical AND
of the first arena DWORD with ~0xA0000003. To figure out how much
memory in the block is available for use by the calling program, simply
subtract the size of the arena from the size of the block.

Heap
Header

Figure 5-8
I A typical Win32 heap.

334

In-Use Blocks in the Retail Version of Windows 95

In-use blocks in the retail build of Windows 95 have the simplest format of
four arena types:

DWORD size // OR'ed with 0xA0000000 or 0xA0000002.

In other words, the arena is nothing more than the initial size/flags
DWORD.

Free Blocks in the Retail Version of Windows 95

Free blocks in the retail build of Windows 95 start out the same as the
in-use arena, but they add previous and next fields:

DWORD size // OR'ed with 0xA0000001.

DWORO prey // Pointer to the previous heap arena.

DWORD next // Pointer to the next heap arena.

In-Use Blocks in the Debug Version of Windows 95

An in-use heap arena starts out like the retail version, but then adds
additional fields:

DWORD size

DWORD allocating EIP

WORD thread number

WORD signature

DWORD checksum

// OR'ed with 0xA0000000 or 0xA0000002.

// The EIP value that called HeapAlloc/HeapReAlloc.

// The thread number (not ID) that allocated the block.

// 0x4842 == "BH"

// A checksum of the previous three DWORDSs,

The additional fields aid in tracking down memory overrun and heap
corruption bugs. The allocating EIP field stores the program address where
the block was allocated. This can be used to pinpoint where a block of code
that somehow wasn't free was allocated. The thread number field serves a
similar purpose, but identifies which thread allocated it. Note that the thread
number isn't the same as a thread ID (which is what GetCurrentThreadId
returns). Rather, the thread number is an index into the current list of threads.
You can see the thread numbers with the SoftIce/W THREAD command.
The signature WORD should always be 0x4842 for an in-use block. If it's
not, the arena has probably been corrupted.

The final field of the arena provides a more powerful heap corruption
fighter. This field contains a checksum of the preceding three DWORDs in the

335

arena. The algorithm is detailed in the description for ChecksumHeapBlock
later in the chapter. Although the checksums are alway maintained, the debug
KERNEL32 doesn't automatically verify the checksum - - you have to tell it
to do so. This feature, called "paranoid heap corruption checking," is toggled
on and off by the HeapSet Flags function. In a simple test I wrote, I received
the following output after enavling heap checking:

hpWalk: bad busy block checksum trashed addr between 560014 and 560820

heap handle=460000

Free Blocks in the Debug Version of Windows 95

The Windows 95 free block arenas are a hybrid of the free retail arena and
the in-use debug arena. Like the free retail arena, there are previous and
next fields. From the debug in-use arena, there's the thread number, signa-
ture, and checksum fields. The signature field changes slightly (from 0x4842
to 0x4846), as does the checksum algorithm. There's one DWORD more
than the in-use version, so when KERNEL32 checksums the arena, it uses
the first four (rather than three) DWORDs.

DWORD size

DWORD prey

WORD thread number

WORD signature

DWORD next

DWORD checksum

// DR'ed with 0xA0000000 or 0xA0000002.

// Pointer to the previous heap arena.

// The thread number (OxFEFE for free blocks).

// 0x4846 FH"

// Pointer to the next heap arena.

// A checksum of the previous four DWORDS.

The Windows 95 heap header
At the start of every heap is a heap header structure. A heap handle such as
the one you get back from GetProcessHeap is nothing more than a pointer
to the heap header. The primary job of the HeapCreate function (besides
reserving memory for the heap) is to initialize the structure. The heap
header structure varies in size (but not much in format) in the retail and
debug versions of Windows 95. Immediately following the heap header is the
first heap block arena. Arena blocks are described in the preceding section.

336

The Heap Header in the Retail Version of Windows 95

00h WORD dwSize
The total size of memory reserved for this heap. The default process heap
created for every process has 1MB + 4KB in this field.
04h DWORD nextBlock
If HeapCreate is called with the dwMaximum size parameter set to 0, the
heap can grow beyond the allocation size specified in the preceding dwSize
field. In this case, if the caller requests a block that's too big for the current
heap region, KERNEL32 reserves additional regions of memory and sets up
subheaps. The subheaps use heap arena blocks, but don't have an entire
heap header structure. To keep track of these subheaps, KERNEL32 stores
them in a linked list. The head of the list is kept in this field (offset 4) in the
primary heap structure. A pointer to the next reserved region is kept at off-
set 4 in each subheap. When the heap is destroyed, KERNEL32 walks the
list of subheaps and frees their pages back to the system.
08h FREE_LIST_HEADER_RETAIL freeListArray[4]
To minimize fragmentation and speed up searching for free blocks, each heap
header maintains four free lists. There are free lists for blocks less than 0x20
bytes, less than 0x80 bytes, less than 200h bytes, and less than 0xFFFFFFFE
When searching for a new memory block, KERNEL32 begins its search at
the start of the best fitting free list. For example, when searching for a block
0x18 in size, KERNEL32 searches the 0x20 bytes and under list first. While
looking for a 0x100h byte block, it searches the 0x200h byte free list first.

The four free lists are represented as an array of four simple structures.
Each structure has the following format:

DWORD

free arena

maxBlockSize for this list. Contains 0x20, 0x80,
0x200 or 0xFFFFFFFE
This arena is for all intents a regular retail free
arena, except that the block size is given as 0 bytes
(after removing the 0xA0000001 bits). The prev
pointer in this arena points to the first free arena.
Because the block size is 0 for this arena, the
searching algorithm can be very simple yet never
select this arena for allocation.

337

48h PVOID nextHeap
Offset 48h in a retail Windows 95 heap is a pointer to the next heap created
with HeapCreate for this process. Note that the next heap is different than
the next subheap given in the field at offset 4. The region pointed to by a
nonzero pointer in this field (offset 0x48) is a full-fledged heap. This field
will be 0 unless the process calls HeapCreate.
4Cb HCRITICAL_SECTION bCriticalSection
This field holds the handle of the critical section used by the heap functions
to synchronize access to the heap. Note that this field is not a CRITICAL_
SECTION itself (see the next field). Rather, it's a pointer to an internal data
structure that KERNEL32 uses for critical sections. The handle value seems
to always match the DWORD at offset 0Ch in the field described next.
50h CRITICAL_SECTION criticalSection
This portion of a heap header contains a CRITICAL_SECTION structure
(defined in WINBASE.H). When entering code that needs access synchro-
nization, KERNEL32 passes a pointer to this region to EnterCriticalSection.
The structure members of this field are initialized by a call to InitializeCritical-
Section during the program startup phase. If you don't need synchronization
(for instance, you have only one thread), you can bypass it by passing the
HEAP_NO_SERIALIZE flags to HeapAlloc, or HeapCreate, or both.
68h DWORD unknownl[2]
The meaning of this field is unknown.

70h BYTE flags
This BYTE contains the HEAP_ fags that can be passed to HeapCreate:

HEAP _NO_SERIALIZE

HEAP_GRONABLE

HEAP _GENERATE_EXCEPTIONS

HEAP _ZERO_MEMORY

HEAP _REALLOC _IN_PLACE _ONLY

HEAP _TAIL_CHECKING _ENABLED

HEAP _FREECHECKING _ENABLED

HEAP_DISABLE _COALESCE_ON _FREE

The Windows 95 documentation mentions only HEAP_NO_SERIALIZE
and HEAP_GENERATE_EXCEPTIONS.

7lb BYTE unknown2

The meaning of this byte is unknown. It may be reserved in case additional
HEAP_ flags are needed.
72h WORD signature
This WORD contains the signature used to identify a heap. In a valid
Windows 95 heap, it contains 0x4948 ("HI").

The Heap Header in the Debug Version of Windows 95s

The debug version of a Win32 heap header is fairly close to the retail version.
However, the embedded free arena structures are bigger, and there are a few
additional fields. Following is the layout of the debug heap header.
00h DWORD dwSize
See the description in the preceding section.
04h DWORD nextBlock
See the description in the preceding section.
08h FREE_LISTHEADER_DEBUG freeListArray[4]
The array of four free list headers is the same as the retail version, except
that the free arena portion is a debug arena, rather than a retail arena. The
structure layout is as follows:

DWORD

free arena

maxBlockSize for this list. Contains 0x20, 0x80,
0x200 or 0xFFFFFFFF.
This arena is for all intents a regular debug free
arena, except the block size is given as 0 bytes (after
removing the 0xA0000001 flags).

68h PVOID nextHeap
See the description in the preceding section.
6Ch HCRITICAL_SECTION hCriticalSection
See the description in the preceding section.
70h CRITICAL_SECTION criticalSection
See the description in the preceding section.

339

88h DWORD unknown1[14]
See the description in the preceding section.
C0h DWORD creating EIP
This DWORD holds the EIP of the routine that called the internal HPInit
function to initialize the heap. It appears to always be set to the location
where HeapCreate calls HPInit.
C4h DWORD checksum
This field holds the result of XOR'ing the first DWORD of the heap header
(the size field) with 0x17761965. Presumably, this helps KERNEL32 detect
overwrites in the heap header.
C8h WORD creating thread number
The thread number (not the thread ID) of the thread that created this heap.
See the description of debug block arenas in the preceding section for a
description of thread numbers.
CAb WORD unknown2
This WORD appears to be unused.
CCh BYTE flags (HEAP_xxx flags)
See the description in the preceding section.
CDh BYTE unknown3
See the description in the preceding section.
CEh WORD signature (0x4948)
See the description in the preceding section.

The WALKHEAP program
To show the Windows 95 Win32 heap headers and arenas in action, I wrote
the WALKHEAP program. Source code for WALKHEAP is on the accompany-
ing disk. WALKHEAP consists of two program files: WALKHEAP. C, which
contains code to walk and display a Win32 heap, and HEAPW32.H, which
contains structure definitions for the heap headers and arenas. The
WALKHEAP program needs to run under the debug version of Windows 95.
A similar program on the disk (WALKHP2.EXE) walks the Win32 heaps of
the retail build. Yes, I could have walked the heap using the 32-bit TOOL-
HELP32 functions, but that wouldn't have been as much fun. Nor would it

340

have been as informative. The TOOLHELP32 functions tend to hide some
of the interesting details.

When run without any command line parameters, WALKHEAP walks and
displays all its heaps. To make things interesting, WALKHEAP first makes a
series of allocations and deletions using the default heap, and also creates a
second heap. WALKHEAP can iterate through all the process's Win32 heaps
by using the Next Heap field in the header.

If you know the address of a specific heap you want to walk (which
must be accessible by the WALKHEAP process), you can pass the address
(a.k.a. the handle) of the heap on the WALKHEAP command line. This
number should be specified in hex, without any 0x's or h's. For example, I
can walk USER's 32-bit window heap like this:

WALKHEAP 81CEC000 (The address will probably be different on your machine.)

Figure 5-9 shows the output from running WALKHEAP without any
parameters. The numbers in the Block column are the linear address of the
block. Note that the first four blocks shown in a heap are the free list head-
ers and have a size of 0. Also, note that you can walk the free list by follow-
ing the prev pointers, starting with one of the first four blocks (the free list
headers).

Heap at 00B60000

size:

next block:

Free lists:

Head:OOB6000C

Head:OOB60024

Head:OOB6003C

Head:OOB60054

Next heap:

CritSection:

Creating EIP:

checksum:

Creating Thread:

Flags:

Signature:

size: 20

size: 80

size: 200

size: FFFFFFFF

00100000

00000000

00410000

1066F7C6

BFF8BAE0

17661965

0040

05

HEAP_NO_SERIALIZE

HEAP_GENERATE_EXCEPTIONS

4948

Heap Blocks

Block Stat Size Checksum Thrd

0006000C free 00000000 FE3009F6 1066 prev:00660024 next:OOB600DO

00060024 free 00000000 FF306920 707F prev:00B6003C next:00B6000C

0006003C free 00000000 FF30F214 EB00 prev:00B60054 next:00B60024

00B60054 free 00000000 FF438FBB 66F7 prev:00C5F014 next:00B6003C

000600D0 free 000FEF34 FF4CF8B6 FEFE prev:00B6000C next:OOC5FO14

00C5F004 used 00000010 FF341977 0000 EIP: 00000000

00C5F014 free 00000FDC FF30E8C2 FEFE prev:OOB600DO next:00B60054

341

Heap at 00410000

size:

next block:

Free lists:

Head:0041000C size: 20

Head:C0410024 size: 80

Head:0041003C size: 200

Head:00410054 size: FFFFFFFF

Next heap:

CritSection:

Creating EIP:

checksum:

Creating Thread:

Flags:

Signature:

00101000

00760000

00000000

8153C074

BFF8BAEO

17660965

0040

40

HEAP _FREE_CHECKING _ENABLED

4948

Heap Blocks

Block Stat Size Checksum Thrd

0041000C free 00000000 FF201A5C 0000 prev:0051002C next:00410314

00410024 free 00000000 FF3019DC 0000 prev:OO5100D8 next:00510060

0041003C free 00000000 FF301A8C 0000 prev:OO5102A4 next:0051014C

00410054 free 00000000 FF30156C 0000 prev:00510850 next:00510458

004100D0 used 00000244 FF740EBC 0040 EIP: O04015DD

00410314 free 000FFCFO FFD01B4E FEFE prev:O041000C next:OOAEO028

00510004 used 00000010 FF341977 0000 EIP: 00000000

00510014 used 00000018 FF740D41 0040 EIP: 0040147C

0051002C free 00000018 FF2OETEE FEFE prev:O0510060 next:O041000C

00510044 used 0000001C FF740DA5 0040 EIP: 0040149E

00510060 free 00000020 FF20E7B2 FEFE prev:O0410024 next:0051002C

00510080 used 00000024 FF740DC3 0040 EIP: 004014C0

005100A4 used 00000034 FF740DCO 0040 EIP: 004014D1

342

005100D8 free 00000038 FF20E6CA FEFE prev:0051014C next:00410024

00510110 used 0000003C FF740DE8 0040 EIP: 004014F3

0051014C free 00000040 FF20E73E FEFE prev:0041003C next:OO5100D8

0051018C used 00000044 FF740C76 0040 EIP: 00401515

005101D0 used 000000D4 FF740CD8 0040 EIP: 00401529

005102A4 free 000000D8 FF20E326 FEFE prev:•0510458 next:0041003C

0051037C used 000000DC FF740CAA 0040 EIP: 00401551

00510458 free 000000E0 FF20E58A FEFE prev:00410054 next:OO5102A4

00510538 used 000000E4 FF740CBA 0040 EIP: 00401579

0051061C used 00000234 FF740EgC 0040 EIP: 0840158D

00510850 free 00000238 FF20E932 FEFE prev:00510CC4 next:00410054

00510A88 used 0000023C FF740EAE 0040 EIP: 004015B5

00510CC4 free 0000032C FFD41CF2 FEFE prev:OOB5F014 next:00510850

 Figure 5-9
Output from running the WALKHEAP program.

Now that we've seen the layout of the Win32 heap headers and block
arenas, it's time to dive into some pseudocode. In the course of this discus-
sion, we'll see how KERNEL32 creates, manages, and destroys heaps. This
pseudocode is for the debug version of Windows 95. The retail build doesn't
have nearly as much debugging and sanity checking code, and so it is much
more efficient.

GetProcessHeap
The first thing you need to use a Win32 heap function is a heap handle. Most
programs use the default process heap created by KERNEL32 when the appli-
cation is created. You retrieve a handle to this heap by calling GetProcessHeap.
The GetProcessHeap function is simple. The function retrieves a KERNEL32
global variable that points to the process database for the current process (see
Chapter 6 for details). Inside a process database is the handle (that is, the
starting address) of the process's default Win32 heap.

Pseudocode for GetProcessHeap
return ppCurrentProcessId->lpProcessHeap;

343

HeapAlloc and IHeapAlloc
HeapAlloc, as its name implies, is the method by which you allocate a block of
memory from a specified heap. The HeapAlloc code is part of the validation
layer in KERNEL32.DLL. The real work of allocating the block is handled by
IHeapAlloc and HPAlloc (described next). The only validity testing that
HeapAlloc does is to check whether the hHeap handle points to a region of
memory large enough to hold a heap header. Although the code could verify
additional fields, including the signature and checksum fields, HeapAlloc
strangely ignores these fields. Assuming the hHeap handle passes the (less than
rigorous) test, the function jumps to IHeapAlloc.

Pseudocode for HeapAlloc

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// DWORD dwBytes

Set up structured exception handler frame

// Make sure that the hHeap is valid. A heap handle is just a

// pointer to the beginning of the heap area.

AL = *(PBYTE)hHeap;

AL = *(PBYTE)(hHeap + OxD=);

Remove structured exception handler frame

goto IHeapAlloc;

IHeapAlloc is just a wrapper around the HPAIIoc function (that is, the
"real" HeapAlloc). Before calling HPAiloc, though, IHeapAlloc does some
manipulation of the dwFlags parameter before passing them on to HPAlloc.
The only flags that survive this munging are the HEAP_ZERO_MEMORY
and the HEAP_GENERATE_EXCEPTIONS flags. The HEAP_ZERO_
MEMORY flag (if it survives) ends up 3 bits higher than it started out.

Pseudocode for IHeapAlloc

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// DWORD dwBytes

// Locals:

// DWORD modifiedFlags;

344

// Apparently some apps need a little extra room...

if (0x00400000 bit set in TDB AppCompatibility flags

if (hHeap == ppCurrentProcessId >DefaultHeap)

dwBytes += 0x10;

modifiedFlags = dwFlags;

modifiedFlags &= HEAP_ZERO_MEMORY;

dwFlags &= HEAP_GENERATE_EXCEPTIONS;

modifiedFlags << 3;

modifiedFlags |= dwFlags;

return HPAlloc(hHeap, dwBytes, modifiedFlags);

NPAlloc
HPAlloc is the real HeapAlloc function. The code starts out by checking
whether the size of the requested block is too big. In this case, too big
means 0x0FFFFF98 bytes (approximately 256MB). Next, HPAlloc calls
hpTakeSem, which causes the critical section in the heap header to be
acquired. From this point, no other threads in the process can proceed past
this spot in HPAlloc until the original thread returns from HPAlloc. In the
debug build, hpTakeSem also optionally verifies that the heap isn't corrupted.
Among other things, hpTakeSem can walk the heap and verify the arena
checksums as well as verify that the heap signature (0x4948) is still there.
You toggle this behavior with the HeapSetFlags function, which as ! men-
tioned at the start of the "Win32 Heap Functions" section, was put into
Windows 95 too late in the game to include in this book.

HPAlloc next takes the requested block size parameter and rounds it up
to a multiple of 4 (after also taking into account the required arena size).
The minimum block size is 0x18 bytes, which translates to 8 bytes for the end
user after you subtract the arena. With the block size in hand, HPAlloc then
determines which of the four size-based free lists it should search. After find-
ing the correct list, HPAlloc walks through the list (using the prev pointers
in the free blocks) to find the first block that's of sufficient size.

At this point, let's assume that HPAlloc finds a free block of sufficient
size. HPAlloc then calls hpCarve (which I'll show pseudocode for next). The
hpCarve function examines a block to see whether it's just big enough or
whether it needs to be split into two pieces. If the block needs to be split,
hpCarve handles all the work of creating new arenas, setting up previous

345

and next pointers, and so forth. One of the blocks hpCarve makes is just big
enough to satisfy the needs of HPAlloc. The other block is whatever's left
over, and goes into the free list.

After hpCarve returns, HPAlloc turns to the work of initializing the arena
fields in the new block. This is a simple series of assignment statements, except
for the call to get the EIP of HPAlloc's caller and the call to checksum the first
three fields of the arena. Finally, HPAlloc releases the heap's critical section and
returns a pointer to the first byte after the arena.

Now let's go back and see what happens when HPAlloc doesn't find a free
block in the free list. If the heap is allowed to grow (that is, 0 was specified as
the dwMaximumSize parameter when the heap was created), HPAlloc needs
to create a subheap. As mentioned, a subheap is a region of memory separate
from the original heap that contains additional heap blocks. KERNEL32
keeps track of all these subheaps by keeping them in a linked list. If a subheap
needs to be created, KERNEL32 determines its initial size (typically 4MB),
and calls VMM to reserve a range of pages. Next, HPAIloc calls HPInit to
initialize the heap header of the new subheap. We'll look at HPInit in detail
when I describe HeapCreate later. After initializing the subheap, HPAlloc
inserts it into the linked list of subheaps. Finally, HPAlloc jumps back to the
start of the code that searches the free lists. Presumably, this time a block of
sufficient size will be found.

Pseudocode for HPAlloc

// Parameters:

// HANDLE hHeap

// DWORD dwBytes

// DWORD dwFlags

// Locals:

// DWORD newSubHeap

// DWORD temp;

// HEAP ARENA * pArena

// DWORD carvedSize:
//

//

// ebp+Ox08

// ebp+OxOC

// ebp+0x10

DWORD commitSizeBytes, commitSizePages;

FREE LIST HEADER *pFreeList;

if (dwBytes > 0x0FFFFF98) {

_DebugOut("HPAlloc: request too big\n\r",

SLE_WARNING + FStopOnRing3MemoryError

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

return 0;

346

// Grab the heap semaphore. This allows only one thread at a time to

// be in the heap code so that the heap doesn't get corrupted,

// In the debug version, with paranoid heap checking enabled, this is

// where the heap would be walked and checked for corruption.

} if (!hpTakeSem(hHeap, 0, dwFlags))

return 0;

temp = dwBytes + 13;

temp &= OxFFFFFFFC

if (temp <= 0x18)

dwBytes = Ox18

// Round up to the next multiple of 4.

// Minimum allocation size is Ox18 bytes

// (or 8 bytes after subtracting the arena).

HPAlloc_find_free_block:

// Figure out which of the four free lists should be searched

// (based on the size of the requested block).

pFreeList = hHeap->freeListArray; // Point at first free list.

while (dwBytes > pFreeList->dwMaxBlockSize)

pFreeList++; // Advance to next free list.

// Walk the free list looking For a block that's big enough. If one

// is found, jump to HPAlloc_split_block. Otherwise, fall through.

// Are there entries in the free list?

if (pFreeList->arena.prev != &hHeap.freeListArray[O].freeArena)

{

pArena = pFreeList->arena.prev; // Start at head of free list

// Scan through the list, looking for a block that's big enough.

// When we find one, go split it.

while (pArena != &hHeap.freeListArray[O].freeArena) {

if ((pArena->size & OxOFFFFFFC) < dwBytes)

goto HPAlloc_split_block;

// Not big enough. Go on to next (previous) block in free list.

pArena = pArena->prev; }

// If we get here, there's not enough room to satisfy the request.

// If the HEAP FREE CHECKING ENABLED flag wasn't specified when the

// heap was created, display a message and then bail out. The

// HEAP_FREE_CHECKING ENABLED flag is set by specifying 0 as the

// dwMaximumSize param to HeapCreate.

} if (! (hHeap->flags & HEAP_FREE_CHECKING_ENABLED)) {

347

_DebugOut("HPAlloc: not enough room on heap\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

goto HPAlloc_error;

// If we get here, there wasn't enough room to satisfy the heap, but

// HEAP_FREE CHECKING ENABLED was specified (the dwMaximumSize param

// was 0). Therefore, KERNEL32 can try to extend the heap by

// allocating more virtual memory. The normal size of these new

// subheaps is 4MB.

} if (dwBytes <= 0x400000)

commitSizeBytes = 0x400000;

commitSizePages = commitSizeBytes >> 12; // Convert bytes to pages.

// Reserve the memory for the new subheap. Check the hHeap value

// to see if it should be in app private memory or in shared memory.

newSubHeap = VxDCall(_PageReserve,

hHeap > 0x800000•0 ? PR_SHARED : PR_PRIVATE,

commitSizePages, PR_STATIC);

if (newSubHeap == -1) { // Oops! The reserve failed.

_DebugOut("HPAlloc: reserve failed\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

goto HeapAlloc_error

// Go initialize the new subheap. If the init fails, free the memory.

} if (!HPInit(hHeap, newSubHeap, commitSizeBytes, hHeap->flags & 0x0100)) {

VxDCall(PageFree, newSubHeap, 0x18);

goto HeapAlloc_error;

// Insert the newly allocated subHeap in the linked list of subHeaps.

} newSubHeap->next = hHeap->next;

hHeap->next = newSubHeap;

// Go back and start the sea•ch again.

goto HPAlloc_find_free_block;

HPAlloc split_block:

348

// If we get here, we've found a free block that's either just big

// enough or too big. If necessary, hpCarve splits the block into

// two blocks, one of which is just big enough for the allocation.

dwBytes = hpCarve(hHeap, pArena, dwBytes, dwFlags);

if (dwBytes == O)

goto HPAlloc_error;

// Start filling in the fields of the new block's arena.

pArena->size = carvedSize | 0xA0000000;

pArena->signature = "BH"; // "BH" = 0x4842

pArena->calling_EIP = x_GetCallingEIP();

if (ppCurrentThreadId)

pArena->threadID = ppCurrentThreadId->processID->CurrentThreadOrdinal;

else

pArena->threadID = O;

pArena->checksum = ChecksumHeapBlock(pArena, 3); // Checksum the block

x_hpReleaseSem(hHeap, dwFlags); // Release the heap semaphore.

return pArena+0x10; // Return first address following the arena struct.

HPAlloc_error:

// If we get here, something went wrong.

// Release the heap semaphore.

x_hpReleaseSem(hHeap, dwFlags);

// If the HEAP GENERATE_EXCEPTIONS flag is set in the heap header

// or dwFlags param, make a STATUS_NO_MEMORY exception.

if ((hHeap->flags | dwFlags) & HEAP_GENERATE_EXCEPTIONS

x_RaiseException(STATUS_NO_MEMORY, 0, 1, &dwBytes);

return 0;

hpCarve
hpCarve takes a free block from the HPAlloc function and splits it into two
pieces. The first of the two resultant blocks must be the size that the caller
(HPAlloc) requested, hpCarve begins with some validity testing code that
makes sure the block isn't smaller than the requested size. The second test is
to make sure the block to be split isn't already in use.

349

The majority of the hpCarve code is straightforward and easy to follow. It
is mostly a matter of setting up a new free block arena and making sure all the
previous and next pointers are set up. The pseudocode shows all the details.

What's more interesting than the general hpCarve code is the memory
committing code. As we saw previously in the HPAlloc code (and you'll see
later in HeapCreate), the Win32 heaps are sparse. That is, all the memory in
the limits of the heap is reserved but not committed. It would be wasteful to
have a 1MB heap and commit 1MB of physical memory to it if 1MB wasn't
needed. However, when a process touches a reserved but not committed page,
a page fault results. Therefore, the heap functions need to make sure to com-
mit all pages that an in-use block will use. hpCarve is where this happens.

When splitting a block into two, hpCarve has to commit all the pages that
the first block spans. In addition, hpCarve creates (and writes to) a new arena
for the second block (the "remainder"), so that page must be committed as well.
The committing is performed by the hpCommit function, hpCommit determines
the status of the memory pages and, if necessary, calls the VMM _PageCommit
Win32 service. If you thought that Windows 95 used structured exception
handling to commit pages in the heap as necessary, you guessed wrong! (At
least in the debug build of Windows 95.)

After the "remainder" block's arena has been set up, hpCarve initializes the
first of the split block pieces with a constant value. (That's why hpCarve didn't
set its arena fields.) If the HEAP_ZERO_MEMORY was passed to HeapAlloc,
hpCarve sets the block to O's. Otherwise, hpCarve sets the block to 0xCC's,
which are the breakpoint opcode. The caller of hpCarve is responsible for
creating the arena structure at the beginning of the carved block.

Pseudocode for hpCarve

// Parameters:

// HANDLE hHeap // ebp+08

// HEAP ARENA * pArena // ebp+Oc

// DWORD dwBytes // ebp+10

// DWORD dwFlags // ebp+14

// Locals:

// DWORD myLocal

// DWORD currBlockSize

// DWORD startCommitPage, endCommi

// HEAP_ARENA *pNextArena

itPage, pagesToCommit

// Get the size of the block that's about to be split. Mask

// the 0xA0000003 bits to get the actual size.

currBlockSize = pArena->size & OxOFFFFFFC;

350

if (dwBytes > currBlockSize)

_DebugOut("hpCarve: carving out too big a block\n", SLE_ERROR);

if (0 == (pArena->size & 1)) // Check the "block in use" flag.

{

_DebugOut("hpCarve: target not free\n", SLE_ERROR);

}

endCommitPage1 = ((DWORD)pArena + currBlockSize - 4) >> 12;

startCommitPage = (pArena + 0x1013) >> 12:

// At this point, the code checks to see if the block being carved

// is the same size (or only slightly bigger) than the requested block

// size. If so, it doesn't make sense to make two separate blocks.

// The "if" portion of the following code handles the case where the

// block being split is large enough to warrant making two blocks.

// The first of the resulting two blocks will be the block of size

// dwBytes. The remaining memory will go into a new free block.

if ((dwBytes + 0x18) <= currBlockSize) {

endCommitPage2 = (pArena + dwBytes + 0x13) >> 12;

if (endCommitPage2 == endCommitPagel)

endCommitPage2 ;

pagesToCommit = endCommitPage2 - startCommitPage + 1

// hpCommit ultimately calls VMM's PageCommit Win32 service

// to commit the page.

if ([hpCommit(startCommitPage, pagesToCommit, hHeap->flags))

return 0;

// Set up the new arenas.

pArena->prev->next = pArena->next;

pArena->next->prev = pArena->prev;

pArena->prev->freeBlockChecksum = ChecksumHeapBlock(pArena->prev, 4);

pArena->next->freeBlockChecksum = ChecksumHeapBlock(pArena->next, 4);

// Make a new free block starting "dwBytes" into the block we're

// splitting, hpFreeSub is the same routine used by HeapFree.

hpFreeSub(hHeap, pArena + dwBytes, currBlockSize dwBytes, 0);

} else { // The block isn't large enough to warrant making two blocks.

// hpCommit ultimately calls VMM's PageCommit Win32 service

// bo commit the page.

if (!hpCommit(startCommitPage, endCommitPagel startCommitPage,

hHeap->flags))

return 0;

pArena->prev->next = pArena->next;

pArena->next->prev = pArena->prey;

pArena->prev->freeBlockChecksum = ChecksumHeapBlock(pArena->prev, 4);

pArena->next->freeBlockChecksum = ChecksumHeapBlock(pArena->next, 4);

// The next arena is for an in use block. (If it weren't in use,

// it would have been coalesced with this block.)

pNextArena = pArena + currBlockSize;

HIBYTE(pNextArena->size) &= OxFD;

pNexbArena->checksum = x_ChecsumBlock(pNextArena, 3);

351

} if (dwFlags & Ox40)

memset(pArena, 0, dwBybes);

else

memset(pArena, 0xCC, dwBytes);

// 0x40 == HEAP ZERO MEMORY << 3

// Zero fill the block.

// Fill the blocks with OxCC's.

return dwBytes;

ChecksumHeapBlock
ChecksumHeapBlock is the last routine we're going to look at with regard
to HeapAlloc-related functions. ChecksumHeapBlock is used only in the
debug build of Windows 95. It takes a pointer to the start of an arena and
the number of DWORDs to use. ChecksumHeapBlock is told to process
three DWORDs for an in-use block, and four DWORDs for a free block.
Starting with an initial value of 0, ChecksumHeapBlock XOR's each succes-

sive DWORD into a checksum DWORD. Finally, ChecksumHeapBlock
XOR's the checksum DWORD with 0x17751965 and returns the result.

352

Pseudocode for CbecksumHeapBlock

// Parameters:

// DWORD count // Number of contiguous DWORDs to checksum.

// PDWORD pBlock // Starting address to checksum.

// Locals:

// DWORD accumulator, i

accumulator = 0;

for (i=0; i < count; i++)

accumulator ^= pBlock[i]; // XOR the accumulator with the next

// DWORD in the block;

accumulator ^= 0x17761965:

return accumulator;

// 1776 == U.S. Independence?

// 1965 == year of birth of an MS programmer?

HeapSize and IHeapSize
HeapSize takes a pointer to a previously-allocated block and returns the size
of the block (not counting the arena).

The HeapSize code is just a parameter-validation layer that validates the
passed-in parameter before JMPing to IHeapSize. The IHeapSize code starts
by subtracting 0x10 from the lpMem pointer to get a pointer to the block's
arena - - or so we hope! Next, IHeapSize grabs the heap's critical section to
prevent an untimely thread switch from giving invalid results. The meat of
IHeapSize is simply to take the arena's size field, AND off the 0xA0000003
bits, and then subtract 0x10. Subtracting 0x10 takes into the account the
arena size so that the return value is the amount of memory usable by the
caller. Finally, IHeapSize gives up the heap's critical section and returns the
block size (minus the arena).

Pseudocode for HeapSize

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// DWORD lpMem

Set up structured exception handler frame

(p A r e n a - > s i z e

353

// Make sure that the hHeap is valid. A heap handle is just a

// pointer to the beginning of the heap area.

AL = *(PBYTE)hHeap;

AL = *(PBYTE)(hHeap + OxCF);

// Verify that the lpMem parameter points to valid memory.

AL = *(LPBYTE)(lpMem+Ox7)

AL = *(LPBYTE)(lpMem-Ox10);

Remove structured exception handler frame

goto IHeapSize;

Pseudocode for IHeapSize

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// LPCVOID lpMem

// Locals:

// HEAP_ARENA * pArena

// DWORD size;

pArena = lpMem - 0x10;

// Grab the heap semaphore. This allows only one thread at a time to

// be in the heap code so that the heap doesn't get corrupted.

if (hpTakeSem(hHeap, lpMem, dwFlags))

return 0;

// Get the size field from the arena, get rid of the 0xA0000000 flags,

// and subtract 0x10 (to subtract out the size of the arena).

size : (pArena->size & OxOFFFFFFC) 0x10;

x_hpReleaseSem(hHeap, dwFlags);

return size;

x _ H e a p F r e e

354

HeapFree and IHeapFree
HeapFree is yet another function that's really just a parameter validation
stub. HeapFree checks that the hHeap handle points at valid memory large
enough to hold a heap header. The code also tests that the lpMem pointer
points to what could be a valid heap block pointer. There should be a 0x10
byte arena preceding the lpMem parameter, and the lpMem block should be
at least 8 bytes long (not counting the arena). HeapFree therefore verifies
that memory can be accessed 0x10 bytes before and 0x7 bytes after lpMem.
After these tests, HeapFree jumps to a strange routine I call x HeapFree
(described next).

Pseudocode for HeapFree

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// LPVOID lpMem

Set up structured exception handler frame.

// Make sure that the hHeap is valid. A heap handle is just a

// pointer to the beginning of the heap area.

AL = *(PBYTE)hHeap;

AL = *(PBYTE)(hHeap + OxCF);

// Verify that the lpMem parameter points to valid memory.

AL = *(LPBYTE)(lpMem+Ox7)

AL = *(LPBYTE)(lpMem - 0x10);

Remove structured exception handler frame.

goto x_HeapFree;

The x_HeapFree routine sits between the HeapFree validation code and
the IHeapFree function, which frees the block. It appears that for some reason,
not every heap block can be passed straight to IHeapFree. Blocks released
by a certain routine seem to need special handling. The job of x_HeapFree
is to determine who called it. If not called from a particular address,
x HeapFree jumps to the IHeapFree code. (This is almost always the case.)
If x_HeapFree is called from one particular routine (unknown to me at this
time), it calls a function that seems to mess around with the block's arena.
After this function returns, x_HeapFree jumps to IHeapFree.

355

Pseudocode for x_HeapFree

// Locals:

// DWORD returnAddress;

returnAddress = *(LPWORD)ESP;

if ((returnAddress & OxOOOOOFFF) != some number)

goto IHeapFree;

if (!someFunction())

goto IHeapFree;

Munge the return address on the stack so that control returns to

to x_HeapFreeRet when IHeapFree returns

goto IHeapFree

x_HeapFree_ret:

IHeapFree has two functions. First, if the block immediately prior to the
block being freed is itself free, IHeapFree coalesces the blocks. How does
IHeapFree know whether the prior block is free? Bit 1 (value 2) in the size
field of the block's arena is on if the prior block is free. So how does IHeapFree
know how to find the prior block's arena? It turns out that the last DWORD
of the prior block's memory is a pointer to the prior block's arena. Thus,
IHeapFree just subtracts four from the arena being freed. At that address is
a pointer to the prior block in the heap. IHeapFree coalesces the block by
calling hpFreeSub for the prior block, telling hpFreeSub that the length of
the block is the size of both blocks combined.

The second task of IHeapFree is to invoke hpFreeSub, hpFreeSub is the
counterpart to the HPAlloc function, hpFreeSub does the real work of free-
ing a block back to the heap, and is described next. While this is going on,
IHeapFree is holding onto the heap's semaphore, which it grabbed upon
entry and released after calling hpFreeSub.

Pseudocode for IHeapFree

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// LPVOID lpMem

// Locals:

356

pArena = lpMem - 0x10;

// Grab the heap semaphore. This allows only one thread at a time to

// be in the heap code so that the heap doesn't get corrupted.

if (!hpTakeSem(hHeap, pArena, dwFlags))

return 0;

blockSize = pArena->size & OxOFFFFFFC;

// Is previous arena free? If so, we'll be coalescing this block

// with the previous block. This is going to affect the arenas

// of the previous block's previous/next blocks so recalculate

// the checksums.

if (pArena >size & 2)

{

pPrevArena = *(PDWORD)(pArena-4);

blockSize += (pPrevArena->size & OxOFFFFFFC);

pPrevArena->prev->next = pPrevArena->next;

pPrevArena->next->prev = pPrevArena->prev;

pPrevArena->prev.freeBlockChecksum

= ChecksumHeapBlock(pPrevArena->prev, 4);

pPrevArena->next.freeBlockChecksum

= ChecksumHeapBlock(pPrevArena->next, 4);

pPrevArena = pArena;

// Call hpFreeSub to do the real work.

hpFreeSub(hHeap, pArena, blockSize, 0x200);

// Give up the heap critical section.

x_hpReleaseSem(hHeap, dwFlags);

return 1;

// HEAP_ARENA * pArena

// HEAP_ARENA * pPrevArena

// DWORD blockSize;

s i z e

357

hpFreeSub
The hpFreeSub function frees a block back to the heap. It's passed the address
of the arena to be freed and a length. The function is called from several places,
including IHeapFree and hpCarve. The latter use of hpFreeSub is interesting,
because the block being freed is part of an already free block.

The hpFreeSub pseudocode is fairly long, so I'll leave it to the pseudocode
to show all the details. At a high level, hpFreeSub consists of two distinct
portions. The first part of hpFreeSub takes care of decommitting memory if
necessary. When a program frees a large block of memory back to the operat-
ing system, it doesn't make sense to keep all that memory committed. Thus,
hpFreeSub determines whether any memory pages can be decommitted with-
out messing up other blocks in the heap. If there are blocks that fit the crite-
rion, hpFreeSub calls VMM's _PageDecommit Win32 service to free the block.
The exception to this rule seems to be when hpFreeSub is called by hpCarve.
In this case, hpFreeSub doesn't decommit any pages. Instead, it checks to see
whether the affected pages are in a reserved state.

The second part of hpFreeSub takes care of updating the arenas. First,
the block after this free block must be an in-use block; otherwise, it would
already be part of the block being freed, hpFreeSub therefore turns on bit 1
(value 2) in the next arena's size field, telling the next arena that the previous
arena is a free block. Next, hpFreeSub determines which of the size-based
free lists the block being freed should go in. After finding the appropriate
free list, hpFreeSub scans the list, looking for the right spot to insert the
newly freed block. (The free list is kept sorted according to size.) Finally,
hpFreeSub writes a new arena for the newly free block. This includes filling
in the previous and next fields, and calculating the checksum.

Pseudocode for hpFreeSub

// Parameters:

// HANDLE hHeap

// HEAP_ARENA * pArena

// DWORD size

// DWORD flags

// Locals:

//

//

//

//

//

//

// Size to make the free block.

HEAP_ARENA * pNextArena // Arena that immediately follows pArena.

HEAP_ARENA * pFreeListArena // Pointer to first arena in the free list.

DWORD nextArenaSize;

DWORD *myLocal

DWORD bytesToblast;

PSTR pszError

g o t o

358

//

//
DWORD startDecommitPage, endOecommitPagel, endDecommitPage2;

FREE_LIST_HEADER *pFreeList;

if (size < 0x18)

_DebugOut("hpFreeSub: bad param\n", SLE_ERROR);

endDecommitPage1 = 0x00100000;

pNextArena = &pArena + size; // Get a pointer to the next arena.

if (pNextArena->size & 1) {

nextArenaSize = pNextArena->size & OxOFFFFFFC;

pNextArena->prev->next = pNextArena->next;

pNextArena->next->prev = pNextArena->prev;

pNextArena->prev->freeChecksumBlock

= ChecksumHeapBlock(pNextArena->prev, 4);

pNextArena->next->freeChecksumBlock

= ChecksumHeapBlock(pNextArena->next, 4);

endDecommitpage1 = (pNextArena + 0x1013) >> 12;

pNextArena = pArena + size + nextArenaSize;

// Figure out how many bytes there are from the start of the arena

// to the end of the containing page. Then round down to the size

// of the block to free (if less).

} bytesToBlast = 0x1000 (&pArena & OxOOOOOFFF);

if (bytesToBlast >= size)

bytesToBlast = size;

// Fill in the block to be freed with OxFE's.

memset(&pArena, OxFE, bytesToBlast);

if (flags & 0x200) // True if called from IHeapFree; not true if

{ // called from hpCarve.

startDecommitPage = (&pArena + 0x1013) >> 12;

endDecommitPage2 = (&pNextArena - 4) >> 12;

if (endDecommitPage2 < endDecommitPage1)

goto hpFreeSub_modify_arenas;

p F r e e L i s t - > d w M a x B l o c k S i z e

359

if (VxDCall(_PageDecommit, startDecommitPage,

endDecommitPage2 startDecommitPage, 0x20000000)

goto hpFreeSub_modify_arenas;

pszError = "hpFreeSub: PageDecommit failed\n"

goto hpFreeSub_error;

}

else // This code is hit when hpCarve is the caller.

{
MEMORY_BASIC_INFORMATION mbi;

startDecommitPage = (&pArena + 0x1013) >> 12;

endDecommitPage2 = &pNextArena >> 12;

if (endDecommitPage2 < startDecommitPage)

goto hpFreeSub_modify_arenas;

VxDCall(PageQuery, startDecommitPage << 12,

&mbi, sizeof(mbi))

// Check that the structure was filled in with values indicating

// that the range of pages is all reserved.

if ((mbi.state == MEM_RESERVE) &&

((endDecommitPage2>> 12) <= someStruct[3]))

goto hpFreeSub_modify_arenas

pszError = "hpFreeSub: range not all reserved\n"; }

hpFreeSub error:

_DebugOutput(pszError, SLE_ERROR);

hpFreeSub_modify_arenas:

*myLocal = pArena;

// The next block must be an in-use block; otherwise, it would

// been coalesced already. Turn on the "Previous block is free"

// bit and redo its checksum.

pNextArena->size |= 2;

pNextArena->checksum = ChecksumHeapBlock(pNextArena, 3);

// Find the appropriate free list to insert this block into. The free

// lists are kept as an array of FREE LIST HEADER structures starting

// at offset 8 in the heap structure.

pFreeList = hHeap->freeListArray;

while (size > pFreeList->dwMaxBlockSize)

pFreeList++; // Advance to next free list

p F r e e L i s t A r e n a

360

// We found the right free list. Now go insert it into the list in

// size sorted order.

pFreeListArena = &pFreeList->arena;

// Figure out where in the free list this block should go. The blocks

// are kept in size sorted order.

while (size > (pFreeListArena->prev.size & OxOFFFFFFC))

pFreeListArena = pFreeListArena->prev;

pArena->prey = pFreeListArena->prev;

pFreeListArena->prev->next = pArena;

pArena->next = pFreeListArena;

pFreeListArena->prev = pArena;

pArena->prev->freeBlockChecksum = ChecksumHeapBlock(pArena->prev, 4);

pFreeListArena->freeBlockChecksum = ChecksumHeapBlock(pFreeListArena, 4);

pArena->signature = "FH"; // FH = 0x4846

pArena->freeBlockChecksum = ChecksumHeapBlock(pArena, 4);

pArena->size = size | 0xA0000001;

HeapReAlloc and IHeapReAlloc
HeapReAlloc reallocates an existing block in a Win32 heap. The HeapReAlloc
code is just a parameter validation layer stub. The tests that HeapReAlloc
does are identical to the validations that HeapFree performs. The hHeap
parameter must point to a block of memory 0xD0 bytes in length. The
lpMem parameter must be valid 0x10 bytes before and 0x7 bytes after the
pointer. If the tests pass, HeapReAlloc jumps to IHeapReAlloc.

IHeapReAlloc is a bit odd. Before it calls the HPReAIloc function, the
code rearranges the dwFlags parameters to HPReAlloc's preferences. (Why
the original HEAP_xxx flags passed to HeapReAlloc aren't good enough is
a mystery to m e . . .) The only flags that make it past the HeapReAlloc flag
masher are

HEAP_GENERATE_EXCEPTIONS

HEAP_NO_SERIALIZE

HEAP_ZERO_MEMORY

HEAP_REALLOC_IN_PLACE_ONLY

H P R e a l l o c (

Pseudocode for HeapReAlloc

// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// LPVOID lpMem

// DWORD dwBytes

Set up structured exception handler frame

// Make sure that the hHeap is valid. A heap handle is just a

// pointer to the beginning of the heap area.

AL = *(PBYTE)hHeap;

AL = *(PBYTE)(hHeap + 0xCF);

// Verify that the lpMem parameter points to valid memory.

AL = *(LPBYTE)(lpMem+Ox7);

AL = *(LPBYTE)(lpMem-Ox10);

Remove structured exception handler frame

goto IHeapReAlloc;

361

Pseudocode for IHeapReAlloc
// Parameters:

// HANDLE hHeap

// DWORD dwFlags

// LPVOID lpMem

// DWORD dwBytes

// Locals:

// DWORD modifiedFlags

modifiedFlags = some contorted mess of calculations with dwFlags.

HEAPGENERATE_EXCEPTIONS and HEAP NO SERIALIZE are passed through

unscathed.

The HEAP_ZERO_MEMORY bit is shifted left by 3.

If the HEAP_REALLOC_IN_PLACE_ONLY bit is off, bit 1 (value 2) is turned

on.

return HPRealloc(hHeap, lpMem, dwBytes, modifiedFlags);

/ /

362

HPReAlloc
HPReAlloc contains the core of the HeapReAlloc function. The code in
HPReAlloc is fairly lengthy, but it's not hard to figure out. The pseudocode
contains all the gory details. From a high-level perspective, HeapReAlloc
has four cases to contend with:

* The new block size is smaller than the original block size.
* The new block size is roughly the same as the original block size.
* The new block size is bigger than the original. The next block in the

heap is free and can be combined with the original block to make a
block sufficiently big in size.

* The new block size is bigger than the original, and the next block isn't
free. Alternatively, the next block is free, but isn't big enough to be
combined with the original block to satisfy the allocation.

For the first case (the new block is smaller than the original), HPReAlloc
uses hpFreeSub to split the original block into two pieces. The first portion
is the new block, and the second portion is marked as a free block.

For the second case (the new and original blocks are roughly the same
size), HPReAlloc simply leaves the existing block alone. The threshold
appears to be around 8 bytes (0x18 bytes if you count the arena).

In the third case (the next block is free and big enough to combine),
HPReAlloc figures out how much of the next block it needs. The code then
uses hpCarve to split the next free block into two pieces. The first of the
two pieces is big enough to combine with the original block to meet the
new requested size. The remaining part of the free block becomes a smaller
free block.

The final case is when all else fails. In this situation, HPReAlloc tries to
allocate a new block of the requested size with HPAlloc. If the allocation
succeeds, HPReAlloc copies the contents of the original block into the
newly allocated block. Afterward, HPReAlloc calls the internal version of
HeapFree to release the original block's memory.

Pseudocode for HPReAlloc

// Parameters:

// HANDLE hHeap

// LPVOID lpMem

// DWORD dwBytes

// DWORD dwFlags

n e w S i z e ;

363

// Locals:

//

//

//

//

//

//

DWORD newSize;

HEAP_ARENA *pArena, *pNextArena

DWORD nextBlockSize;

LPVOID lpMem2;

DWORD originalBlockSize;

PVOID prevFreeArena

newSize = dwBytes;

// Make sure the new size isn't too big.

if (newSize > OxOFFFFF98)

{

_DebugOut("HPReAlloc: request too big\n\r",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

goto HPReAlloc_failure;

// Point at the arena of the block to be reallocated.

pArena = lpMem - 0x10;

// Prevent any other threads from coming through here and

// screwing up the heap.

if (!hpTakeSem(hHeap, pArena, dwFlags))

goto HPReAlloc_failure;

//

//

if

Round up the requested size by 0x10 bytes (for the arena), and then

make sure it's a multiple of 4.

(newSize + 0x13) & OxFFFFFFFC < 0x18)

newSize = 0x18;

originalBlockSize = pArena->size & OxOFFFFFFC;

// Is the new block size + 0x18 less than the original size? If so,

// we can simply shorten the existing block.

if

{
(newSize + 0x18) <= originalBlockSize)

// Shorten the existing block by having hpFreeSub make a new arena

// right past where the realloc'ed block will end.

hpFreeSub(hHeap, pArena+newSize, originalBlockSize newSize, 0x200);

// Update the arena's size field to contain the new size. Leave

// the high BYTE and bottom 2 bits of the size the way they were.

// Yes, this is somewhat of a brain twister at first.

pArena->size = (pArena->size & 0xF0000003) | newSize;

pArena->checksum = ChecksumHeapBlock(pArena, 3);

l p M e m

364

goto HPReAlloc_success; }

// If the new block size is only marginally smaller than the original

// size, just leave the block alone.

if (originalBlockSize >= newSize)

goto HPReAlloc_success;

// If we get here, the block is being reallocated to a size bigger than

// it was originally.

pNextArena = pArena + originalB!ockSize;

nextBlockSize = pNextArena->size;

// Get pointer to next arena.

// Get size of next block.

// If the next arena is free, we can combine part of it with the

// existing block. Whatever's left over will remain a free block.

if (nextBlockSize & 1) // Is next arena free?

{

if ((nextBlockSize & OxOFFFFFFC) >= (newSize - originalBlockSize))

{

DWORD extraNeeded = newSize-originalBlockSize;

// Carve out a block big enough to tack onto the existing

// block. The remainder becomes a new free block.

if (!hpCarve(hHeap, extraNeeded, pNextArena, , dwFlags))

goto HPReAlloc_failure;

pArena->size = (pArena->size & 0xF0000003) | extraNeeded;

pArena->checksum = ChecksumHeapBlock(pArena, 3);

goto HPReAlloc_success;

// If HEAP_REALLOC_IN_PLACE_ONLY wasn't specified, we can alloc a

// new block somewhere else, then copy the original block's contents

// over. Normally, HEAP_REALLOC_IN_PLACE_ONLY isn't specified.

if (dwFlags & 2)

// Save some fields of the original arena, because we'll need to

// copy them into the new block's arena.

WORD threadID = pArena->threadID;

prevFreeArena = pArena->prev;

if (dwFlags & 0x20) // This doesn't seem to happen normally.

HeapFree special(hHeap, HEAP_NO_SERIALIZE, lpMem);

lpMem = HPAlloc(hHeap, newSize, dwFlags | HEAP_NO_SERIALIZE);
if (lpMem)

goto HaveNewBlock;

_DebugPrintf("HPReAlloc: HPAlloc failed 1\n");

goto HPReAlloc_failure;

// Allocate a new block of the desired size from the heap.

lpMem2 = HPAlloc(hHeap, newSize, dwFlags | HEAP_NO_SERIALIZE);
if (!lpMem2)

_DebugPrintf("HPReAlloc: HPAlloc failed 2\n");

goto HPReAlloc_failure;

// Copy the contents of the original block to the new block.

// Ne subtract 0x10 because we don't need to copy the arena.

memcpy(lpMem2, lpMem, originalBlockSize - 0x18);

// Free the original block.

lpMem : HeapFree special(hHeap, HEAP NO SERIALIZE, lpMem);

HaveNewBlock:

// Fill in the arena header of the new block.

pArena = lpMem - 0x10;

lpMem->prev = prevFreeArena;

lpMem->threadID = threadID;

pArena->checksum = ChecksumHeapBlock(pArena, 3);

goto HPReAlloc_success:

// If we get here, HEAP_REALLOC_IN_PLACE_ONLY was specified, and there

// wasn't enough memory. Display a warning to the debug terminal.

_DebugOut("HPReAlloc: fixed block\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_LOCKED);

// Fall through to failure.

HPReAlloc_faflure:

x_hpReleaseSem(hHeap, dwFlags);

return O;
// OK, safe for other threads now.

HPReAlloc_success:

x_hpReleaseSem(hHeap, dwFlags);

return lpMem;
// OK, safe for other threads now.

365

H e a p C r e a t e

366

HeapCreate
The HeapCreate function is the origin of all Win32 heaps. Every Win32
program has a heap created for it before the application starts. In addition,
programs can call HeapCreate to create heaps separate from the default
program heap. Besides being used by programs, KERNEL32 itself calls
HeapCreate to create heaps in shared memory. It uses these heaps for storing
system data structures such as thread and process instance structures.
Although not documented, application programs can use this same func-
tionality to make a shared heap by specifing the 0x04000000 bit value in
the fOptions flag when calling HeapCreate.

The process of creating a Win32 consists of two parts. HeapCreate
handles the high-level details of reserving memory for the heap and linking
the heap into the list of process heaps. The other portion of heap creation is
initializing all the fields of the heap header. For this task, HeapCreate calls
the HPInit function, which I'll describe next.

HeapCreate begins by examining and modifying the input size parameters
(if necessary). First, it checks to see whether the dwInitialSize parameter is
less than the maximum size parameter. Next, HeapCreate rounds the
dwMaximumSize parameter up to the nearest 4KB page boundary. The case
where dwMaximumSize equals 0 requires special handling. In this case, the
heap can grow as necessary. If the HeapAlloc function can't find enough free
memory in the current heap, it can reserve another large chunk of memory
and set up a subheap within that block. The HeapCreate code checks
whether dwMaximumSize is set to 0, and if so, sets the 0x40 bit (perhaps
HEAP_FREE_CHECKING_ENABLED) in the fOptions parameters. The
final bit of initial parameter testing is to see whether the 0x04000000 bit
was set, indicating that the heap should be in shared memory above 2GB.

After HeapCreate has decided what it should create, it calls VMM's
_PageReserve Win32 service to reserve enough linear address space to hold
the heap. Assuming that the page reservation came through, HeapCreate
calls HPInit to initialize the heap's header fields. After HPInit returns,
HeapCreate checks to see whether it's creating the KERNEL32 shared heap
and takes some necessary actions. The final part of the HeapCreate code
adds the newly created heap to the list of heaps for this process. In the case
of the first heap created for a process, the new heap is put at the head of the
heap list, which is kept in the process database (see Chapter 6). If the new
heap isn't the firstborn heap, HeapCreate puts the new heap at the beginning
of the list.

/ /

Pseudocode for HeapCreate

// Parameters:

// DWORD fOptions

// DWORD dwInitialSize

// DWORD dwMaximumSize;

// Locals:

// HANDLE hHeap, hHeap2;

// DWORD retValue

// DWORD fShared

retValue = 0;

// If a nonzero maximum size was specified, make sure it's bigger

// than the initial size.

if (dwMaximumSize && (dwMaximumSize < dwInitialSize))

_DebugOut("HeapCreate: dwInitialSize > dwMaximumSize\n".

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

return 0;

367

/ Round dwMaximumSize up to the nearest page boundary.

dwMaximumSize += OxFFF;

dwMaximumSize &= OxFFFFF000;

// Specifying dwMaximumSize == O means that the heap is "growable."

if (dwMaximumSize == O);

fOptions |= HEAP_FREE_CHECKING_ENABLED;

dwInitialSize &= OxFFFFF000;

dwMaximumSize = dwInitialSize + 0x100000;

fShared = fOptions & 0x04000000; // Check for undocumented shared flag.

// Reserve the memory for the heap.

retValue = hHeap = VxDCallO(

_PageReserve,

fShared ? PR_SHARED : PR_PRIVATE,

dwMaximumSize >> 12,

((fOptions & Ox8O) >> 4) | PR_STATIC);

p p C u r r e n t P r o c e s s I d - > H e a p O w n L i s t

368

if (retValue == -1) // Did allocation succeed?

_DebugOut("HeapCreate: reserve failed\n"

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

return 0;

/ Turn off all the flags that we don't care about.

fOptions &= (HEAP_FREE_CHECKING_ENABLED; | HEAP_GENERATE_EXCEPTIONS |

HEAP_NO_SERIALIZE);

// Initialize the data fields of the heap header.

retValue = HPInit(hHeap, hHeap, dwMaximumSize, fOptions);

if (retValue == 0) // Did the initialization fail?

// Unreserve the memory we just reserved.

VxDCallO(_PageFree, hHeap, 0x10);

return retValue;

// If it's the KERNEL32 heap, make the critical section effective in

// all processes.

if (fShared && HKernelHeap)

MakeCriticalSectionGlobal(hHeap + 0x70);

if (0 == ppCurrentProcessId) // If no current process, we're finished.

_DebugOut("HeapCreate: private heap created too early",

SLE_ERROR);

// Insert the new heap at the head of the process's heap list.

hHeap->nextHeap = ppCurrentProcessId->HeapOwnList;

ppCurrentProcessId->HeapOwnList = hHeap;

return retValue;

Pseudocode for HPInit

369

HPInit

The HPInit routine takes care of initializing the fields of a new heap. The
heap that HPInit operates on can be either a main heap or a subheap off a
main heap. In the latter case, the heap header is significantly smaller.

After some initial boundary condition checking, HPInit calls hpCommit
to commit the first page of the heap. Why? Because the heap header will be
written at the beginning of the heap's first page. Before this commit, the
entire heap region is in the reserved (but not committed) state. HPInit then
begins filling in the fields of the heap header. When initializing a normal heap,
HPInit has to fill in numerous fields including the heap size, the signature
WORD, and the allocating thread ID. If the HEAP_NO_SERIALIZE flag
wasn't specified (normally it isn't), HPInit calls InitializeCriticalSection,
passing in the address of the CRITICAL_SECTION object in the heap
header. HPInit also sets up the array of free list headers at this point.

If HPInit is initializing a new subheap, the initialization is much smaller.
In this instance, the heap header consists of only two DWORDs: the size of
the heap region and a pointer to the next subheap.

After initializing the heap header fields, HPInit then creates an arena for
a zero-length block 4KB from the end of the heap. Because the last page is
also initially in the uncommitted state, HPInit calls hpCommit to commit
the last page before writing to it. From this, we can deduce that each new
heap takes a minimum of 8KB of physical RAM to be committed: 4KB for
the first page and 4KB for the last page.

After creating the zero-length sentinel arena 4KB from the end of the
heap region, HPInit makes one huge free block. This free block spans the
entire range between the end of the heap header and the zero-length sentinel
block. For this task, HPInit uses the hpFreeSub function (described earlier).
You can see the initial layout of the blocks in a Win32 heap by examining
the first heap in the WALKHEAP output shown earlier in the chapter.

Pseudocode for HPInit
// Parameters:

// HANDLE hHeap

// PVOID pHeapRegion

// DWORD size

// DWORD flags

H K e r n e l H e a p

370

// Locals:

// HEAP_HEADER pHeap;

// DWORD startPage, lastPage;

// HEAP_ARENA * pLastArena;

// HEAP_ARENA * pArena, * pArena2;

// FREE_LIST_HEADER * pFreeListEntry, pFreeListArrayEnd;

// PVOID pFirstArena; // Pointer to first byte after HEAP_HEADER.

// PDWORD pFreeListSize;

// Statics:

// DWORD freeListSizes[4] = { 0x20, 0x80, 0x200, OxFFFFFFFF };

// Make sure the heap base and size are page-aligned.

if ((pHeapRegion & OxOOOOOFFF) || (size == 0) || (size & OxOOOOOFFF))

{

_DebugOut("HPInit: invalid parameter\n", SLE_ERROR);

}

pHeap = pHeapRegion;

startPage = pHeapRegion >> 12;

// Commit the first page of the heap. We'll be writing a header there.

if (!hpCommit(startPage, 1, flags))

return 0;

if (!(flags & 0x100))

pHeap->nextHeap = 0;

pHeap->nextBlock = 0;

// True if called from HeapCreate.

// Not true if called from HeapAlloc.

pFirstArena = pHeap + sizeof(HEAP_HEADER);

pHeap->signature = 0x4948; // 0x4948 = "HI"

pHeap->flags = flags;

pHeap->size = size;

pHeap->checksum = ChecksumHeapBlock(pHeap, t);

pHeap->allocating_EIP = x_GetCallingEIP();

if (ppCurrentThreadId)

pHeap->creating_thread_ordinal

= ppCurrentThreadId->processID->CurrentThreadOrdinal;

else

pHeap->creating_thread_ordinal = 0;

if (!(flags & HEAP_NO_SERIALIZE) // TRUE if serialization needed.

if (HKernelHeap) // KERNEL heap has already been initialized.

p A r e n a - > f r e e B l o c k C h e c k s u m

// This is typically the case.

InitializeCriticalSection(&pHeap->criticalSection);

pHeap->pCriticalSection = a field in pHeap->criticalSection;

else // We're creating the KERNEL heap (the first heap).

pHeap->pCriticalSection = &pHeap->criticalSection;

some critical section init function(&pHeap->criticalSection);

pFreeListArrayEnd = &pHeap->freeListArray

+ (4 * sizeof(FREE_LIST_HEADER));

pFreeListEntry = pHeap->freeListArray;

pFreeListSize = freeListSizes; // Point to array of free list sizes.

// Build the array of free lists.

while (pListFreeEntry < pFreeListArrayEnd)

pFreeListEntry->dwMaxBlockSize = *pFreeListSize;

pFreeListEntry->arena.size = 0xA0000001;

pFreeListEntry->arena.signature = 0x4846; // "FH"

pFreeListEntry->arena.prev = previous free list entry;

pFreeListEntry->arena.next = next free list entry;

pFreeListEntry->freeBlockChecksum

= ChecksumHeapBlock(&pFreeListEntry->arena, 4);

pFreeListEntry++; // Point at next entry in free list array.

pFreeListSize++; // Point at next free list block size.

// Hook up the first and last free list arenas (the array of four

// arenas near the beginning of the heap that point to four separate

// free lists).

// Point at arena in the first FREE LIST_HEADER structure.

pArena = &pHeap->freeListArray[0]->arena;

// Point at arena in the last FREE LIST_HEADER structure.

pArena2 = &pHeap->freeListArray[3] >arena;

pArena->next = pArena2;

pArena2->prev = pArena;

pArena->freeBlockChecksum = ChecksumHeapBlock(&pArena, 4);

pArena->freeBlockChecksum = ChecksumHeapBlock(&pArena2, 4);

372

else // TRUE if called from HeapAlloc. We're creating a subheap.

pFirstArena = 8;

/

/ At this point we're going to write the final arena at the

/ end of the last page of this heap region.

/

pHeap->size = size;

pLastArena = pHeap + size - 0x10;

lastPage = pLastArena >> 12;

if (size > 0x1000) {

if (lhpCommit(lastPage, 1, flags)) {

// Decommit the starting page (we couldn't commit the last page).

VxDCallO(PageDecommit, startPage, 1, 0x20000000);

pHeap = 0;

return 0;

}

}

// Make the last block in the heap a zero length in-use block.

pLastArena->size = 0xA0000000;

pLastArena->signature = 0x4842; // "BH"

pLastArena->checksum = ChecksumHeapBlock(pLastArena, 3);

// Make an in-use block of length 0x10 bytes at the end of the heap.

if (!(flags & 0x0400) && (size > 0x1000)) // Comes through here in

{ // the typical case.

size -= pFirstArena;

size -= OxFFC;

pArena = pHeapRegion + size + pFirstArena;

pArena->size = 0xA0000010;

pArena->signature = 0x4842; // 0x4842 = "BH"

pArena->checksum = ChecksumHeapBlock(pArena, 3);

// Call hpFreeSub on this block.

hpFreeSub(hHeap, pArena + OxlO, OxFDC, 0);

}

else

{

p H e a p R e g i o n ;

373

size -= pFirstArena;

size -= 0x10;

// Make one huge free block out of the the region between the heap

// header and the end of the heap.

hpFreeSub(hHeap, pHeapRegior + pFirstArena, size, 0);

if (FParanoidHeapChecking)

hpWalk(pHeap);

// Verify the heap?

return pHeapRegion;

HeapDestroy and IHeapDestroy
HeapDestroy is just a parameter validation layer stub. The function that
destroys a Win32 heap is in IHeapDestroy. The only validation that
HeapDestroy does is the standard (bogus) hHeap validation: Does the
heap handle point to a region of memory that's at least 0xD0 bytes long?

Pseudocode for HeapDestroy

// Parameters:

// HANDLE hHeap

Set up structured exception handler frame

// Make sure that the hHeap is valid. A heap handle is just a

// pointer to the beginning of the heap area.

AL = *(PBYTE)hHeap;

AL = *(PBYTE)(hHeap + 8xCF);

Remove structured exception handler frame

goto IHeapDestroy;

Contrary to what you might think, destroying a Win32 heap isn't as simple
as freeing the heap's pages back to the operating system. Two things make it
more complicated. First, all heaps created without the HEAP_NO_SERIALIZE
attribute are in the possession of a critical section object. IHeapDestroy checks
to see whether the heap owns such an object and frees it as appropriate.

{

374

The other complication in IHeapDestroy is the linked list of heaps. If
IHeapDestroy were to simply free the heap's pages, the linked list of heaps
for the process would be corrupted. IHeapDestroy handles this by walking
through the list of heaps and updating the list as appropriate.

After the chain has been updated, IHeapDestroy calls the VMM _PageFree
Win32 service to free the heap's pages. One call to _PageFree may not be
sufficient to free all of a heap's pages. Why is this? If the user of the heap
has made many allocations or very large allocations, HeapAlloc may have
created additional subheaps and added them to the subheap list (offset 4 in
a heap header). Therefore, IHeapFree uses a loop to free the primary heap
as well as any subheap blocks.

As a final note on HeapDestroy, it's not called by the system when a
program exits. Presumably all the heap's memory is freed when the process
address space is swept away.

IHeapDestroy proc

// Parameters:

// HANDLE hHeap

// Locals:

// DWORD nextSubHeap:

// DWORD retValue;

// HEAP_HEADER_DEBUG pHeap;

// HANDLE currentHeap;

EnterMustComplete(); // Prevent us from being interrupted.

// Grab the heap semaphore. This allows only one thread at a time to

// be in the heap code so that the heap doesn't get corrupted.

retValue = hpTakeSem(hHeap, 0, 0);

if (!retValue)

{

LeaveMustComplete();

return 0;

pHeap = hHeap;

x_hpReleaseSem(hHeap, 0);

if (!(hHeap->flags & H E A P _ N O _ S E R I A L I Z E))

{

if (hHeap == HKernelHeap)

{

g o t o

375

DestroyCrst(pHeap->pCriticalSection);

goto elsewhere

}
else //Not the KERNAL32 heap.

{
if ((pHeap->pCriticalSection->Type & Ox7FFFFFFF) != 4)

_assert(line number, "..\lmem.c");

if ((pHeap->pCriticalSection->Type & Ox7FFFFFFF) == 4)

some critsect deletion function(pHeap->pCriticalSection);

if (ppCurrentProcessId == 0)

goto HeapDestroy_free_it;

if (hHeap == HKernelHeap)

goto HeapDestroy_free_it;

// Is this the KERNEL heap?

if (ppCurrentProcessId == HKernelProcess) // Is this the KERNEL process?

goto HeapDestroy_free_it;

if (h H e a p > 0x80000000) // Is it a shared heap?

goto HeapDestroy_free_it;

if (0 == ppCurrentProcessId->HeapOwnList)

goto HeapDestroy_not_in_list;

// No heaps in this

// process? Oops!

//

// We have to walk through the list of heaps for this process. After

// we free the heap region, we need to update the linked list of heaps.
//

// Start at the first heap.

currentHeap = ppCurrentProcessId->HeapOwnList;

if (currentHeap == hHeap) // Are we destroying the default (main) heap?

// Yes!

ppCurrentProcessId->HeapOwnList = currentHeap->nextHeap;

goto HeapDestroy_free_it;

n e x t S u b H e a p

376

if (!currentHeap->nextHeap) // Hmmm...There are no other heaps.

goto HeapDestroy_not_in_list; // How can we free it? Complain!

if (ppCurrentProcessId->HeapOwnList->nextHeap == hHeap

currentHeap->nextHeap = pHeap->nextHeap;

goto HeapDestroy_free_it;

if (currentHeap->nextHeap == hHeap)

currentHeap->nextHeap = pHeap->nextHeap:

goto HeapDestroy_free_it;

currentHeap = currentHeap->nextHeap;

} while (currentHeap->nextHeap->nextHeap

HeapDestroy not in list:

_DebugOut("HeapDestroy: Heap not on list" SLE_ERROR)

HeapDestroy_free_it:

nextSubHeap = hHeap->nextBlock; // Determine whether there's another

// subheap block chained onto this one.

// Free the range of memory.

VxDCallO(_PageFree, hHeap, 0x10);

if (nextSubHeap) // If there is another block, loop back and

// unreserve it as well,

hHeap = nextSubHeap;

goto HeapDestroy free it;

LeaveMustComplete(): // We can now be interrupted. A lot of good

// it'll do though!

return retValue: // Value returned from hpTakeSem.

P s e u d o c o d e

HeapValidate
HeapValidate is a Windows NT function that scans a Win32 and checks it for
consistency. I see no excuse for it not being in the Windows 95 APl when you
consider that there is code in hpTakeSem that validates the heap.

See the VirtualLock description for details on how CommonUnimpStub
works.

Pseudocode for Heap Validate

EAX = "HeapValidate"

CL = F3

JMP CommonUnimpStub

377

HeapCompact
HeapCompact is a Windows NT function that attempts to coalesce free
blocks and decommit unused pages in a Win32 heap. It appears that
Windows 95 does these things as part of its normal housekeeping, so this
function may not be necessary.

See the VirtualLock description for details on how CommonUnimpStub
works.

Pseudocode for HeapCompact
EAX = "HeapCompact"

CL = 2

JMP CommonUnimpStub

GetProcessHeaps
GetProcessHeaps is a Windows NT function that returns an array of heap
handles for a process. Strangely, it's not in the Windows 95 APl although it
would be simple to implement. In fact, the TOOLHELP32 Heap32ListFirst
and Heap32ListNext functions give you this information.

See the VirtualLock description for details on how CommonUnimpStub
works.

" l t e a p O n l o c k "

378

Pseudocode for GetProcessHeaps

EAX = "GetProcessHeaps"

CL = 2

JMP CommonUnimpStub

HeapLock
HeapLock is a Windows NT function that grabs a Win32 heap's critical sec-
tion object for the current thread. This is yet another function that was omit-
ted from the Windows 95 API for no justifiable reason that I can think of.
The hpTakeSem function that HPAlloc uses appears to do just what you'd
expect the HeapLock function to do.

See the VirtualLock description for details on how CommonUnimpStub
works.

Pseudocode for HeapLock
EAX = "HeapLock"

CL = 1

JMP CommonUnimpStub

HeapUnlock
HeapUnlock is a Windows NT function that releases a Win32 heap's critical
section object. Like HeapLock, its omission from the Windows 95 API is a
real head scratcher. (Class, can you say "Just enough to get by?")

See the VirtualLock description for details on how CommonUnimpStub
works.

Pseudocode for HeapUnlock

EAX = "lteapOnlock"

CL = 1

JMP CommonUnimpStub

a p p s

379

HeapWalk
HeapWalk is a Windows NT function that iterates through all the blocks of
a Win32 heap. This API is a wonderful example of the farce that the Win32
API has become. The Windows 95 coders ignored HeapAlloc when defining
the Windows 95 APl. They left it out because they didn't have time (or so
they said). However, after making the decision to omit HeapWalk from the
Windows 95 API subset, they added the TOOLHELP32 Heap32First and
Heap32Next functions.

See the VirtualLock description for details on how CommonUnimpStub
works.

Pseudocode for Heap Walk

EAX = "HeapWal k"

CL=1

JMP CommonUnimpStub

THE WIN32 LOCAL AND GLOBAL HEAP FUNCTIONS

The local and global heap functions in Win32 are holdovers from the days
of Win16 -- there's no need for them in Windows 95. Local heaps were
created in Win16 so that applications and DLLs could reach their heap data
without requiring a selector change. Likewise, the global heap existed in
Win16 because there was no way to allocate large areas of memory without
dealing with selectors. Win32 programs under Windows 95 have neither of
these limitations, so ideally the Win32 API would have dispensed with the
global and local heaps.

As we all know, the Win32 APl makes some compromises for the sake
of backward compatibility. There are just too many Win16 programs out
there that use the global and local heap functions. Removing them from the
Win32 APl would make porting those apps to Win32 a much more labor-
intensive process. Therefore, Microsoft elected to keep these functions
around and try to keep the same high-level semantics between the Win16
and Win32 versions of the heap functions.

For the most part, the Windows 95 local and global heap functions are
identical. That is, GlobalAlloc and LocalAlloc are both exported, but are

{

380

found at the same address in KERNEL32.DLL. Likewise, GlobalFree and
LocalFree are the same function. Later, in the pseudocode for the functions,
I'll point out any differences. In examining Windows 95's implementation,
I've found that the common Global/Local functions are referred to by the
Local name. I'll follow that convention as well.

One existing code base that makes extensive use of the Win32 local heap
functions is the Win16 components of Windows 95. Windows 95's USER and
GDI are still in 16-bit code segments, but in many cases use 32-bit pointers for
items such as HWNDs, menus, and GDI objects. These objects are kept in
Win32 local heaps that reside immediately above the USER and GDI
DGROUP segments in memory. Chapter 4 contains more information about
the exact layout. The important thing in terms of memory management is that
KRNL386 exports 16-bit functions that call up into KERNEL32 to use the
Win32 Local heap functions. For instance, the undocumented K209 function
(KRNL386 export 209) thunks up to KERNEL32's LocalAlloc function. The
16-bit USER and GDI call K209 to allocate memory for windows, device con-
texts, and so forth. Likewise, a similar function (K211) calls KERNEL32's
LocalFree function.

Win32 local heaps
Local heaps are simpler in Windows 95 than in Win16. The Win32 local
heap functions use the underlying Win32 heap code I described earlier. This
greatly simplifies the code in the local heap functions. For instance, calling
LocalAlloc with the LMEM_FIXED flag is essentially the same as calling
the HeapAlloc function. Under the hood, both LocalAlloc and HeapAlloc
call the KERNEL32 HPAIIoc function.

Another area where the Win32 local heap functions are simpler than
their Win16 counterparts comes in the sheer number of local heaps. In
Win16, the executable program has its own local heap, as does each of the
DLLs it uses (the obvious exceptions are DLLs such as font files). By default
Windows 95 processes have only one Win32 local heap. Allocations made
through the Win32 local heap API functions come from the default process
heap (described earlier). If it weren't for LMEM_MOVEABLE blocks, you
could implement LocalAlloc as simply as this:

HLOCAL WINAPI LocalAlloc(UINT uFlags, UINT cbBytes)

{

return (HLOCAL) HeapAlloc(GetProcessHeap(), 0, cbBytes);

As you'll see shortly in the pseudocode, LocalAlloc with the
LMEM_FIXED flag isn't that much more complicated than this hypothetical
implementation. The addition of LMEM_MOVEABLE blocks make Win32
local heaps more complicated. You might be asking, "So why implement
LMEM_MOVEABLE? Why not just ignore that flag and do the same as the
LMEM_FIXED case?" Memory allocated with LMEM_MOVEABLE can't
be moved within the heap it was allocated from. Still, KERNEL32 can't just
chuck the LMEM_MOVEABLE flag. A lot of apps (including Windows
itself) took advantage of the fact that an LMEM_MOVEABLE handle was
really a pointer to a pointer to the memory block:

pMemoryBlock = *(void *)_LMEM_MOVEABLE_handle;

By treating the handle as a pointer and dereferencing it, these apps
could get a pointer to the associated memory block without the hassle of
calling LocalLock. Although this isn't good programming practice, once it's
in widespread use, you have to support it.

The Win32 local heap functions maintain semantic backward compati-
bility with their Win1 6 predecessor. If you dereference an LMEM_MOVEABLE
handle, you'll get a pointer to the associated memory block. The key differ-
ence is that it's a 2-byte near pointer in Win16 but a 4-byte near pointer in
Win32. To keep up this facade of Win16 compatibility, the Win32 local
heap functions use handle tables, which are nothing new. As I described in
Chapter 2 of Windows Internals, the Win16 local heap functions use them
as well, although with a different format.

Each Win32 local heap handle table keeps information for up to eight
local handles. When a program uses more than eight local handles at once,
LocalAlloc allocates an additional local handle table for up to another eight
handles. The handle tables are allocated from the same heap as the memory
blocks they reference. These tables are kept in a linked list to facilitate find-
ing a free handle table entry. The pointer to the head of the handle table list
is kept in the process database. A handle table looks like this:

struct HANDLE_TABLE // Size == 0x48 bytes

WORD signature; // "LA" (0x414C)

NORD cHandleTables;

DWORD pPrevHandleTable;

LOCAL_HANDLE_TABLE_ENTRY

// Number of previously allocated

// handle tables 1.

// Pointer to previous handle table.

handleEntries[8];

381

382

Each LOCAL_HANDLE_TABLE_ENTRY looks like this:

struct LOCAL_HANDLE_TABLE_ENTRY

{

WORD signature: // "BS"

// "FS"

union

{

PVOID pBlock;

PVOID pNextFree;

}x;

(0x5342) if an in use entry.

(0x5346) for free entries.

// If in-use: pointer to data block.

// If free: Points to next free

// LOCAL_HANDLE_TABLE_ENTRY.

BYTE flags;

BYTE clock;

/ / These two fields are valid for in use blocks.

/ / 0x02 == discardable

// Lock count of the block.

When you allocate memory with LMEM_MOVEABLE (or GMEM_
MOVEABLE for that matter), LocalAlloc has to find an available LOCAL_
HANDLE_TABLE_ENTRY slot somewhere in the list of handle tables. After
finding a free entry, it allocates a block of the requested size and puts the block's
address into the pBlock field of the LOCAL_HANDLE_TABLE_ENTRY.
The "handle" that LocalAlloc returns is the address of the LOCAL_HANDLE_
TABLE_ENTRY. pBlock field.

Given that LMEM_FIXED blocks are just a pointer to memory but
LMEM_MOVEABLE blocks aren't, you may be wondering how KERNEL32
knows what type of handle you're using. For instance, you can pass either
LMEM_FIXED or LMEM_MOVEABLE handles to LocalFree. How does
KERNEL32 know which one is which? It's actually easy. Local heap handles
that end in 0, 4, 8 or 0xC are fixed blocks. Local handles that end in 2, 6,
0xA, or 0xE are moveable handles. This difference in handles is by design.
All memory blocks returned by HPAIloc have addresses that end in 0, 4, 8,
or 0xC. To make moveable handles always end in 2, 6, 0xA, or 0xE,
Microsoft put the pBlock pointer two bytes into the LOCAL_HANDLE_
TABLE_ENTRY structure. Incidentally, the Win16 local heap handle tables
have a similar design in this respect.

L o c a l A l l o c . 383

LocalAlloc and ILocalAlloc
The LocalAlloc code isn't much to look at. It's a call to a KERNEL32 inter-
nal function (HouseCleanLogicallyDeadHandles) followed by a jump to
ILocalAlloc. The HouseCleanLogicallyDeadHandles appears to do some-
thing related to what its name implies. However, I never saw the meat of the
function being executed, so the meaning of "logically dead handles" is
unclear.

Pseudocode for LocaIAlloc

HouseCleanLogicallyDeadHandles();

goto ILocalAlloc;

ILocalAlloc starts by looking up the address of the default process heap
from the process database. Next, it acquires the heap semaphore for the
process heap, allowing the code to pass the HEAP_NO_SERIALIZE flags
to the lower-level functions that ILocalAlloc uses later. At this point,
ILocalAlloc splits into two code paths, one for LMEM_MOVEABLE
blocks and the other for LMEM_FIXED blocks.

If allocating an LMEM MOVEABLE block, ILocalAlloc looks up the
head of the free handle list in the process database. If the free handle list is
empty, ILocalAlloc use HPAIIoc to allocate memory for a new handle table,
and then initializes the new table. One way or another, ILocalAlloc eventu-
ally gets a free handle table entry. With this entry, ILocalAlloc fills in the
fields to indicate an in-use handle.

After filling in nearly all of the handle table entry, ILocalAlloc calls
HPAlloc to obtain a memory block of the size requested from LocalAlloc.
ILocalAlloc adds 4 bytes to the allocation size so that it can use the first
DWORD of the allocation for its own purposes. What might ILocalAlloc put
in this first DWORD? Nothing less than a pointer to the handle table entry.
By doing this, the local heap functions can convert a pointer to a moveable
memory block back to its handle. Because the first DWORD of the allocated
block is used by the local heap functions, ILocalAlloc adds 4 to the block's
address when storing the block's pointer into the handle table slot.

The other code path that ILocalAlloc can take is for LMEM_FIXED
handles. In this case, the code calls HPAlloc to obtain the memory block.
The address of the block is what ILocalAlloc returns as the handle. Put
another way, the handle for an LMEM_FIXED block in the local heap is the

=

384

same as its address. Once again, this is the same as the Winl6 local heap

functions.

Pseudocode for ILocalAlloc proc

// Parameters:

// UINT uFlags:

// UINT uBytes;

// Locals:

// HANDLE hHeap:

// DWORD retHandle:
//

//

//

LOCAL_HANDLE_TABLE_ENTRY *pFreeHandle, *pHandleEntry;

LOCAL_HANDLE_TABLE * pHandleTable;

PVDID pBlock;

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId >lpProcessHeap;

uFlags &= OxFFFF8FFF; / / Turn off LMEM_INVALID_HANDLE bit if set.

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

if (uFlags & OxFFFF808D) // Check for any invalid or undefined flags,

// e,g., LMEM_INVALID_HANDLE or LMEM_MODIFY.

_DebugOut("LocalAlloc: invalid flags\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

goto return_O;

if (uFlags & LMEM_MOVEABLE)

// pNextFreeHandle is ab offset 0x58 in Process Database.

pFreeHandle = ppCurrentProcessId->pNextFreeHandle;

if (pFreeHandle)

goto have_handle_table

// Hmmm...There's no available LOCAL_HANDLE_TABLE_ENTRYs.

// Go create a new handle table.

pHandleTable = HPAlloc(hHeap, 0x48, HEAP_NO_SERIALIZE);

if (!pHandleTable)

goto return_0;

// Initialize the new handle table.

pHandleTable->signature = "LA"; // "LA" = 0x414C

0

385

// KERNEL32 keeps a linked list of LOCAL HANDLE TABLEs. Insert

// the new table at the head of the list.

if (ppCurrentProcessId->pHandleTableHead)

{

pHandleTable->cHandleTables =

ppCurrentProcessId->pHandleTableHead->cHandleTables+1;

}

else

pHandleTable->cHandleTables = 0;

// Point to first entry in the array of LOCAL_HANDLE_TABLE_ENTRYs.

// then initialize the 8 elements of the LOCAL_HANDLE_TABLE_ENTRYs.

// array.

pHandleEntry = pHandleTable + sizeof(LOCAL_HANDLE_TABLE);

pFreeHandle = pHandleEntry;

while (pHandleTable2 < end of handle table) {

pHandleEntry->signature = "FS"

pHandleEntry->pNextFree = pHandleEntry + 8;

pHandleEntry += sizeof(LOCAL_HANDLE_TABLE_ENTRY);

}

// Add the new handle table to the head of the list of handle

// tables. The pointer to the list head is kept in the process

// database.

pHandleTable->pPrevHandleTable=ppCurrentProcessId->pHandlelableHead;

ppCurrentProcessId->pHandleTableHead = pHandleTable;

have_handle_table:

if (pFreeHandle->signature != "FS")

_DebugOut("LocalAlloc: bad handle free list 2\n", 1);

// Remove this handle entry from the list of free entries.

ppCurrentProcessId->pNextFreeHandle = pFreeHandle->pNextFree;

// Modify the handle entry to describe the new block.

pFreeHandle->cLock = 0;

pFreeHandle->signature = "BS";

pFreeHandle->flags = 0;

if ((uFlags & LMEM_DISCARDABLE) == LMEM_DISCARDABLE)

pFreeHandle->flags |= 2;

if (uBytes == 0)

goto moveable_O_bytes;

L H _ H A N D L E B I T

386

if (uBytes > OxFFFFF98)

{

_DebugOut("LocalAlloc: requested size too big\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_NOT_ENOUGH_MEMORY);

goto moveable_alloc_error;

/ Call HeapAlloc to allocate the memory block of the requested size.

/ Add an extra 4 bytes, because the back pointer to the handle

// table entry needs to be stored in the first 4 bytes.

pBlock = HPAlloc(hHeap, uBytes+4, flags & HEAP_NO_SERIALIZE);

if (!pBlock)

goto moveable_alloc_error;

// Store the pointer to the data area in the handle table entry.

pFreeHandle->pBlock = &pBlock + 4;

// Store a pointer to the handle table entry in the first 4 bytes

// of the allocated block.

*(PDWORD)pBlock = pFreeHandle;

retHandle = &pFreeHandle->pBlock;

goto moveable_alloc_done

moveable_alloc_0_bytes:

pFreeHandle->pBlock = 0;

moveable_alloc_done:

if ((retHandle & 2 == 0)

_DebugOut("LocalAlloc: handle value w/o LH_HANDLEBIT set\n", 1

goto return_retHandle;

// This code allocates LMEM_FIXED blocks.

// Call HeapAlloc to allocate the memory block of the requested size.

pBlock = HPAlloc(hHeap, uBytes, flags & HEAP_NO_SERIALIZE);

if (pBlock)

{
// Verify that HeapAlloc returned a pointer that's a multiple of 4.

// (LMEM_FIXED blocks must be a multiple of 4.

if (pBlock & 2)

_DebugOut("LocalAlloc: pointer value w/ LH_HANDLEBIT set\n", 1)

L M E M _ F I X E D

retHandle = pBlock;

goto return_retHandle;

moveable_alloc_error:

// Put the LOCAL HANDLE TABLE ENTRY that we acquired earlier back

// into the free list of LOCAL_HANDLE_TABLE_ENTRYs.

pFreeHandle->pNextFree = ppCurrentProcessId->pNextFreeHandle;

ppgurrentProcessId->pNextFreeHandle = pFreeHandle;

pFreeHandle = "FS"; // (0x5346)

return_0:

retHandle = 0;

return_retHandle:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

return retHandle;

387

LocalLock and ILocalLock
In Win16, the LocalLock function serves two purposes: to prevent a block
from moving and to return the memory address associated with the handle.
In Win32, LocalLock is primarily a handle validation function, although it
does return the address of the associated block. In Win32, local heap blocks
don't move around, so there's no need to lock the blocks. And because
you can't get truly moveable memory, there's no reason to allocate
LMEM MOVEABLE blocks in the first place. Still, KERNEL32 goes
through the motions of maintaining a lock count.

The actual LocalLock function is part of the validation layer. It verifies
that the hLocal passed to it is valid from 0x10 bytes before to 7 bytes after
the pointer. Any handle -- LMEM_FIXED or LMEM_MOVEABLE I
should meet these criteria. Assuming the tests don't cause a fault, LocalLock
jumps to ILocalLock.

If the handle passed to ILocalLock is an LMEM_MOVEABLE handle,
the function subtracts two bytes from the handle to get a pointer to the
block's LOCAL_HANDLE_TABLE_ENTRY structure. With this pointer,
ILocalLock verifies the signature (BS) and retrieves the current lock count (a
BYTE). If the lock count is 0xFE, ILocalLock refuses to increment the lock
count any further. Otherwise, the function bumps up the lock count in the
LOCAL_HANDLE_TABLE_ENTRY structure and returns the pointer to
the associated memory.

* p H a n d l e E n t r y

388

If the handle given to ILocalLock is LMEM_FIXED, there's no lock
count kept for it. Still, ILocalLock takes the opportunity to verify the handle.
The handle in this case should be the same as if the block had been allocated
through HeapAlloc. Thus, there should be a HPAlloc style arena 0x10 bytes
before the handle/address. LocalAlloc grabs the size field from the arena and
checks that the appropriate bits for an in-use block are set. The LocalAlloc
return address for a valid LMEM_FIXED block is the same as the handle

passed in.

Pseudocode for LocalLock

// Parameters:

// HLOCAL hLocal

Set up a structured exception handler frame

AL = *(PBYTE)(hLocal + 7); // If the pointer is bogus, these will

AL = *(PBYTE)(hLocal - 0x10); // fault, and the exception handler

// returns a failure value to the caller.

Remove structured exception handler frame

goto ILocalLock

Pseudocode for ILocalLock

// Parameters:

// HLOCAL hLocal

// Locals:

// HANDLE hHeap;

// PSTR pszError

// BYTE lockCount;

// HEAP_ARENA pHeapArena;

//

//

LOCAL_HANDLE_TABLE_ENTRY *pHandleEntry

DWORD retValue;

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

// Verify that the local handle is even with the range of valid handles.

if (!x_IsHandleInRange(hHeap, hLocal))

{

L o c a l L o c k :

389

pszError = "LocalLock: hMem out of range\n";

goto error;

if (hLocal & 2) //A moveable block.

{
// The handle points 2 bytes into the LOCAL_HANDLE_TABLE_ENTRY

// struct. Subtract 2 bytes to get a pointer to the

// LOCAL_HANDLE_TABLE_ENTRY

pHandleEntry = hlocal - 2;

if (pHandleEntry->signature != "BS") // "BS" = 0x5342

{

pszError = "LocalLock: invalid hMem, bad signature\n";

goto error;

lockCount = pHandleEntry->cLock;

// Make sure the lock count isn't going to overflow.

if (lockCount == OxFE)

_DebugPrintf("LocalLock: lock count overflow, handle"

"cannot be unlocked\n");

if (lockCount != OxFF) // If lockCount != OxFF, bump it up.

lockCount++;

pHandleEntry->cLock = lockCount;

// Return the address of the associated data block.

retValue = pHandleEntry->pBlock

goto return_retValue;

lse // A fixed block.

// The hLocal parameter is just the pointer to the data.

// Back up to the HEAP_ARENA structure.

pHeapArena = hLocal - 0x10;

// Are the bits indicating an in-use block set in the

// HEAP_ARENA size field?

if ((pHeapArena->size & 0xF0000003) != 0xA0000001)

pszError = LocalLock: hMem is pointer to free block\n;

goto error;

g o t o

390

retValue = hLocal;

goto return_retValue;

// Just return the handle parameter, because

// it points directly to the block's memory.

error:

__DebugOut(pszError,

InternalSetLastError(

retValue = 0;

SLE_WARNING + FStopOnRing3MemoryError);

ERROR_INVALID_HANDLE):

return_retValue:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

return retValue;

LocalUnlock
The LocalUnlock function is part of the validation layer. It verifies that the
hLocal passed to it is valid from 0xl0 bytes before to 7 bytes after the pointer.
Any handle -- L M E M _ F I X E D or L M E M _ M O V E A B L E -- should meet
these criteria. Assuming the tests don't cause a fault, LocalUnlock jumps to
ILocalUnlock.

The ILocalUnlock code is a replay of the ILocalLock code, but in reverse.
If the handle parameter is an L M E M _ F I X E D handle, ILocalUnlock doesn't
have anything to do. It doesn't even bother to validate the handle like
LocalLock does. If the handle is a possible L M E M _ M O V E A B L E handle,
ILocalUnlock checks the signature byte in the handle table entry to make
sure it's a valid handle. If so, ILocalUnlock checks the block's lock count to
see whether it's safe to decrement. If it is, ILocalUnlock decrements the lock
count and returns a B O O L indicating whether the block is still locked or not.

Pseudocode for LocalUnlock

// Parameters:

// HLOCAL hLocal

Set up a structured exception handler frame

AL = *(PBYTE)(hLocal + 7); // If the pointer is bogus, these will

AL = *(PBYTE)(hLocal 0x10); // fault, and the exception handler

// returns a failure value to the caller.

Remove structured exception handler frame

goto ILocalUnlock

P s e u d o c o d e

391

Pseudocode for ILocalUnlock

// Parameters:

// HLOCAL hLocal

// Locals:

// HANDLE hHeap;

// PSTR pszError

// BYTE lockCount;

//

//

LOCAL_HANDLE_TABLE_ENTRY *pHandleEntry

DWORD retValue;

retValue = 0; // FALSE: the block isn't locked.

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

// Verify that the local handle is even with the range of valid handles.

if (!x_IsHandleInRange(hHeap, hLocal))

{

pszError = "LocalUnlock: hMem out of range\n";

goto error; }

if ((hMem & 2) == 0) // If it's a FIXED block, there's nothing to do.

goto return_retValue;

if (pHandleEntry>signature != "BS") // "BS" = 0x5342

{
pszError = "LocalUnlock: invalid hMem, bad signature\n";

goto error;

}

// The handle points two bytes into the LOCAL HANDLE TABLE ENTRY struct.

pHandleEntry = hLocal - 2;

// A lock count of OxFF seems to be some sort of error condition.

if (pHandleEntry->cLock == OxFF)

goto return retValue;

// Make sure the lock count won't underflow.

if (lockCount == 0) {

r e t u r n _ r e t V a l u e :

392

_DebugOut("LocalUnlock: not locked");

goto return_retValue;

// Decrement the lock count in the handle table entry.

pHandleEntry->cLock--;

if (pHandleEntry->cLock)

retValue = 1; // Return TRUE (the block is still locked).

goto return_retValue;

error:

_DebugOut(pszError, SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

EDI = 0;

return_retValue:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

return retValue;

LocalFree and ILocalFree
The Win32 LocalFree function is an odd duck. Before it gets to the real
code for freeing a LocalAlloc'ed handle, it first checks for a special case
handle. Somehow, KERNEL32 and KRNL386 conspire to create and use
handle groups. It's a mystery to me exactly what handle groups are
because I was unable to to find one. Regardless, handle groups are some
sort of three-way relationship between a Win16 Task database, a Win32
LocalAlloc'ed handle, and a handle group. When LocalFree detects that
this special local handle is being freed, it calls the GlobalNukeGroup
function to get rid of the handle group. The handle group list is main-
tained by KRNL386, so GlobalNukeGroup ends up calling down into
KRNL386. This is yet another case that disproves Microsoft's assertion
that KERNEL32 doesn't thunk down to KRNL386. The vast majority of
the time that LocalAlloc is called, it's not for a handle group handle. In
this situation, LocalFree reduces down to just a call to ILocalFree.

LocalFree proc

// Parameters:

// HLOCAL hMem

_CheckSysLevel(x_Another_Win16_mutext);

CheckHGHeap(); // Check: Handle Group Heap. Thunks down to KRNL386.

_EnterSysLevel(x_Another_Win16_mutext);

if (*someGlobal)

{
// *someGlobal points to a Handle Group selector.

// This is a loop that iterates through a list. This list

// associates a Win16 TDB with a Win32 LocalAlloc handle and a

// "handle group" (whatever that is). The node is considered found

// if the TDB and local handle match the current thread's TDB

// and the handle passed to this function.

while (not at end of list)

{
if (the node being searched for is found)

{
_LeaveSysLevel(x_Another_Win16_mutext)

GlobalNukeGroup(EBX);

HouseCleanLogicallyOeadHandles();

return hMem;
}

go to next node in list
}

_LeaveSysLevel(x_Another_Win16_mutext)

CheckHGHeap(); // Check Handle Group Heap yet again.

return ILocalFree(hMem);

The ILocalFree code is where a LocalAlloc'ed handle is freed. As with
most of the other Win32 local heap functions, the code for handling
LMEM_FIXED blocks is simple; it's essentially a call to the underlying
HeapXXX function. In the case of LocalFree, the code merely calls
IHeapFree.

Freeing an LMEM_MOVEABLE block in ILocalFree is considerably
more complex. After verifying that a valid local heap handle was passed,

393

I L o c a l F r e e

394

ILocalFree checks the block's lock count. If the count is nonzero, ILocalFree
complains that the block is still locked. Next, ILocalFree frees the block
associated with the handle parameter back to the heap through the
IHeapFree function. Finally, ILocalFree puts the handle table entry at the
head of the list of available handle table entries.

It's interesting to note that the ILocalFree makes no attempt to delete a
handle table when all eight of its entries are unused. That is, it's not a good
recycler that returns its empties. To verify that I wasn't overlooking some-
thing, I modified a copy of the WALKHEAP program to make 50
LocalAllocs in a row and then free the 50 handles. The resulting output
showed that all the handle tables remained in memory. As an added bonus
(not!), the heap had a nice, regular pattern to its fragmentation. The only
consolation is that the handle tables will be reused for future moveable
memory allocations.

Pseudocode for IlocalFree

// Parameters:

// HLOCAL hMem

// Locals:

// HANDLE hHeap;

// DWORD retValue;
// LOCAL_HANDLE_TABLE_ENTRY *pHandleEntry;

Set up structured exception handler frame

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

retValue = hMem;

if (hMem & 2) // A moveable block (bit 1 set)?

if (!x_IsHandleInRange(hHeap, hMem))

{

_DebugOut("LocalFree: hMem out of range\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

goto return_retValue;

}

// Back up two bytes to point at the handle table entry.

pHandleEntry = hMem - 2;

r e t V a l u e ;

395

if (pHandleEntry->signature != "BS") // 0x5342

{

_DebugOut("LocalFree: invalid hMem, bad signature\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

goto return_retValue;

}

// If the handle is still locked, complain.

if (pHandleEntry >cLock)

{

_DebugOut("LocalFree: invalid handle\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

// If the memory block hasn't been discarded, free it with IHeapFree.

// Note that the code subtracts 4 from the pBlock field to get

// the original value returned by HeapAlloc.

if (pHandleEntry->pBlock)

if (IHeapFree(hHeap, HEAP_NO_SERIALIZE, &pHandleEntry->pBlock-4))

{

retValue = pHandleEntry;

goto return_retValue; }

// Insert the handle being freed at the head of the free handle list.

pHandleEntry->pNextFree = ppCurrentProcessId->pNextFreeHandle;

ppCurrentProcessId->pNextEreeHandle = pHandleEntry;

// Set the handle table entry's signature back to the free version.

pHandleEntry->signature = "FS"; // 0x5346

retValue = 0;

}

else // A fixed block.

{

if (IHeapFree(hHeap, HEAP_NO_SERIALIZE, hMem))

retValue = hMem

else

retValue = 0;

}

return_retValue:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

Remove structured exception handler frame

return retValue;

0 x l O

396

LocalReAlloc and ILocalRealloc
The LocalRealloc function is part of the validation layer. It verifies that the
hLocal passed to it is valid from 0x10 bytes before to 7 bytes after the
pointer. Any handle - - LMEM_FIXED or LMEM_MOVEABLE I should
meet these criteria. Assuming the tests don't cause a fault, LocalRealloc
jumps to ILocalRealloc.

Pseudocode for LocalReAlloc

// Parameters:

// HLOCAL hLocal

// UINT uBytes;

// UINT uFlags;

Set up a structured exception handler frame

AL = *(PBYTE)(hLocal + 7); // If the pointer is bogus, these will

AL = *(PBYTE)(hLocal - 0xlO): // fault, and the exception handler

// returns a failure value to the caller.

Remove structured exception handler frame

goto ILocalReAlloc

ILocalReAlloc is one of the longest and most complex of the heap
functions in KERNEL32. As with the other local heap functions, the code
divides nicely into a section for LMEM_FIXED blocks and a section for
LMEM_MOVEABLE blocks. The LMEM_FIXED code is much simpler,
and consists of calling HPReAIioc, which is the underlying function for
HeapReAlloc as well. Before doing this, though, ILocalReAlloc checks to
see whether the caller is trying to modify the flags for an LMEM_FIXED
block. This is a no-no.

The ILocalReAlloc code for LMEM_MOVEABLE blocks starts by check-
ing to see whether the caller simply wants to modify the flags. If so, the code
modifies the flags in the handle's LOCAL_HANDLE_TABLE_ENTRY and
gets out. Next, the code checks to see whether it was called with a size para-
meter of 0. If so, the caller wants the block to be discarded. ILocalReAlloc
complies by passing the block's handle to the IHeapFree. Before doing this,
though, ILocalReAlloc checks whether the block is locked, and complains if
appropriate.

If the size parameter is nonzero, the caller is requesting the allocation of
a new block. If the current memory block for the handle is 0, the block has

H P A l l o c

397

been previously discarded. In this case, the function simply calls HPAlloc to
get a block of the requested size. If a memory block is already associated
with this handle, ILocalReAlloc passes the memory block's address to
HPReAlloc to let it do the messy work of reallocating the block.

Pseudocode for ILocalReAlloc

/ / Parameters:
// HLOCAL hMem

// UINT uBytes;

// UINT uFlags;

// Locals:

// DWORD fDiscardable;

// HANDLE hHeap;

// HANDLE hNewHandle;

//

//

LOCAL_HANDLE_TABLE_ENTRY * pHandleEntry;

PVOID pBlock;

uFlags &= OxFFFFDFFF; / / Turn off 0x000020•0 bit, which has no

/ / meaning.

HouseCleanLogicallyDeadHandles(); // ???

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

if (uFlags & 0xFFFFD02D) // Test for any flags that aren't

goto LocalRealloc_invalid_flags // defined, or which shouldn't be

// used (e.g., LMEM_INVALID_HANDLE),

fDiscardable = uFlags & LMEM_DISCARDABLE;

if ((uFlags & LMEM_DISCARDABLE) && !(uFlags & LMEM_MODIFY))

goto LocalRealloc_invalid_flags;

if (hMem & 2) // If an LMEM_MOVEABLE block.

{

if (!x_IsHandleInRange(hHeap, hMem))

{

_DebugOut("LocalReA]loc: hMem out of range\n",

SLE_WARNING + FStopOnRing3MemoryError):

InternalSetLastError(ERROR_INVALID_HANDLE);

goto LocalRealloc_error;

}

p H a n d l e E n t r y - > p B l o c k

398

// Point to the HANDLE TABLE ENTRY for this handle.

pHandleEntry = hMem - 2;

if (pHandleEntry->signature != "BS")

{

_DebugOut("LocalReAlloc: invalid hMem, bad signature\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

goto LocalRealloc_error;

pBlock = pHandleEntry->pBlock; // Get pointer to the data area.

f (uFlags & LMEM_MODIFY)

pHandleEntry->flags |= fDiscardable ? 2 : 0

goto done;

(uBytes == 0) // Setting size to 0 is the same as discarding

// the block.

if (pHandleEntry->cLock)

_DebugOut("LocalReAlloc: discard of locked block\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE ;

goto LocalRealloc_error

if (pBlock == 0) // If no data area is associated with this

goto done; // handle, there's nothing else to do.

// There is a data area associated with this handle. Go

// free it.

if (IHeapFree(hHeap, HEAP_NO_SERIALIZE, pBlock - 4))

goto LocalRealloc_error;

// Set the pointer to the data area to NULL, because we just

// released the memory,

pHandleEntry->pBlock = 0;
goto done;

// If we get here, we're not setting the size to NULL. This

// means that we'll need to HeapAlloc or HeapReAlloc a new block.

uBytes += 4; // Add space for back-pointer to HANDLE TABLE_ENTRY.

p B l o c k

399

if (pBlock == 0) // If there's no data area associated with this

{ // handle, we can just HeapAlloc a new area.

if (uBytes =: 0)

goto new_moveable_handle

hNewHandle = HPAlloc(hHeap, uBytes, uFlags & HEAP_NO_SERIALIZE);

if (!hNewHandle)

goto LocalRealloc_error

// Set the first DWORD of the HeapAlloc'ed area to be a pointer

// to our HANDLE_TABLE_ENTRY struct.

*(PDWORD)hNewHandle = pHandleEntry;

goto new moveable handle:

// If we get here, there's already a data area associated with

// this handle. Therefore, we'll use HeapReAlloc to get the new block.

if (pHandleEntry >cLock)

uFlags |= HEAP GROWABLE;

hNewHandle = HPReAlloc(hHeap, hMem, uBytes,

uFlags | HEAP_NO_SERIALIZE);

if (hNewHandle)

{

new_moveable_handle:

// Set the pointer to the data area to be 4 bytes into the

// block returned by HeapReAlloc/HeapAlloc. (The first DWORD

// of this block is a pointer to our HANDLE_TABLE_ENTRY struct.)

pHandleEntry->pBlock = hNewHandle+4;

goto done;

}

else // Oops! Something is wrong. Return O.

hMem = 0;

goto done;

}

else // An LMEM_FIXED block.

if (uFlags & LMEM_MODIFY)

_DebugOut("LocalReAlloc: can't use LMEM_MODIFY on fixed block\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

goto LocalRealloc_error;

L M E M _ F I X E D

400

// There's always memory associated with an LMEM _FIXED handle, so

// we can just call HeapReAlloc without all the contortions

// that an LMEM MOVEABLE block needs to go through.

hMem = HPReAlloc(hHeap, hMem, uBytes, uFlags & HEAP_NO_SERIALIZE);

goto done;

LocalRealloc_invalid_flags:

_DebugOut("LocalReAlloc: invalid flags\n",

SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_PARAMETER);

LocalRealloc_error:

hMem = O;

done:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

return hMem;

LocalHandle and ILocalHandle
The LocalHandle function is part of the validation layer. It verifies that the
pointer passed to it is valid from 0x10 bytes before to 7 bytes after the pointer.
Any local heap block -- LMEM_FIXED or LMEM_MOVEABLE -- should
meet these criteria. Assuming the tests don't cause a fault, LocalHandle jumps
to ILocalHandle.

The ILocalHandle function takes the address of a memory block and
returns the local heap handle associated with the block. This is a simple task
for an LMEM_FIXED block because the block address and the handle are the
same. However, ILocalHandle is at least kind enough to verify that the address
is really that of a HPAlloc'ed block.

The other scenario that ILocalHandle has to contend with is LMEM_
MOVEABLE handles. This is trickier, but not by much. In the pseudocode
for ILocalAlloc, I showed that for LMEM_MOVEABLE blocks, ILocalAlloc
adds 4 bytes to the allocation size. In the first 4 bytes of the allocation,
ILocalAlloc stuffs in a pointer to the local handle table entry. It's in the
ILocalHandle function that these 4 bytes come into play. ILocalHandle
merely needs to subtract 4 bytes from the pointer passed to it, and then

}

401

read in the DWORD at that spot. The DWORD should be a pointer to a han-

dle table entry. ILocalHandle verifies that the pointer does in fact point to a
handle table entry. If so, ILocalHandle returns the address of the handle table
entry plus 2. As we saw earlier, at this spot the handle table entry is pointer to
the memory block.

Pseudocode for LocalHandle

// Parameters:

// PVOID pMem

Set up a structured exception handler frame

AL = *(PBYTE)(hLocal + 7); // If the pointer is bogus, these will

AL = *(PBYTE)(hLocal - 0x10); // fault, and the exception handler

// returns a failure value to the caller.

Remove structured exception handler frame

goto ILocalHandle

Pseudocode for ILocalHandle

// Parameters:

// PVOID pMem

// Locals:

// HANDLE hHeap;

// HLOCAL hLocal

// LOCAL_HANDLE_TABLE_ENTRY * pHandleEntry;

// DWORD pLocalArena;

// PSTR pszError;

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

// Verify that the local handle is even with the range of valid handles.

if (!x_IsHandleInRange(hHeap, pMem))

{

pszError = "LocalHandle: pMem out of range\n";

goto error;

}

// If the block is MOVEABLE, then 4 bytes before the block is a

// pointer to the handle table entry. This pointer is sandwiched

L o c a l S i z e

402

// between the HPAlloc arena and the block's data.

pHandleEntry = *(PDWORD)(pMem-4);

if (x_IsHandleInRange(hHeap, pHandleEntry))

// It's an LMEM_MOVEABLE handle, Verify the signature

if (pHandleEntry->signature == "BS") { // "BS" = 0x5342

hLocal = pHandleEntry+2;

goto return hLocal; }

// Hmmm...it's not an LMEM_MOVEABLE handle. Fall through to

// see if it's LMEM_FIXED.

lse // An LMEM_FIXED handle.

pLocalArena = pMem - 0x10;

if ((pLocalArena->size & 0xF0000001) == 0xA0000000)

hLocal = pMem;

goto return_hLocal;

// If we get here, it's not a valid MOVEABLE or FIXED block

pszError = "LocalHandle: address not a heap block\n";

error:

_DebugOut(pszError, SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

hLocal = 0;

return_hLocal:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

return_hLocal;

LocalSize and ILocalSize
The LocalSize function is part of the validation layer. It verifies that the
hLocal passed to it is valid from 0xl0 bytes before to 7 bytes after the
pointer. Any handle - - LMEM_FIXED or LMEM_MOVEABLE - - should
meet these criteria. Assuming the tests don't cause a fault, LocalSize jumps

to ILocalSize.

L o c a l S i z e

403

LocalSize returns the size of the memory block associated with the
passed-in local handle. The real work of determining the size is performed
by the HeapSize function toward the end of the code. If the local handle is
LMEM_FIXED, LocalSize goes almost directly to HeapSize call.

If the handle is LMEM_MOVEABLE, LocalSize needs to first convert
the handle to a pointer to the memory block before calling HeapSize. If this
is the case, LocalSize first verifies that the local handle parameter is a valid
local handle. If it is, LocalSize grabs the pointer to the memory block from
the LOCAL_HANDLE TABLE_ENTRY structure.

The final bit of code in LocalSize applies only to LMEM_MOVEABLE
handles. As I showed in the ILocalAlloc code, LMEM_MOVEABLE memory
blocks are 4 bytes bigger than the requested size. These 4 bytes are used to
hold the pointer back to the handle table entry. To make LocalSize report
values consistent with what was LocalAlloc'ed, LocalSize subtracts 4 from
the value returned by HeapSize for LMEM_MOVEABLE blocks.

Pseudocode for LocalSize

// Parameters:

// HLOCAL hLocal

Set up a structured exception handler frame

AL = *(PBYTE)(hLocal + 7); // If the pointer is bogus, these will

AL = *(PBYTE)(hLocal - 0x18); // fault, and the exception handler

// returns a failure value to the caller,

Remove structured exception handler frame

goto ILocalSize

Pseudocode for ILocalSize

// Parameters:

// HLOCAL hLocal

// Locals:

// HANDLE hHeap;

// DWORD size;

// PSTR pszError;

// LOCAL_HANDLE_TABLE_ENTRY * pHandleEntry;

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

x _ W a i t F o r S e m a p h o r e (

404

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

if (hLocal & 2) // A moveable handle.

{

if (Ix_IsHandleInRange(hHeap, hLocal))

{

pszError = "LocalSize: hMem out of range\n";

goto error; }

// The handle points 2 bytes into the LOCAL HANDLE TABLE ENTRY

// struct. Subtract 2 bytes to get a pointer to the

// LOCAL_HANDLE_TABLE_ENTRY.

pHandleEntry = hLocal - 2;

if (pHandleEntry->signature != "BS")

pszError = "LocalSize: invalid hMem, bad signature\n":

goto error;

hLocal = pHandleEntry->pBlock

if (IhLocal)

size = 0;

goto return_size;

size : IHeapSize(hHeap, HEAP NO SERIALIZE, hLocal);

if (hLocal is a MOVEABLE block)

size -= 4;

goto return_size;

error:

_DebugOut(pszError, SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

size = 0;

return_size;

InternalLeaveCriticalSection(hHeap->pCriticalSection);

return_size;

h H e a p - > p C r i t i c a l S e c t i o n

405

LocalFlags
LocalFlags returns a local heap block's lock count in the low BYTE and the
block's flags in the second lowest BYTE. The LocalFlags code starts out by
checking the handle for validity. Next, the code splits into two paths. If the
handle is an LMEM_FIXED handle (the low nibble ends in 0, 4, 0x8 ,or
0xC), the function returns 0 (flags = LMEM_FIXED, lock count = 0). However,
LocalFlags does check to make sure the handle points to an HPAlloc'ed block. If
it doesn't, LocalFlags returns LMEM_INVALiD HANDLE.

The other case LocalFlags contends with is LMEM MOVEABLE handles.
In this scenario, the function subtracts 2 from the handle to make a pointer
to a LOCAL_HANDLE_TABLE_ENTRY. From this structure, the function
extracts the clock, flags, and pBlock fields. The lock count goes into the return
value unmodified. The flags field, however, isn't made up of LMEM_xxx
type flags. Therefore, LocalFlags has to synthesize the returned LMEM_xxx
flags from information in the flags and pBlock field. If pBlock is 0, it means
that the block has been discarded. (This should happen only if LocalReAlloc
is called with a size of 0.) As with the LMEM_FIXED case, if the passed-in
local handle looks incorrect, LocalAlloc returns LMEM_INVALID_HANDLE.

Pseudocode for LocaIFlags

// Parameters:

// HLOCAL hMem

// Locals:

// HANDLE hHeap;

// DWORD flags:

// PSTR pszError;

// WORD retValue;

// LOCAL_HANDLE_TABLE_ENTRY * pHandleEntry;

// HEAP_ARENA * pArena;

Set up structured exception handler frame

retValue = LMEM_INVALID_HANDLE;

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

// Acquire the heap semaphore so that we're not interrupted.

x_WaitForSemaphore(hHeap->pCriticalSection);

if (!x_IsHandleInRange(hHeap, hMem))

{

" L o c a l F l a g s :

406

pszError = "LocalFlags: hMem out of range\n";

goto error;

if (hMem & 2) // A moveable block.

{

// Back up two bytes to point at the LOCAL HANDLE_TABLE ENTRY.

pHandleEntry = hMem - 2;

// Look for signature at start of handle table entry.

if (pHandleEntry->signature != "BS") {

pszError = "LocalFlags: invalid hMem, bad signature\n";

goto error;

}

retValue = pHandleEntry->cLock;

if (pHandleEntry->pBlock == 0) // Is address of real data 0?

HIBYTE(retValue) |= LMEM_DISCARDED;

// If the discardable (2) bit is set in the handle table entry flags,

// turn on the LMEM_DISCARDABLE bits in the return value.

if (pHandleEntry->flags & 2)

HIBYTE(flags) |= LMEM_DISCARDABLE;

goto return_flags;

} else { // A fixed block.

// The hMem points to a HPAlloc block, so there should be an HPAlloc

// style arena 0x10 bytes earlier.

pArena = hMem - 0x10;

// Check the arena's size field to make sure it's consistent with

// an in-use block. If hMem is a bogus pointer, this will

// fault, but the structured exception handler will catch it.

if ((pArena->size & 0xF0000001) :: 0xA0000000)

{

retValue = 0;

goto return_flags

}

pszError = "LocalFlags: invalid hMem\n";

h H e a p - > s i z e ;

407

// Fall through to error code.

error:

_DebugOut(pszError, SLE_WARNING + FStopOnRing3MemoryError);

InternalSetLastError(ERROR_INVALID_HANDLE);

return_flags:

InternalLeaveCriticalSection(hHeap->pCriticalSection);

Remove structured exception handler frame

return retValue;

LocalShrink
In Win32, LocalShrink has no effect on the heap itself because Win32 heap
blocks aren't moveable. In the Win16 LocalShrink, however, the function
returns the size of the heap. Therefore, for compatibility's sake, the Win32
LocalShrink returns the size of the default process heap.LocalShrink may
have some usefulness for Win32 applications. For some strange reason, the
Win32 API doesn't seem to have a good, documented method for getting
the size of the default process heap. The LocalShrink function returns that
value in Windows 95.

Pseudocode for LocalShrink

// Parameters:

// HLOCAL hMem // Neither of the two parameters is used.

// UINT cbNewSize

// Locals:

// HANDLE hHeap;

// Get the default process heap from the process database.

hHeap = ppCurrentProcessId->lpProcessHeap;

return hHeap->size; // Size field is first DWORD in heap region.

g o t o

408

LocalCompact
Like LocalShrink, the Win32 LocalCompact function exists solely for back-
ward compatibility with Win16. Because Win32 heap blocks don't move,
the heap can't be compacted.

Pseudocode for LocalCompact

r e t u r n 0; // Easy enough?

THE WIN32 GLOBAL HEAP FUNCTIONS

The global heap functions in Windows 95 are barely there. For the most part,
they either jump directly to their local heap counterpart or, in the case of
GlobalAlloc, share the same entry point. Most of the functions that accept
HGLOBAL parameters make a token attempt to verify that a valid HGLOBAL
was passed. This less than stringent test is the same test that some of the local
heap functions use. Any block allocated with GlobalAlloc or LocalAlloc ulti-
mately comes from the HPAlloc function. Thus, there should always be valid
memory 0x10 bytes before and 7 bytes after the block.

Because the Global heap functions are so minimal, it's best to let the
pseudocode speak for itself, rather than describe each individual function.

GlobalAlloc shares the same entry point as LocalAlloc.

GlobalLock
Pseudocode for GlobalLock

Set up a structured exception handler frame

AL = *(PBYTE)(hGlobal + 7); // If the pointer is bogus, these will

AL = *(PBYTE)(hGlobal - 0x10); // fault, and the exception handler

// returns a failure value to the caller.

Remove structured exception handler frame

goto GlobalWire; // JMPs to ILocalLock.

J M P s

409

GlobalUnlock
Pseudocode for GlobalUnlock

same tests as GlobalLock

goto GlobalUnwire; // JMPs to ILocalUnlock.

GlobalFree
Pseudocode for GlobalFree

same tests as GlobalLock

goto LocalFree;

GlobalReAlloc
Pseudocode for GlobalReAlloc

// Parameters:

// HGLOBAL hGlobal

same tests as GlobalLock

goto IGlobalReAlloc; // JMPs to ILocalReAlloc.

GlobalSize
Pseudocode for GlobalSize

same tests as GlobalLock

goto IGlobalSize; // JMPs to ILocalSize.

GlobalHandle
Pseudocode for GlobalHandle

same tests as GlobalLock

goto IGlobalHandle; // JMPs to ILocalHandle,

O x F F F F F F F F

410

GlobalFlags and IGlobalFlags
Pseudocode for GlobalFlags

same tests as GlobalLock

goto IGlobalFlags;

Pseudocode for IGlobalFlags

// Parameters:

// HGLOBAL hMem

// Pass through to LocalFlags, and then turn off any bits in the

// high BYTE of the low WORD that aren't valid GMEM_xxx flags.

return LocalFlags(hMem) & OxFFFFF1FF

GlobalWire
Pseudocode for GlobalWire

goto ILocalLock;

GlobalUnWire
Pseudocode for GlobalUnWire

goto ILocalOnlock;

GlobalFix
Pseudocode for GIobalFix

// Parameters:

// HGLOBAL hMem

if (hMem != OxFFFFFFFF)

return GlobalLock(hMem); // GlobalLock ultimately calls ILocalLock.

O x F F F F F F F F

411

GlobalUnfix
Pseudocode for GlobalUnfix

// Parameters:

// HGLOBAL hMem

if (hMem != OxFFFFFFFF)

return GlobalUnlock(hMem); // GlobalUnlock ultimately

// calls ILocalUnlock.

GlobalCompact
goto LocalCompact;

MISCELLANEOUS FUNCTIONS

The last few functions I'll cover in this chapter don't fit into any of the previ-
ous categories, but are important nonetheless. I haven't included every possi-
ble memory function. Instead, I chose just a few interesting functions. (This
chapter is long enough without going into a dozen additional routines!)

WriteProcessMemory and
ReadProcessMemory
ReadProcessMemory and WriteProcessMemory are the approved method by
which one process can read and modify the memory of another. To use these
functions, you have to have a handle for the other process, and the Win32
API doesn't make it easy to get such a handle. WriteProcessMemory and
ReadProcessMemory are two key functions for Win32 debuggers. Debuggers
are in the small category of applications that need to read and write to the
memory of another process (the debuggee to be specific).

Under the hood, WriteProcessMemory and ReadProcessMemory are similar.
Therefore, I've decided to show pseudocode for just one, WriteProcess-
Memory. The only significant difference is that WriteProcessMemory calls
VWIN32 service 0x002A0017, and ReadProcessMemory uses service
0x002A0016.

W r i t e P r o c e s s M e m o r y

412

WriteProcessMemory starts out with some synchronization code. It
makes sure that it doesn't hold either the Win16Mutex or the Krn32Mutex.
The code then goes to a "must-complete' section, which means that it can't
be switched away from. WriteProcessMemory follows this with checks to
make sure that the source address is in the application private arena, which
is what the VMM documentation calls the area above 4MB and below 2GB.

The next step for WriteProcessMemory is to get pointers to the process
structures associated with the source address process. The code uses the process
structure to find the thread list for the source address process. For some reason,
the VWIN32 service that copies the memory wants the ring 0 stack address
for the current thread in the target process. Once WriteProcessMemory has
everything it needs to call into VWIN32, it acquires the Krn32Mutex and then
calls VWIN32 service 0x002A0017. After VWIN32 does its magic with
memory context, WriteProcessMemory releases the Krn32Mutex and exits
the must-complete state by calling LeaveMustComplete. If something went
wrong during these steps, WriteProcessMemory calls SetLastError to let the

caller know what went wrong.

Pseudocode for WriteProcessMemory

// Parameters:

// HANDLE

// LPCVOID

// LPVOID

// DWORD

// LPDWORD

// Locals:

// DWORD

// DWORD

// DWORD

hProcess; // Handle of the process whose memory is read.

lpBaseAddress; // Address to start writing to.

lpBuffer; // Address of buffer with data to write.

cbRead; // Number of bytes to write.

lpNumberOfBytesWritten; // Actual number of bytes written.

pProcess;
ptdb;
lastError;

// Make sure we don't already have the Krn32Mutex or Win16Mutex.

x_CheckNotSysLevel_Krn32_Win16_mutex();

// Function that emits function names and parameters to the KERNEL

// debugger if a KERNEL32 global variable is TRUE (off by default).

x_LogKernelFunction(number indicating the WriteProcessMemory function);

EnterMustComplete();

if (lpNumberOfBytesWritten)

*lpNumberOfBytesWritten = 0;

if (lpBuffer < 0 x 0 0 4 0 0 0 0 0)

goto set_invalidParam_lasterror_with_bp

if (lpBuffer < 0 x C 0 0 0 0 0 0 0)

goto set_invalidParam_lasterror_with_bp

pProcess = x_GetObject(hProcess, 0x80000010, 0);

if (!pProcess)
{

lastError = 1;

goto emit_trace_info;

}

if (some flag set in a certain pProcess field) {

lastError = ERROR_PROCESS_ABORTED;

goto set_last_error;

} myLocall = x_SomeListFunction(pProcess->threadList, 0);

if (myLocall)

{

do{

ptdb = *(PDWORD)(myLocall+8);

if (ptdb->ring0_hThread)

break;

} while (myLocall = x_SomeListFunction(pProcess->threadList, 1))
}

else

ptdb = some unitialized local variable?

if (!myLocall)
{

InternalSetLastError(ERROR_PROCESS_ABORTED);
goto done;

EnterSysLevel(Krn32Mutex);

// Call the Win32 VxD service in VWIN32.VXD to copy the memory.

lastError = VxDCall(OxOO2A0017, ptdb->ring0_hThread lpBaseAddress,

lpBuffer, cbRead, lpNumberOfBytesWritten);

413

G l o b a l M e m o r y S t a t u s

414

if (!lastError)

InternalSetLastError(lastError) ;

_LeaveSysLevel(Krn32Mutex);

done:

x_UnuseObjectSafeWrapper(pProcess);

goto emit_trace_info;

set_invalidParam_lasterror_with_bp:

INT 3

InternalSetLastError(ERROR_INVALID_PARAMETER);

emit_trace_info:

x_SomeLoggingFunction("WriteProcessMemory ptdb %08x Src %08x (%02x)"

"Dst %08x cb %d erc %d\n",

ptdb, lpBuffer, *(PWORD)lpBuffer,

lpBaseAddress, cbRead, lpNumberOfBytesWritten);

LeaveMustComplete();

return !lastError

GlobalMemoryStatus and
IGlobalMemoryStatus
The GlobalMemoryStatus function is a convenient way to get some insight
into the state of the machine's memory. The function fills in a MEMORY-
STATUS structure with information such as how many pages of physical
RAM are being used and the size of the swap file. In many ways, this func-
tion is the Win32 equivalent of the Windows 3.1 MemManlnfo routine.

The actual GlobalMemoryStatus code is just a parameter validation layer
stub. Its only test is to make sure that the pointer passed to the function points
to enough memory to hold a MEMORYSTATUS structure. Despite what the
documentation says, you don't have to initialize the dwLength field of the
MEMORYSTATUS structure before calling GlobalMemoryStatus.

D W O R D

415

Pseudocode for GlobalMemoryStatus

// Parameters:

// LPMEMORYSTATUS lpmstMemStat

Set up structured exception handler frame

// Make sure that the beginning and end of the MEMORYSTATUS

// structure is accessible,

*(PBYTE)lpmstMemStat += 0:

*(PBYTE)(lpmstMemStat+0x1F) += 0;

Remove structured exception handler frame

goto IGlobalMemoryStatus;

The IGlobalMemoryStatus does nothing more than fill in a MEMORY-
STATUS struct with an abreviated version of the information in a
DemandlnfoStruc structure. This structure is filled in by calling the
_GetDemandPagelnfo VxD function in VMM.VXD. Because ring 3 applica-
tions can't call VxDs directly, IGlobalMemoryStatus uses VMM Win32 ser-
vice 0x0001001E as a surrogate for calling _GetDemandPagelnfo. For the
benefit of those who don't have the DDK documentation in front of you, a
DemandlnfoStruc looks like this:

DemandInfoStruc struc

DWORD DILin_Total_Count

DWORD DIPhys_Count

DWORD DIFree_Count

DWORD DIUnlock_Count

DWORD DILinear_Base_Addr

DWORD DILin_Total_Free

DWORD DIPage_Faults

DWORD DIPage_Ins

DWORD DIPage_Outs

DWORD DIPage_Discards

DWORD DIInstance_Faults

DWORD DIPagingFileMax

Pages in linear address space.

Specifies the total number of physical pages

managed by the memory manager,

Specifies the number of pages currently in the

free pool.

Specifies the number of pages that are currently

unlocked. Free pages are always unlocked.

Always zero,

Total number of free virtual pages in the

current memory context. This value includes only

pages in the private arena.

Total page faults,

Calls to pagers to page in.

Calls to pagers to page out.

Calls to pagers to discard.

Instance page faults.

Current maximum size of the swap file, in pages.

Zero if swapping is turned off.

D W O R D

416

DWORD DIPagingFileInUse

DWORD DICommit_Count

DWORD DIReserved[2]

DemandInfoStruc ends

Number of swap file pages currently in use. This

is the number of pages by which physical memory

is overcommitted. Zero if swapping is disabled

or if physical memory is available for all

swappable pages.

Total committed pages.

Reserved; do not use.

No doubt, there will be many programs written that sit in the corner of
the screen and tell the user what the "memory load" is. What exactly is the
memory load? In the pseudocode, you can see that it's 50 times the committed
page count divided by the number of physical pages managed by the
Windows 95 memory manager. Put another way, it's half the percentage
ratio of physical pages to committed pages. For example, a system with
8MB of RAM and llMB of committed pages would have a memory load

of 68 (out of a maximum 100):

(11 x 50) / 8 == 68.75

And yes, you can have more committed pages than actual RAM.
Committing a page doesn't mean that RAM will always be associated with
it. Unless you pagelock the memory, Windows 95 is free to page it out.

IGlobalMemoryStatus proc

// Parameters:

// LPMEMORYSTATUS lpmstMemStat

// Locals:

// DemandInfoStruc dis;

// DWORD memLoad;

Set up structured exception handler frame

// Call the VMM Win32 VxD service to fill the struct

VxDCall(_GetDemandPageInfo, &dis, 0);

memLoad = (dis.DICommit_Count * 50) / dis.DIPhys_Count

if (memLoad < 100)

lpmstMemStat->dwMemoryLoad = memLoad;

else

lpmstMemStat->dwMemoryLoad = 100;

lpmstMemStat->dwTotalPhys =dis.DIPhys_Count * 4096;

G l o b a l A l l o c ' e d

lpmstMemStat->dwAvailPhys = dis.DIFree_Count * 4096;

lpmstMemStat->dwTotalPageFile = dis.DIPagingFileMax * 4096;

lpmstMemStat->dwAvailPageFile = 4096 *

(dis.DIPagingFileMax - dis. DIPagingFileInUse)

lpmstMemStat->dwTotalVirtual = Ox7FC00000; // Size of app private data

// area (2GB - 4MB).

lpmstMemStat->dwAvailVirtual = dis.DILin_Total_Free * 4096;

lpmstMemStat->dwLength = sizeof(MEMORYSTATUS)

Remove structured exception handler frame

417

GetThreadSelectorEntry and
IGetThreadSelectorEntry
When I saw the GetThreadSelectorEntry function, I was shocked that it was
included in the Win32 APl. GetThreadSelectorEntry has nothing to do with
threads. In fact, the hThread parameter is checked for validity, but never
used for anything. GetThreadSelectorEntry gives you read-only access to the
system VM's local descriptor tables. This is the very descriptor table that
contains the flat code and data segments for Win32 applications. It's also
the descriptor table from which Win16 applications get their code and data
segments, as well as GlobalAlloc'ed handles. This function is a valuable tool
in any system spelunker's tool kit!

Assuming you pass a valid selector to GetThreadSelectorEntry, you'll
get back an g-byte structure that's the same as an LDT descriptor. Among
the information in each descriptor is its base address and length. Because
Win32 apps have a fiat pointer that can reach anywhere, they can use this
function to convert a 16:16 address to a flat 32 address that the Win32 app
can read and write to. You can even construct your own Win32 versions of
the Win16 GetSelectorBase and GetSelectorLimit function.

Speaking of GetSelectorLimit, on page 449 of Unauthorized Windows
95, there is code for obtaining the base address of a selector. This code used
a VWIN32 VxD service call to invoke DPMI subfunction 6. This DPMI sub-
function returns the base address of the specified selector. While this method
is technically impressive, GetThreadSelectorEntry would have worked just

G e t T h r e a d S e l e c t o r E n t r y

418

as well and would have made the code simpler. Better yet, GetThread-
SelectorEntry is a documented function, which should be used in preference
to undocumented functions if at all possible.

Of primary interest in the GetThreadSelectorEntry code are the LDTAlias
and LDTPtr variables. These are both global variables in KERNEL32.DLL.
LDTPtr contains the linear address of the system VM's LDT. LDTAlias is a
selector value with read and write access to the selector table's memory. This
is the same LDT alias selector that KRNL386 uses to bash the selector table
inside the global heap functions. (See Chapter 2 of Windows Internals.)

GetThreadSelectorEntry proc

// Parameters:

// HANDLE hThread;

// DWORD dwSelector;

// LPLDT_ENTRY lpSelectorEntry;

Set up structured exception handling frame

Touch the first and last bytes that lpSelectorEntry points to.

If a fault occurs, it's considered a bad pointer, and the exception

handler returns FALSE;

Remove structured exception handling frame

goto IGetThreadSelectorEntry;

IGetThreadSelectorEntry proc

// Parameters:

// HANDLE hThread;

// DWORD dwSelector;

// LPLDT ENTRY lpSelectorEntry;

// Locals:

// PTHREAD_DATABASE ptdb;

// BOOL retValue;

// LPLDT_ENTRY pLDTAliasDesc;

// LPLDT_ENTRY pDesiredDesc;

retValue = TRUE;

x_CheckNotSysLevel_Win16_Krn32_mutexes();

x_LogSomeKernelFunction(function number for GetThreadSelectorEntry);

W i n 1 6 M u t e x

_EnterSysLevel(Winl6Mutex);

_EnterSysLevel(Krn32Mutex);

ptdb = x_ConvertHandleToK320bject(hThread, 0x20, 0);

if (ptdb) // The hThread is okay.

if (dwSelector & 0x4) // Check if it's a GDT selector. Bail if so.

InternalSetLastError(ERROR_INVALID_PARAMETER);

goto error;

pDesiredDesc = dwSelector & 0x0000FFF8; // Get offset in LDT.

// Get a ptr to LDT alias selector's descriptor in the LDT.

pLDTDesc = LDTPtr + (LDTAlias & OxOOOOFFF8);

// Check if the selector asked for is outside the upper limit

// of in-use selectors in the LDT.

if (pDesiredDesc > pLDTDesc >limit)
{

InternalSetLastError(ERROR_INVALID_PARAMETER);

goto error;
}

pDesiredDesc += LDTPtr; // Make it point into the LDT now.

// Copy the LDT descriptor into lpSelectorEntry.

memcpy(lpSelectorEntry, pDesiredDesc, sizeof(LDT_ENTRY))
}

else

error:

retValue = FALSE;
}

SomeOutputFunction("GetThreadSelectorEntry sel %04x erc %d\n",

dwSelector, (retValue ? 0 : GetLastError()));

_LeaveSysLevel(Krn32Mutex);

_LeaveSysLevel(Win16Mutex);

419

return retValue;

m a l l o c

420

The C/C++ compiler's malloc and new functions
In many cases, C/C++ programmers ignore all the operating systems mem-
ory management functions and use the C runtime library for their memory
management, specifically, the malloc and free functions. But what if you use
C++? In all PC compilers that I know of, the new operator maps directly to
malloc, and delete maps to free. The question is, how are these functions
implemented in terms of the underlying OS functionality?

In this chapter, I've shown how the heap functions (such as HeapAlloc
and HeapFree) are fairly close in functionality to malloc and free. Does this
mean that malloc and free in the C runtime libraries are just wrappers
around HeapAlloc and HeapFree? Up until Visual C++ 4.0, the answer was
no, with one exception: the CRTDLL.DLL version of the C runtime library
from Microsoft. In CRTDLL.DLL, malloc and new simply call HeapAlloc,
whereas free or delete call HeapFree. CRTDLL.DLL is used by many standard
Windows NT and Windows 95 EXEs and DLLs. This is a great idea, because
it prevents Microsoft from having to ship a separate copy of the C runtime
library in every EXE and DLL.

Unfortunately, the C compiler vendors haven't cooperated enough to
enable everyone to use the CRTDLL.DLL shipped with their operating sys-
tems. Thus, we're still stuck with separate copies of the C runtime library in
every executable or (only slightly better) shipping C runtime DLLs with our
programs. Because this scenario isn't likely to change soon, it's a good idea
to know what's going on under the hood of these runtime libraries.

I'm not going to cover malloc and free from the C runtime libraries in
the same detail as the operating system functions. Instead, I'll give enough
of an overview that you can judge for yourself how you want to implement
your memory management code.

As far as I've been able to determine, both Borland and Microsoft
implement their runtime library heaps in a similar manner. In fact, other
than the size of the heaps, the situation hasn't changed much from Windows 3.x
days. Each executable file or DLL has its own heap. A program with three
DLLs will end up having four separate heaps (one for the EXE, and one for
each of the DLLs). An allocation made in a given DLL will come from that
DLL's heap. Contrast this to the Win32 HeapAlloc function, which -- no
matter where it comes from -- allocates memory from the application's
heap (assuming that you always pass in the default process heap handle).

Rather than using the high-level operating system functions such as
HeapAlloc, the heaps provided by the C compiler RTLs use their own data
structures and memory management code. This can make it difficult to mix
and match HeapAlloc'ed and malloc'ed memory in the same program (as a
fellow programmer at Nu-Mega found out the hard way).

. .

421

By digging deep enough into some C/C++ RTL code, we can see how
malloc maps to the underlying OS functions. I did the hard work of bur-
rowing down through all the levels of the Borland C++ 4.5 RTL so that you
don't have to. A call stack showing how malloc is implemented on top of

Windows 95 functions looks like this:

malloc (HEAP.C)

_getmem (GETMEM.C)

_virt_reserve (VIRTMEM.C)

VirtualAlloc(NULL, size, MEM_RESERVE, PAGE_NOACCESS)

Aha! The C runtime library allocates big blocks of memory from the OS
using VirtualAlloc, which is essentially the same thing HeapAlloc does. The
pages in the allocated area are initially reserved (decommitted), and must be
committed with _virt_commit before they can be used. (_virt_commit is just
a wrapper around VirtualCommit.) Does this method of committing pages
as they are accessed sound familiar? It should. This is the same way that
Windows 95 commits memory to its heaps. Go back and reread the section
on hpCarve and hpCommit if you need a refresher.

The runtime libraries aren't going to call VirtualAlloc for each call to
malloc. They need to set up and maintain internal data structures to keep
track of what blocks are allocated or not, as well as keep a free list for fast
allocations. What do the heap blocks look like? This comment from

HEAP. C is illuminating:

/* .

* Knuth's "boundary tag" algorithm is used to manage the heap,

* Each block in the heap has tag words before and after it, which

* contain the size of the block:

* SIZE

* block ...

* SIZE

* The size is stored as a long word, and includes the 8 bytes of

* overhead that the boundary tags consume. Blocks are allocated

* on LONG word boundaries, so the size is always even. When the

* block is allocated, bit 0 of the size is set to 1. When a block is

* freed, it is merged with adjacent free blocks, and bit 0 of the

* size is set to 0.

* When a block is on the free list, the first two LONG words of the block

* contain double links. These links are not used when the block is

* allocated, but space needs to be reserved for them. Thus, the minimum

* block size (not counting the tags) is 8 bytes.

H m m . . .

422

H m m . . . the retail build of Windows 95 manages heap blocks in a sim-
ilar (but not identical) manner. However, the overhead of a HeapAlloc block
is only 4 bytes (for the size), but the Borland C++ runtime library uses 8
bytes per block. Note also the similarities in how Borland C++ and the
HeapAlloc function use memory in a free block to point to another free
block.

A potential gotcha when using the heaps provided by a runtime library
is their lifetime. When a DLL unloads from memory and receives the
DLL_PROCESS_DETACH notification, the runtime library calls VirtualFree
to release the heap's memory. If other DLLs have pointers into this memory
block, the pointers will suddenly become invalid. If another DLLs unloads
later on, and uses one of these pointers during its DLL_PROCESS_DETACH
processing, you'll have program crashes that are difficult to debug. Take it
from somebody who learned this painfully.

So, to answer my original question, malloc is essentially a compiler
implemented version of the Windows 95 HeapAlloc function, with at least
two key differences. First, each EXE and DLL has its own heap provided by
the runtime library, whereas all HeapAlloc allocations come from the default
process heap set up by the system. Second, the lifetime of the runtime library
heaps is shorter than that of the default process heap. In certain sequence-
related operations, there can be problems with using the runtime library
heaps. This is not to say that you should avoid new or malloc, however.
Just be aware of what they are and the potential tradeoffs.

SUMMARY

Whew! This chapter (although by far the longest in the book) has barely
touched on all the various aspects of Windows 95 memory management.
We've examined memory paging by the CPU, separate address spaces for
each process, and the memory regions that Windows 95 shares among all
processes. At the Win32 API level, we've seen how the VirtualXXX func-
tions manage pages at the page level, and the HeapXXX functions provide
memory management at a much finer level of granularity. The holdover
heap functions ported from the Win16 API (that is, the GlobalXXX and
LocalXXX functions) are really just a thin layer over the HeapXXX func-
tions. In the next chapter we'll see how the ring 3 KERNEL32.DLL commu-
nicates with the ring 0 virtual memory manager to obtain the basic building
block services that the heap functions are built atop.

c o w o r k e r sWINKERNEL32386

O ne day, several coworkers and I were hanging out in an
office, ruminating about the core architecture of Windows

95. As is often the case, the topic at hand turned to how various
components of Windows 95 have intimate knowledge of other
components. (This is usually considered a Bad Thing; something
to be avoided if possible.) This particular day, one of my col-
leagues wondered, "Why does Microsoft bother having separate
16- and 32-bit kernels, as well a kernel-like VXD? Why don't
they just ram them all together into one file and be done with it?"

In this chapter, I examine that issue. In fact, the title of this
chapter (VWINKERNEL32386) is a contraction of the compo-
nents just mentioned: VWIN32.VXD, KERNEL32.DLL, and
KRNL386.EXE. Warning: This chapter contains some pretty
advanced stuff. It's not essential to understand this chapter to
continue on with the rest of the book.

Windows application programmers will immediately
recognize KRNL386.EXE as the 16-bit KERNEL, and
KERNEL32.DLL as its 32-bit equivalent. These DLLs export
the core set of functions that every Winl6 or Win32 application
uses (for instance, LoadLibrary, _lread, and so on). (Most of)
the functions in these DLLs are documented in the standard
system header files provided with the SDK or your compiler.
For 16-bit programs, the WINDOWS.H file prototypes the

V W I N 3 2 . V X D

424

functions in KRNL386.EXE. Under Win32, WINBASE.H and WINCON.H
describe most of the functions in KERNEL32.DLL.

Unfortunately, the third kernel listed above (VWIN32.VXD) is barely
mentioned in any Microsoft documentation or header files. In fact, to my
knowledge, the only acknowledgment that VWIN32.VXD exists is the
VWIN32.H file from the Windows 95 DDK. Calling VWIN32.H "docu-
mentation'' is a stretch, especially when you learn that VWIN32.VXD is
one of the top two most important VxDs (along with the Virtual Machine
Manager, or VMM). VWIN32.VXD provides key operating system primi-
tives at ring 0 -- primatives that are used by both the 16-bit KRNL386 and
the 32-bit KERNEL32. As I discovered repeatedly throughout the research
for this book, any serious attempt to examine KRNL386 or KERNEL32
quickly drags you into the realm of VWIN32.VXD.

Seeing as how Microsoft's documentation on VWIN32.VXD is so deficient,
I tried to remedy that situation in this chapter. First, I describe VWIN32.VXD
and its interfaces. Then I show how all three kernel components are interrelated
and have knowledge of one another. Spelling this out:

* KRNL386.EXE knows about and calls into VWIN32.VXD.
* KRNL386.EXE knows about and calls into KERNEL32.DLL.
* KERNEL32.DLL knows about and calls into KRNL386.EXE.
* KERNEL32.DLL knows about and calls into VWIN32.VXD.
* VWIN32.VXD knows about and exchanges information with

KERNEL32.DLL.
* VWIN32.VXD knows about and exchanges information with

KRNL386.EXE.

Of particular interest in all these permutations is the one where
KERNEL32 calls into KRNL386.EXE. Microsoft's reviewer's guide
swears that this doesn't happen, yet Unauthorized Windows 95 proved
Microsoft's claims to be false. In this chapter, I provide a comprehensive
listing of exactly which functions KERNEL32 calls down to
KRNL386.EXE for.

Another subject Unauthorized Windows 95 touched on is Win32 VxD
services. These services provide an easy way for Win32 programs to call
into VxDs using a standard C-style calling convention. Win32 VxD services
are a major part of the Windows 95 architecture. As one example of this,
every file I/O call is eventually translated into a Win32 VxD service call.

V x D

425

(Strange as it may seem, the particular Win32 VxD service ultimately calls
the VMM.VXD Exec_PM_Int with an interrupt number of 21h. Sound
familiar? DOS just will not die, will it?)

Unfortunately, Microsoft chose not to formally document Win32 VxD
services. Since Unauthorized Windows 95 was able to devote only a couple
of pages to these crucial Win32 VxD services, I discuss them in more depth
in this chapter. Often, the best way to learn and explore undocumented
interfaces is to write tools. Thus, this chapter includes a spy program
(W32SVSPY) to monitor calls to Win32 VxD services. I had to cross quite a
few hurdles -- some of them intentionally thrown up by Microsoft -- to
make W32SVSPY work properly. Toward the end of the chapter I describe
how W32SVSPY works its magic. The techniques involved might prove
handy in your own system-level programming.

A CRASH COURSE IN VxDs

Since I'm going to be talking extensively about VWIN32.VXD in the pages
to come, it would be helpful to be at least passingly familiar with the basics
of VxDs. For the benefit of those readers who aren't VxD-heads (and I'm
certainly not one), a quick overview of VxDs is in order. If you've written
VxDs and know them cold, you can skip over this section.

As its name implies, a VxD can be a Virtual Device Driver. That is, it can
be used to virtualize a particular hardware device among multiple programs
that use it. However, nothing says that a VxD has to be associated with an
actual device. A VxD is really nothing more than a DLL that runs at the
highest privilege level of the processor (ring 0). Since VxDs run at ring 0,
there's essentially nothing they can't do. However, in exchange for all their
power, VxDs are typically difficult to write, and can't be called as easily as
regular ring 3 DLLs.

I'm not going to attempt to describe how to write VxDs, or go into all
the various nifty tricks and techniques that are available to VxD writers.
There are books like Unauthorized Windows 95 and Dave Thielen's Writing
Windows Device Drivers that cover VxDs in far more depth than I will
here. My goal is to explain just enough about VxDs so that I can move on
to describe VWIN32.VXD.

When loaded into memory, VxDs are uniquely identified by their 16-bit
device number. VxD device ID I is VMM.VXD, whereas the Virtual
Keyboard Device (VKD) uses a device ID of 0Dh. The ID for VWIN32.VXD

V x D

426

(the focus of much of this chapter) is 2Ah. You can get a fairly complete list
of the standard predefined VxDs and their IDs by looking for the
xxx_DEVICEID definitions in the VMM.INC or VMM.H files in the
Windows 95 DDK. Note that VxD IDs below 512 are reserved for
Microsoft's use. Other companies that write VxDs are supposed to request
VxD IDs from Microsoft.

Calling VxD functions from other VxDs
Just as ring 3 system DLLs have a standard method of exporting functions
for use by EXEs and other DLLs, there are provisions for allowing certain
functions in a VxD to be called by other VxDs. When the VxD is created,
all the functions that are externally callable are listed in an array. Each of
these functions is called a service. When one VxD calls into another VxD, it
doesn't use the name of the service. Rather, it uses the index number of the
function within the array. For instance, consider the following snippet from
VMM.INC:

Begin_Service_Table VMM, VMM

VMM_Service Get_VMM_Version, LOCAL

VMM_Service Get_Cur_VM_Handle

VMM_Service Test_Cur_VM_Handle

VMM_Service Get_Sys_VM_Handle

A VxD that calls the Get_VMM_Version function will be calling VMM
service 0. A call to Get_Cur_VM_Handle is really a call to VMM service 1.
The Test_Cur_VM Handle function is VMM service 2, and so forth.

The actual mechanics of a call from one VxD to the service of another
are quite interesting. Unlike ring 3 system DLLs, the VxD loader doesn't
patch up CALL instructions in the originating VxD's code to contain the
address of the destination service function. In fact, when a VxD is built,
there's no CALL instruction put into the code at all! In place of a CALL
instruction, a call to a VxD service function looks like this:

INT 20h

OD device and service number ;: A different value for each VxD service

The contents of the DWORD that follow the INT 20h aren't just ran-
domly chosen values. Rather, the high WORD contains the device number
(which I described earlier), and the low WORD contains the service number

0 0 2 A = V W I N 3 2
427

within the device. Returning to our earlier example, a call to the
Test_Cur_VM_Handle (VMM service 2) would be encoded like this:

INT 20h

DD 00010002h

Test_Cur_VM_Handle

; ; 0001=VMM device I D , 0002=service # for

To give another example, the GetSystemTime service is the third service
in VWIN32.VXD. Therefore, when the VxD is built, its encoding would be:

INT 20h

DD 002A0002h ;: 002A=VWIN32 device ID, 0002=service # for

;; GetSystemTime (service numbers start at 0)

When the ring 0 INT 20h handler is invoked, it examines the DWORD
following the interrupt instruction, and uses the device ID and service num-
ber to look up the desired target address. If this sounds slow, never fear.
After a given INT 20h in the code has been invoked once, the INT 20h han-
dler patches the code to be an actual CALL instruction. This works out
nicely, since an INT 20 followed by a DWORD takes up 6 bytes, which is
exactly what a near 32-bit indirect call takes up (that is, call DWORD PTR
[xxxxxxxx]). One way to view this is that the VxD loader doesn't patch up
all calls to imported functions at VxD load time. Rather, it fixes up only the
code locations that are actually used.

A twist to this system of dynamically fixing up VxD code via INT 20h's
occurs when the low WORD of the service number has its high bit (0x8000)
set. When this is the case, the code is patched to a JMP instruction, rather
than to a CALL. For example, the following would be a JMP to the
Test Cur_VM_Handle function, rather than a CALL:

INT 20h

DD 00018002h

Calling VxD functions from Win 16
(protected mode) code
If only VxDs were allowed to call other VxDs, Windows would be a pretty
boring place. Since VxDs can go anywhere and do anything it's only natural
that there should be a way for regular ring 3 application code to call VxDs.

V W I N 3 2 . V X D

428

This ability to get up into ring 0 code from ring 3 application code allows
applications to do things that they ordinarily wouldn't be able to do on their
own. The popular thinking these days is that whenever you come to a brick
wall where something can't be done in normal application code, you just write
a VxD and call it from the application.

Some people (myself included) would argue that this strategy should be
used sparingly. Anybody can write a VxD that's unrestricted from doing
horrible things to the system (either intentionally or unintentionally).
Personally, I think that if you can avoid writing a VxD, you should. The less
all-powerful, unrestricted code in the system, the better. I dread the day
when my hard drive is littered with vanity VxDs because inexperienced pro-
grammers figured a VxD was the only way to accomplish something. This
book covers quite a bit of ground and creates more than its share of inten-
tional mayhem without ever using a VxD.

Putting my personal opinion aside, calling a VxD from a DOS or Winl6
program is somewhat of a pain, but not difficult. A VxD can export a set of
functions that are callable from V86 (real) mode, ring 3 protected mode
(Winl6 code), or both. The VxD has separate entry points for calls made
from V86 mode programs versus ring 3 protected mode, although both
entry points can be set to the same address if desired.

To call a VxD from V86 or 16-bit protected mode, the application first
acquires an address that it can make a far CALL to. This address is
obtained by calling INT 2Fh, with 1684h in the AX register. To identify
which VxD an entry point is being requested for, the BX register is set to the
16-bit VxD ID that I mentioned earlier. Upon return from the INT instruc-
tion, the ES.DI registers contain a 16:16 far pointer that can be called to
transfer control to the VxD running at ring 0.

Let's look at a code snippet from KRNL386 that shows how KRNL386
gets the entry point for VWIN32.VXD (and that queries the version of
VWIN32.VXD while it's at it):

XOR DI,DI

MOV ES,DI

MOV AX,1684

MOV BX,002A

INT 2F

MOV AX,ES

OR AX,AX

JE failure

Zero out ES:DI in case the operation fails.

INT 2Fh, AX = 1684h -> Get Device Entry Point

002Ah = Device ID for VWIN32.VXD

ES:DI should now contain the entry point.

Is the segment part of the return address 07
Yes? Go to the failure case code.

MOV AH,00 VWIN32 service 0 = VWIN32 Get Version

I N T

429

PUSH DS

MOV DS,WORD PTR CS:[0002]

Save away the current DS on the stack.

Load DS with KRNL386's DGROUP selector.

MOV WORD PTR [lpfnVWIN32],DI

MOV WORD PTR [lpfnVWIN32+2],ES

CALL FAR [lpfnVWIN32]

Save away the entry point (in ES:DI).

Call the entry point with AH = 0.

Those of you familiar with protected mode on Intel architecture CPUs
may be scratching your head, wondering how this all works. Ring 3 code
cannot just call ring 0 code; there are protection mechanisms that prevent
this. (A full discussion of ring levels and protection is beyond the scope of
this chapter.) Ring 3 code that tries to call (that is, load) a selector with a
ring 0 privilege level will GP fault unless special arrangements are made.
The Intel architecture supports a rarely used mechanism called call gates;
call gates allow ring 3 code to call into ring 0 code in a very controlled
manner. However, there's nothing so elegant at work here.

If you were to pop into a system debugger like Softlce/W or WDEB386
and disassemble at the address returned by the INT 2Fh, AX=1684h call
shown in the previous code snippet, you'd see something like this:

:u 3B:03d0

003B:000003D0 INT 30 ; #0028:C025DB52 VWIN32(04)+0742

003B:000003D2 INT 30 ; #0028:C0002BC9 VMM(O1)+1BC9

003B:000003D4 INT 30 ; #0028:C022F713 VMM(OD)+0713

Hmm...That's strange. The entry point returned by the INT 2Fh call
points at an INT 30h instruction. What's going on here? Windows is using
an INT 30h to force the CPU from ring 3 up to ring 0. Any interrupt or
exception implicitly causes the CPU to transfer control to the appropriate
ring 0 handler address stored in the Interrupt Descriptor Table (IDT). The
Windows 95 INT 30 handler uses the CS:IP of the invoked INT 30h instruc-
tion to look up a ring 0 address that the handler should transfer control to.
In this listing, the address following the; (the semicolon) is the address that
will handle each particular INT 30h when invoked. (SoftIce/W knows how
to find and decode the dispatch table used by the INT 30h handler, so it's
able to show the handler addresses.) It's not surprising that the INT 30h han-
dler address for the VWIN32.VXD entry point lies within VWIN32.VXD
itself. If we go a step farther and unassemble at the ring 0 address assigned to
VWIN32 entry point INT 30h, we'll come to the following:

V x D

430

:u 28:c025db52

0028:C025DB52 MOVZX EAX,BYTE PTR [EBP+1D] ; Get AH value at INT 30h.

0028:C025DB56 CMP EAX,+15

0028:C025DB59 JA C025DB62

There are 16 VWIN32 PM

services· Is it within

range? If not, go to

the error-reporting code.

0028:C025DB5B JMP [C03229A4+4*EAX] Call through the service

JMP table to the appropriate

service entry point.

0028:C025DB62 PUSH C03229FC ; string ptr -> "VWIN32_PMAPI_Proc:"

; "invalid function numberNrNn"

0028:C025DB67 INT 20 VXDCall _Debug_Out_Service ; Emit error diagnostic.

The first instruction needs some explanation. When a VxD V86/PM API
routine is called, the application doesn't push arguments on the stack. The
primary reason for this is that the ring 0 VxD code uses a different stack than
the ring 3 application stack. (When the CPU switches between protection lev-
els, it also switches the stack registers to a stack specifically designated for use
by code at the new ring level.)

Since the ring 3 code can't push parameters to the VxD function, the
convention is that parameters to VxD functions are put into registers prior
to invoking the INT 30h. When the INT 30h handler calls the appropriate
ring 0 handler, it passes a pointer to a structure containing the ring 3 regis-
ter values at the time of the INT 30h. This pointer is a flat, 32-bit pointer,
and is kept in the EBP register. The structure that EBP points to is called the
Client Register Structure (see Client_Reg_Struc in VMM.INC). VxDs that
provide APIs callable by V86 or 16-bit ring 3 protected mode programs
know that they can read and write the ring 3 register values through the
client register structure pointer in EBP.

In the first instruction (in the code snippet you just saw), the handler is
loading EAX with the value that was in the AH register at the time of the
INT 30h. The convention used for calling VxD functions from V86 or ring
3 16-bit protected mode is that the function number is put into the AH reg-
ister. If the function ID is within range, the handler code uses a JMP table to
transfer control to the appropriate function entry point in VWIN32.VXD. If
the function ID is out of range, the handler prints an error message.

V x D

431

CALLING VxD FUNCTIONS FROM WIN32 CODE

The two interfaces to VxDs that I've just described date back to Windows
3.0. In Windows 95 there weren't any fundamental changes to these two
interfaces. However, Windows 95 does add yet another interface for calling
VxDs. Since Windows 95 supports running Win32 applications in addition
to running DOS and Win16 applications, it's no surprise that Microsoft has
provided a way for Win32 code to call into VxDs. This brings the total
number of VxD interfaces up to four (ring 0 VxD services, calls from V86
mode programs, calls from ring 3 16-bit protected mode code, and the new
interface, which I'll be describing next).

Because this new method of interfacing to VxDs is available only to ring
3 Win32 code, functions in this new interface are called Win32 VxD ser-
vices. The term Win32 VxD service should not be confused with regular
VxD services (which are VxD functions that can be called by other VxDs).
Nor should Win32 VxD services be confused with the Win32 Services that
you'd find in Windows NT. Windows NT Services are more like daemon
processes, and are completely unrelated to Win32 VxD services.

Alas, for reasons that make no sense (at least not to me), Microsoft
has chosen to hide Win32 VxD service interface. This may be to discour-
age people from writing code that's not portable to Windows NT, since
Windows NT doesn't support VxDs. Instead, Microsoft wants you to use
the DeviceIoControl Win32 API, which is semi-portable between
Windows NT and Windows 95. The problem is, the DeviceloControl
interface is clunkier and slower than using straight Win32 VxD Services.
In fact, in Windows 95, DeviceloControl eventually ends up calling a
Win32 VxD service anyhow!

Since Windows 95 has a much higher content of code written in C than
earlier versions of Windows, it's only natural that the Win32 VxD service
interface should be C-callable. That is, the Win32 VxD service functions
can easily be invoked by ring 3 code written in C. The parameters to Win32
VxD services are passed on the stack, just like a call to a normal function.
This is a marked improvement over the other VxD interfaces, which are
normally invoked using assembly language, since the parameters need to be
placed into registers.

432

SoftIce/W for Windows 95 knows about all the various VxD interfaces that I've been

describing in this section, including the new W i n 3 2 VxD services. You can see this by

using the VxD command in conjunction with a specific VxD name. For example, the com-

mand "VXD R E B O O T " produces the following output:

:VXD REBOOT

VxD Name Address Length Seg ID

REBOOT C00910CC 0002F0 0001 0009

REBOOT C0201F94 0002E9 0002

REBOOT C037E9AO 00010C 0083

REBOOT C02269D4 0080EE 0004

REBOOT C0233B44 00809C 0005

REBOOT C02373BC 00004B 0006

Total Memory: 3K

Init Order=24000000 Reference Data=0

PM API=C02269D4 (3B:3EC) V86 API=O (0:0)

4 VxD Services

0000 C00912D5

0001 C00912DA

0002 C00912E2

0003 C009123B

2 Win32 Services - -

0000 C0226A04 Parms=02

0001 C0226AI9 Parms=02

DDB Control PM V86 VxD Win32

C0091334 C00910CC Y N 4 2

Version 4.00

The first couple of lines give us a wealth of information. W e know (from the "Y" under

the "PM") that the R E B O O T device provides an interface for calling it from ring 3 16-bit

protected mode programs. W e also know (from the "N" under ' V 8 6 ') that the R E B O O T

device doesn't provide an interface for calling it from V86 mode code. Continuing on, we

see thai the R E B O O T device has four regular VxD services (callable by other VxDs), and

two W i n 3 2 VxD services.
Moving down to the end of the report, notice the last three lines, which concern them-

selves with the Win32 VxD services provided by the R E B O O T device. There are two of these

services, and their details are found on the last two lines. Both lines contain the entry point

address for the service, as well as the number of D W O R D parameters that the service

expects. From this information (or by studying the correct parts of V M M . I N C) , you can

deduce that each Win32 VxD service has an 8-byte (2 DWORDs) structure associated with it:

DWORD pfnService;

DWORD cParams;

// The address of the service function.

// The number of DWORD parameters.

C o n t i n u e d

Viewing VxD Interfaces in SoftIce/W

K E R N E L 3 2 . D L L , 433

Continued from previous page

I call this structure a service table entry. W h e n a V x D starts up, it has to register its

W i n 3 2 V x D services with the system. It does this by calling the _ R e g i s t e r _ W i n 3 2 _ S e r v i c e s

function in V M M . V X D . O n e of the parameters to the _ R e g i s t e r _ W i n 3 2 _ S e r v i c e s function is

a pointer to the W i n 3 2 V x D service table for the V x D . This pointer is stored in the V x D ' s

D e v i c e Descriptor Block (D D B) , which is w h e r e S o f t I c e / W is getting all the information

shown in the previous output.

Calling a Win32 VxD service is different from calling any of the other
available VxDs interfaces. Instead of invoking an interrupt or calling
through a function pointer, a call to a Win32 VxD service begins by calling
an undocumented function in KERNEL32 named VxDCall. Prior to calling
the VxDCall function, the calling code pushes any arguments to the Win32
VxD service on the stack. The final value pushed on the stack prior to the
VxDCall invocation is a DWORD similar in form to a regular VxD service
ID. That is, the high WORD specifies which VxD is to be used, and the low
WORD contains a zero-based function index. In this case, the function
index is an index into the Win32 VxD service table, rather than into the
regular ring 0 VxD service table.

An example makes this clearer. The following code invokes the
VWIN32_sleep function in VWIN32.VXD. VWIN32_sleep is the tenth
Win32 VxD service provided by VWIN32.VXD, so its function number
is 9 (Win32 VxD service functions are numbered starting from 0).

PUSH DWORD PTR [EBP+08] // Push a parameter.

PUSH 002A0009 // 002A = VWIN32, 0009 = VWIN32_sleep

CALL VxDCall

The VxDCall function is a stdcall function (meaning parameters are
passed right to left, and the callee cleans the stack). The previous code written
in C would look like this:

VxDCall(0x002A0009, parameter);

If you dump out the exports from KERNEL32.DLL, you'll find that the
first eight exported entry points (export ordinals I through 9) all refer to
the same address. This address is the VxDCall function. Why eight separate
entry points for the same function? To make a long story short: Internally,

E A X .

434

these entry points are called VxDCall@0, VxDCall@4, VxDCall@8 and so
on through VxDCali@28. The Microsoft C compiler "mangles" the names
of stdcall functions (such as VxDCall) to include an @ (an asterisk), fol-
lowed by the number of parameter bytes that the function uses. Since differ-
ent Win32 VxD services take different number of arguments, one call to the
VxDCall function may end up being translated to VxDCall@4 by the com-
piler, while another becomes VxDCall@16. By providing multiple entry
points with slightly varying names, the linker is able to resolve all the calls
to the VxDCall function, regardless of how many parameters a particular
VxDCall call uses. For the purposes of this chapter, I'm going to refer to all
of these entry points collectively as the VxDCall function. (If you've read
Unauthorized Windows 95, note that in that book the VxDCall function is
referred to as VxDCall0).

Summing up what we've learned to date, Win32 code that calls a
Win32 VxD service first pushes any parameters on the stack and then
pushes the DWORD service ID. This DWORD identifies both the VxD to
be called and the Win32 VxD service function within that VxD. Finally, the
code calls the VxDCall function in KERNEL32.DLL. When the Win32 VxD
service returns, execution resumes at the instruction immediately following
the call to VxDCalI, with all the parameters removed off the stack.

Okay, that's how calling Win32 VxD services looks like from the out-
side. Let's jump into the details of how Win32 VxD services are actually
implemented. We'll start by looking at the code for the VxDCall function:

VxDCall:

MOV EAX,DWORD PTR [ESP+04] Get service code (e,g., 0x002A0010) into EAX.

POP DWORD PTR [ESP] Move the return address up on stack so

that the call below returns directly to

the caller.

CALL FWORD PTR CS:[BFFC9004] 16:32 CALL to INT 30 instruction that

transfers control to ring 0.

The first two instructions have the net effect of removing the DWORD
VxD service ID off the stack and putting it into EAX. The return EIP pushed
by the 32-bit near call to the VxDCall function is then slid up on the stack to
occupy the place formerly held by the Win32 VxD service ID. The third
instruction is a 32-bit far call to an INT 30h instruction. Hey! We've seen

p R i n g 3 S t a c k F r a m e .

435

INT 30hs before! They're the way that V86 mode and 16-bit protected mode
programs call VxDs. However, this isn't a normal INT 30h instruction:

u 3B:000003DE: // The 16:32 pointer found at BFFC9004

003B:000003DE INT 30 ; #0028:C02301E4 VMM(0D)+11E4

This INT 30h used by the VxDCall function to transfer control to ring
0 jumps somewhere inside VMM.VXD. Let's look at some pseudocode for
what we find at that address in VMM.VXD:

// -------

// Entry point for all Win32 VxD Services (in VMM.VXD).
// .

// Parameters:

// Client_Reg_Struct * pClientRegs

// Locals:

// PVOID

// DWORD

// WORD

// WORD

// DWORD

// PROC

pRing3StackFrame // ESP at time of INT 30 call that got us here.

service_DWORD;

vxd_id; // HIWORD of the service DWORD.

service_index; // LOWORD of the service DWORD.

cParams; // # of parameters for this service.

pfnService; // The address of the service entry point,

DS = pClientRegs->Client_SS;

pRing3StackFrame = pClientRegs->Client_ESP;

// pRing3StackFrame now points to following on the ring 3 stack:
//

// Args pushed for VxDCall() <- pRing3StackFrame + C

// Return Address for VxDCall() <- pRing3StackFrame + 8

// CALL FWORD PTR CS value <- pRing3StackFrame + 4

// CALL FWORD PTR EIP value <- pRing3StackFrame + 0

access rights : LAR pClientRegs->Client_SS;

if (!(access_rights & BIG_BIT)) // If "big" bit not set, use just

// the low WORD of pRing3StackFrame.

pRing3StackFrame = LOWORD(pRing3StackFrame);

C S : E I P

436

// Fill in the client registers with the CS:EIP that ring 3 execution

// should resume at. The CS value on the ring 3 stack comes from the

// CALL FWORD PTR [xxxxxxxx] to the INT 30h. The EIP is the return

// address from the call to VxDCallO. (Yes, this is goofy.)

pClientRegs ->Client_EIP = pRing3StackFrame ->EIP;

pClientRegs ->Client_CS = pRing3StackFrame ->CS;

// Advance pRing3StackFrame to the location in the ring 3 stack where

// the VxDCall parameters are located.

pRing3StackFrame += OxC;

// Get the service DWORD param to VxDCall (e.g., 0x002A0014).

service_DWORD = pClientRegs->Client_EAX;

vxd_id = service_DWORD >> 0x10; // Which VxD is it? (Look in the high word.)

if (vxd_id < 0x40) // 0x40 is the last of the "standard" VxDs.

// Does this particular VxD even have a Win32 VxD service table?

if (ppServiceTable[vxd_id] == O)

goto error;

// If we get here, this V×D supports Win32 VxD services, Is the

// service index within the range of services provided?

service_index = LOWORD(service_DWORD);

if (ppServiceTable[vxd_id].cServices <- service index)

goto error;

service_index++; // Bias the index up by 1, since the first entry

// in a service table holds the # of services.

// Index into the Win32 service table and grab out the number of

// DWORD params for this service, as well as the entry point address

// of this service.

cParams = ppServiceTable[vxd_id].cParams;

pfnService = ppServiceTable[vxd_id].pfnService;

// Now we start some stack contortions. The parameters pushed on the

// ring 3 stack prior to the VxDCall now need to be copied to the

// ring 0 stack.

POP EAX // Remove return address from stack and save it

// away in EAX. (This is an address in VMM.)

ESP -= cParam * 4; // Make space on the stack for the arguments,

E S P

437

EDI = ESP;
// Point destination register to the space

// we made on the stack for the arguments.

PUSH EBX

PUSH EBP

PUSh EAX

// Push current VM Handle.

// Push pointer to client regs struct.

// Push return address (saved away earlier).

// If this service takes 1 or more parameters, copy them to the

// ring 0 stack location we just made.

if (cParams)
REP MOVSD // ECX = cParams, ESI = pRing3StackFrame, EDI=

//

//

//

//

//

//

At this point, the stack looks like this:

Args copied by REP MOVSD <- ESP+0Ch

Current VM handle <- ESP+08h

Client reg struct pointer <- ESP+04h

Return address from this PM API call <- ESP+00h

DS = SS // Ain't the flat model great?

// Set the ring 3 ESP upon return to point just past the parameters

// pushed on the stack by the call to VxDCall().

pClientRegs->Client_ESP = pRing3StackFrame + (cParams * 4)

goto pfnService // Jump to the service entry point.

The VxDCall handler in VMM.VXD is complicated (to put it nicely).
However, if you study it long enough, the code decomposes into a small

number of specific tasks:

1. Read in important register values from the client register structure
pointed to by EBP. These values include the ring 3 EAX (which contains
the service ID), and the ring 3 ESP (which points to the ring 3 stack

where the parameters were pushed).

2. Modify the CS and EIP register values in the client register structure so
that when the ring 0 code returns, control continues at the instruction
after the call to the KERNEL32 VxDCall function. Likewise, the code
changes the ring 3 ESP register value to effectively pop the parameters

that were pushed prior to the call.

K E R N E L 3 2 . D L L438

3. Take the Win32 VxD Service ID DWORD and break it down into its
components (the 16-bit VxD ID and the 16-bit service ID within the VXD).
The code verifies whether the VxD ID is one of the standard system
VxDs, and whether the designated VxD actually provides Win32 VxD
services. If so, the code continues and checks to make sure the 16-bit service
ID is within the range of function IDs that the VxD provides.

4. Copy the parameters pushed on the ring 3 stack over to the ring 0 stack.
5. Look up the entry point of the specified Win32 VxD service and JMP to

it. Since the function may need access to the current VM handle or the
client register structure values, the code first pushes these values before
doing the JMP.

When the Win32 VxD service function finishes and returns, control
transfers back into VMM.VXD. VMM.VXD handles the work of returning
the CPU back to ring 3 with the registers set to the values contained in the
client register structure.

WHERE CAN I FIND WIN32 VxD SERVICES?

As I mentioned earlier, Microsoft hasn't formally documented Win32 VxD
services, so the DDK isn't forthcoming with a list of VxDs that provide
Win32 VxD services. Based on my browsing around with the SoftIce/W
VXD command, I've determined that the following VxDs export Win32
VxD services (although there may be others):

VxD ID Services Description

VMM 0001 h 41 Virtual Machine Manager

REBOOT 0009h 2 Reboot device

VNETBIOS 0014h 2 Virtual NetBios device

VWIN32 002Ah 79 Virtual Win32 "device"

VCOMM 002Bh 27 Virtual COMM device

V C O N D 0038h 53 Virtual Console device

As I've shown elsewhere throughout this book, KERNEL32.DLL is a
heavy user of the VWIN32, VMM and VCOND, and VCOMM devices. In
some cases, exported KERNEL32 functions are just wrappers around a
Win32 VxD service. This is even more the case in ADVAPI32.DLL. The

R e g O p e n K e y

439

Win32 VxD services provided by VMM.VXD include registry functions
that parallel the Win32 AP1 registry functions. The exported registry func-
tions in ADVAPI32.DLL are very thin layers wrappers around calls to the
VMM Win32 VxD services.

WIN32 VxD SERVICES PROVIDED BY VFAM

The focus of this chapter is Win32 VxD services and VWIN32.VXD.
However, I'd be remiss if I didn't at least list the VxD services IDs for the
Win32 VxD services exported by VMM.VXD:

00010000h PageReserve 00010014h RegDeleteKey
00010001h PageCornmit 00010015h RegSetValue
00010002h PageDecommit 00010016h RegDeleteValue
00010003h PagerRegister 00010017h RegQueryValue
00010004h PagerQuery 00010018h RegEnumKey
00010005h HeapAllocate 00010019h RegEnumValue
00010006h ContextCreate 0001001Ah RegQueryValueEx
00010007h ContextDestroy 0001001Bh RegSetValueEx
00010008h PageAttach 0001001Ch RegFlushKey
00010009h PageFlush 0001001Eh GetDemandPagelnfo
0001000Ah PageFree 0001001Fh BlockOnlD
0001000Bh ContextSwitch 00010020h SignallD
O001000Ch HeapReAllocate 0001002Ih RegLoadKey
0001000Dh PageModifyPermissions 00010022h RegUnLoadKey
0001000Eh pageQuery 00010023h RegSaveKey
0001000Fh GetCurrentContext 00010024h RegRemapPreDefKey
00010010h HeapFree 00010025h PageChangePager
00010011h RegOpenKey 00010026h RegQueryMultipleValues
00010012h RegCreateKey 00010027h RegReplaceKey
00010013h RegCloseKey

I haven't provided information on the parameters to each of these func-
tions for the simple reason that I don't know them myself. For the purposes

K E R N E L 3 2 . D L L440

of doing research for this book, simply knowing the names of the VMM
Win32 VxD services was usually sufficient. No doubt, as time goes by, these
parameters to these services will become known. However, the parameters
for the registry-related services can be inferred by examining the documen-
tation for the Win32 function corresponding with the service.

In many other cases, the Win32 VxD service corresponds exactly with a
regular ring 0 VxD service that's described in the documentation for
VMM.VXD. For example, the Win32 VxD service listed above with the
name _PagerQuery corresponds exactly to the _PagerQuery service
described in VMM.HLP. Connect the dots yourself.

The Win32 VxD services provided by VMM.VXD can be broken down
into the following categories:

Category Win32VxD services

Page-based memory m a n a g e m e n t _GetDemandPagelnfo, _PageAttach, _PageCommit,
_PageDecommit, _PageFlush, _PageFree,
_PageModifyPermissions, _PageQuery,
_PageReserve

Virtual memory paging s u p p o r t _PageChangePager, _PagerRegister, _PagerQuery

Ring 0 heap management _HeapAIJocate,
_HeapFree, _HeapReAIIocate

Memory context m a n a g e m e n t _ContextCreate, _ContextDestroy, _ContextSwitch,
_GetCurrentContext

Registry functions _RegCtoseKey, _RegCreateKey, _RegDeleteKey,
_RegDeleteValue, _RegEnumKey, _RegEnumValue,
_RegFlushKey, _RegLoadKey, _RegOpenKey,
_RegQueryMultipleVatues, RegQueryValue,
_RegQueryValueEx, _RegRemapPreDefKey,
_RegReplaceKey, RegSaveKey, RegSetVa)ue,
_RegSetValueEx, _RegUnLoadKey

Synchronization _BlockOnlD, _SignalID

As you saw in Chapters 3 and 5, KERNEL32 definitely uses the page-based
memory- and context-management services. Other areas of KERNEL32.DLL
that aren't described in this book use the other categories of services. The
registry services are an exception, however. They're invoked by ADVAPI32.DLL
(through the VxDCall function in KERNEL32.DLL).

V x D

CALLING WIN32 VxD SERVICES ON YOUR OWN

To my knowledge, the only Microsoft code that calls Win32 VxD services is
within the Windows 95 system DLLs. However, there's no reason that regu-
lar application programs can't call Win32 VxD services too. To prove this, I
wrote the WIN95MEM program shown in Figure 6-1 (the complete sources
are on the disk accompanying this book).

441

//=================================
// WIN95MEM - Matt Pietrek 1995
// FILE: WIN95MEM.C
//=================================
#include <<windows.h>>
#include "win95mem.h"

// The DemandInfoStruc struct below is excerpted from the VMM.H file
// in the Windows 95 DDK

struct DemandInfoStruc {
 ULONG DILin_Total_Count; ; /* # pages in linear address space */
 ULONG DIPhys_Count; ; /* Count of phys pages */
 ULONG DIFree_Count; ; /* Count of free phys pages */
 ULONG DIUnlock_Count; ; /* Count of unlocked Phys Pages */
 ULONG DILinear_Base_Addr; ; /* Base of pageable address space */
 ULONG DILin_Total_Free; ; /* Total Count of free linear pages */

 /*
 * The following 5 fields are all running totals, kept from the tim * The following 5 fields are all running totals, kept from the time
 * the system was starte * the system was started
 */ */
 ULONG DIPage_Faults; ; /* total page faults */
 ULONG DIPage_Ins; ; /* calls to pagers to page in a page */
 ULONG DIPage_Outs; ; /* calls to pagers to page out a page*/
 ULONG DIPage_Discards; ; /* pages discarded w/o calling pager */
 ULONG DIInstance_Faults; ; /* instance page faults */

 ULONG DIPagingFileMax; ; /* maximum # of pages that could be in paging
file */file */
 ULONG DIPagingFileInUse; ; /* # of pages of paging file currently in use */

 ULONG DICommit_Count; ; /* Total committed memory, in pages */

 ULONG DIReserved[2];]; /* Reserved for expansion */
};

DWORD WINAPI VxDCall2(DWORD service_number, DWORD, DWORD);

void Handle_WM_TIMER(HWND hWndDlg, WPARAM wParam, LPARAM lParam)
{
 struct DemandInfoStruc dis;
 char szBuffer[256];

 // Demonstrate calling a Win32 VxD service (in this case, the
 // _GetDemandPageInfo service.
 VxDCall2(0x0001001E, (DWORD))&&dis, 0);

 wsprintf(szBuffer, "Comm: %uK", dis.DICommit_Count * 4);
 SetDlgItemText(hWndDlg, IDC_TEXT_commited, szBuffer);

 wsprintf(szBuffer, "Phys: %uK", dis.DIPhys_Count * 4);
 SetDlgItemText(hWndDlg, IDC_TEXT_physical, szBuffer);

 wsprintf(szBuffer, "%u%%",
 (dis.DICommit_Count * 100)) // dis.DIPhys_Count);
 SetDlgItemText(hWndDlg, IDC_TEXT_percentage, szBuffer);
}

BOOL CALLBACK Win95MemDlgProc(HWND hWndDlg, UINT msg,
 WPARAM wParam, LPARAM lParam)
{
 switch (msg)
 {
 case WM_INITDIALOG:
 SetTimer(hWndDlg, 0, 1000, 0); return TRUE;
 case WM_TIMER:
 Handle_WM_TIMER(hWndDlg, wParam, lParam); return TRUE;
 case WM_CLOSE:
 KillTimer(hWndDlg, 0);
 EndDialog(hWndDlg, 0);
 return FALSE;

 }

 return FALSE;
}

D I L i n _ T o t a l _ C o u n t

442

WIN95MEM uses the _GetDemandPageInfo Win32 VxD service provided
by VMM.VXD. This service is just a wrapper around a call to the regular ring
0 VxD service of the same name. As I mentioned in Chapter 5, the Win32
GlobalMemoryStatus function uses this Win32 VxD service and simply
returns selected chunks of information returned by the _GetDemandPagelnfo
service. Why use GlobalMemoryStatus and get a filtered view of the system
information, when you can go straight to same source it uses?

The _GetDemandPageInfo service expects a parameter that's a pointer
to a DemandInfoStruc structure. The service fills in this structure, which has
the following fields:

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DILin_Total_Count
DIPhys_Count
DIFree_Count
DIUnlock_Count
DILinear_Base_Addr
DILin_Total_Free
DIPage_Faults
DIPage_Ins
DlPage_Outs

D W O R D

443

DWORD
DWORD
DWORD
DWORD
DWORD
DWORD

DIPage_Discards
DIInstance_Faults
DIPagingFileMax
DIPagingFileInUse
DICommit_Count
DIReserved

I'm not going to describe all the fields listed here. If you're interested,
see the description of _GetDemandPageInfo in the VMM documentation
from the Windows 95 DDK. For the purposes of the WIN95MEM pro-
gram, we're interested in two fields, DICommit_Count and DIPhys_Count.
DICommit_Count is the total number of pages that have been allocated (or
committed) from the VMM memory manager. Note that a committed page
isn't necessarily mapped to actual RAM. Rather, it's more like a reservation
for a page to be used at some future date. The DIPhys_Count field contains
the number of pages of RAM under the control of the virtual memory man-
ager. This memory is all the memory that was available when the protected-
mode portion of Windows 95 started out. It doesn't count any memory allo-
cated via DPMI by TSRs and device drivers during the DOS load phase of
Windows 95.

Since Windows 95 supports virtual memory, it's common for the
amount of committed memory to exceed the amount of physical memory
under the control of the Windows 95 virtual memory manager. The
WIN95MEM program shows both the committed and physical memory (in
kilobytes) in a dialog box. These two figures (along with their ratio
expressed as a percentage) are updated once a second. Figure 6-2 shows the
WIN95MEM program in action. (Yes, the user interface isn't spectacular,
but it's a throwaway program, right?)

 Figure 6-2
The running WlN95MEM program shows how to call VxDCALL from an applicatian

program.

E X A M I N I N G

444

The important part of the WIN95MEM code is the call to the VxDCall
function. Since VxDCall is an undocumented function, the WIN95MEM.C
file prototypes a function called VxDCalI2 (the 2 means two parameters).
Because there are actually three parameters when you add in the Win32
VxD service ID DWORD (0x0001001E), the compiler creates a reference to
an external function called VxDCalI2@12. (There's an @12 at the end
because the function is prototyped as a stdcall [WINAPI] function). The
K32LIB.LIB file that I created to let me call undocumented KERNEL32
functions exports a function called VxDCalI2@12, so the linker is able to
resolve everything nicely. Appendix A describes the K32LIB.LIB file.

The actual call to the VxDCall function is almost anticlimactic:

VxDCall2(0x0001001E, (DWORD)&dis, 0);

The first parameter is the DWORD service ID (the combination of the
VMM device ID and the _GetDemandPageInfo function ID). The second para-
meter is a pointer to a DemandInfoStruc declared locally on the stack. The
meaning of the final parameter is unknown. I passed 0 since GlobalMemory-
Status passes 0 when it calls this service. That's all there is to it!

EXAMINING VWlN32.VXD

Now that we've gone through our whirlwind tour of VxD interfaces, I'm
going to narrow the chapter's focus and describe VWIN32.VXD. This VxD
is new in Windows 95 (meaning it wasn't in Windows 3.1 and earlier). The
16-bit VxD ID for VWIN32.VXD is 0x002A (in case you missed it the
dozen times I've mentioned it already). The distinction between what
VWIN32.VXD does and what VMM.VXD does isn't clear (at least not out-
side the hallowed halls of Microsoft). However, one generalization that can
be made about VWIN32.VXD is that it contains the Win32 VxD services
that affect process and thread scheduling and synchronization. I think of
VMM.VXD and VWIN32.VXD as a team that does the ring 0 work needed
to keep Windows 95 up and running.

VWIN32.VXD doesn't export a V86 mode APl. It does however, provide
ring 0 VxD services, 16-bit protected mode services, and Win32 VxD services.
Of all the VxDs in Windows 95, VWIN32 has (by far) the greatest number of
Win32 VxD services. If VWIN32.VXD didn't provide so many Win32 VxD
services, and if these services weren't so crucial to KERNEL32's operation, I
wouldn't have bothered to write the preceding sections on Win32 VxD ser-
vices. So, with that said, let's jump into the nitty-gritty of VWIN32.VXD!

V W I N 3 2

445

The VWIN32. VXD ring 0 VxD service APl
The first interface to VWIN32.VXD we'll look at is the services that it pro-
vides to other VxDs. Luckily, Microsoft left a list of these services in the
VWIN32.H and VWIN32.INC files from the Windows 95 DDK. For the
benefit of readers who don't live their life parked in front of a keyboard like
I do, I've provided a copy of the list in Figure 6-3. Luckily, the SoftIce/W
VxD command knows about these services, so it's easy to get a list of the
service names, along with their function IDs.

:vxd vwin32

VxD Name Address Length Seg ID DDB Control PM V86 VxD Win32

VWIN32 C0075654 0026FC 0001 002A C0076DE0 C0075654 Y N 29 79

... some output omitted for brevity

 Figure 6-3
VWIN32 Ring 0 VxD services.

V W I N 3 2 _ M M G R _ R E S E R V E

446

In this output, the left column is the service ID within VWIN32.VXD.
The middle column is the address of the service function. The right column
is the name of the service, as given in VWIN32.INC.

The list of ring 0 VWIN32 services is a mixed bag. However, there's a
strong representation among functions in the thread synchronization category.
There's also a smattering of functions that imply that VWIN32.VXD has
specific knowledge of processes (the VWIN32_GetCurrentProcessHandle,
VWIN32_GetCurrentDirectory, and VWIN32_TerminateApp services). This
is interesting primarily because VMM.VXD is only aware of threads, and
doesn't provide process-management-related functionality. VMM.VXD leaves
the process management to VWIN32.VXD.

The VWlN32. VXD 16-bit protected mode APl
Microsoft doesn't document the functions in VWIN32.VXD's 16-bit pro-
tected mode APl in the shipping Windows 95 DDK. However, a list of these
functions originally appeared in my August 1993 Microsoft Systems Journal
article, "Stepping Up to 32 Bits: Chicago's Process, Thread, and Memory
Management." At the time this article was written, these functions were
included in VWIN32.INC. Therefore, since the cat's already out of the bag,
I've listed the functions here.

VWIN32_GET_VER
VWIN32_THREAD_SWITCH
VWIN32_DPMI_FAULT
VWIN32_MMGR_FUNCTIONS

sub functions:
VWIN32_MMGR_RESERVE
VWIN32_MMGR_COMMIT
VWIN32_MMGR_DECOMMIT
VWIN32_MMGR_PAGEFREE

VWIN32_EVENT_CREATE
VWIN32_EVENT_DESTROY
VWIN32_EVENT_WAIT
VWIN32_EVENT_SET
VWIN32_PDB_INFO

AH = 0
AH= 1
AH = 2
AH = 3

AH
AH
AH
AH
AH
AH
AH
AH
AH

=3, AL=0
= 3, AL = 1
= 3, AL = 2
= 3, AL = 3
=4
=5
=6
=7
=8

V W I N 3 2 _ E X I T _ T I M E447

VWIN32_THREAD_BOOST_PRI AH = 9
VWIN32_WAIT_CRST AH = 10
VWIN32_WAKE_CRST AH = 11
VWIN32_SET_FAULT_INFO AH = 12
VWIN32_EXIT_TIME AH = 13
VWIN32_BOOST_THREAD_GROUP AH = 14
VWIN32_BOOST_THREAD_STATIC AH = 15
VWIN32_WAKE_IDLE_SYS AH = 16
VWIN32_MAKE_IDLE_SYS AH = 17
VWIN32_DELIVER_PENDING_KERNEL_APCS AH = 18

So, what might be calling these particular functions? None other than
KRNL386 itself. These functions are how the ring 3 16-bit side of Windows
95 interfaces with the ring 0 VWIN32 component. Most of the functions in
this API fall into broad categories: thread scheduling, thread synchronization,
memory management, and fault handling.

One function in the previous list that bears special mention is the
VWIN32_MAKE_IDLE_SYS function. This function is invoked from the
ring 3 Win16 scheduler in KRNL386.EXE when there are no tasks to be
scheduled. (See the Reschedule function, if you have my book Windows
Internals.) When the 16-bit KRNL386 scheduler falls into its idle loop,
KRNL386 calls the VWIN32_MAKE_IDLE_SYS function. Control doesn't
return to KRNL386 until some activity in a 16-bit application occurs.

Incidentally, the VWIN32_EXIT_TIME function in the previous table
falls into the category of fault handling. If you read Undocumented
Windows, you may remember a function called Bunny_351. In Windows
3.1 and Windows 95, Bunny_351 is called when Windows shuts down. It's
sole purpose is to change the default unhandled exception handler's address.
In Windows 95, Bunny_351 is now just a wrapper around a call to the
VWIN32_EXIT_TIME function in VWIN32.VXD.

The VWlN32. VXD Win32 VxD service APl

In the two previous APIs for VWIN32.VXD, we were lucky: Microsoft has
documented their service names and IDs. Unfortunately, we're not so lucky
with the Win32 VxD service interface. Over time, though, I've managed to

V M M

448

construct a list of known service entry points for this interface. I'll say up
front that the list, shown in the following table, isn't complete and that some
of the function names are guesses, based on observations of the KERNEL32

and VWIN32 code.

Service ID Purpose

0x002A0000
0x002A0001
0x002A0002
0x002A0003
0x002A0004
0x002A0005
0x002A0006
0x002A0007
0x002A0008
0x002A0009
0x002A000A
0x002A000B
0x002A000C
0x002A000D
0x002A000E
0x002A000F
0x002A0010
0x002A0011
0x002A0012
0x002A0013
0x002A0014
0x002A0015
0x002A0016
0x002A0017
0x002A0018
0x002A0019
0x002A001A
0x002A001B
0x002A001C
0x002A001D
0x002A001E
0x002A001F
0x002A0020
0x002A0021
0x002A0022
0x002A0023
0x002A0024
0x002A0025
0x002A0026
0x002A0027
0x002A0028
0x002A0029

GetVersion
Stuff V W I N 3 2 code pointers into caller-supplied buffer
GetSystemTime
Stuff code pointers from KERNEL32 into VWIN32's Data area
Block on some semaphore
Calls Signal_Semaphore_No_Switch on some semaphore
Calls V M M Create_Semaphore, and stuffs into global var
Calls V M M DestroySemaphore on semaphore created by 0x002A0006
VWIN32_CreateThread (including allocating TDBX)
VWIN32_sleep
WakeThread
Term inateThread
Some sort of initialization function
_VWtN32_QueueUserApc
VWIN32_Initialize
_VWIN32_QueueKemelApc
VWIN32_Int21 Dispatch
Calls IFSMgr_Win32DupHandle
VWIN32_BlockThreadSetBit
Adjust_Thread_Exec_Priority

_VWIN32_Get_Thread_Context
_VWIN32_Set_Thread_Context

Read process memory (used by ReadProcessMemory)
Write process memory (used by WriteProcessMemory)
Calls VMCPD_Get_CRO_State
Calls VMCPD_Set_CRO_SIaIe
SuspendThread
ResumeThread
??? (unknown)
WaitCrst
WakeCrst
Something to do with loading/unloading VxDs
VMCPD_Get_Version
Set_Thread_Win32_Pri
Calls Boost_With_Decay
Calls SeUInversion_Pri
Calls Release_inversion_Pri ID
Calls Release_lnversion_Pri
Calls Attach_Thread_To_Group
Calls Set_Thread_Static_Boost
CaNs Set_GroupStatic_Boost
VWIN32_Int31Dispatch

A s y n c h r o n o u s

449

Service ID Purpose

Notes:
Crst means Critical Section.

APC means Asynchronous Procedure Call.

V M C P D is the Virtual Math Coprocessor Device.

IFSMgr is the Installable File System Manager.
System_Control is the V M M . V X D ring 0 service that broadcasts system control messages to VxDs.

V W I N 3 2 .

450

As you can tell from looking at this table, VWIN32 provides numerous
Win32 VxD services -- so many, in fact, that I could probably write an
entire book on them. Another book, though; not this one. In this book, I'd
like to focus on just three of the services listed in the previous table:

0x002A0010 -- VWIN32_Int21Dispatch (the DOS interrupt)
0x002A0029 -- VWIN32_Int31Dispatch (the DPMI interrupt)
0x002A002A -- VWIN32_Int41Dispatch (the debugger notification

interrupt)

Microsoft has stated that Win32 isn't able to invoke interrupts like
Win16 code can. However, this doesn't mean that the need to use interrupts
has gone away. When Win32 code needs to invoke INT 21h, 31h, or 41h,
Win32 VxD services in VWIN32.VXD are available to do precisely what's
needed. KERNEL32.DLL uses these interrupt dispatching functions all over
the place. Let's look at code for the VWIN32_Int31Dispatch service function
in VWIN32.VXD to see how it works:

Pseudocode for VWIN32_Int31Dispatch

// Parameters:

// Client Reg_Struct * pClientRegs

// DWORD ring3_EAX

// DWORD ring3_ECX

Debug_Flags_Service(DFS_TEST_BLOCK);

EAX = pClientRegs->Client_EAX = ring3_EAX

ECX = pClientRegs->Client_EAX = ring3_ECX

Exec_PM_Int(£AX = 0x31);

if (carry set)

_Debug_Out_Service("VW32_Int31Dispatch: Exec_PM_Int Failed!\r\n");

There's not much to these interrupt dispatching services in VWIN32.
The Win32 VxD services for dispatching interrupts are just wrappers
around calls to the ring 0 Exec_PM_Int service. Much of the hype around
Windows 95 centers on the notion that DOS is supposedly gone. Since
almost all of what used to be called DOS functionality is now in VxDs,
these interrupt dispatching Win32 VxD services shouldn't be used that
much, right? Well, examine the pseudocode for the KERNEL32.DLL
FindClose function below and decide for yourself.

P s e u d o c o d e

Pseudocode for FindClose

// Parameters:

// HANDLE hFile;

x_LogSomeKernelFunction(function number for FindClose);

if (hFile == HFILE_ERROR)

goto error; Calls SetLastError(ERROR_INVALID_HANDLE),

returns FALSE to caller.

then

EAX = 71A1h

EBX = hFile;

INT 21H DISPATCH();

71Alh == Long Filename FindClose code

if (carry flag set

goto error; Calls SetLastError(ERROR INVALID_HANDLE

// returns FALSE to caller.

return TRUE;

t•en

Pseudocode for INT 21h_DISPATCH

return VxDCall(0x002A0010, EAX, ECX);

Truth be told, KERNEL32 makes dozens of calls to the
VWIN32_Int21Dispatch service. A search through KERNEL32.DLL
reveals that KERNEL32.DLL makes the following INT 21h (DOS) calls:

451

DOS Subfunction Purpose

OEOO

19OO

2AOO

2BOO

2C00

2DOO

3600

3DOO

3D02

3EOO

3FO0

4000

4200

42O1

Set default drive

G e t current drive

G e t system date

Set system date

G e t system time

Set system time

G e t disk free space

O p e n existing file - - read only

O p e n existing file - - read/write

Close file

Read file

Write file

Set current file position - - relative to start of file

Set current file position - - relative to current position

L F N452

DOS Subfunction Purpose

4202

4400

4401

4408

4409

440D

4B00

4D00

5000

5700

5701

5704

5705

5706

5707

5900

5C00

5C01

5E00

5F32

5F33

5F34

5F35

5F36

5F37

5F38

5F3B

5F3C

5F4D

5F4F

5F52

6800

7139

7 1 3 A

713B

7 1 4 1

7143

7 1 4 7

7 1 4 E

714F

7156

7160

Set current file position - - relative to end of file

IOCTL - - get device information

IOCTL - - set device information

IOCTL - - check if block device removable

IOCTL - - check if block device remote

IOCTL - - generic block device request

Exec program

Get return code

Set current PSP

Get file date/time

Set file date/time

Sel extended file attributes

??? (unknown)

??? (unknown)

??? (unknown)

Get extended error info

Lock file region

Unlock file region

Network functions

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

??? (unknown)

Commit file

LFN create directory

LFN remove directory

LFN change directory

LFN delete file

LFN get/set file attributes

LFN get current directory

LFN find first file

LFN find next file

LFN rename file

LFN get canonical filename

K E R N E L 3 2 . D L L

453

DOS Subfunction Purpose

716C LFN Extended open/create

71 A0 LFN Get Volume Information

71A1 LFN Find Close

71 A3 ??? (unknown)

71 A4 ??? (unknown)

71 A5 ??? (unknown)

71A6 LFN Get File Info By Handle

71A7 LFN File Time To DOS Time

B400 ??? (unknown)

EA00 ??? (unknown)

Wow! There are a lot of INT 21h calls being made by KERNEL32.DLL.
It looks like the memories of INT 21h continue to haunt us, even after DOS
was supposedly killed off by Windows 95. The only thing that's changed is
that the INT 21hs are being called by KERNEL32.DLL now, rather than
directly from your own code.

Why would Microsoft go through all the hassle of performing these
INT 21h's? Couldn't they just directly call the low-level operating-system
functions directly and bypass this 15-year-old INT 21h interface? The
answer is that yes, they could. However, device drivers and VxDs that hook
INT 21h calls would break if Microsoft were to do this. These drivers and
VxDs wouldn't see the basic operating system actions that they're expecting
to be able to watch. Once again, Microsoft is in the position of putting in
less than pretty code to retain backward compatibility with old applications
and device drivers.

Returning now to our earlier discussion of VWIN32.VXD's dispatching
of certain interrupts, you're probably familiar with INT 21h (DOS) and INT
31h (the DPMI interrupt). However, INT 41h may not ring any bells. INT
41h is the interrupt used by the operating system KERNEL to tell system-
level debuggers (WDEB386, SoftIce/W) of important events in the system.
For example, KERNEL32.DLL invokes the following INT 41h subfunctions
(which are listed in DEBUGSYS.INC from the DDK):

Define a 32 bit segment for Windows 32.

Notify the debugger that a segment has been freed.

Formatted output standard "C" printf syntax.

Function to display a NUL terminated string.

Tell debugger which INT 1's & 3's to grab.

Checks if the debugger wants control on the fault.

Conditional breakpoint.

u n 1454

THE VWIN32 TDBX

In Chapter 3, I described the process databases and thread databases that
KERNEL32 maintains. Seeing as how VWIN32 is so intimately involved
with the mechanics of threads and processes, it's not surprising that
VWIN32 also has its own data structure for keeping track of processes and
threads. This data structure is called a TDBX, and was referenced briefly in
Chapter 3.

There's one TDBX data structure for each thread in the system. As some
of you VxD hackers have no doubt guessed by now, pointers to TDBXs are
kept in a thread local storage (TLS) slot in the thread control block (THCB).
Thread control blocks are the basic data structure that the VMM thread
manager uses to keep track of all the threads it has created. Other VxDs can
request slots within the THCB for their own per-thread storage. They do this
via the VMM _AllocateThreadDataSlot function, which returns an offset
inside the THCB where a pointer to the per-thread data can be kept. The
VWiN32 TDBX structure is allocated in response to KERNEL32 calling
Win32 VxD Service 0x002A0008 (VWIN32_CreateThread). The pointer to
the TDBX structure is kept in the DWORD slot that's reserved for it in each
VMM thread control block.

Without further ado, let's look at the contents of a VWIN32 TDBX struc-
ture. Unlike most of the other structures described in this book, the meaning
of many of the TDBX fields can only be guessed at, based on the name.

00h DWORD ptdb
A pointer to the ring 3 PROCESS_DATABASE structure associated with
this thread. The format of this structure is given in "The Windows 95
Process Database" section in Chapter 3.

04h DWORD ppdb
A pointer to the ring 3 THREAD_DATABASE structure associated with this
thread. The format of this structure is given in Chapter 3.

08h DWORD ContextHandle
A pointer to the memory context structure for this thread's process.
Memory contexts are described in Chapter 5.

0Ch DWORD un1

Unknown.
1 Oh DWORD

Unknown.
TimeOutHandle

14h DWORD WakeParam
Unknown.
18h DWORD BlockHandle
Unknown.
1Ch DWORD BlockState
Unknown.
20h DWORD SuspendCount
The number of times that the Win32 SuspendThread function has been
called for this particular thread.
24h DWORD SuspendHandle
Unknown.
28h DWORD MustCompleteCount
When this value is nonzero, this thread can't be interrupted. The
EnterMustComplete and LeaveMustComplete functions mentioned in
Chapters 3 and 5 increment and decrement this value.
2Ch DWORD WaitExFlags
Flags for this thread. The following values are known:

0x00000001
0x00000002
0x00000004
0x00000008
0x00000010
0x00000020
0x00000040
0x00000080
0x00000100
0x00000200
0x00000400
0x00000800
0x00001000
0x00002000
0x00004000
0x00040000

WAITEXBIT
WAITACKBIT
SUSPEND_APC_PENDING
SUSPEND_TERMINATED
BLOCKED_FOR_TERMINATION
EMULATE_NPX
WIN32_NPX
EXTENDED_HANDLES
FROZEN
DONT_FREEZE
DONT_UNFREEZE
DONT_TRACE
STOP_TRACING
WAITING_FOR_CRST_SAFE
CRST_SAFE
BLOCK_TERMINATE_APC

455

D o s P D B S e g456

30h DWORD SyncWaitCount
Unknown.
34h DWORD QueuedSyncFuncs
Unknown.
38h DWORD
(APC means Asynchronous Procedure Call.)
3Ch DWORD
(APC means Asynchronous Procedure Call.)
40h DWORD pPMPSPSelector
A pointer to the protected mode PSP selector.
44h DWORD BlockedOnlD
Unknown.
48h DWORD un2[7]
Unknown.
64h DWORD
Unknown.
68h DWORD TraceCallBack
Unknown.
6Ch DWORD TraceEventHandle
Unknown.
70h WORD
Unknown.
72h WORD K16TDB
The Winl6 Task Database (TDB) selector associated with this thread's
process.
74h WORD K16PDB
The Winl6 Program Segment Prefix (PSP) selector associated with this
thread's process.
76h WORD DosPDBSeg
The real mode segment value of the PSP associated with this thread's process.
78h WORD ExceptionCount
Unknown.

T D B X

457

The first two fields of the TDBX are the most interesting. They provide
the ring 0 VWIN32.VXD with pointers to the process and thread data
structures that the ring 3 KERNEL32.DLL uses. (As you may recall from
Chapter 3, KERNEL32 keeps a pointer to the TDBX for each thread in the
ring 3 THREAD_DATABASE structure. Putting two and two together, you
can see that the KERNEL32.DLL THREAD_DATABASE and the
VWIN32.VXD TDBX structure circularly reference each other.)

A few other TDBX fields also bear closer examination. At offset 8 is a
pointer to the memory context for the thread (actually, for the thread's owner
process). Also, as we saw in Chapters 3 and 5, the MustCompleteCount field
is crucial to the lowest level of thread synchronization, when a thread
absolutely shouldn't be interrupted.

Near its end, the TDBX structure contains a selector to the Win16 Task
Database that every process gets (be it 16- or 32-bit). The last two fields are
protected and real mode pointers to the Program Segment Prefix for the
thread's owning process. Obviously, the ring 0 VWIN32.VXD needs to
know about DOS data structures as well as Win16 KRNL386 data struc-
tures. The main point is that all three Windows 95 kernel components (the
16-bit KRNL386.EXE, the ring 3 KERNEL32.DLL, and the ring 0
VWIN32.VXD) all have knowledge of one another. We'll look at these
interrelationships next.

HOW THE THREE WINDOWS 95 KERNELS COMMUNICATE

After taking you on a long and winding tour through VWIN32.VXD, I've
finally laid sufficient groundwork to show how all three of the Windows 95
kernels communicate with each other. The extent of the communication and
interactions between the three Windows 95 kernel components is surprising,
at least to me. Why is this? In my (admittedly unrealistic) view of things, I
think of an operating system kernel as an independent entity, not reliant on
anything else. It's the foundation upon which everything else is built, so it
shouldn't depend on outside components. Put another way, I'd like to think
that a kernel can be treated as a black box. Understanding the workings of
the black box shouldn't require knowing anything about components out-
side the box. However, as I've shown throughout this book, these three ker-
nel black boxes aren't really so black. What I'll do next is show how each
kernel has explicit knowledge of and interactions with the other kernels.

VWlN32 knowledge of KRNL386
The first indication that VWIN32.VXD knows about KRNL386 and its data
comes near the end of the TDBX structure, where you'll find the Win16 Task
Database (TDB) selector for the process that the TDBX is associated with.
However, a much more dramatic example of VWIN32's knowledge of
KRNL386 comes from the pseudocode for a routine in VWIN32.VXD that I
call ThreadSwitchCallback.

ThreadSwitchCallback is called by VMM.VXD whenever the thread
scheduler switches to a new thread. The ThreadSwitchCallback function is
where the pre-emptive multithreading Win32 meets the non-preemptive
view of the Win16 KRNL386.EXE. It's also where the multitasking Win32
joins up with the single tasking MS-DOS. Make no mistake about it,
ThreadSwitchCallback plays a starring role in making Windows 95 appear
as a full-blown multitasking system to some parts of Windows 95, and like
DOS/Windows 3.1 to other parts.

Pseudocode for ThreadSwitchCallback

// Parameters:

// THCB *pCurrentTHCB, *pOldTHCB;

// Locals:

// PTDBX pNewTDBX, pOldTDBX;

// Pointer to Thread Control Blocks.

// Pointers to TDBX structures.

// On entry, EAX is the old THCB and EDI is the current THCB

// (THCB - thread control block).

pOldTBBX = pOldTHCB ->TDBX_pointer;

if (!pOldTDBX)

return;

// Make sure the parameter that points to the old thread database

// matches what VWIN32.VXD has saved away in a global variable. (cur_ptdb)

if (pOldTDBX ->ptdb != cur_ptdb)

_Debug_Out_Service("VWin32: invalid current Win32 thread\r\n");

// Update VWIN32 current thread global var.

// Update VWIN32 current process global var.

// Update VWIN32 current TDBX global var.

458

C u r C o n t e x t

459

// This line bashes the CurTDB global variable in KRNL386.EXE.

*pWin16CurTDB = pNewTDBX->K16TDB;

// If the new thread differs from the old thread, update the PSP

// segment down in DOS, and save away the old PSP segment.

if (prevTDBX != pNewTDBX)

{

// Save away the current PSP segment for the previous thread.

prevTDBX->DosPDBSeg

= Get_Set_Real_DOS_PSP(ECX=0, EBX = Get_Sys_VM_Handle());

prevTDBX = pNewTDBX; // prevTDBX is a VWIN32 global variable.

// Switch the memory address context.

if (pNewTDBX->ContextHandle)

CurContext = pNewTDBX->ContextHandle; // Update VWIN32 global var.

_ContextSwitch(pNewTDBX->ContextHandle);

After doing some preliminary sanity checking, ThreadSwitchCallback
updates the global variable pointers that VWIN32 keeps to the current ring
3 process and thread databases. At the same time, it updates the global vari-
able that VWIN32 uses to point at the current TDBX structure. Next,
ThreadSwitchCallback does something that stunned me when I first saw it
happen in SoftIce/W. Seemingly out of nowhere, the ring 0 VWIN32.VXD
smashes the CurTDB global variable in KRNL386.EXE.

Up until Windows 95 came along, CurTDB was sacred. The only way
that CurTDB could change was for Windows to call the core scheduling
routine in Windows 3.x (that is, the Reschedule function). The nice orderly
world of cooperative multitasking in Windows 3.x collided head-on with
pre-emptive multitasking in Windows 95, and pre-emptive multitasking
won. It's a sick, sick world when something as fundamental as the current
task global variable in KRNL386 can be bashed by another component that
few programmers are even aware of. (Of course, you know about VWIN32
since you're reading this chapter, but my point is still valid.)

T h r e a d S w i t c h C a l l b a c k

460

The remaining chores of ThreadSwitchCallback are housecleaning
related to multitasking. The PSP segment of the outgoing thread is saved
away in its TDBX structure. Next, the code takes the incoming thread's PSP
segment and uses it to set the current PSP segment in the system VM. This
PSP switching isn't new to Windows 95. Windows 3.1 did something simi-
lar to this, albeit in ring 3 KRNL386 code. The last thing ThreadSwitch-
Callback does is to switch the current memory context to that of the incom-
ing thread. As Chapter 5 describes, the switching of memory contexts is
what allows each process to have its own private address space. In
Windows 95, the process private address space is above 4MB and 2GB in
the linear address range.

VWIN32 knowledge of KERNEL32.DLL
The primary indication that VWIN32 knows about KERNEL32 is the pres-
ence of pointers to the THREAD_DATABASE and PROCESS_DATABASE in
the TDBX structures used by VWIN32. VWIN32 also keeps global variables
with pointers to the current process and thread structures as maintained by
KERNEL32.DLL. Beyond processes and threads, VWIN32.VXD obtains a
list of pointers to routines in KERNEL32.DLL during KERNEL32's startup
phase. KERNEL32.DLL willingly serves up this information by passing the
function addresses as parameters to Win32 VxD service 0x002A0003.

KERNEL32.DLL knowledge of VWIN32
By far, the biggest proof that KERNEL32 knows about VWIN32 is the fact
that KERNEL32 calls the Win32 VxD services provided by VWIN32. This
has been shown throughout this book, especially in preceding sections of this
chapter. There's not much more to be said here on this particular topic.

Beyond Win32 VxD services, additional cooperation between KERNEL32
and VWIN32.VXD occurs when VWIN32.VXD hands over a list of function
addresses within VWIN32.VXD during a particular Win32 VxD service call.
The call in question is Win32 VxD service 0x002A0001, which is called by the
FInitPager function in KERNEL32.DLL. Presumably, KERNEL32.DLL will
call back these VWIN32.VXD addresses during page fault handling. As shown
in Unauthorized Windows 95, the VMM page fault handler calls (at ring 0!)
into KERNEL32.DLL's code. It's not a stretch, therefore, to believe that
VWIN32 would be passing the addresses of its routines to KERNEL32.DLL
during KERNEL32.DLL's paging initialization.

K E R N E L 3 2 . D L L

461

KERNEL32.DLL knowledge of KRNL386.EXE
(or, What Microsoft isn't telling you)
According to Microsoft's Windows 95 technical marketing material, the
32-bit KERNEL32 doesn't rely on KRNL386 for any of its functionality.
(Contrast this to the USER and GDI components, where Microsoft will-
ingly admits that 32-bit component's code thunks down to the Winl6
component.) Unauthorized Windows 95 completely shredded Microsoft's
claim that KERNEL32.DLL doesn't call the 16-bit KRNL386.EXE.
However, the extent to which KERNEL32 calls KRNL386 hasn't been
known until now.

I won't attempt to duplicate that book's excellent explanation of the
thunking between KERNEL32 and KRNL386.EXE in Windows 95.
However, I can offer something new - - a list of functions in KRNL386.EXE
called by KERNEL32.DLL. If this isn't interesting, I don't know what is.
This list is especially relevant in light of Microsoft's claims that calling any
KERNEL32 function can't result in the calling thread waiting to acquire the
Win16Mutex. As you can see in the following table, there is a nontrivial set
of KERNEL32 functions that will in fact block on the Win16Mutex.

Lest you think that these functions can't cause problems, consider the
profile functions (for example, GetPrivateProfileSection). Typically, they'll
access your hard disk and return quickly. However, what if the file they're
looking for is on a CD-ROM drive, and there's no disk in the drive? The
CD-ROM driver may take many seconds to time out, and during this whole
time, the Win16Mutex is owned by the calling task. (This exact scenario
really happened to me during the Windows 95 beta.)

A word of explanation on the following table is in order. The names in the
left column are the names that KERNEL32 uses internally. If a special KER-
NEL32 internal flag is set, KERNEL32 emits these strings to the debug termi-
nal. Some of these functions turn out to be regular, exported KERNEL32 func-
tions. Other functions in the left column are undocumented, or variations on
exported KERNEL32 functions. It's doubtful that normal applications will call
them. For example, LoadLibrary16 calls the 16-bit LoadLibrary in KRNL386.
LoadLibrary16 is exported from KERNEL32.DLL with an export ordinal of
35, but it is not the same as the regular KERNEL32.DLL LoadLibrary func-
tion. Likewise, the WritePrivateProfileSection32A function is not the same as
the regular KERNEL32 WritePrivateProfileSectionA function. The names have
to match exactly.

G e t P r i v a t e P r o f i l e S t r u c t 3 2 A

462

The smattering of function names in the right column of the following
table are the set of functions that the KERNEL32 to KRNL386 thunk calls
directly. If a function name isn't provided in this column, the thunk doesn't
call the exported function directly. More often than not, the thunk called
the internal version of the function in KRNL386, rather than the exported,

wrapper function.

KERNEL32.DLL KRNL386.EXE
Internal Name Exported Name

TerminateZombie
DiagOutput16
DispatchRITInput
GetFastQueue
SetVolumeLabel16
PK16FNF
CornmConfigThk
InitAtomTabJe
GetAtomNameA
DeleteAtom
FindAtomA
AddAtomA
GlobalLack16
IsDriveCDRom
ExecConsoleAgent
ThkOpenFile
GetErrorMode
SetErrorMode16
GetSystemDirectoryA
GetWindowsDirectoryA
GlobalGetAtomNameA
GlabalDeleteAtom
GlobalFindAtomA
GlobalAddAtomA
GetPrivateProfileSectionNames32A
WritePrivateProfileStruct32A
GetPrivateProfileStruct32A
WriteProfileSectionA
GetProfileSectionA
WritePrivateProfileSection32A
GetPrivateProfileSection32A
WritePrivateProfileString32A
GetPrivateProfileString32A

DiagOutput

KERNEL.625

GlabalLock

OpenFile

GetSystemDirectory
GetWindowsDirectory

GetPrivateProfileSectionNames
WritePrivateProfileStruct
GetPrivateProfileStruct
WriteProfileSection
GetProfileSection
WritePrivateProfileSection
GetPrivateProfileSection
WritePrivateProfileString

G e t P r o d u c t N a m e

463

KERNEL32.DLL KRNL386.EXE
Internal Name Exported Name

WriteProfileStringA WriteProfileString

GetProfileStringA

GlobalHandle16

GlobalSize16

GlobalFlags16

GlabalUnlock16

GlobalFree16

GlobalReAIIoc16

GlobalAIIoc16

WinExecEnv

PrivateGetModuleFileName

GelProductName

GelWinFlags

GetModuleName16

GetTaskName16

SetTaskName16

ThkDeleteTask

ThkCreateTask

ThklnitWin32Task

FreeSelector16

ThunklnitLSWorker16

GetProcAddress16

FreeLibrary16

LoadLibrary16

GlobalUnWire16

GlabalWire16

GlobalUnfix16

GlobalFix16

GlobalNukeGroup

CheckHGHeap

SegCommonThunkDetach32

SegCommanThunkAttach32

GrowMBABIock

FakeThunkTheTemplateHandle

TCD_UnregisterPDB32

TCD_Enum

WOWGIobaJLockSize16

WOWGIobalUnlockFree16

WOWGIobalAIIocLock16

WOWGIobalUnlock16

WOWGIobalLock16

GlobalHandle

GlobalSize

GlobalFiags

GlobalUnlock

GlobalFree

GlobalRealloc

GlobalAIIoc

GetModuleFileName

GetProductName

GetWinFlags

FreeLibrary

LoadLibrary

GlobalUnwire

GlobalWire

GlobalUnfix

GbbalFix

GlobalUnlock

GlobalLock

W i n 1 6 M u t e x

464

KERNEL32.DLL KRNL386.EXE
Internal Name Exported Name

WOWGIobalFree16
W O W G b b a l A I I o c 1 6
WOWDirectedYield16
W O W Y i e l d 1 6
Yield16
FreeLibrary16ByName
SSChk
UTThunkLSHelper
UTUnregisterlnt
UTRegisterlnt
UTProcessExit
FreeCB

GlobaIFree

DirectedYield
Yield

I've noticed that many Windows 95 programmers are anxious to know
which KERNEL32 functions can block on the Win16Mutex during the
journey down to KRNL386. Microsoft's claims that none of them block is
utterly bogus. By studying the list in the next table, you can easily consoli-
date the functions into a few categories of KERNEL32 functions that can in
fact block while waiting for the Win16Mutex.

Function Category Function Names

Atom functions

Directory functions
Selected W I N . I N I file functions

AddAtomA, DeleteAtom, FindAtomA, GetAtomNameA,
GlobalAddAtomA, GlobalDeleteAtom,
GlobalFindAtomA, GlobaJGetAtomNameA,
InitAtomTable
GetSystemDirecloryA, GetWindowsDirectoryA

GetProfileSectionA, GetProfileStringA,
WriteProfileSectionA, WriteProfileStringA,

KERNEL32 also knows about specific global variables in KRNL386.EXE.
We saw earlier how VWIN32.VXD parties with a KRNL386.EXE global vari-
able (for example, CurTDB). In the case of KERNEL32, the most glaring example
of its use of KRNL386 global variables is the Win16Mutex. The Win16Mutex
is actually just a CRITICAL_SECTION structure that's kept in KRNL386.EXE's
DGROUP segment. How does KERNEL32 get hold of the address of the
Win16Mutex? KRNL386.EXE passes it to KERNEL32.DLL as part of an
initialization call that KRNL386 makes after loading KERNEL32.DLL.

465

KRNL386 knowledge of KERNEL32.DLL
Just as KERNEL32 has a laundry list of functions that it calls in
KRNL386.EXE, the exact opposite is also true. The following table lists
the functions that KRNL386 calls up to KERNEL32.DLL for.

Function Category Function Names

Process management functions

Thread management functions

Module management functions

Directory management functions

File I/O functions

32-bit heap functions

Synchronization functions

Fault handling functions

W I N O L D A P support functions

Cleanup functions

Miscellaneous functions

CreateProcessFromWinExec, IFatalAppExit, NukeProcess,
RegisterServiceProcess, ThunkExitProcess, ThunkMapProcessHandle,
ThunkCreateProcessWin16, WinExecWait

IsThreadId, ThunkCreateThread16, ThunkTerminateThread,

GetModuleHandle32, GetNEPEBuddyFromFileName32,
LoadLibraryEx32W, ThunkFreeLibrary32 (free a Win32 DLL),
ThunkGetHModK16FromHModK32 (get the Win16 H M O D -
ULE from a Win32 HMODULE), ThunkGetModuleFileName,
ThunkLoadLibrary32 (load a Win32 DLL),

GetCurrentDirectory (stored in the KERNEL32 process data
base for each process), SetCurrentDirectory32,
ThunkGetCurrentDirectory

FindClose, FindFirstFile, FindNextFile (16 bit versions of the
Win32 FindXXX functions), FileTimeToDosDateTime,
OpenFileEx16And32, ThunkCIoseDOSHandles,
ThunkCIoseW32Handle,

LocalAIIoc32NG, ThunkLocal32AIIoc, ThunkLocal32Free,
ThunkLocal32Init, ThunkLocal32ReAIIoc,
ThunkLocal32SizeThkHIp, ThunkLocal32Translate,
ThunkLocal32ValidHandle

ThunkCreateW32Event, ThunkResetW32Event,
ThunkSetW32Event, WaitForMultipleObjects,
WaitForSingleObject

CreateFaultThread, FaultRestore, FaultSave,

WOAAbort, WOACreateConsole, WOADestroyConsole,
WOAFullScreen, WOAGimmeTitle, WOASpawnConApp,
WOATerminateProcesses

FreelnitResources32, HGCleanupDepartingHTask,
NotifyDetachFromWin16, ThunkDeallocOrphanedCrsts

CallProc32WFixHelper, CallProc32WHelper,
FlatCommonThunkConnect16, FullLoRes, GetProcessDword,
GetVersionEx, InitK32AfterSysDIIsLoaded, ISetErrorModeEx,
InvalidateNLSCache, LateBindWin32ThunkPartner,
SetProcessDword, SmashEnvironment,
ThunkConvertToGIobalHandle, ThunkGetProcAddress32,
ThunkTheTemplateHandle, VirtualFree

K E R N E L 3 2 . D L L .

466

If you're wondering where the names in the previous table come from,
they're embedded in KERNEL32.DLL. As I was studying my listings for
KERNEL32.DLL, I noticed a consistent pattern in the code for the func-
tions that KRNL386 thunks up to. Part of that pattern included a pointer to
the function name. It was a simple matter to write an editor macro to find
all the locations in KERNEL32.DLL with this code pattern and copy the
function name strings out to a file.

KRNL386 knowledge of VWIN32
KRNL386.EXE's knowledge of VWIN32.VXD is embodied by its calls to
the VWIN32 PM APl services. These are the services that I described in the
previous section titled "The VWIN32.VXD 16-bit protected mode APl."

THE WIN32 VxD SERVICE SPY (W32SVSPY)

This chapter wouldn't be complete without a program that lets you explore
the areas I've been describing. I wrote the W32SVSPY program for monitor-
ing Win32 VxD Service calls. In some ways, it's like the APl spy program
from Chapter 10 -- just not as complete. However, there were a couple of
technical hurdles in writing W32SVSPY that I think I solved in interesting,
nonobvious ways. Therefore, I'll take a little bit of time to show some tricks
to be learned from W32SVSPY.

The complete sources are on the disk that accompanies this book. I'm
not going to describe all the inner workings of W32SVSPY because they're
fairly complicated, and probably not of interest to a great number of peo-
ple. The output from W32SVSPY, on the other hand, should be of interest
to the general spelunking population.

Figure 6-4 shows the initial screen of W32SVSPY. The large listbox that
dominates its window holds the output from a spying session. To start
watching Win32 VxD service calls, click the Start button. Logging will com-
mence immediately, and continue until you click the Stop button, or until
W32SVSPY's buffer fills up. (I arbitrarily chose 16K as the number of calls
that can be saved. You can change this by recompiling the W32SVSPY
source.) The Save... button lets you save the results of a spying session out
to a text file.

s c r e e n

467

 Figure 6-4
The initial W32SVSPY screen

The Filter... button brings up the dialog shown in Figure 6-5. This dialog
lets you filter out arbitrary Win32 VxD services from the session results -- as
you'll see later, there can be quite a bit of noise in the Win32 VxD services, and
it can be useful to filter them out. The Filter dialog has two listboxes. Selecting
a VxD in the left listbox updates the right listbox with the known Win32 VxD
services in that VxD. Services that have + (a plus sign) in front of them are
enabled (will be shown}. By double-clicking on a service line in the right list-
box, you can toggle its state between enabled (+) and disabled (-). The default
is to have all services enabled. As provided, W32SVSPY knows only about the
VMM and VWIN32 services. It will log all Win32 VxD service calls, but can
only provide names for the Win32 VxD services that it knows about. If you
want to add in knowledge of additional Win32 VxD services in other VxDs,
the W32SRVDB.C file is where the additions would go.

Any filtering you perform in this dialog is preserved across invocations
of W32SVSPY by saving the filtered service IDs (in binary form) out to a
.FLT file. If you want to turn off filtering (that is, if you want to see every-
thing) delete the .FLT file before starting up W32SVSPY. Alternatively, go
back into the Filter... dialog and reenable all the functions.

W 3 2 S V S P Y468

 Figure 6-5
The W32SVSPY filter dialog.

The format of each line of W32SVSPY's output is as follows:

<CurrentTaskName> <Service Name>(<parameter 1 value>)

For example, take the following line:

Explorer VWIN32_SetEvent(8154A230)

In this example, the current process (that is, the one making the call) is the
Explorer. The service being called is VWIN32_SetEvent. The value of the
first parameter (in parentheses) is 8154A230h. W32SVSPY doesn't show
the value of all the parameters to each Win32 VxD services because it
would greatly complicate the logging process. If you want this feature, you
can add it as an exercise.

If the Win32 VxD service call is VWIN32_Int21Dispatch, W32SVSPY
decodes the first parameter value to a string describing the DOS function
being invoked. In this case, the DOS function name string will appear after
the service name (VWIN32_Int21Dispatch), but before the first parameter
value; for example:

Calc VWIN32_Int21Dispatch LFN File Time To DOS Time(008071A7)

Occasionally, you may see a line like this:

FFFF56F3 VWIN32_Int41Dispatch(00000150)

In this case, the first thing on the line is a process ID. This is because
W32SVSPY couldn't extract the process name from the Win16 Task
Database (TDB) that Windows 95 creates for each process. This usually
happens only during application startup, before KERNEL32.DLL has

C A L C
469

bashed the correct process name into the task database. It's usually not hard
to figure out which process these IDs refer to -- just search through the
entries until they stop. The next task in the list of service calls whose name
hasn't appeared previously is likely to be the process you're looking for.

A sample W32SVSPY session
To show off what W32SVSPY can do, let's watch the Win32 VxD services
that occur when starting an application from a shortcut on the desktop. For
the application to start up, choose CALC.EXE and make a shortcut to it on
the desktop. Then start up W32SVSPY and click the Start button.
Immediately afterward, double-click on the CALC shortcut. Finally, click
the Stop button in W32SVSPY. The results of the run will appear in the
main W32SVSPY listbox, which is shown in Figure 6-6. At this point, you
can browse through the services in the listbox, or you can save the results to
a file with the Save... listbox.

 Figure 6-6
Running CALC under W32SVSPY.

I've taken the output from a run performed exactly as I've described
above and condensed it to eliminate a lot of noise and repeated sequences.
I've also annotated it a bit. Figure 6-7 shows the result:

F F F F 5 6 F 3

470

... Many preliminary calls to DOS and the registry by the Explorer omitted

// Create the memory context for the new process.

Explorer _ContextCreate(004463D8)

Explorer

Explorer

Explorer

Explorer

Explorer

// Create the initial thread for the new process.

Explorer VWIN32_CreateThread(8154915C)

// Set the priority of the initial thread of the new process.

Explorer Set_Thread_Win32Pri(C10464D8)

// Wake up the initial thread of the new process

// the new memory context to be switched to.

Explorer WakeThread(C10464D8)

This should cause

Explorer WakeCrst(&Winl6Mutex)

Explorer dwBlockMultipleWnod(00000002)

// The first act of the new process (take a nap!

FFFF56F3 VWIN32_Sleep(FFFFFFFF)

// Reserve and commit the memory to be used by the process.

FFFF56F3 _PageReserve(00000400)

FFFF56F3 _PageCommit(00000400) < - repeat similar calls 11 times

FFFF56F3 _PageReserve(80000400)

FFFF56F3 PageCommit(00000420)

// Do file I/O (presumably with the EXE file of the process),

FFFF56F3 VINW32_Int21Dispatch set current PSP(000050F7)

FFFF56F3 VINW32_Int21Dispatch LFN get/set file attributes(00007143)

FFFF56F3 VWIN32_Sleep(00000001)

FFFF56F3 VINW32 Int21Dispatch LFN get/set file attributes(00007143)

FFFF56F3 VINW32_Int21Dispatch LFN get canonical filename(00007160)

FFFF56F3 VINW32_Int21Dispatch set current PSP(000050B7)

FFFF56F3 VINW32_Int21Dispatch LFN Extended open/create(0000716C)

FFFF56F3 VINW32_Int21Dispatch read file(828D3F60)

FFFF56F3 VINW32_Int21Dispatch set file position(00004200)

FFFF56F3 VINW32_Int21Dispatch read file(00003F01)

FFFF56F3 VINW32_Int21Dispatch set file position(00004200)

FFFF56F3 VINW32_Int21Dispatch read file(00003F01)

FFFF56F3 VINW32_Int21Dispatch LFN get canonical filename(00007160)

K E R -

472

The output starts with the Explorer process (executing inside KER-
NEL32.DLL) creating a new memory context. However, a memory context
does not a process make. There's more work to be done. A few lines later in
the output, note the creation of an initial thread for the new process, as well
as the setting of the thread's priority. The next act of KERNEL32 is to call
WakeThread on the new thread, which causes the new thread to become the
currently executing thread a couple of lines later. (This is the first line where
the process name is given as FFFF56F3.)

Once the new thread wakes up, it starts performing file I/O. This is pre-
sumably where the new process is examining its EXE file and loading it into
memory. Naturally, loading the EXE into memory requires that the process
use the page-based memory management Win32 VxD services to reserve
and commit memory within the process's context. An interesting effect that
shows up during this phase is that the system realizes it can share certain
memory pages with a DLL that's already loaded in the private address space
of another process. In this case, the DLL is SHELL32.DLL. When the sys-
tem realizes that certain pages can be shared (primarily code pages), it uses
the VMM _PageAttach service to start sharing the pages with the other
process (or processes).

Technical challenges in writing W32SVSPY
When I first conceived of writing W32SVSPY, the first problem that sprang
to mind was that the KERNEL32 VxDCall function is called in the memory
context of all applications in the system. As I described earlier, Win32 VxD
services are invoked via calls to the VxDCall function. I therefore had to put
the code that actually handled the redirected service calls someplace in
memory that's accessible to all processes (in other words, I had to put the
code in shared memory).

Another problem with having Win32 VxD service calls being invoked in
all memory contexts is that I couldn't use file I/O operations to just log the
calls as they occurred. The reason I couldn't do this is because file handles
are valid only in the context in which they were opened. Opening and clos-
ing a file handle each time a Win32 VxD service was invoked was also not
an option. KERNEL32 uses Win32 VxD services for file I10, so this would
clearly cause a reentrancy issue. (Not to mention that opening and closing

C S : [B F F C 8 0 0 4]

473

file handles for each call would make performance grind to a halt.) Again,
the answer was to use shared memory accessible to all processes. W32SVSPY
saves away information about each Win32 VxD service call into a memory
buffer, and retrieves the information from the buffer for display when it's safe.

A third problem I encountered when writing W32SVSPY was intercept-
ing the Win32 VxD services. Earlier, I showed that the VxDCall function
looks like this:

VxDCall

MOV

POP

CALL

EAX,DWORD PTR [ESP+04]

DWORD PTR [ESP]

FWORD PTR CS:[BFFC8004]

Intercepting the calls to Win32 VxD services should be as simple as
plugging the address at BFFC8004 with an address in my code and in my
interception routine, chaining on to the original address. In fact, this isn't
hard at all. What's tough is finding the address of the VxDCall function. I
needed to find the address of VxDCall so that I could reach in and grab the
offset where the pointer to the INT 30h instruction is located.

Why couldn't I just call GetProcAddress on VxDCall? This function is
undocumented, and isn't exported by name. I couldn't use GetProcAddress
with VxDCall's ordinal value, either. Chapter 3 shows how the GetProcAddress
specifically prevents applications from looking up KERNEL32.DLL functions
by ordinal. Why did Microsoft do this? No doubt to prevent applications
like W32SVSPY from being written. As you know by now, Microsoft's
preventative efforts failed and W32SVSPY was able to circumvent the crude
anti-hacking kludge.

Putting W32SVSPY into shared memory

The first part of getting W32SVSPY up and running was to get its code into
memory shared by all processes. In Chapter 3, I showed that the way to do
this is to put the code into DLLs. Therefore, W32SVSPY has a DLL compo-
nent (W32SPDLL.DLL) in addition to its EXE. However, simply putting my
spy code into a DLL isn't enough. The DLL needs to be loaded at a location
where memory is shared across all processes. In Windows 95, that means in
the memory range between 2GB and 3GB. This is where the system DLLs
like KERNEL32.DLL and USER32.DLL can be found. We need to somehow
make Windows 95 load W32SPDLL.DLL into this shared memory region.

/ s e c t i o n : . d a t a , R W S

474

Now, your first tendency might be to tell the linker to base
W32SPDLL.DLL at an address between 2GB and 3GB. Although you
can get the linker to base a DLL at whatever address you want, this isn't
enough. My first attempt at basing W32SPDLL.DLL at an address above
2GB and then loading it failed. Oh, the DLL loaded all right. The prob-
lem was, the operating system relocated the DLL so that it was in the
application's private address area. Clearly, the Windows 95 loader didn't
want my DLL in the shared region supposedly reserved for system DLLs
and shared memory.

After studying Microsoft-supplied DLLs that the loader will load above
2GB, a common pattern struck me. Every DLL that the Windows 95 loader
successfully loaded into shared memory above 2GB had all its writeable data
sections marked as shared. In retrospect, this seems obvious, since if the loader
were to load the DLL into the shared memory region above 2GB, Windows 95
certainly can't be providing per-process data in the data sections. It was the
per-process data sections of the DLL that were causing the problem.

By doing the following two things, I was finally able to get
W32SPDLL.DLL loaded above 2GB:

* Have the linker base the DLL at an address above 2GB. I picked the
address of where KERNEL32.DLL loads, since I know that the
Windows 95 loader will relocate DLLs that have overlapping base
addresses.

* Make the .data, .bss, and .idata sections of the DLL shared. I did this in
the W32SVSPY makefile by using the /section: switch to the linker.

Both of these requirements are implemented by the following lines in
the linker response file:

BASE:0xBFF70000

/section:.data,RWS

/section:.idata,RWS

/section:.bss,RWS

(Note that RWS means readable, writeable, shared.)

D W O R D

475

Finding the address of VxDCall

Earlier, I mentioned that the Windows 95 KERNEL32.DLL goes to great
lengths to prevent applications from getting the address of undocumented
KERNEL32 functions like VxDCalI. GetProcAddress simply won't work for
these functions. However, if you can implicitly link to a function, you can
easily find the function's address. In C or C++, you can just use the function's
name without the ()'s. Now, there has to be a way to implicitly link to these
undocumented functions. Otherwise, why would Microsoft have bothered to
export them?

In Appendix A, I show how I built an import library for the 100 or so
undocumented functions exported by KERNEL32. This import library is set
up so that when you import a function in the library, you're importing it by
the function's ordinal value. In W32SPDLL.C, I had to prototype the
desired function:

_ _declspec(dllimport) int WINAPI VxDCall0(void);

Then, I had to take its address by using the function name without parens:

pfnVxDCall0 = VxDCall0;

Once I know the address of VxDCaIl0 within KERNEL32.DLL, it's a
simple matter to reach into the function's code and pull out the address
where the 16:32 pointer to the INT 30h instruction is kept:

ppfnOriginalVxDCall = (PBYTE)*(PDWORD)((DWORD)pfnVxDCall0 + 0xA);

This line may look unintelligible, but it's really not so bad. It's just grabbing
the DWORD that's 0xA bytes into the code for the VxDCall function, and
then typecasting that DWORD to be a pointer.

Yes, it's rather disgusting to be relying on a fixed offset within the
VxDCall functions to find the pointer I'm after. But when you're writing
low-level system-hacking tools like W32SVSPY, it's the nature of the busi-
ness. Microsoft could easily break W32SVSPY by rearranging the code for
VxDCall so that the pointer I'm after isn't 0xA bytes into the code. But
then, they really have no reason to muck with the VxDCalI, other than per-
haps to be malicious and break W32SVSPY. It will be interesting to see
what happens in future revisions of Windows 95.

(K R N L 3 8 6 . E X E ,

476

SUMMARY

In this chapter, I've thrown a lot of undocumented functions and fairly tech-
nical material at you. It's not necessary to remember or retain all this infor-
mation in one reading for the chapter to be of value. The important point
I've tried to convey is that Windows 95 has three separate pieces that could
be called kernels (KRNL386.EXE, KERNEL32.DLL, and VWIN32.VXD).
Each of these kernels has detailed knowledge and extensive interaction with
the other two kernels.

Understanding any one of these components without knowing about
and understanding the other components is a difficult feat. You may find
yourself coming back and rereading this chapter from time to time to pick
up on some subtle point you missed the first time. I hope I've shown you the
scope of the interactions between the three kernel components of Windows
95, and enabled you to do more exploring on your own. I know I have
quite a bit more spelunking ahead of me, too!

k sWin16 Modules
and Tasks

I
t may seem a little odd to include a chapter on the core 16-bit
KERNEL data structures in a book that focuses on the 32-bit

architecture of Windows 95. However, as you'll soon see, these
data structures play an integral role in the overall architecture
of Windows 95, both for 16- and 32-bit applications.

In this chapter, we'll be taking a tour of the 16-bit modules
and tasks that KRNL386 maintains. If you're familiar with mod-
ules and tasks from Windows 3.1, at first glance they'll appear
unchanged in Windows 95. Why bother with these old 16-bit
concepts when there's new and exciting Win32 components to
explore? If you dig a little deeper, you'll see that the 16-bit
KRNL386.EXE, the 32-bit KERNEL32.DLL, and the VWIN32
VxD all know about each other, and are intertwined in their
operations. Therefore, an examination of 16-bit modules and
tasks is an important part of learning about the Windows 95
architecture.

We'll start out by looking at modules, which are the mecha-
nism by which the 16-bit side of Windows 95 tracks all the
EXEs and DLLs that are loaded in the system. Strange as it may
seem, Windows 95 creates 16-bit modules not only for 16-bit
EXEs and DLLs, but also for 32-bit EXEs and DLLs. Following
a description of the specifics of 16-bit modules, I'll show some
pseudocode for some useful 16-bit KRNL386 functions that
demonstrate the use of modules in action.

K R N L 3 8 6

478

Next, I'll turn to the subject of 16-bit tasks and the data structures that
KRNL386 uses to maintain them. (Tasks are created from modules, so it's
only natural to describe modules first, then tasks.) As if the fact that
Windows 95 creates 16-bit modules for 32-bit EXEs and DLLs wasn't
enough, you might be surprised to learn that Windows 95 maintains a
16-bit task for each Win32 process. After describing the layout and charac-
teristics of tasks, I provide pseudocode for some KRNL386 functions that
manipulate and use task information.

In "The SHOW16 Program" section at the end of the chapter, I've
included a discussion about the 16-bit SHOW16.EXE program I wrote that
allows you to easily browse through the 16-bit modules and tasks in your
system. While I could have used TOOLHELP to obtain much of the infor-
mation for SHOW16, I chose to get the data fresh from the modules and
tasks themselves. Doing it this way proves that modules and tasks aren't
some magical thing that only the coders at Microsoft are allowed to touch.
The results of a little browsing with SHOW16 may surprise you!

Before plunging into the details of modules and tasks, a minor point
needs to be explained. Throughout this chapter, I often refer to global mem-
ory handles and CPU selectors as if they were the same thing. In Windows
3.1 and Windows 95, a 16-bit FIXED global heap handle is a ring 3 selector
value. A MOVEABLE handle can easily be converted to a selector by turn-
ing on the bottommost bit of the handle value. This is essentially all that
GlobalLock does. I'm mentioning this up front so that I don't have to bog
down the rest of the text with minor distinctions between selectors and
global memory handles. For the purposes of the discussion in this chapter,
they can be considered the same thing.

WHY HAVE 16-BIT REPRESENTATIONS OF 32-BIT
MODULES AND PROCESSES?

You may be wondering why Microsoft bothered to go through the hassle of
representing 32-bit programs and DLLs in their old 16-bit equivalent. The
answer is simple. Unlike Windows NT, Windows 95 doesn't wall off 16-bit
applications in their own virtual machine(s), separate from the 32-bit side of
the world. Instead, 16- and 32-bit programs coexist within the same virtual
machine, and even share address spaces to some extent (see Chapter 5 for
details on this). In addition, large portions of the code used by all Windows 95
applications resides in 16-bit DLLs (for example, USER, GDI, COMMDLG,
and, yes, even KRNL386).

E x e c u t a b l e

479

16-BIT MODULES

In the 16-bit world of Windows 95, modules are the data structures used by
KRNL386 to represent the code, data, and resources of anEXE or .DLL file
that's loaded in memory. Included in the category of DLLs are files with dif-
ferent extensions, such as .DRV and .FON. Every module is associated with
a disk file somewhere on the system.

In this section, I describe the 16-bit Windows 95 modules that are
derived from the 16-bit modules of Windows 3.1. Every loaded EXE or DLL
in the system, regardless of whether it's 16- or 32-bit based, has a 16-bit
module. However, it's important to be aware that 32-bit EXEs and DLLs are
also simultaneously represented as 32-bit modules in 32-bit land by KER-
NEL32.DLL. In general, the 16-bit representation of a module is used by the
16-bit system DLLs (for example, KRNL386 and USER), while the 32-bit
representation is used by the 32-bit system DLLs (for example, KERNEL32).
For more information on 32-bit modules, see Chapter 3.

All of a 16-bit module's data is kept in a segment allocated from the
16-bit global heap via a call to GlobalAlloc. This segment with module
information is known as a module database. The handle of the global heap
block containing a module database is known as a module handle or, more
familiarly, as an HMODULE. This is the handle that functions such as
GetModuleHandle refer to.

In Windows 3.1, all modules were created inside the LoadModule rou-
tine. Calling the LoadLibrary or WinExec APl functions ultimately ended
up in a call to LoadModule. In Windows 95, modules for 16-bit EXEs and
DLLs are still created within the LoadModule function in KRNL386, while
the 16-bit modules that represent 32-bit EXEs and DLLs are created by
KERNEL32.DLL. The selectors used for 32-bit-based NE modules aren't in
the global heap's list of handles, so finding these HMODULEs can be tricky
(as we'll see later).

The format of a 16-bit module database is based on the 16-bit executable
format used by Windows and OS/2 1.x since their inception. This file format
is known as the New Executable (NE) format. In the remainder of this chap-
ter, I refer to 16-bit modules in Windows 95 as NE modules to distinguish
them from 32-bit modules (which are based on the Portable Executable for-
mat, and known as PE modules). I won't be describing the format of NE files
in this chapter since they're covered more than adequately in the Microsoft
documentation and elsewhere. In the following section I go over the format of
the module database that's created from reading in an NE file. If you compare

the NE file format with the NE module database, you'll see that although
they're similar, they have several important differences.

Near the beginning of each NE file is a 0x40-byte data structure known
as the NE header. The structure has this name because its first WORD con-
tains the value 0x454E, which, when viewed in ASCII characters, is NE
(short for New Executable). Early on in the LoadModule code, KRNL386
reads the NE header from the executable file into the beginning of the mod-
ule database that it's constructing. Many of the fields in the NE file are
therefore identical to the corresponding offsets in the NE module in mem-
ory. However, KRNL386 recycles some of the fields that are meaningful
only for the NE header on disk, and uses them for other purposes.

Following the 0x40 byte NE header in the module database is the seg-
ment table. The segment table is an array of structures that contain vital
information (size, code or data, and so on) for each of the module's code
and data segments. Following the segment table is the resource table, which
contains information about all the resources that can be found in the corre-
sponding NE file, although not the actual resources themselves. Rather, the
resource table is a sort of table of contents that tells KRNL386 where it can
look in the NE file for the actual resource data.

Following the segment and resource information, you'll find informa-
tion about the module's imports and exports. Calling functions in another
EXE or DLL is known as importing the functions. For example, USER.EXE
calls functions in KRNL386.EXE, so USER.EXE imports KRNL386 and its
functions. Not surprisingly, the opposite of importing a function is export-
ing a function. Exporting a function means that you're making the function
available to be called by other EXEs or DLLs. In the example I just men-
tioned, KRNL386 exports its functions and USER.EXE imports them.

At the bits and bytes level, exporting a function means that you're
putting its address in a table known as an entry table. When you load an
NE file that imports functions from another module, the Windows loader
(that is, the LoadModule function) uses the entry table to look up the
addresses of the exported functions in the target module. How does the
loader know which slot in the entry table to use? When you export a func-
tion, the linker assigns it an ordinal value that can be thought of as an index
into the module's entry table. Other EXEs or DLLs that link to the first
module will typically carry around the ordinal entry table values of the
functions they import.

It's also possible to import a function by its name rather than by its entry
table ordinal. This is where the resident and nonresident names tables come
into play. These two tables associate a function name with the address of a
function exported by the module. A module database segment contains the

480

3 . x ,

481

entire resident names table within itself, but only provides a file offset to the
nonresident names table (hence the resident versus nonresident distinction).

Under Windows 3.x, KRNL386 maintains the module databases in a
linked list. As new modules are created by LoadModule, they are added to
the end of the list. At the head of the list is KRNL386, which is the first
module brought into the system. You can easily walk the module list your-
self (as my SHOW16 program does), or you can let the TOOLHELP
ModuleFirst and ModuleNext functions do the walking. (Internally, TOOL-
HELP does the same thing as SHOW16 does, but it's officially sanctioned
by Microsoft, whereas walking system data structures yourself isn't.)

Under Windows 95, KRNL386 maintains the NE modules for 16-bit
EXEs and DLLs in the same manner. However, the 16-bit module databases
that represent 32-bit PE files are not added to the list. Instead, they just
hang out in the global heap, disassociated from the 16-bit module list and
from each other. With 16-bit code, I'm not aware of any elegant way to
enumerate through the 32-bit NE modules. However, a brute force
approach does work, as SHOW16 demonstrates.

Before diving into its actual format, let's do a quick high-level review of
the components of the 16-bit module database: As Figure 7-1 shows, the
0x40-byte NE header is at the beginning of the module database. This is fol-
lowed by the segment table and the resource table. Bringing up the rear are
the tables with information about imported modules (the imported names
table and the module reference table) and exported functions (the entry
table and the resident names table).

Figure 7- 1
The various components of the 16-bit module database.

0 2 h

482

THE NE HEADER

If you're just interested in a quick review of the fields in a module database,
refer to the HMODULE.H header file from the SHOW16 sample program
(it's on the disk that comes with this book). Here, I'm going to go over the
fields of the 0x40 byte NE header in detail. The first line of each field
description gives its offset in the module database, its type (for example,
WORD or DWORD), and a short description.
00h WORD Signature
This WORD always contains the value 0x454E, which when represented as
ASCII characters is NE (for New Executable). Putting a signature WORD at
or near the beginning of executable files is a tradition of Microsoft and IBM
operating systems. Other signatures used in executable files are PE (for the
Win32 Portable Executable format), LE (Linear Executables, used for
Windows 3.x and Windows 95 VxDs), and LX (also meaning Linear
Executable, but used by 32-bit OS/2 2.x programs).
02h WORD module usage (reference) count
This WORD represents the number of other modules that are using this
module. For example, if a DLL is being used by three programs, this field
will contain the value 3. If you load a DLL via LoadLibrary, this field in the
DLL's module database will be 1. Each subsequent call to LoadLibrary or
LoadModule for the DLL will increment this value by one, and each call to
FreeLibrary will decrement the value by one. The rules for determining the
value of this field are not always so clear, however. For example, if a pro-
gram uses two DLLs (let's say A and B) that both use a third DLL (C), mod-
ule C's reference count will be 1, not 2. My May 1994 Microsoft Systems
Journal Q&A column (available on the MSDN CD-ROM) describes
IncExeUsage and DecExeUsage, which are the KRNL386 internal functions
responsible for incrementing and decrementing the module reference count,
including those tough situations with circularly referencing DLLs.
In NE modules created for PE files, the module reference count is set to 1
initially, and never seems to vary.

When the module reference count drops to 0, KRNL386 frees up the
module's segments and resources, calls the WEP routine if the module is a
DLL module (and if a WEP routine is present), and, finally, GlobalFree's the
module database segment.
04h WORD near pointer to entry table
This field is a near pointer (relative to the HMODULE segment) to the
module's entry table. The entry table is a list of functions that the module

O F S T R U C T E X :

483

exports for use by other modules. Each module table entry contains the
function's address, its import ordinal value, and some flags. See "The Entry
Table" section for more details about the entry table. NE modules for
Win32 executables don't contain an entry table, because the entry table
assumes 16-bit far addresses, which PE modules don't support.
06h HMODULE next module database
This WORD-sized field holds the HMODULE of the next module in the
linked list of NE modules. The KERNEL module (KRNL386.EXE) is
always at the head of the list. There are two ways to obtain KERNEL's
HMODULE: You can either call GetModuleHandle(KERNEL), or you can
call GetModuleHandle for any other module, and KERNEL's HMODULE
will be in the DX register upon the function's return. As new modules are
loaded, they're appended at the end of the list. The last module in the list
has a 0 in this field. NE modules for Win32 files aren't kept in the linked list
of modules. Instead, they all have the value 0 in this location.
08h WORD near pointer to DGROUP segment entry

This field is a near pointer (relative to the HMODULE segment) to the seg-
ment table entry for the module's DGROUP segment. The segment table
format is described in a later section, called (not surprisingly) "The Segment
Table." The DGROUP segment is the data segment that all the module's
regular data goes into by default. The DGROUP segment usually also con-
tains a local heap and, in EXE modules, the program's stack. For 16-bit
modules created for Win32 EXEs and DLLs, this field contains 0.
0Ah WORD near pointer to modified OFSTR UCT with

file name
This field is a near pointer (relative to the HMODULE segment) to a data
structure that's very similar to the OFSTRUCT given in the Winl6
WINDOWS.H file. In the Windows 95 DDK, the 16-bit WINDOWS.H file
calls this structure an OFSTRUCTEX.

typedef struct tagOFSTRUCTEX {

WORD cBytes;

BYTE fFixedDisk;

UINT nErrCode;

DWORD fileDateTime;

char szPathName[260];

} OFSTRUCTEX:

// The length of the struct, in bytes.

// TRUE if nonremoveable media.

// DOS error code if OpenFile failed.

// Date/Time of file in MS-DOS format.

// The path to the file.

O F S T R U C T

484

The primary difference between this structure and a regular OFSTRUCT is
that the cBytes field is a WORD, rather than a BYTE. Why's this? Because
Windows 95 supports long filenames (up to 260 characters). Therefore, a
single BYTE in the structure couldn't contain the entire length of the struc-
ture. In addition, the end of the structure (which contains the path name),
is 260bytes rather than the 128 bytes of an OFSTRUCT.

0Ch WORD module flags
This WORD contains bitfield flags that hold information about the module
in memory. The meaning of many of these flags is different from the flags
used in the NE file on the accompanying disk. The known flags for
Windows 95 NE modules are

Flag Name and
Bit Value Description

MODFLAGS_DLL
0 x 8 0 0 0

For true 16-bit NE modules, this flag indicates that the module is a DLL,
rather than an EXE. This bit appears to always be set in the NE module
databases created to represent W i n 3 2 modules.

MODFLAGS_CALL_WEP
0 x 4 0 0 0

This flag, which is valid only for DLL modules, indicates that the
DLL's WEP routine should be called when the DLL is unloaded.
This flag is almost always set, except far task modules and
W i n 3 2 modules.

MODFLAGS_SELF_LOADING
0 x 0 8 0 0

This flag indicates that the module uses the se!f-loading mechanism.
In this scheme, the module provides its own segment loader that
LoadModule calls to bring the module's segments into memory.
Microsoft strongly discourages the use of self loading programs, and
barely documents their use. However, in the past, several o f
Microsoft's applications (such as early versions of Word for Windows
and Microsoft Fortran) used the self-loading feature.

Optlink 5.x from SLR systems (now owned by Symantec) can
produce EXEs that use self-loading to shrink executable file size.
When the OPTLINK linker writes the segmenl data to the NE file, it
compresses the information. When the module is loaded into
memory, the bound in self-loading code uncompresses the segment
data as it brings the segment into memory.

MODFLAGS_APPTYPE
a 0 x 0 3 0 0
(0 x 0 2 0 0 I 0 x 0 1 0 0)

These two bits are a holdover from the days of O S / 2 1.x, in which
program's user interface could be one of three possible types. The bit
value 0 x 0 3 0 0 means that the program uses the operating system's
GUI windowing APl. The bit value O x 0 2 0 0 means thai the
application is a console (text mode) application, but limits its screen
output to the text mode output functions that can be virtualized to
display in a GUI window. (An example of this would be running an
MS-DOS prompt in a windowed session). The bit value O x 0 1 0 0
means that the application directly manipulates the video buffer, so it
must be run in full screen mode.

D G O U P

 485

Flag Name and
Bit Value Description

Regular Windows NE modules always have the value 0x0300 for
these flags, meaning they use the GUI APl. In Windows 95, the NE
modules for Win32 files don't bother to set any of the bits, meaning
the field's value is O, which is undefined according to the NE

specification.

MODFLAGS_IMPLICIT_LOAD
0x0040

This flag means that the module is in memory because another
module has an implicit link to it. Task modules won't have this flag,
nor will DEs that are loaded via LoadLibrary. However, if a DLL
loaded via LoadLibrary implicitly loads other DLLs, this flag will be set

in the module database of those DEs.

MODFLAGS_WIN32
0x0010

This new Windows 95 flag indicates that this NE module represents

a Win32 PE file.

MODFLAGS_AUTODATA
0x0002

This flag tells the Win 16 loader that each module should gel
a separate DGROUP instance far each user of the module. This flag
is for EXE modules, in which each running instance of a program
needs its own DGROUP segment.

MODFLAGS_SINGLEDATA
0x0001

This module indicates that a single DGROUP should be used for all
users of the module. This flag is set only in DLL modules, since 16-bit
DLLs always use the same DGROUP segment no matter which task is

calling them.

If neither the MODFLAGS_AUTODATA or MODFLAGS_SINGLEDATA
flags are set, then the module doesn't have a DGROUP segment or a
local heap. Interestingly, the SYSTEM module (loaded directly after
KERNEL) falls into this category.

NE modules for Win32 files always contain the value 0x8010 for
the flags field in the module database. This translates to
MODFLAGS_DLL and MODFLAGS_WIN32.

0Eh WORD segment index of DGROUP segment
This field contains the 1-based index in the segment table of the module's
DGROUP segment. This field is somewhat redundant because the near
pointer at offset 08h in the module database provides the same information
(albeit in a different form). In Win32 NE modules, this field is always 0.

10h WORD initial local heap size
This WORD is the initial amount of memory in the module's DGOUP that
the Windows loader should reserve for the local heap. If necessary, the local
heap can be grown later. If the heap is grown, this field is not updated. (It
wouldn't make sense to update it, since this heap size will need to be used if
another instance of a program starts up.) Many of the standard 16-bit system

1 8 h

486

DLLs have 0 for their initial heap size. Interestingly, in Windows 95, a couple
of the system DLLs had their initial heap size shrunk down compared to the
same DLL in Windows 3.1. This was probably part of the effort to reduce
Windows 95's memory footprint as much as possible. In Win32 NE modules,
this field is always 0.
12h WORD stack size
This WORD contains the size of the stack that the loader should reserve space
for in the module's DGROUP segment. The stack size has meaning only for
EXE modules, since the code in DLLs runs on the stack of the calling applica-
tion. The minimum stack size for 16-bit applications in Windows 3.x and
Windows 95 is 5K. If this field is less than 5K in the EXE file, the loader
increases it to 5K when it creates the NE module. In Win32 NE modules, this
field is always 0.
14h FARPROC entry point of module
This member of the module table structure contains the module's entry
point. For EXE modules, the entry point is where program execution
begins. In EXEs compiled as C or C++ programs, the entry point is where
the compiler's runtime library startup code starts. The C/C++ startup code
eventually calls the WinMain procedure. In DLL modules, the entry point is
the start of the runtime library code that eventually calls the LibMain proce-
dure. An EXE module must have a nonzero entry point, whereas DLL mod-
ules (such as fonts) can have a NULL entry point, in which case the loader
doesn't try to call anything.

The address stored in this field is a logical address. A logical address is a
16:16 address, but the segment portion isn't a real selector value. Rather,
the segment is an index into the segment table that follows the NE header.
Thus, if the module's entry point was 0x017C bytes into the third segment
in the module, the entry point is 0003:017C. When it comes time for the
loader to call the module's entry point, it needs to figure out the actual
selector assigned to the segment. The loader uses the logical segment value
as an index into the array of segment entries that follow the NE header.

In NE modules for Win32 files, the entry point is always 0. This makes
sense, since 32-bit code uses 32-bit offsets, rather than 16:16 far pointers.
18h DWORD initial stack pointer value
This field contains the initial value that an EXE module's SS:SP should con-
tain when the entry point is called. Like the preceding field, this address is a
logical address, rather than an actual selector:offset. The logical segment

2 0 h

487

portion of this address should always be identical to the DGROUP segment
index given in the WORD at offset 0Eh. For DLL modules and all Win32
NE modules, this field always contains 0.
1Cb WORD number of segments in module
This WORD holds the number of segments (code or data) that the module
contains. Following the NE header in the module table is an array of 10-byte
segment table entries. The number of entries in the array is given by the value
of this field. It's possible for a module to have 0 segments; a perfect example
of this is a font module. Font modules typically contain only resources, and
no segments. This field is always 0 for PE-file-based NE modules.
1Eh WORD number of imported modules
This field contains the number of modules that this module implicitly links
to. For example, if an EXE calls functions in KERNEL, USER, and GDI,
this field will have a value of 3. This field is used in conjunction with the
module reference table (see field 28h). The number of entries in the module
reference table corresponds to the value of this field. (In the example I just
mentioned, there would be three entries, to correspond with the field value
of 3.) Win32 NE modules always contain 0 in this field.
20h WORD size of nonresident names table
This field contains the size of the nonresident names table in the NE file.
The nonresident names table (and the resident names table referred to by
field 26h) associate an exported symbol (usually a function name) with the
exported ordinal value. To access the nonresident names table, KERNEL
needs to seek to the table's starting offset in the NE file (see field 2Ch), and
read in the number of bytes given by this field. (See "The Resident and
Nonresident Names Table" section for more details.) In Win32 NE files,
this field is always 0.
22h WORD near pointer to segment table

This field is a near pointer (relative to the HMODULE segment) to the
module's segment table. The segment table is an array of 10 byte structures,
one for each code and data segment managed by the module. (See the fol-
lowing section for more details.) Since the segment table always immedi-
ately follows the 0x40 byte NE header, this field always contains the value
0x40 for normal NE modules. For Win32 NE modules, this field always
holds 0x4C - - but this is meaningless, since Win32 files don't have 16-bit
segments or a segment table.

s t o r e d

488

24h WORD near pointer to the resource table

This field is a near pointer (relative to the HMODULE segment) to the
module's resource table. The resource table is a sort of "table of contents"
to the actual resource data, which is stored elsewhere in the executable file
(The format of the resource table is described in "The Resource Table" sec-
tion.) Interestingly, this field is actively used by both 16- and 32-bit NE
modules. This suggest that the 16-bit code that uses resources is used to de
with resources in both 16-bit NE files and 32-bit PE files.

26h WORD near pointer to resident names table

This field is a near pointer (relative to the HMODULE segment) to the mod-
ule's resident names table. The resident names table is used to associate a
function name exported from the module with its exported ordinal value.
The resident names table shares the same format with the nonresident names
table. The key distinction is that the resident names table is always in mem-
ory (within the HMODULE segment), while the nonresident names table is
loaded from disk whenever needed. The format of the two names tables is
described in "The Resident and Nonresident Names Table" section.

All NE modules have a resident names section, regardless of whether
they're created from an NE file or a PE file. The reason for this is that every
module must have a name (for example, KERNEL, USER, TOOLHELP,
and so on). The module's name is always the first entry in the resident
names table. Therefore, when KERNEL32 builds its minimal NE module
database, it always includes a resident names table with one entry - - the
module name itself.
28h WORD near pointer to the module reference table

This field is a near pointer (relative to the HMODULE segment) to the
module reference table. The module reference table is a list of all modules
that are used by (that is, imported by) this module. The list is nothing more
than an array of HMODULEs. In the executable's relocation information,
you'll find that the relocation information for each imported function con-
tains an index into this module table. For example, a program calls SetPixel
in GDI.EXE. SetPixel's export ordinal from GDI.EXE is 31. In the pro-
gram's module reference table, GDI is the fourth module. Therefore, the
relocation information for this call to SetPixel will contain both the value 4
(the module reference table index for GDI's HMODULE), and the value 31
(the export ordinal of SetPixel within GDI).

D W O R D

489

2Ah WORD near pointer to the imported names table

This field is a near pointer (relative to the HMODULE segment) to the
module's imported names table. The imported names table is a series of
PASCAL-style strings that are the module names of all the DLLs imported
by this module. The imported names table can also contain the names of
functions that are imported by name, rather than by ordinal value (this is
rarely done, however). When creating the module database, KRNL386 uses
the module names in this table to look up or load the other modules that
this module references (imports). As KRNL386 finds or loads each
imported module, it stores the loaded module's HMODULE into the mod-
ule reference table (field 28h). Once a module has been created, Windows
doesn't have any real use for the imported names table. In Win32 NE mod-
ules, this field is a nonzero value. The value is meaningless, however,
because there is no imported names table in these module databases.
2Ch DWORD file offset of the nonresident names table
This field contains the file offset (in bytes) of the nonresident names table in
the NE file. This value is used in conjunction with field 20h to load the
table into memory when necessary. In Win32 NE modules, this field is
always 0. See field 20h and the entry table description later in the chapter
for more information.
30h DWORD number of moveable entries in the entry table
This field is effectively obsolete with the demise of real mode Windows. It
contains the number of entries in the entry table that have addresses that
could change because of real mode segment movement. In protected mode
windows, selectors and descriptors hide the movement of segments within
memory, so moveable entries are no longer necessary. Moveable versus fixed
entries in the entry table are described later in "The Entry Table" section.
32h WORD alignment shift
In an NE module, the file offsets to the raw segment data and resources aren't
stored as DWORD offsets (which is how you might expect them to be
stored). Instead, the locations of segments and resources in the NE file are
stored in terms of "sector" values. A sector in NE module parlance isn't a disk
sector. Rather, the size of a sector is always a power of 2 (2, 4, 8, 16, 32, and
so forth). To determine the sector size for a givcn NE module, you raise the
value 2 to the power given by the value of this field. Put another way, you can
take the number 1, and shift it left by the number given in this field.

1 . x .

490

A typical value of this field for NE modules is 9. (1 << 9) == 2 ^ 9 ==
512, meaning the sector size is 512 bytes. If a segment started at offset 153d
in the file, its location would be given as sector 3. Another common value
for this field is 4. (1 << 4) == 16 bytes. You can configure the sector sized
for an NE file when you link the file. For NE modules created for PE files,
the alignment size is always 1.

In general, it's a good idea to use the smallest alignment size that will
allow your file to be linked. If you use a larger alignment than necessary,
you'll almost always waste space in the file, since the linker must add extra
padding to make sure each segment and resource starts at a file offset that's
a multiple of the sector size. Segment and resource sector offsets are stored
in WORDs, so the maximum possible file size when using 16-bit sectors is
1MB (65535 times 16 bytes/sector == 1MB). If you're using 512 byte align-
ment (the default for most linkers), the maximum file size is 32MB.
34h WORD unknown
In Windows 3.1, this field appeared to contain the value 2 if the module
contained TrueType fonts. In Windows 95, this field appears to be unused
and is always 0.
36h BYTE intended operating system
This WORD contains a value representing which operating system this
module is intended to be used with. The known values are the following:

0
1

2
3

4

Unknown (although Window 1.0 files used this value)
OS/2
Windows
European DOS 4 (a multitasking version of DOS not released in
the U.S.).
Windows/386 (existed only during the time of Windows 2.x)

In general, unless you work with 16-bit OS/2, you'll rarely encounter any
value other than 2 in NE files. In Win32 NE modules, this field is always 0.

37h BYTE other module flags
This BYTE contains some additional flags that were added to the module
database format after Windows 1.x. (Otherwise, they probably would have
appeared in the flags in the WORD at offset 0Ch, or the 0Ch field would
have been expanded to a DWORD.)

(0 x 0 3 0 0) ,

491

In Windows 3.x, the bit values 0x02 and 0x04 were used to indicate
modules written for Windows 2.x that were checked out as being okay to
run under Windows 3.x. Since Windows 95 doesn't support running any
2.x or earlier applications, these flags are effectively obsolete.

The flag value 0x08 indicates that the NE file has a gangload (a.k.a. fast-
load) area. The gangload area is a collection of segments and resources that
have been clustered together in one section of the file. The windows loader
can bring these segments into memory with a single read, rather than doing
individual seeks and reads of each segment or resource. The goal is to save
time during the initial load of the module.

In Windows 95, a new bit flag (0x10) has appeared in some 16-bit
modules. It appears that if this flag is set, KRNL386 doesn't bother to look
for and call the DLLENTRYPOINT function in 16-bit DLLs. Win32 NE
modules always have 0 in this field. The new DLLENTRYPOINT function-
ality for Winl6 DLL under Windows 95 is described in Microsoft's docu-
mentation for the thunk compiler (THUNK.EXE).

38b WORD near pointer to imported names table

This field always appears to point at the resident names table, and is always
identical to the value in field 2Ah.

3Ah WORD near pointer to imported names table

This field always appears to point at the resident names table, and is always
identical to the values in fields 2Ah and 38h. The one exception to this rule
is for the first module, KERNEL. This exception may be nothing more than
a harmless oversight, since KRNL386 is loaded by a section of code sepa-
rate from the regular Windows loader in Windows 3.1, and this loader
behavior remains in Windows 95.
3Ch WORD unknown

The meaning of this value is unclear. However, it always seems to be a mul-
tiple of 0x10. With an occasional exception, its value rises in each subse-
quent module in the list of 16-bit NE modules. Win32 NE modules always
have 0 in this field.

3Eh WORD expected Windows version

This WORD contains the minimum version of Windows required for use
with this module. Common values are for Windows 3.0 (0x0300),
Windows 3.1 (0x0310), Windows 95 (0x0400), and Windows "NT 3.5"
(Windows NT 3.5 == 0x0350). The HIBYTE of this word is the Windows

% u . % 0 2 u

492

major version number, and the LOBYTE is the minor version, in decimal.
The correct printf string for displaying the version number is

%u.%02u
as demonstrated in the SHOW16 program on the accompanying disk.

New module database fields in Windows 95
The next three fields are new in Windows 95, and they exist only in PE-
file-based NE modules (that is, the 0x0010 bit is set in the flags field of the
NE header). If the module database was created from an NE file, these
fields don't exist; in their place is the first entry of the segment table.
40h DWORD base address of associated PE file
This DWORD is a relative virtual address (a flat 32-bit pointer) to the loca-
tion in memory where the 32-bit side of Windows 95 loaded the PE file.
This value is the same as the HMODULE of the 32-bit PE file as seen from
a 32-bit program.
44h DWORD base address of associated PE file
This field appears to always be identical to the preceding DWORD (40h).
48h DWORD base address of resource section in

memory mapped PE file
This DWORD contains the 32-bit linear address of the resource section
(.rsrc) in the PE file that's associated with this 16-bit HMODULE. As you'll
see later in "The Resource Table" section, the 16-bit components of
Windows 95 have knowledge of resources in 32-bit PE files.

THE SEGMENT TABLE

Immediately following the 0x40 byte NE header in the module database is
the segment table (although NE modules for Win32 files don't have a seg-
ment table). The segment table is an array of data structures, with each
structure describing the characteristics of one code or data segment. The
first eight bytes of each structure correspond identically to the segment table
structure for NE files. The extra WORD in the in-memory representation is
for holding the selector that the 16-bit Windows loader has assigned to that

i t e r a t e d

493

segment. This is an important point: KRNL386 is always able to associate
a segment in the NE file with the selector used to access the segment once
the segment is loaded in memory, and vice versa.

The format of each segment table entry is as follows:
00h WORD sector offset in NE file
This WORD holds the location in the NE file where the raw data for the
segment can be found. Rather than a file offset in bytes, the offset is given in
units of sectors. The size of a sector varies from file to file, and is calculated
by the align shift value at offset 32h in the NE header. Typical values for a
sector size are 16 bytes and 512 bytes. If the value of this field is 0, this is a
segment for uninitialized data, and there's no raw data for that segment
kept in the NE file.
02h WORD segment length in file
This WORD holds the size of the segment's data in the NE file. Note that
this isn't necessarily the size of the memory block that KRNL386 should
allocate to load the segment into. For the size of segment in memory, see
field 06h. Why would the two segment sizes differ? The most common rea-
son would be for data segments where you put uninitialized data (BSS) at
the end of the segment. For example, let's say you had 3K of actual data,
but also needed a 4K block of uninitialized data (for an array, say). In the
segment table entry for this segment, you'd have the value 3K in this field,
and 7K in the allocation size field (06h).

04h WORD flags
This WORD contains flags with information about the segment. The mean-
ing of the flags listed in the following table match the flags as given in the
NE file specification. However, if you examine the flags in an in-memory
module database, you'll find that KRNL386 has turned on some additional
bits not in the NE file specification. The known flags are the following:

i

Flag and
Bit Value Description

DATA The segment is a data segment. If this flag is not set, the segment is a code

0x0001 segment.
ITERATED The segment contains iterated (run length encoded) data.
0 x 0 0 0 8

MOVEABLE The segment is moveable in linear memory
0 x 0 0 1 0 If this flag is not set, the segment is FIXED. The Windows loader will turn off

this bit in an EXE file module, because EXE files rarely need fixed memory.

0 6 h

494

Flag and
Bit Value Description

PRELOAD The segment should be loaded when the module is loaded, rather than
0x0040 being loaded when first accessed.

RELOC The segment contains relocation information immediately following the raw
0x0100 segment data in memory.

DISCARDABLE The segment is discardable. If memory becomes in short supply, KRNL386
0x1000 can mark the segment's descriptor as not-present, and reassign the RAM to

something else.

32BIT The segment is a 32-bit code segment. When the loader allocates the
0x2000 selector for this segment, it sets the "big" bit in the descriptor so this

segment will be interpreted as 32-bit code.

06h WORD allocation size

This is the size of the memory block that KRNL386 should allocate when
loading the segment into memory. This size may be larger than the
amount of raw data for the segment in the NE file. See field 02h for more
information.
08h WORD global memory handle
This is the global heap memory handle for the memory block that
KRNL386 has allocated to hold the segment's data in memory. If the handle
ends with a 06h or 0Eh (for example, 0476h or 047Eh), the segment is a
moveable segment. Otherwise, the handle ends in a 07h or 0Fh, in which
case it's a FIXED segment.

The order of entries in the segment table is significant because it pro-
vides the foundation for logical addresses. When programs such as linkers
and debuggers need to work with addresses in the module's segments, they
do so in terms of logical addresses, rather than with actual selectors and off-
sets. They can't use actual selector values, since the selectors that Windows
uses to hold a module's segments will vary from load to load. Therefore,
instead of using selector values, a logical address uses a 1-based index into
the segment table to describe which segment it's referring to. The first seg-
ment in the segment table array is logical segment 1, the second segment in
the array is logical segment 2, and so on. If you look at the addresses of
functions in a linker-produced .MAP file, you'll be able to see logical
addresses in action:

_ _ p r o t e c t e d

495

0001:5F46 _free
0001:5F5C __GetSubAllocClientData
0002:0030 _errno
0002:0032 __protected

At most, a module can have 253 segments. This is because the entry table
(described later in its own section) stores the addresses of the exported func-
tions as logical addresses, and uses only one byte to store the logical segment
number. Logical segments 0, 0FEh, and 0FFh have special meanings to the
Windows loader, so the maximum number of segments in an NE module is
253 rather than 256.

THE RESOURCE TABLE

In addition to segment information, each module database also contains the
locations and attributes of all the resources (icons, bitmaps, and so on) that
are bound into the executable. Contrary to some programmer's belief,
resources don't count as segments in the module's segment table, and you
can certainly have more than 255 resources.

Usually, the resource table immediately follows the segment table in the
module database. Unlike the segment table, the resource table isn't an array.
Instead, it's a somewhat free-form format, and you must do a fair amount
of on-the-fly calculations to find a given resource. The format of resources
in the module database closely mirrors the resource table in the associated
NE file.

The first WORD in the resource table is the alignment shift count (sec-
tor size) that is used for calculating the offsets of resources in the associated
NE file. This sector size is identical in meaning to the main NE sector size
described for field 32h in the previous section on NE headers. The sector
size in this WORD should match field 32h in that same section. If it doesn't,
something is wrong with the NE file.

Following the first WORD is a series of variable-length sections. Each
section holds the information about one particular type of resource. For
instance, USER.EXE has sections for cursors, icons, bitmaps, menus,
dialogs, string tables, and version information. Within each section is an
array of data structures, one data structure for each particular resource

- -

496

instance. For example, if you have an NE file with five icons, you'll have a
icon section that includes five structures.

Each of these sections immediately follows the preceding resource in
memory. Therefore, to find a particular instance of a resource, you need to
figure out how large each section is, based on how many instances of its
particular resource it contains. The SHOW16 program on the accompany-
ing disk shows an example of traversing the resource table if this is confus-
ing. Each resource type section (icons, bitmaps, and so forth) starts with t
following structure (see HMODULE.H for a C-style structure definition):

00h WORD resource ID

This is the ID value of the resource. If the high bit 0x8000) is set, it's a pre-
defined resource. Masking off the high bit, the type of resource is given by
the following values:

1 - - Cursor
2 - - Bitmap
3 - - Icon
4 - - Menu
5 - - Dialog
6 - - String table
7 - - Font directory
8 - - Font
9 - - Accelerator
10 - - RC data (user-defined data)
11 - - Error table
12 - - Group cursor
13 - - Unknown
14 - - Group icon
15 - - Name table (went away in Windows 3.1)
16 - - Version info

See the NE file format specification for a complete description of the various
resource types.

P E

497

If the high bit of the resource ID isn't set, the resource is a user-defined
named resource. In this case, the ID value is an offset (relative to the start of
the resource table in the NE module) to the resource type name. This name
is a Pascal-style (length-prefixed) string.

02h WORD number of resources of this type
This WORD contains the number of instances of this particular type of
resource. This field is essential to determining how long this resource type
section is, since the data for the individual resources immediately follows
this structure.
04h DWORD resource handler function
This field contains the handler function for these resources. The handler
function is apparently responsible for locking the resource into memory
when required. Since Iow-level resource manipulation is something Microsoft
doesn't expect mere mortals to be able to handle, the documentation on
resource handler functions is (as usual) very sparse. See the SDK documenta-
tion for SetResourceHandler and LoadProc for what little information
Microsoft provides.

The resource handler function for a particular resource type can be
changed on a per-module basis with the SetResourceHandler function. What?
This function's documentation says it requires an HINSTANCE, and all
you've got is an HMODULE? Just pass it the HMODULE. This is yet another
example of how Microsoft has managed to get the meanings of 16-bit
HINSTANCEs and HMODULEs confused. More on this later in the chapter.

Immediately following each resource type header is an array of structures.
For each instance of that resource type, there is one structure; each structure is
12 bytes in length. The number of elements in the array is given by the
WORD at offset 02h in the resource type header. Each array element has the
following format (see HMODULE.H for a C-style structure definition):

00h WORD offset in NE file
For NE file-based modules, this field is the offset of this particular resource
instance in the NE file. The units are in sectors, not bytes (see the description
of offset 32h for the details on NE file sectors). For PE file-based modules,
this field is an offset (relative to the start of the overall resource section) to a
DWORD. The value in this DWORD is the offset (relative to the .rsrc sec-
tion) of a PE file IMAGE_RESOURCE_DATA_ENTRY structure. In the
IMAGE_RESOURCE_DATA_ENTRY you'll find the location and size of the
raw resource data in the PE image. See Chapter 8 for details on the PE file

K RNL386

498

format. If this information is going to be of any use to the 16-bit components
of Windows 95, they have to know where the PE file's .rsrc section is locate
in memory. How can they determine the base address of the .rsrc section?
Simple. See field 48h in the NE module header of a PE file-based NE module
02h WORD length
For NE file-based modules, this WORD is the length of the resource in
units of the sector size. For PE file-based modules, this field is the actual
size of the resource data, in bytes. This field identically matches the
IMAGE_RESOURCE_DATA_ENTRY. Size value given in the PE file's
.rsrc section.
04h WORD flags
Contains flags relating to this particular resource. In general, these flags are
identical to the segment flags (see field 04h in "The Segment Table" section
earlier in this chapter). However, it appears that KRNL386 is turning on
some additional bits whose meaning is unknown. The known flags are these:

Flag Name and
Bit Value Description

LOADED The resource is currently loaded in memory.
0x0004

MOVEABLE The segment is moveable in linear memory.
0x0010 If this flag is not set, the segment is FIXED.

READONLY The resource shouldn't be modified in memory.
0x0020

PRELOAD The segment should be loaded when the module is loaded,
0x0040 rather than being loaded when first accessed.

DISCARDABLE The segment is discardable. If memory becomes in short supply,
0x1000 KRNL386 can mark the segment's descriptor as not-present,

and reassign the RAM to something else.

06h WORD ID
This WORD is the ID of the resource as given by the resource compiler. If
the high bit (0x8000) is set, this resource is referred to by its integer ID
value. Otherwise, it's a named resource. In this case, the ID is an offset (rel-
ative to the start of the overall resource table) to the resource's name. The

L o c k R e s o u r c e ,

499

name is in Pascal-style (length-prefixed) form. A typical example of a named
resource is a dialog box. For example, from an .RC file

Show16Dlg DIALOG 8, 18, 360, 280

The ID for this dialog will be of the offset of the Pascal-style string
Show16Dlg, relative to the start of the resource table.
08h WORD handle

If the resource has been loaded into memory, this is the global heap handle
that points at the resource's data. If the resource hasn't been loaded, this
field is 0. This field correlates with the LOADED flag in the resource flags
(field 04h). If the LOADED flag isn't set, this field is 0.
0Ah WORD usage

This WORD holds the usage count of the resource. This field can be incre-
mented by calling LockResource, and decremented by calling FreeResource.

THE ENTRY TABLE

The entry table of an NE module is the method by which modules export
functions for use by other modules. In the days of real mode windows, the
entry table also served as a central thunking location for all far functions in
MOVEABLE segments. Here, I'm going to ignore that aspect of the entry
table, and just pretend that its sole use is to export functions.

Unlike the segment and resource tables, an entry table in a module data-
base bears only a passing resemblance to its NE file equivalent. While the
entry table in the NE file is optimized to save space, the in-memory entry
table is optimized for quick scanning. Like the resource table, at the outer-
most level, the entry table is composed of variable-length chunks that
require on-the-fly calculation in order for you to traverse it.

Because the export ordinal values of a module's functions don't have to be
contiguous and start at the number 1, the entry table is composed of a series
of "bundles" that describe a range of contiguous exported ordinals. Looking
up a particular function in the entry table is a matter of scanning through the
bundles until you find the bundle containing the desired export ordinal. Each
bundle of contiguous entries starts with a header of the following layout:

t h u n k ,

500

00h WORD first export ordinal value in this bundle - 1

This WORD contains a value one less than the export ordinal of the first
entry in this bundle. For instance, if this bundle of entries was for export
ordinals 3 through 14, this WORD would contain the value 2.
02h WORD last export ordinal value in this bundle
This field contains the value of the last export ordinal described within this
bundle. For example, if this bundle of entries was for export ordinals 3
through 14, this field would contain the value 14. By subtracting the
WORD at offset Oh from the value of this field, you can calculate how
many elements are in the array of function entry-point data structures that
follow. Returning to the previous example, this bundle describes (14 - 2 ==
12) entry points (entry ordinals 3 through 14, inclusive).

Immediately following the bundle header is an array of data structures,
one structure for each exported function. Each exported function is
described by the information in its corresponding structure. The structures
have the following layout:
00h BYTE segment type
If this value is 0FFh, this segment is MOVEABLE, and requires a special
thunk if the program is to run in real mode. In protected mode, a thunk
isn't necessary because the selector values of code segments don't change if
the segment's data moves in the linear address space.

If this field is 0FEh, this entry is a special entry. Entries of this type don't
have an actual far address. Rather, the offset field is used as a sort of global
variable in the code that links to this entry. The only known examples of this
type of entry are the exported values from KRNL386: __AHSHIFT,
__0000H, and so on. See Chapter 5 of Undocumented Windows for a com-
plete list and description of these special entries. If this field is not 0FFh or
0FEh, then it contains the logical segment number of the exported function's
address. In this case, it should be identical to the BYTE at offset O2h in the
structure.
01 h BYTE flags
Flags for this entry point. The following flags are known:

Flag Description

0x01 The function is exported. Except in programs that need to run in real mode,
this f lag should always be set. If it's not set, it's a function that needs a real
mode thunk, but that shouldn't be exported for use by other modules.

R E S I D E N T

501

Flog Description

0x02 The function uses a common data segment for all callers. This should
happen only in DLL moduJes. By default, this flag is off for EXE modules, and
on for DLL modules. However, you can force this flag off for a DLL exported
function with the NODATA statement on the appropriate EXPORTS line in
the .DEF file.

02h BYTE logical segment number
This BYTE holds the logical segment number portion of the exported func-
tion's address. This segment number can be used as an index into the NE
module's segment table to determine the actual selector value for the segment.
03h WORD offset
This WORD is the starting offset of the exported function within the segment
given by the preceding field (02h).

To look up the address of a given exported function (like KRNL386
does), you scan through the bundle headers, looking for the bundle that
contains the exported entry. When you find it, you can then determine the
array index of the exported function, relative to the first array entry in the
bundle. For example, using our usual example of a bundle encompassing
entries 3 through 14, the address of exported function 7 would be found in
the fifth array element in the bundle.

In all this description of the entry table, nowhere has the subject of
function names come into play. However, the GetProcAddress function
allows you to look up the address of an exported function in another mod-
ule by specifying the function's name. Therefore, there must be some way to
associate a function name with its export ordinal, which brings us to the
subject o f . . .

THE RESIDENT AND NONRESIDENT NAMES TABLES

The resident and nonresident names tables are the means by which NE
modules bind a function name to an export ordinal. Both of these tables
share the identical format. Each entry in the table has the following
layout:

3 1

502

Offset Description

01 BYTE Length of exported name to follow.
?? char The name of the exported symbol (function). Not null terminated.
?? WORD The exported ordinal value of this symbol.

For example, the SetPixel function in GDI has an export ordinal of 31.
Somewhere in GDI's nonresident names table exists the following data (8 is
the string length of SetPixel, and 31 is the export ordinal):

8, 'S', 'E', 'T', 'P', ' I ' , 'X', 'E', 'L', 31

The first entry of both the resident and nonresident names table has a spe-
cial meaning. The first entry also has an export ordinal of 0 in both cases.
In the resident names table, the first entry is the module name (for
example, KERNEL, GDI, TOOLHELP, and so on). This string is exactly
the same string given on the NAME or LIBRARY line in the .DEF file
used to create the NE file.

In the nonresident names table, the first is the description field. This
string is a short description of what the module is supposed to do. The
linker determines the contents of this string by copying whatever's on the
DESCRIPTION line of the .DEF file used to link the NE file. If no
DESCRIPTION line is given, the linker defaults to using the name of the
EXE or DLL. Typical description strings from Windows 95's KRNL386,
USER, and GDI modules are as follows:

KRNL386: 'Microsoft Windows Kernel Interface Version 4.00'

USER: 'Microsoft Windows User Interface'

G D I : 'Microsoft Windows Graphics Device Interface'

Why are there two names tables? The only reason for having two
tables is to save space. Most programs and DLLs import functions by ordi-
nal values rather than by their names. Therefore, in the DLLs that are
exporting functions, it doesn't make sense to have a whole bunch of names
sitting around in the module database in memory when they're not needed.
These names should be put in the nonresident names table, which is loaded
from disk only when needed (such as during a GetProcAddress call).
Names that you need to be able to look up quickly, or that you'll need in
situations where you don't want to do disk I/O, should be put in the
resident names table.

. D E F

503

You can use the .DEF file to control which name table an exported
function goes into. If you export a function and explicitly give it an ordinal
value in the .DEF file, it will end up in the nonresident names table.
However, if you don't specify an export ordinal value for the function in the
.DEF file, the linker will put the function name in the resident names table.
Alternatively, you can add the RESIDENTNAME to the exported function's
line, and the linker will always put the name in the resident names table. In
general, if you have a DLL with many exported functions, you should dump
out the file with a program like TDUMP or EXEHDR and then see which
table your exported functions names are in. Unless you have a good reason
for wanting the functions in the resident names table, you should do what-
ever's necessary to ensure that the nonresident names table is used. That
way, you won't chew up potentially precious memory with the names of all
your DLL's functions.

HMODULEs VERSUS HINSTANCEs

One of the most confusing things in Winl6 programming is differentiating
between a module handle (an HMODULE) and an instance handle (an
HINSTANCE). As I just showed, an HMODULE represents a loaded EXE
or DLL in memory. And, as I describe in the next section, an HINSTANCE
is simply the global heap handle of the default data segment for a running
task or a DLL. Conceptually, an HMODULE and an HINSTANCE are
quite different. An HMODULE can lead you to a wealth of information
about a loaded executable (such as where its resources are located). An
HINSTANCE, on the other hand, doesn't give you anything of value other
than the data in the segment.

The confusion between HMODULEs and HINSTANCEs arises because
many of the Win16 APl functions specify an HINSTANCE parameter in
cases where the function actually needs an HMODULE. For example, take
the DialogBox function. Its first parameter is an HINSTANCE. However,
consider for a moment what's needed to create a dialog box. Specifically, the
DialogBox function needs to know where the dialog resource that describes
the dialog can be found. Resources are kept in EXEs or DLLs, so it would
make sense that DialogBox would want the HMODULE of the NE file that
contains the dialog resource. Passing an HINSTANCE to DialogBox doesn't
really make any sense, since the global heap handle of a data segment (an
HINSTANCE) won't help the function find the dialog resource. However,

H M O D U L E s .

504

as you probably know, you can pass an HINSTANCE to the DialogBox
function and have the function succeed. Therefore, something must be going
on under the surface.

The undocumented GetExePtr function provides a key to understanding
how DialogBox (and other API functions) can function with an HINSTANCE
value:

HMODULE GetExePtr(HANDLE);

GetExePtr is a magical function that does just about everything in its
power to return the HMODULE associated with the handle that was passed
in. If you pass in an HINSTANCE handle, GetExePtr scans through all the
DLLs and all the tasks, looking for one with an HINSTANCE that matches
what was passed to GetExePtr. If a match is found, GetExePtr returns the
HMODULE associated with that DLL or EXE. Passing an HMODULE to
GetExePtr causes GetExePtr to immediately return the same HMODULE
back to you. If you were to step into the DialogBox function, you'd see that
the code calls GetExePtr, and subsequently uses the returned HMODULE to
locate the dialog resource. Thus, it turns out that you can pass either a valid
HMODULE or HINSTANCE to DialogBox and expect it to work. The
same is true for many other APl functions that are documented as expecting
an HINSTANCE parameter.

Knowing what the HINSTANCE/HMODULE parameter is used for,
you can answer many of those often-asked questions like "I want to pop up
a dialog in my EXE, but the dialog resource is in my DLL. Which HIN-
STANCE should I pass to DialogBox?" The answer is, of course, to pass the
HINSTANCE or HMODULE or whichever NE file contains the resource. If
the Microsoft documentation was clearer about exactly what the parame-
ters to API functions are used for, things wouldn't be so confusing.

You may be wondering why numerous Windows APl functions are docu-
mented as accepting an HINSTANCE when internally they're going to imme-
diately turn the HINSTANCE into an HMODULE. The best reason that I'm
aware of is that HINSTANCEs are much easier to come by in your program
than are HMODULEs. Normally, a program or DLL doesn't know its
HMODULE, and must look it up by calling GetModuleHandle. In contrast,
both EXEs and DLLs are passed their HINSTANCE when they start up. You
can also easily retrieve the HINSTANCE of the main program by retrieving
the value of the SS register. This is true even when executing in DLL code.
When an EXE starts up, its SS register is set to the same value as the DS reg-
ister. Although the DS register will change when going between EXE code

I G e t M o d u l e H a n d l e

505

and DLL code, the SS register retains the same value - - that is, the value of
the EXE's DS register.

In Win32 programs (with the exception of Win32s), this blurring of the
meaning of an HINSTANCE versus an HMODULE becomes complete. In
Win32, the HMODULE and the HINSTANCE are the same thing; specifically,
the HMODULE and HINSTANCE are both the base address in memory
where the EXE or DLL was loaded.

MODULE-RELATED FUNCTIONS

Now that we've looked at the 16-bit module database, let's look at some
functions that access or manipulate the information in a module database.
For this chapter, I've chosen a reasonable set of functions that I've provided
pseudocode for. There are other functions (like LoadModule) that I've cho-
sen not to cover because they're extraordinarily complex, and I wanted to
finish this book before the turn of the century.

The GetModuleHandle function
When you're examining module-database-related functions,
GetModuleHandle is a good function to look at first. That's because it
demonstrates some of the most important module concepts but doesn't
require huge amounts of pseudocode to do so. GetModuleHandle is docu-
mented as accepting the name of a module in memory, and returning the
global heap handle of the module's database segment (that is, its HMOD-
ULE). However, the documentation is unclear on exactly what the module
name means. Does it mean the actual module name (the first entry in the
module's resident names table), or does it mean the name of the module's
filename? Also, as you'll see in the pseudocode that follows, the documenta-
tion leaves out some other goodies in GetModuleHandle's behavior.

The GetModuleHandle code starts out with the parameter-validation
layer code. The code tests the single parameter to ensure that it's a valid
string pointer. If not, the debug version RIPs with a code of 0x700A
(ERR_BAD_STRING_PTR), and the function returns to the caller. If the
string parameter test succeeds, the code jumps to the IGetModuleHandle
code (leaving the string parameter on the stack).

p a t h n a m e

506

The first section of IGetModuleHandle is a bit surprising. It tests for
a 0 value in the HIWORD of the module name to look for. If a 0 is
found, the code skips all the normal code that would execute. Instead,
IGetModuleHandle passes the string parameter's offset to GetExePtr, and
returns whatever GetExtPtr finds (GetExePtr, which is discussed in the fol-
lowing section, returns the HMODULE associated with a given global han-
dle). The ability to pass 0 as the HIWORD of the GetModuleHandle's
string parameter is undocumented. You can pass almost any global handle
associated with a module (such as its HINSTANCE) to GetModuleHandle,
and get back the corresponding HMODULE. Just remember to pass 0 in
the HIWORD of the string argument to GetModuleHandle, and your han-
dle as the LOWORD. This handle can be an HINSTANCE, a code or data
segment from the module, or any other handle that the GetExePtr function
knows how to deal with.

The main body of IGetModuleHandle is for searching through the mod-
ule list, looking for a module database with the same name as the string
parameter to GetModuleHandle. It checks three different possibilities, in the
following order:

* P o s s i b i l i t y 1: GetModuleHandle was passed a module name that exactly
matches the first entry in the resident names table of some module. The
function that iterates through each of the system's module databases
comparing names is FindExeInfo. Pseudocode for FindExeInfo follows
the IGetModuleHandle pseudocode and is simple enough to follow
without additional annotation.

* P o s s i b i l i t y 2. GetModuleHandle was passed a module name that
matches the first entry in the resident names table of some module, but
the two strings differ in case. Checking for this situation is exactly like
testing for the first possibility, but IGetModuleHandle first uppercases
the string parameter before invoking FindExelnfo.

* Possibility 3- The code was passed a filename. There are two subcases
here: a base filename alone (for example, KRNL386.EXE), or a complete
pathname (for example, C:\WINDOWS\SYSTEM\KRNL386.EXE).
IGetModuleHandle takes care of both cases by extracting just the base file-
name portion (for example, KRNL386.EXE) before calling FindExeFile.
FindExeFile is very similar to FindExeInfo, but it compares the module's
filenames to the input string rather than to the module name.

I G e t M o d u l e H a n d l e

507

The last section of IGetModuleHandle hides two more undocumented
secrets. In Windows 3.1, there was a DLL called TIMER.DRV; this DLL
went away in Windows 95. Presumably some applications were testing for
its presence by calling GetModuleHandle(TIMER). It appears that
Microsoft tried to keep these applications functioning by having
IGetModuleHandle check for the string TIMER and returning the value 1 if
the string was found. Of course, an application that tries to use this module
handle won't have much luck -- but whatever works, right? The second
undocumented behavior of IGetModuleHandle was mentioned earlier. Any
call to GetModuleHandle that makes it past the parameter validation code
will return the head of the module list (KERNEL) in the DX register.

As a final note on GetModuleHandle, don't bother using it to try to
find the 16-bit module databases for Win32 modules. These modules aren't
inserted in the list of HMODULEs. The SHOW16 program later in this
chapter shows a brute-force method to find these HMODULEs.

Pseudocode for GetModuleHandle

// Parameters:

// LPSTR lpszModName

Verify that lpszModName is either a valid string pointer, or has

a 0 in its HIWORD(). If not, RIP in the debug KERNEL with a code

of 700A (ERR_BAD_STRING_PTR).

goto IGetModuleHandle

Pseudocode for IGetModuleHandle

// Parameters:

// LPSTR lpszModName

// Locals:

// char szBuffer[130];

// WORD len;

// LPSTR lpszBaseFilename;

if (HIWORD(lpszModName) == 0)

goto global_handle_in_LOWORD:

// First let's assume that the user passed in a real module name (such as what

// you'd put in the NAME or LIBRARY line in a .DEF file).

f i l e n a m e

508

// Copy the string into a local buffer, but make the first byte

// be the length of the copied string (that is, make it a PASCAL string).

// 0 as the last parameter means copy the source exactly.

// Returns the length of the copied string.

len = CopyName(lpszModName, szBuffer, 0);

// Scan through the list of modules in the system, looking for

// one with a module name that exactly matches the string passed

// to FarFindExeInfo. If a match is found, return the HMODULE in AX.

// The len parameter lets the function quickly eliminate modules with

// names of different lengths than the input module.

// This particular call is looking for the module name exactly as it

// was passed to GetModuleHandle.

AX - FarFindExeInfo(szBuffer+l, len);

if (AX)

goto return_AX;

// Do like the first CopyName call above, but this time the last

// parameter is 1, meaning uppercase the destination string.

len = CopyName(lpszModName, szBuffer, 1);

// Do like the previous call to FarFindExeInfo, but this time we're

// searching for the uppercased version of the module name passed

// to GetModuleHandle.

AX = FarFindExeInfo(szBuffer+l, len);

if (AX)

goto return AX;

// If we get here, we didn't find a real module name, so let's try

// looking for modules that have a filename matching what was

// passed to GetModuleHandle.

// NResGetPureName scans backward from the end of the string param

// until it finds a :, a \\, a /, or the start of the string. It

// returns a pointer to the next character. Essentially, this

// function returns a pointer to the base filename portion of a

// complete path. This allows you to pass names like

// C::\\WINDOWS\\SYSTEM\\KRNL386.EXE to GetModuleFileName

lpszBaseFilename = NResGetPureName(&szBuffer+1);

// This function is essentially like FarFindExeInfo (above), but

// instead of comparing module names in the resident names table,

// it compares the base filenames.

AX - FindExeFile(lpszBaseFilename);

if (AX)

goto return AX;

f i l e n a m e .

509

// If we get here, we didn't find a matching real module name or a

// matching filename. Do one last check to see if the string passed

// to GetModuleFileName was TIMER. In Windows 3.1, there was a

// TIMER.DRV, but that DLL doesn't exist in Windows 95. Perhaps this

// special case code is to keep applications that look for the TIMER

// module from failing.

if (0 == strcmp(szBuffer+1, "TIMER")

{

AX = 1;

goto return AX;

global_handle_in_LOWORD:

AX = GetExePtr(LOWORD(lpszModName))

return_AX: // Return whatever value is in the AX register.

DX = hExeHead; // Also return the head of module list in DX.

// Seems to always be KERNEL (KRNL386.EXE).

Pseudocode for FindExelnfo (Called by FarFindExeInfo, with same params)

// Parameters:
// LPSTR lpszSearchName;

// WORD len;

// Locals:

// LPMODULE lpModule;

// LPBYTE lpResNames

if (!hExeHead)

return 0;

lpModule:MAKELP(hExeHead,0);

while (lpModule) // Iterate through the list of modules.

{
// Get a pointer to the current module's name (the first entry in

// the resident names table). The module name is prefixed by

// a length byte.

lpResNames = MAKELP(SELECTOROF(lpModule), lpModule->n_ resNamesTab);

// If the length of the current module's name is the same as the

// module name we're searching for, compare the two strings. If

// they match, we found the right module, so return its global

// memory handle (its HMODULE). If the two strings differ in

// length, don't bother to compare the strings.

if (*lpResNames == len)

G e t E x e P t r

510

if (0 = = strcmp(lpResNames+1, lpszSearchName))

return SELECTOROF(lpModule);

// A match was not found. Try the next module in the module list.

lpModule = MAKELP(lpModule ->ne_npNextExe, 0);

}

return 0;

The GetExePtr function
GetExePtr is arguably the most useful undocumented 16-bit function in
Windows 95. Its interface is simple and unlikely to change, so it's a mystery
why Microsoft has chosen to hide this wonderful function. Examining
GetExePtr is a great way to see the interconnectedness of modules, tasks,
instances, and global memory handles. Essentially, looking at GetExePtr is
tantamount to taking a mini-tour of the 16-bit KERNEL data structures!

GetExePtr's job is to take an input global heap handle and somehow find
the HMODULE associated with that handle. Typically, GetExePtr is used
internally by KRNL386 to convert HINSTANCEs to HMODULEs. If you
look at almost any Windows function that takes an HINSTANCE parame-
ter, that function internally calls GetExePtr to get an HMODULE. However,
GetExePtr isn't limited to instance handles. The input handle can be almost
any type of global memory handle. Besides HINSTANCEs, GetExePtr also
accepts HTASK parameters and returns the HMODULE that the task was
created from. Likewise, you can pass a code or data selector belonging to an
in-memory module, and GetExePtr returns the owning HMODULE. You can
even pass in a handle allocated by GlobalAlloc. GetExePtr will return the
HMODULE associated with the task that owns the allocated block. In short,
GetExePtr is a do-it-all function that doesn't give up easily.

Although I haven't formally described tasks and task databases (TDBs),
they are prominently featured in the GetExePtr code. Tasks aren't described
until the next major section in the chapter, so I'll have to jump the gun a lit-
tle bit and show tasks in the GetExePtr pseudocode.

The GetExePtr code begins by converting the input handle to a selector.
Basically this means ensuring that the bottom bit of the handle is turned on.
Next, GetExePtr checks for the best possible scenario: that it was passed an
HMODULE. This test consists of looking for the NE signature in the segment's

G e t E x e P t r (# a x)

 51 1

first WORD. If the test succeeds, GetExePtr's work is done, and it simply
returns the HMODULE. If the input handle wasn't an HMODULE, GetExePtr
has some searching to do. The first thing it checks is to see if the input parame-
ter is the HINSTANCE of a running task. The code checks this by running
through the task list, looking for a task with an HINSTANCE that matches the
input parameter. If GetExePtr finds a matching HINSTANCE, it returns the
HMODULE that was used to create the task with the matching HINSTANCE.

If the input handle was neither an HMODULE nor a task's HIN-
STANCE, GetExePtr passes the input handle to a helper function that does
a more exhaustive job of searching through system data structures. In the
pseudocode, I've called this function GetExePtrHelper. GetExePtrHelper
first verifies that the input handle is a valid ring 3 selector with the CPU's
LAR instruction. If it's not a valid selector, GetExePtrHelper returns 0.

Assuming that a valid handle parameter was passed, GetExePtrHelper's
next course of action is to find the owner of the input handle. The owners
of most global heap blocks are typically either HMODULEs or PDB seg-
ments (PDB segments are similar to DOS PSPs). A good example of a block
owned by an HMODULE is a code segment in an EXE or DLL file.
Memory blocks allocated via GlobalAlloc without the GMEM_SHARE flag
are owned by the PDB of the current task at the time of the allocation. After
retrieving the owner of the input handle, GetExePtrHelper tests the handle
to see if it's an HMODULE. If so, GetExePtrHelper is done, and returns the
owning HMODULE.

If the owner wasn't an HMODULE, GetExePtrHelper next determines
if the input handle was an HTASK by looking for the TD signature in the
task database (described later in "The Task Database [TDB]" section). If the
input handle isn't an HTASK, then the input handle's owner might be the
PDB segment of an active task. To check this possibility, GetExePtrHelper
scans through the task list, retrieves the PDB selector of each task, and com-
pares it to the input handle. If a match is found, GetExePtrHelper returns
the HMODULE associated with the task that it found the matching PDB
segment in.

One way or another, GetExePtrHelper returns control to GetExePtr. If
GetExePtrHelper found an HMODULE, GetExePtr returns that HMODULE
to its caller. Otherwise, GetExePtrHelper returns 0, so GetExePtr knows that
it was passed a bogus input handle. In the debug version of KRNL386, the
code will RIP with the message

wn K16 GetExePtr(#ax) invalid parameter

in which #ax is replaced by the value passed to GetExePtr.

}

512

GetExePtr's implementation has changed somewhat from Windows 3.1.
In Windows 3.1, GetExePtr would choke if you passed in an HTASK parame-
ter, even though that seems like a perfectly reasonable thing to do, given the
great lengths GetExePtr goes to find an HMODULE. In Windows 95,
GetExePtr works fine if you pass in an HTASK. This change may in part be
due to my complaining about the implementation of the Windows 3.1 version
in Windows Internals.

Pseudocode for GetExePtr

// Parameters:

// HANDLE handle;

// Locals:

// LPMODULE lpModule;

// LPTDB lpTDB; // Far pointer to Task Database.

// WORD temp;

if (!(handle & 1)) // If a MOVEABLE handle (bit 0 off), convert

{ // to a selector.

handle = MYLOCK(handle); // MYLOCK is similar to GlobalLock.

if (!handle)

goto invalid param;
}

// Try the obvious first: Were we passed an HMODULE?

lpModule = MAKELP(handle, 0);

if (lpModule->ne_signature == 'NE')
{

AX = handle;

goto return AX;
}

// Okay. It's not a module. Perhaps it's the HINSTANCE of a task.

// Or perhaps it's an HTASK. Walk through the list of tasks, checking

// for this.

lpTDB = MAKELP(HeadTDB, 0);

while (lpTDB) // While not at the end of the task list...
{

// Does this TDB match the handle passed in?

if (SELECTOROF(lpTDB) := handle)

goto call GetExePtrHelper // Why not just return the HMODULE

// here, rather than calling

// GetExePtrHelper???

// Does the HINSIANCE of this task match the handle passed in?

if (handle == lpTDB->TDB_HInstance)
{

AX = lpTDB ->TDB_HMODULE; // Yes! Return the HMODULE stored

goto return_AX; // in this task's TDB.
}

else

lpTDB = MAKELP(lpTDB->TDB_next, 0); // Go on to next task.

call_GetExePtrHelper;

// Bring out the big guns by checking the PDBs in the task list in addition

to looking for the owning HMODULE in the Burgermaster arenas.

// GetExePtrHelper returns an HMODULE, or 0.

temp = GetExePtrHelper(handle);

if (temp)

return temp;

// Hmmm We still didn't find anything. Complain in the debug KERNEL.

AX = handle

_KRDEBUGTEST("wn K16 GetExePtr(#ax) invalid parameter");

_AX = O; // Return 0 to the caller.

returnAX:

CX = AX // Return value both in AX and CX (good for JCXZ tests).

513

Pseudocode for GetExePtrHelper

// Parameters:

// WORD handle;

// Locals:

// LPMODULE lpModule;

// LPTDB lpTDB;

// WORD owner;

LAR handle // LAR instruction -> Load Access Rights (of selector).

if (LAR instruction returns failure code) // Not a valid selector?

return 0;

if (present bit not set in access rights)
{

owner : low 16-bits of handle's limit in the LDT

H M O D U L E

514

// In a not present segment under Windows, the low 16 bits of

// the offset in the segment's descriptor hold the HMODULE

// that owns that segment (if it's code/data segment belonging

// to the module),

else
{

owner = GetOwner(handle); // Retrieve the owner out of the

if (!owner) // appropriate arena in the

return 0; // Burgermaster segment.
}

// See if the owner of the block is an HMODULE. If so, return it.

lpModule = MAKELP(owner, 0);

if (lpModule->ne_signature == 'NE')

return SELECTOROF(lpModule);

// The owner wasn't an HMODULE. Is the handle parameter an HTASK?

// If so, return it.

LSL handle // Get size of handle's segment.

if (size of segment > 0xFB)

lpTDB = MAKELP(handle, 0);

if (lpTDB->TDB_sig == 'TD')

return lpTDB->TDB_HMODULE;

/ Global memory blocks allocated without GMEM_SHARE are owned by

// the PDB of the task that allocated the memory. Walk the list

// of tasks looking for a task whose PDB matches the handle's owner.

// If a match is found, return the HMODULE associated with that task.

if (HeadTDB == 0) // If no tasks, there is nothing more we can do to

return 0; // try to find additional modules.

lpTDB = MAKELP(HeadTDB, 0)

while (lpTDB)

{
if (owner == lpTDB->TDB_PSP)

return lpTDB->TDB_HMODULE;

lpTDB = MAKELP(lpTDB->TDB_next, 0);

}
return 0;

G e t P r o c A d d r e s s

515

The GetProcAddress function
I've included GetProcAddress in this list of 16-bit module-related functions
for several reasons. First, this function provides a very good example of
how the module's entry table and its resident/nonresident names tables are
connected. Second, an examination of GetProcAddress will help you under-
stand how the Windows loader resolves fixups to other modules. And third,
you can use GetProcAddress to peer inside the Windows dynamic linking
mechanism, which is one of Window's most powerful features.

GetProcAddress (like many other Windows API functions) starts out
with a short block of code that validates the input parameters. In the case of
GetProcAddress, the validation code ensures that you've passed some sort
of valid selector (or 0 or -1) for the HINSTANCE parameter. For the sec-
ond parameter (the name of the function to find), the validation code tests if
you passed a valid LPSTR or a MAKEINTATOM type string: 0 in the
HIWORD, and a nonzero value in the LOWORD. GetProcAddress uses the
latter case to mean that you know the export ordinal of the function you're
looking for, and have put the ordinal in the low WORD of the LPSTR para-
meter. If either of these two parameter tests fail, GetProcAddress returns
immediately to the caller. The exception is if you're running the debug
KRNL386, in which case you'll RIP with either error code 0x6002 or
0x700A. If both parameters are okay, GetProcAddress jumps to the
IGetProcAddress code, where the real meat of the code resides.

The first thing IGetProcAddress does is to use the trusty GetExePtr
function to convert what you passed as the HINSTANCE parameter to
an HMODULE. As I described earlier, GetExePtr will convert just about
any handle to an HMODULE, so you're not really limited to passing an
HINSTANCE to GetProcAddress. Any global handle that GetExePtr can
associate with a module database will do. Once IGetProcAddress has the
HMODULE that it will be looking for the function in, it checks to make
sure that the HMODULE belongs to a DLL; if it's not a DLL,
IGetProcAddress fails the call. If you're running the debug KRNL386
when this happens, you'll get a message that says:

Can not GetProcAddress a task.

Why is this? The Windows coders put in this check to prevent programs
from calling GetProcAddress for functions in EXE files. Code in EXE files
expects to be called only in the EXE program's task context, and with the
stack register (SS) set to the program's DGROUP. By making it difficult to get

G e t P r o c A d d r e s s (G e t M o d u l e H a n d l e (" U S E R ") ,

516

the address of an exported function in an EXE file, KRNL386 prevents prob-
lems caused by programmers who call functions in EXE files while executing
in the wrong task context and on the wrong stack. The one exception to this
rule is if you pass 0 as the HINSTANCE parameter to GetProcAddress. In this
scenario, IGetProcAddress uses the HMODULE that your task was created
from. Put another way, you can use GetProcAddress on your own EXE and
with DLLs, but not with other EXEs.

Once IGetProcAddress knows which HMODULE it will be searching in,
the next step is to figure out the entry table ordinal of the desired function. If
you passed in an LPSTR parameter with 0 as the high WORD, the export
ordinal is in the low WORD, so IGetProcAddress can jump immediately to
the code that looks up the export ordinal in the module's entry table. More
often than not, however, GetProcAddress is passed an ASCII string.
Therefore, IGetProcAddress must convert that string into the appropriate
export ordinal in the target module.

Converting the LPSTR parameter into an export ordinal is the job of
the FarFindOrdinal function. I haven't provided pseudocode for
FarFindOrdinal because it's not that difficult to visualize what it does.
FarFindOrdinal calls FindOrdinal, which simply scans through the resident
and nonresident names table, comparing each string to the GetProcAddress
input string. When a match is found, the export ordinal is the WORD that
immediately follows the matching string in the resident or nonresident
names table. Another undocumented use of GetProcAddress that's taken
care of by FindOrdinal is converting strings like #97 to ordinal values. In
this case, FindOrdinal just strips off the # and converts the string into its
binary value (which is 97).

The ability to pass ordinal values as #-prefixed strings means that there
are three different ways of achieving the same result with GetProcAddress.
For example, let's say you wanted to find the address of GetMessage
(export ordinal 108 from USER.EXE). Any of the following three lines
would work:

GetProcAddress(GetModuleHandle("USER"), "GetMessage");
GetProcAddress(GetModuleHandle("USER"), MAKELONG(108, 0));
GetProcAddress(GetModuleHandle("USER"), "#108");

One way or another, IGetProcAddress gets hold of an HMODULE and an
export ordinal of a function within that HMODULE. It then scans through the
entry table of the module, looking for the entry that belongs to the specified
export ordinal. The export entry will then contain the information necessary to

L D T

517

calculate the address of the desired function in memory. This job of scanning
the entry table and retrieving the function address is the job of the FarEnt-
ProcAddress function, which is just a wrapper around the EntProcAddress
function.

Immediately after the IGetProcAddress pseudocode that follows, you'll
find pseudocode for EntProcAddress. EntProcAddress scans through the list
of entry table bundles that I described earlier in "The Entry Table" section.
To quickly refresh your memory, an entry table bundle is a collection of
entry table records for exported functions with contiguous export ordinals.
At each bundle, EntProcAddress checks to see if the export ordinal it's
searching for is contained within the bundle's array of records. When
EntProcAddress finds the correct bundle, it makes a pointer to the appropri-
ate entry table record within the bundle. This particular record can now be
used to calculate the actual address of the exported function in memory.

If you flip back to "The Entry Table" section and look at the format of
an entry table record, you'll see that each entry contains the offset of the
function within its segment, but not an actual selector value. Instead, an
entry table record contains a logical segment number. Therefore,
EntProcAddress needs to convert this logical segment number to the selector
assigned to that segment in memory by the Windows loader.

How can EntProcAddress convert the logical segment number to a
selector? Simple. Each module database contains a segment table array
(described earlier in "The Segment Table" section). The logical segment
index from the entry table record is used as an index into the array of seg-
ment table entries. The selector value for the function that we're looking for
can easily be plucked from the last WORD of the appropriate segment table
entry. All that remains is for EntProcAddress to combine the selector value
with the function's offset to make a far pointer. EntProcAddress returns this
far pointer to FarEntProcAddress, which in turn returns the far address to
IGetProcAddress, which finally returns the address of the function to the
caller of GetProcAddress.

Pseudocode for GetProcAddress

/ / Parameters:

// HINSTANCE hinst;

// LPSTR lpszProcName

Validate the hinst parameter. The Following rules apply:

If hinst is 0, it's okay.

If LDT bit (bit 2) is not set in selector, it's bad.

h i n s t

518

If hinst is -1, it's okay.

If LAR hints fails, it's bad.

If any of these tests fail, RIP in the debug KERNEL with code 6022

(ERR BAD GLOBAL_HANDLE).

Validate the lpszProcName parameter. The following rules apply:

If lpszProcName is NULL, it's bad.

If HIWORD(lpszProcName) is 0, it's okay (unless LOWORD is also 0).

 If lpszProcName is an invalid pointer, it's bad,

If lpszProcName is > 0x100 bytes long, it's bad.

If any of these tests fail, RIP in the debug KERNEL with code 700A

(ERR_BAD_STRING_PTR).

goto IGetProcAddress

IGetProcAddress proc

// Parameters:

// HINSTANCE hinst;

// LPSTR lpszProcName

// Locals:

// char szBuffer[130];

// WORD hModule;

// WORD exportOrdinal;

// LPMODULE lpModule;

if (hinst)

{
hModule = GetExePtr(hinst)

if (!hModule)

return 0;

lpModule = MAKELP(hModule, 0);

if (lpModule->ne_flags & MODFLAGS_DLL)

goto have_HMODULE;

FarKernelError("Can not GetProcAddress a task.");

return 0;

}
else // hinst parameter was 0.

I
hModule = CurTDB->TDB_HMODULE;

}

have_MODULE:

l p E n t r y - > o f f s e t

520

// Make a pointer to the module's entry table.

lpBundle = MAKELP(hModule, lpModule->ne_npEntryTable);

// Walk through the list of bundles. Look for the bundle whose starting

// and ending ordinals encompass the exportedOrdinal that was passed.

while (lpBundle ->firstEntry < exportOrdinal)

if (lpBundle ->lastEntry > exportOrdinal)

// Each bundle is immediately followed by an array of ENTRY

// structures.

lpEntry = address of the appropriate slot in the array

of ENTRY structures following the bundle header.

goto have_entry_pointer;

// Go on to the next bundle.

lpBundle = MAKELP(hModule, lpBundle->nextBundle);

invalid ordinal:

// Something went wrong...

if (!fComplain)
{

// RIP in the debug KERNEL with code 0x5004.

BX = exportOrdinal

KRDEBUGTEST("wn K16 Invalid ordinal reference (##BX) to %ESl");
}

return 0;

have entry_pointer:

// At this point we've found the correct entry in the entry table.

// Now we have to decode the entry information to an address that we

// can pass back to the caller.

// If this entry is from segment 0xFE, it's one of the special

// entries (for example, __F000H). Return the entry's offset.

if (lpEntry ->segType == 0xFE)

return MAKELP(0xFFFF, lpEntry->offset);

// There are two types of entries: MOVEABLE or FIXED,

// FIXED entries have segment numbers between 1 and 253.

// MOVEABLE entries are indicated by a segment number of

// OxFF. Take special action if it's a FIXED entry.

3 . x

521

if(
{

lpEntry ->segType != 0xFF)

// The entry is in a FIXED segment. Make sure that segment

// loaded in memory.

if (!LoadSegment(hModule, lpEntry ->segNumber, 1, 1))

goto invalid_ordinal;

is

// Point at the appropriate segment structure in the segment table.

// We need to do this in order to look up the handle/selector assigned

// to the segment by the Windows loader.

lpSeg = lpModule->ne_segtab[lpEntry->segNumber - 1];

if (lpSeg ->handle == 0) // Make sure there's a handle for this segment.

return 0;

// Combine the segment and the offset to create the entry point address.

return MAKELP(lpSeg->handle & 1, lpEntry ->offset);

16-BIT TASKS

If Windows modules are envisioned as representing the components of a
lifeless body, then tasks can be thought of as the sparks that bring that body
to life. Before I describe how tasks manage that feat, however, I need to
mention a couple of issues about terminology. Tasks are sometimes referred
to as programs, but in 16-bit Windows the correct term is tasks, not pro-
grams. On the Win32 side of things, the term process replaces the word
task, even though conceptually 16~bit tasks and 32-bit processes mean the
same thing. In this section, we're going to look at tasks in the 16-bit side of
Windows 95.

Tasks represent two things in Windows 95. First, a task represents exe-
cution of code. In Windows 3.x and earlier, tasks were the fundamental unit
of scheduling. At any given time, only one task is executing. The second
thing a task represents is ownership. Each task owns its own set of file han-
dles, the windows it creates, the memory it allocates, and so forth. I'll come
back to both of these points later in this section.

Every time Windows 95 starts a program, KRNL386 creates a new task.
If you start up two copies of CALC.EXE, Windows 95 adds two tasks to
KRNL386's list of tasks. Even for Win32 processes, Windows 95 creates a
16-bit task representation. This may be to keep the 16-bit components happy

T D B

522

by representing the existence of the Win32 process in a form that the old
16-bit code recognizes.

The primary indicator of a task's existence is a data structure known as
a Task Database (or TDB for short). The task database contains informa-
tion specific to one particular instance of a program. The individual TDB
fields are described in the next section; this section focuses on more general,
task-related TDB concepts.

The TDB is a collection of fields in a segment allocated from the 16-bit
global heap. The global heap handle for this segment is known as an
HTASK. Knowing that an HTASK is just a selector, you can directly read
the fields in the TDB. In this way, a task database and its HTASK is similar
to the module database and its HMODULE. GetCurrentTask returns an
HTASK, and you pass HTASKs to functions like PostAppMessage and
EnumTaskWindows.

In some ways, a Windows task is similar to a DOS program. In DOS,
each running program has its own Program Segment Prefix (PSP) area, which
contains a file handle table and additional information, such as the pro-
gram's command line. Since Windows was originally an extension to DOS, a
Windows task has always carried around a DOS PSP in its HTASK segment.
In versions of Windows prior to Windows 95, Windows actually used the
PSP area in the task's TDB when performing real mode DOS operations like
file I/O. In Windows parlance, the PSP area in a TDB is called a PDB (for
"Process Database"); this should not be confused with a Win32 process
database. Thus, the Windows function that returns the PSP of the current
task is called GetCurrentPDB, rather than GetCurrentPSP. Rest assured, a
PSP and a PDB mean the same thing in Windows. The point here is that a
Windows TDB contains a mixture of old real mode DOS things, and newer
things that are only meaningful in the 16-bit protected mode environment.
Adding to the mixture, in Windows 95, a TDB contains a pointer to a
Win32 Thread database, so a Windows 95 Task Database is really a com-
pendium of DOS, Winl6 and Win32 information.

Just as a body is necessary to maintain life (theological arguments
notwithstanding), a task cannot exist without a module. Every task is asso-
ciated with a MODULE, but the converse is not true. When you start a
program for the first time, Windows 95 creates a 16-bit module database
and then creates a task database for the new task. If you then start up a
new copy of the program (while leaving the original instance running),
Windows 95 creates another task database, but doesn't make a new mod-
ule database. Instead, both tasks are associated with the same module
database (HMODULE). Modules represent items such as code and

c o o p e r a t i v e

523

resources that are common between multiple running copies of a program.
Tasks represent information that will differ between multiple copies of a
program. Examples of this are stack segments and the current working
directory.

Forgetting about 32-bit processes and threading issues for the moment,
at any given time Windows 95 is executing one and only one task. All
threads other than the currently executing tasks are blocked, and will not
run until the running task voluntarily gives up control of the CPU. This is
known as cooperative multitasking. Each task runs for as long as it needs
to, and then gives up control of the CPU so that another task can run.

How does a task give up control, (or yield, in Windows terminology)?
Usually, tasks yield control by using functions such as GetMessage,
PeekMessage, SendMessage, and WaitMessage. If these functions determine
that there's no need for the task to continue running (for example, if there are
no messages waiting to be processed), they'll call into the 16-bit scheduler.
If the 16-bit scheduler sees that another task has something to do, it suspends
the first task and switches to the task with something to do. Most of the
time, the need to yield is hidden from the programmer, because functions
like GetMessage transparently handle the cooperative multitasking.

Windows 95 keeps track of the task list in a manner similar to the
16-bit module database list. A WORD field in each TDB contains the
selector of the next task in the list. The linked list of tasks isn't static like
the module list described earlier. Instead, the ordering of tasks changes
constantly to facilitate 16-bit scheduling. Interestingly, the TDBs created
to represent Win32 processes in 16-bit land don't appear to have their
order shifted by the actions of the 16-bit scheduler. Instead, it looks as if
the TDBs created for Win32 processes are planted at the head of the list,
and don't move until the task/process exits. See the description of offset 8
in "The Task Database (TDB)" section later on for more details.

The Microsoft-approved method of walking the task list is to use the
TOOLHELP TaskFirst and TaskNext functions. If you want to walk the list
directly (like the SHOW16 program does), you can find the head of the list
of tasks in the DX register after GetCurrentTask is called. Alternatively, you
can find the first TDB in the list by reading the WORD 0xE bytes past the
THHOOK symbol exported by KRNL386. (That is, call GetProcAddress
for THHOOK, add 0xE to the offset portion of the returned address, and
then read in the WORD at that location). The memory around THHOOK
contains several other useful KRNL3g6 global variables:

S e l T a b l e L e n

524

THHOOK+0 hGlobalHeap
This is the handle (selector -1) to the Burgermaster data structure that
maintains the information about the 16-bit global heap. See Chapter 2 of
Windows Internals for more information on this. This value is also returned
in the AX register after calling the undocumented KRNL386
GlobalMasterHandle function.
THHOOK+ 2 pGlobalHeap
This is the selector that points to the Burgermaster segment, and is essen-
tially the same thing that's returned by the hGlobalHeap field. This value is
in the DX register after calling GlobalMasterHandle.
THHOOK+4 bExeHead
This WORD holds the HMODULE of the first module in the list of 16-bit
modules. The first module is always KERNEL (KRNL386.EXE). This
value can also be found in the DX register after a successful call to
GetModuleHandle. See the description of offset 06h in the module data-
base (in "The NE Header" section earlier in the chapter) for additional
information.
THHOOK+8 topPDB
The selector of KRNL386.EXE's PSP (a.k.a. PDB) segment. This is the PSP
that KRNL386 was loaded from as a real mode DOS executable. This value
is returned by GetCurrentPDB in the DX register.
THHOOK+0Ah beadPDB
The PDB/PSP selector of the first PDB in the list of PDBs.
THOOK+0Eh HeadTDB
The first TDB in the list of TDBs. This value is returned by GetCurrentTask
in the DX register.
THHOOK+ 1 0h CurTDB
The TDB selector of the currently executing task. This is almost always the last
task in the list. This value is returned by GetCurrentTask in the AX register.
THHOOK+12h LoadTDB
This field is set to 0, except when a new task is in the process of being created.
In this case, it contains the value of the TDB selector that the new task will use.
THHOOK+ 1 6 SelTableLen
This WORD is the length of the selector table (an array of DWORDs) in the
Burgermaster segment. See Chapter 2 of Windows Internals for details.

T H H O O K + 1 8

THHOOK+18 SelTableStart

This DWORD is the starting offset of the selector table (an array of
DWORDs) in the Burgermaster segment. See Chapter 2 of Windows
Internals for details.

Unlike module databases, Windows 95 is good about keeping all the
task databases - - whether they're for 16- or 32-hit applications - - in the
task list. You can therefore use the 16-bit TOOLHELP. DLUs TaskFirst and
TaskNext functions to walk the list of all running programs, regardless of
whether they're 16- or 32-bit-based. Also, unlike 16-bit modules, all tasks
have a corresponding representation in the 32-bit side of Windows 95.
Specifically, each Windows 95 task database contains a 32-bit flat pointer to
a Win32 thread database. This is true even for 16-bit programs. To summa-
rize: Every program (whether it's a 16-bit NE program or a 32-bit PE pro-
gram) has both a 16-bit task database and a 32-bit thread database (as well
as a corresponding 32-bit process).

525

SOME COMMON MISCONCEPTIONS ABOUT TASKS

Tasks can sometimes be difficult to understand, so it's not surprising that
programmers often have misconceptions about them. This section describes
and clarifies a couple of misconceptions I encounter frequently.

One of the most common misconceptions about tasks is that every task
has a window. Although a window on the screen is the most visible indica-
tor of a task's existence, tasks and windows are completely unrelated and
shouldn't be confused with one another. A task represents execution, and
nothing else. The decision about whether or not the task displays a window
is completely up to you. It's certainly easy to create a task that never creates
a window, yet does useful work. This is an important point to remember
when you look at the "task list" in Windows 95. That list shows the top-
level windows, and is completely different from the true task list maintained
by KRNL386. If you run the SHOW16 program on the disk that accompa-
nies this book, it's likely that you'll see tasks that don't show up in the
Explorer window list.

Another common misconception some programmers have is thinking
that DLLs have task-like qualities. These programmers say things such as,
"I want my DLL to create a window that will be used for all the client
programs of the DLL." Another example: "My DLL will open a file handle
that will be used by several different programs that use the DLL." These

T D B

526

statements indicate that the programmers have the mistaken idea that the
DLL owns the window or the file handle. As I mentioned earlier, tasks - - not
DLLs - - own file handles and windows. A DLL is nothing more than addi-
tional code that a task uses. The fact that the DLL's code is in a file separate
from the EXE's is irrelevant when it comes to ownership of system resources.

A DLL that creates a window or opens a file handle is doing so on
behalf of the task that has called into the DLL. The DLL itself has no power
to own these things. Therefore if you call CreateWindow from within a
DLL, it's the currently executing task that owns the window, not the DLL. If
the task goes away, so will the window, even if the DLL remains in memory.
Likewise, if a DLL opens a file handle, that handle belongs to the current
task. If another task calls into the DLL and the DLL attempts to use the file
handle opened for the first task, an error will result - - or worse, the wrong
file will be used. Why? Because the file handle is only valid when the first
task (the task that opened the file) is executing.

THE TASK DATABASE (TDB)
The preceding sections have used broad strokes to describe some task-
related issues that were rather general in scope. In this section, however, I
provide the gritty details about the contents of the task database (TDB).
Each field in a Windows TDB is listed and described here; if you'd prefer to
see just a quick overview of the TDB's fields, refer to the TDB.H header file
in the SHOW16 code on the accompanying disk. As in previous sections of
this chapter, the three items in the first line of each field description are the
field's offset in the module database, the field's type (for example, WORD
or DWORD), and a short description.
00h WORD next TDB

This WORD is the HTASK of the next task in the list of Winl6 tasks. The
head of the list is given by the HeadTDB KRNL386 global variable
(returned in the DX register after calling GetCurrentTask). The end of the
list is indicated by a 0 in this field.
02h DWORD task SS:SP

This DWORD is the SS:SP of the task when the task is parked inside the
16-bit scheduler. At fixed offsets from this address you can find the register
values that will be restored to the CPU register when this task is scheduled.

T D B

527

In fact, the TOOLHELP TaskSwitch and TaskSetCSIP rely on this to per-
form their magic. This field is meaningless in the TDB of the currently exe-
cuting task, since the task is not blocked inside the 16-bit scheduler.

06h WORD number of events
This WORD holds the number of events waiting for the task to process.
Usually, the topic of events doesn't come up in the course of Windows pro-
gramming. When an event does come up, it usually represents a waiting
window message for the task to handle. For example, if you post a message
to an application, the message is written to the task's message queue, and
the task's event count field is incremented. However, events are not synony-
mous with window messages, and a task can have waiting events without a
corresponding waiting window message. Events are the measure by which
the 16-bit task scheduler decides if a task should be awakened to start exe-
cuting. The scheduler only restarts tasks that have a nonzero event count.
08h BYTE priority
This BYTE holds the relative scheduling priority of the task. However, this
field doesn't appear to be used by any Windows applications, and the appli-
cations all end up running at the same relative priority. In theory, the value of
this field can range between -32 and 15, and is set with the undocumented
SetPriority function in KRNL386. KRNL386 keeps the task in priority-
sorted order, with lower values coming first in the list. Because of the Win16
scheduler algorithm, tasks with a lower priority value are the first to be
checked for waiting events. However, adjusting your task's priority typically
won't buy you anything, since the scheduler will only schedule a task that
has an event waiting for it. You can give your task a priority value of-32,
but if it doesn't have any waiting events, it still won't be scheduled.

09h BYTE
This field is apparently unused.

0Ah, 0Eh, 10h, 12h WORD unused fields
These fields in the TDB may have been used for thread information by OS/2
1.x programs back in the days when OS/2 1.x and Windows shared a lot of
code. In Windows 3.x and Windows 95, these fields appear to be unused,
and are always set to 0.

0Ch WORD this TDB
This WORD holds the TDB of this TDB (that is, it references itself).

3 . x ,

528

14h WORD floating-point control word

In Windows 3.x, this WORD held the floating-point control word of the
task when the task was switched away from. The floating-point control
word contains state flags for the 80x87 math coprocessor, and is saved and
restored with the FLDCW and FSTCW CPU instructions. In Windows 95,
this field appears to be unused. This may be because Windows 95 task
switches also involve Win32 thread switches, and the floating-point control
word may be saved and restored at the ring 0 thread switching level.
16h WORD task flags
This WORD holds the following bitfield flags:

Flag Name and
Bit Value Description

TDBF_WIN32 If set, this task is a Win32 program. This bit is also set in the TDBs
0x0010h created for Win32 applications running under Win32s.

TDBF_NEWTASK This flag is set when a Win 16 task is created. It's cleared the first time
0x0008 the task goes through the 16-bit scheduler (the Reschedule function).

TDBF_WINOLDAP
0x0001 h

This task is WINOA386.MOD (module name: WINOLDAP). The
WINOLDAP task is used for running DOS programs in their own virtual
machine under Windows 95. WINOLDAP acts as a sort of wrapper
around the DOS program. In the task list, you'll see the name
WINOLDAP, rather than the name of the DOS program.

18h WORD error mode

This WORD contains a set of bitfields that customize Windows 95's
response to certain errors that occur in the task. These flags can be set with
the SetErrorMode API functions. The documented flags are the following:

Flag Name and
Bit Value Description

SEM_FAILCRITICALERRORS
0x0001

Silently return failure from DOS function calls that have
encountered a critical error (indicated by the "Abort, Retry,
Ignore?" error message). If this flag is not set, Windows 95
pops up a dialog box asking for directions on how to
proceed.

0 x 3 E

529

Flag Name and
Bit Value Description

SEM_NOGPFAULTERRORBOX
0x0002

When a GP fault occurs, do not display the normal GP fault
dialog box. in Windows 3.x, this flag was primarily used by
debuggers that wanted to terminate the application being
debugged. The debugger sets this flag in the debuggee, and
then modifies the debuggee so that when it resumes execution,
it GP faults and Windows terminates the application (without
showing a GP fault dialog). Also refer to the TOOLHELP
TerminateApp documentation, because TerminateApp
can optionally set this flag.

SEM _NOOPENFILEERRORBOX
0x8000

Do not display the dialog box when a file cannot be found.
This flag is most often set when you want failing calls to
LoadLibrary to fail silently instead of by displaying the File
Not Found dialog.

1Ah WORD expected windows version
This WORD holds the minimum version of Windows required to run this
program. This field is a copy of the expected Windows version at offset
0x3E in the module database of the executable that this task was created
from. See the 06h entry in "The NE Header" section for more information.

1Ch WORD HINSTANCE of this task
This WORD holds the HINSTANCE of this task. The HINSTANCE is
nothing more than the global heap handle of the task's default data segment
(a.k.a., the DGROUP segment). This HINSTANCE value is passed as the
first parameter to the WinMain function. The HINSTANCE/DGROUP seg-
ment is also the same as the task's stack segment. Each copy of a task has its
own HINSTANCE value, and HINSTANCEs are often used to distinguish
between running programs (although TDBs are equally good for this job).
For Win32 tasks, the HINSTANCE value in the TDB is the same as the
HMODULE field (offset 1Eh, described next).

1Eh WORD module handle of this task
This WORD holds the HMODULE of the loaded EXE file that this task
was created from. This handle can be passed to GetModuleFileName to
retrieve the name of the EXE file associated with this task.

530

20h WORD message queue

This field contains the selector of the task's message queue. The message
queue is where messages that are posted to a task's windows reside. Unlike
earlier versions of Windows, in Windows 95 there's no fixed limit on the
number of messages that can be held in each queue. Chapter 4 describes this
in more detail.
22h WORD parent TDB
This WORD is the TDB selector of the task that WinExec'ed this task. For
instance, if you're debugging a program, that task's parent will be the
debugger task's TDB. Typically, the parents of applications are
EXPLORER.EXE if you launched the program from the Explorer, or
MSGSRV32.EXE if you started the program from the DOS command line.
For Win32 applications, the parent TDB is always 0.
24h WORD application signal action
In Windows 3.1, the value of this WORD affected what the task's applica-
tion signal procedure did, although the exact meaning was unknown. In
Windows 95, the application signal procedure address (offset 26h) appears
to be unused.
26h DWORD Windows 3.1 application signal procedure
In Windows 3.x, this field held the pointer to the application's signal proce-
dure. The application signal procedure was a means by which a program
could get called back when Ctrl-Break was pressed. The signal procedure
was set by calling the undocumented SetSigHandler function. In Windows
95, SetSigHandler is no more, and this field appears to always be 0.
2Ah DWORD USER signal procedure
This field holds a pointer to the USER signal procedure. The USER signal
procedure is called when a DLL is loaded or unloaded. This gives USER the
opportunity to clean up any system resources that were left around. During
the unload callback, USER also calls the GDI SignalProc function, giving
GDI a chance to clean up (or mark for future cleanup) any unfreed GDI
resources.

You can change the signal handler in the TDB by calling the undocumented
SetTaskSignalProc (KERNEL.38). The function is prototyped as follows:

FARPROC SetTaskSignalProc(HTASK hTask, FARPROC lpfnNewSignalProc);

The return value is the old signal procedure address.

D W O R D

531

The USER signal procedure callback function is as follows:

void FAR PASCAL UserSignalProc(

HMODULE hModule, // Module under consideration.

WORD actionCode, // See actionCode values, below.

WORD unknown,

HISNTANCE hInstance,

WORD hQueue);

actionCode values:

0x0040 DLL Load

0x0080 DLL Unload

0x0100 ??? (task exit?)

In Windows 3.1, TOOLHELP. DLL replaced the USER signal proc with its
own handler. In TOOLHELP's handler, TOOLHELP unhooked any
installed interrupt or notification handlers for the task that was exiting. In
Windows 95, TOOLHELP no longer fudges with the signal procedure.
Instead, TOOLHELP uses the new DLLENTRYPOINT mechanism
described in the Windows 95 thunk compiler documentation.
2Ch DWORD GlobalNotify callback
This DWORD hold a pointer to the task's GlobalNotify callback procedure.
KRNL386 calls this procedure when it's about to discard a DISCARDABLE
global heap block. The callback function can allow KRNL386 to discard
the block, or prevent it from discarding the block, based on the value that
the callback function returns. This field is initialized to 0 (no callback) when
a new task is created.
30 DWORD [7] task interrupt handlers (INTs O, 2, 4, 6, 7,

3Eh, 75h)
For most interrupts, Windows 95 has a global handler that's used for all
tasks. However, Windows 95 allows tasks to install their own handlers
for certain interrupt handlers (via an INT 21h, function 25h). When one
of these interrupts occurs, Windows 95 looks up the interrupt handler in
the TDB of the current task and calls that function. In the TDB is an array
of seven DWORDs, with each DWORD holding the interrupt handler for
a specific interrupt number. The interrupts that are handled on a per-task
basis are these:

T I B

532

0 -- Divide by Zero
2 -- NMI
4 -- INTO
6 -- Invalid Opcode
7 -- Coprocessor Not Available
3Eh -- 80x87 emulator
75h -- 80x87 error

Default handler procedures are provided in the TDB of each task as it's
created. A good example of a task that changes the interrupt vectors is
CALC.EXE. The SHOW16 program on the accompanying disk is a good
way to see which interrupt handlers a task has installed.
4Eh DWORD compatibility flags
This field, which was introduced in Windows 3.1, tells Windows to retain
the behavior of previous versions of Windows for programs that rely on
behavior that was changed in Windows 3.1. When Windows sees that it's
running one of these tasks, it checks these flags, and adjusts what it does
accordingly. If you look in the [Compatibility] section of the WIN.INI file,
you'll see the module name of the programs that need these compatibility
hacks. Somewhat surprisingly, many of the applications listed are Microsoft
programs. Chapter 5 of Undocumented Windows contains a list of the bit-
fields and their meanings in Windows 3.1. It appears that additional flags
have been added in Windows 95. You can retrieve the compatibility flags of
a particular task with the undocumented GetAppCompatFlags function:

DWORD FAR PASCAL GetAppCompatFlags(HTASK hTask);

52h WORD TIB selector
This is the value of the FS register used by the Win32 threading code to
access the TIB (thread information block) structure. All tasks (even 16-bit
tasks) have Win32 processes and threads maintained for them. A copy of
the pointers and selectors used to access the task's Win32 thread informa-
tion is kept in each task's TDB segment.

The thread information block contains per-thread information, including
the following fields:

P D B

533

00h DWORD

04h DWORD

08h DWORD

2Ch DWORD

pvExcept // Head of exception record list.

pvStackUserTop // Top of thread's stack.

pvStackUserBase // Base of thread's stack.
pvTLSArray // Pointer to Thread Local Storage array.

The TIB structure starts 0x10 bytes inside the thread database. The flat
32-bit address of the thread database is given in the next field of the TDB
(offset 54h). See Chapter 3 for more detailed information on the TIB.
54h DWORD linear address of the task's

This DWORD holds the flat 32-bit linear address of the ring 3 thread
database associated with this task. The thread database encompasses the
Thread Information Block (see field 52h), and starts 0x10 bytes before
the Thread Information Block. See Chapter 3 for more detail on the
THREAD_DATABASE.
58h WORD DGROUP handle of task
For 16-bit-based tasks, this WORD is the global heap handle of the DGROUP
segment. Based on error messages in the debug version of KRNL386, this field
may be used during 16-/32-bit thunking to obtain the handle of the task's atom
table segment (that is, its DGROUP). For Win32-based tasks, this field is
always 0.
5Ah BYTE[6] unused
These six bytes don't appear to be used in Windows 95.
60h WORD PDB of task
This WORD is the selector of the task's PDB (a.k.a. PSP) segment. The
PDB/PSP contains the task's file handle table, its command line, and other
assorted fields that are documented in numerous DOS programming books.
In Win16 tasks, the PDB for each task is stored at the tail end of the mem-
ory accessible by the HTASK selector. Specifically, the base address of the
PDB selector is always 0x210 bytes greater than the base address of the
HTASK selector. For Win32 tasks, the PDB is always at a linear address
below 1MB, while the TDB segment is usually up above 2GB.

The GetCurrentPDB function returns the value of this field for the
current TDB.

s e l e c t o r : o f f s e t

534

62h DWORD DOS Disk Transfer Area

This DWORD points to the MS-DOS Disk Transfer Area (DTA). Refer to
DOS programming books for details on the DTA. For Win16 tasks, the ini-
tial value of the DTA is 80h bytes into the PDB segment (that is, the selector
portion of this field matches the WORD at offset 60h). All Win32 tasks
share a common DTA value.
66h BYTE current drive
This BYTE contains the drive portion of the task's current directory. This
value is biased by 0x80, so you have to subtract 0x80 to get the drive num-
ber. (0x80 = drive A, 0x81 = drive B, and so forth). In Windows 3.x, the
directory portion of the current directory was stored immediately following
this field, but in Windows 95 the path has moved to offset 0x100. See
0x100 for more information.
67h char[65] unused
In Windows 3.x, this array of characters held the path portion of the task's
current directory. In Windows 3.x, the maximum directory size was limited
to 65 characters. With the advent of long filenames in Windows 95, this size
became too small to hold the maximum possible path; the current directory
is now stored at offset 0x100 in the TDB.
A8h WORD initial task validity check
Under Windows 3.x, this WORD is set to the initial value that AX will
contain when the task starts up. However, there doesn't appear to be any
startup code that tests this value, so it is essentially an unused field.
AAh WORD next task to schedule (DirectedYield)

If nonzero, this WORD holds the HTASK value that the Winl6 scheduler
should wake up when the scheduler is called. This value is always 0, except
when you call DirectedYield to specify a particular task to run next.
DirectedYield stores the HTASK parameter into this field, and then calls the
Winl6 scheduler (Reschedule). Near the beginning of the Reschedule func-
tion, it checks the value of this field and, if nonzero, bypasses its regular
search for the next task to schedule. Reschedule zeroes out this field, so the
field is rarely seen with a nonzero value.
ACh DWORD selector:offset to list of DLLs to initialize

At application startup, this DWORD holds a pointer to a O-terminated
array of DLL module handles. All of these DLLs are being loaded into
memory for the first time, so they each need to have their LibMain entry

T D B

 535

point called. If an implicitly referenced DLL was already in memory when
this task started, its HMODULE is not in this list. The InitTask function
iterates through this array of HMODULEs, calling their LibMain entry
points. Afterward, InitTask frees the memory containing the HMODULE
list and sets this DWORD to 0. Note: The far pointer in this field has its
selector and offset fields reversed from a normal far pointer. In this field,
the selector is in the low WORD and the offset in the high WORD.

B0h WORD code segment alias for this TDB
Windows 95 initially creates MakeProclnstance thunks in the TDB itself
(see field BAh). Since the CPU cannot execute code using a data selector
(and the TDB is a data selector), KRNL386 creates an alias selector that's a
code selector and stores it in this field. The alias selector is identical in base
address and length to the TDB selector; the only difference is that the alias
is set up as a code selector rather than as a data selector. The address of the
first seven MakeProclnstance thunks you create will have a selector portion
that's the same as this field.
B2h WORD selector of segment with additional thunks
If more than seven MakeProclnstance thunks are created, KRNL386 allo-
cates another code segment to hold another seven thunks. This segment has
the same format as field B0h through Flh (inclusive) of the TDB. If even
more thunks are needed, additional segments are allocated; the segments are
put at the end of the linked list, with this field acting as the "next" pointer
for each node in the list.
B4h WORD PT signature (5450h)
This field contains the value 5450h, which when expressed in ASCII charac-
ters is PT. The term "PT" is presumably short for something like Procedure
Thunks or Proclnstanc Thunk.

B6h WORD unused
This WORD does not appear to be used and is set to 0.

B8h WORD offset of next available thunk slot + 6
By subtracting 6 from the value of this field, you'll obtain the offset in the
TDB where the next MakeProcInstance thunk will be created. As each
thunk is created, this value goes up by 8.

BAh [38h] MakeProclnstance thunk area
This region holds up to seven MakeProcInstance thunks. Each thunk is 8
bytes long and is of the following form:

MOV AX, hInstance

JMP FAR PTR lpfn?roc

; hInstance == parameter 2 to MakeProcInstance

; lpfnProc == parameter 1 to MakeProcInstance

F2h char[8] module name for task
This field holds the module name of the task. This name is simply copied
from the module database (HMODULE) that this task was created with. If
the module name is a full 8 characters, there is no NULL terminator.
FAh TD signature
This WORD contains 0x4454, which when expressed as ASCII characters is
TD (short for Task Database). The IsTask functions and other KRNL386
routines use this signature to guarantee that they're working with a valid
task database.
FCh DWORD unused
This DWORD does not appear to be used, and is set to 0.
l00h char[1 10h] current directory of task
Since Windows 95 supports long filenames, the current working directory
of the task no longer fits in the space at offset 67h. Therefore, the current
directory (minus the drive portion) is stored in this character array.
210h char[110h] PDB/PSP of task (Win16 tasks only)
For Win16-based tasks, this region holds the PDB/PSP of the task. This
region is also pointed at by the selector at offset 60h in the TDB. It's some-
what strange that this field is 110h bytes in size, since prior to Windows
95/DOS 7, the PSP has always been only 100h bytes long.

TASK-RELATED FUNCTIONS

Now that we've seen what a Windows 95 16-bit TDB looks like, let's look
at some functions that access and manipulate the TDB structure. The func-
tions I've chosen are mostly simple functions, primarily because a function
like the core Windows scheduler (the Reschedule function) could easily take
a chapter all by itself.

536

I s T a s k

537

The GetCurrentTask() function
GetCurrentTask is the most basic of the task-related functions. The docu-
mented return value of this function is placed in the AX register, and the
head of the task list is put in the DX register. Both the current task and the
head task list are kept in KRNL386 global variables. Since KRNL386's data
segment is FIXED and pagelocked, the two variables that the function
retrieves will always be physically present in memory. Therefore,
GetCurrentTask is completely safe to call from within an interrupt handler.
This directly contradicts Microsoft's stern warnings that the only safe func-
tion to call from within an interrupt handler is PostMessage. Who are you
going to believe? Look at the evidence and decide for yourself.

Since GetCurrentTask is such a simple function, it's clearer to present
the few assembler instructions it uses than to show the function in C
pseudocode.

Code for GetCurrentTask

PUSH DS

MOV DS,WORD PTR CS:[MYCSDS]

MOV AX,[CurTDB]

MOV DX,WORD PTR [HeadTDB]

Save caller's DS.

MyCSDS is a global var kept in the

code segment that holds the selector

of KRNL386's data segment (segment 4).

Load documented return value into AX.

Undocumented head of task list.

POP DS

RETF

Restore caller's DS.

The IsTask() function
IsTask is a handy function you can use to verify that you've got a valid task
handle. It's not entirely rigorous, as the only test is to see if there's a WORD
with the value 0x4454 (TD) at offset 0xFA in the passed-in segment. (In
fact, you can easily construct a segment that passes this test but is not a
valid HTASK segment.)

One interesting thing to note in IsTask is that there don't appear to be
any tests to make sure the handle is in fact a valid global memory handle.
You might think that passing in a bogus selector value would therefore
cause a GP fault, causing Windows to terminate your application. As it

G e t T a s k Q u e u e

538

turns out, a GP fault does occur in this situation but KRNL386 is prepared
for this possibility.

To handle code sequences where GP faults are a possibility, KRNL386
has a table of address ranges where a GP fault might occur. Associated with
each address range is a safe recovery address. If the KRNL386 GP fault
handler sees a GP fault occur in one of these ranges, it transfers control to
the recovery address. In the case of IsTask, the recovery address simply puts
0 (that is, FALSE) in the AX register and returns to the code that called
IsTask. If this mechanism sounds suspiciously like Win32-structured excep-
tion handling, it essentially is, although there are some important differences.
For more information on KRNL386's version of structured exception
handling, see the entries for __GP and HasGPHandler in Undocumented
Windows.

Pseudocode for GetCurrentTask

/ / Parameters:
// HTASK hTask

// Locals:

// TDB far * lpTDB // Pointer to TDB structure.

if (hTask == 0)

return FALSE;

lpTDB = MAKELP(hTask, 0);

BX = *(LPWORD)MAKELP(hTask, 0x202); // ??? Offset 0x202 in the TDB

/ / is near the end of the current
// directory area.

if (lpTDB->TDB_sig == 0x4454)

return TRUE;

else

return FALSE;

// Look for the TD signature.

// (0x4454)

The GetTaskQueue() function
GetTaskQueue is an undocumented function that returns the message queue
handle associated with the HTASK parameter passed in. If the HTASK
parameter is 0, GetTaskQueue returns the queue handle for the current
task. Chapter 4 describes the message queue in more detail.

G e t A T a s k S o m e h o w (539

GetTaskQueue is a useful function for determining if a task is able to
receive window messages yet (a message queue is necessary to receive posted
or sent messages). The application's message queue isn't created until the
application calls the InitApp function in its startup code. The call to InitApp
doesn't occur until after the LibMain's of implicitly loaded DLLs are called,
so a significant portion of a task's life can be spent without a message
queue. Windows-hosted debuggers in particular need to know if the task
they're debugging has a message queue; this information makes a difference
in how they handle the debuggee process and its window messages when the

debuggee is stopped.
The GetTaskQueue function doesn't do rigorous checking of its input

parameters. If you pass a nonzero value that's not a valid selector, you'll
receive a GP fault inside KRNL386.

Pseudocode for GetTaskQueue

// Parameters:

// HTASK hTask

// Locals:

// TDB far * lpTDB // Pointer to TDB structure.

lpTDB = GetATaskSomehow(hTask); // See following pseudocode.

if (lpTDB->TDB_Queue)

return lpTDB->TDB Queue;

else

return -1;

// Return message queue.

// Windows 3.1 didn't do this, and

// returned whatever was in the TDB.

Pseudocode for GetATaskSomehow

// Parameters:

// HTASK hTask

if (hTask)

return hTask;

else

return CurTDB;

// If any nonzero hTask passed in, return it;

// otherwise, return the current task,

M a k e P r o c I n s t a n c e

540

The MakeProclnstance() function
Although much of the need for MakeProcInstance has gone away with
newer compilers, this function is usually required in cases where you want
callback functions in your EXE's code rather than in a DLL. For example,
you might want to use TOOLHELP NotifyRegister or InterruptRegister
callbacks in your EXE's code. If you use the __loadds function modifier,
you'll end up limiting the program to a single instance. MakeProcInstance
thunks come to the rescue in such situations.

The job of the MakeProclnstance thunk is simple: Jump to a specified
address after setting the AX register to the DS register value that the func-
tion should use. It's expected that the function's prologue code will take the
AX register value and put it into DS.

MakeProclnstance has parameter validation layer code that first makes
sure that a valid target address and HINSTANCE were passed. The
pseudocode for ValidateHInstance and ValidateCodePtr (shown later in this
section) lists the parameters that MakeProcInstance considers to be valid:
HANDLE for ValidateHInstance and FARPROC for ValidateCodePtr. If either
of these parameters is invalid, MakeProcInstance returns without creating a
thunk. If you're running the debug version of KRNL386, MakeProcInstance
RIPs with an appropriate error code, telling you of your bad programming.

After validating the parameters, MakeProcInstance jumps to the
IMakeProcInstance code, which is where the thunk is actually created.
IMakeProcInstance starts out by doing some additional tests of its own
before committing to making a thunk. If the HINSTANCE parameter isn't
the same as the DS register in the calling code, you'll get a message to the
effect of "MakeProcInstance only for current instance." This means that
you can't make a thunk for an EXE module other than your own. (That is,
unless you get sneaky and change your DS to the right value before calling
MakeProcInstance.)

Another important check MakeProcInstance makes is to see if
you're requesting a thunk for a function in a DLL. DLLs don't need
MakeProcInstance thunks, since they can use the exported function
prologue code that uses a hard-coded DS value. For example:

MOV AX,17C7h
MOV DS,AX

If you do pass the address of a routine in a DLL, MakeProcInstance silently
returns to you the address you passed in, unmodified.

I M a k e P r o c I n s t a n c e

541

The next major portion of IMakeProcInstance is to determine where it
will create the new thunk. If you've created less than seven thunks so far,
the thunk will come from a region within the TDB segment of the current
task. Otherwise, IMakeProcInstance looks in the additional segments that it
creates for storing additional thunks. If there's no open slot in these seg-
ments, IMakeProclnstance allocates another segment (with GlobalAlloc),
initializes the segment, and adds it to the linked list of thunk segments.

Once IMakeProcInstance knows where the new thunk will be created, the
actual creation is amazingly simple. A MakeProcInstance stub looks like this:

MOV AX, hlnstance

JMP FAR PTR lpfnProc

Creating the thunk is just a matter of creating the completed instructions.
Bytes 0 and 3 are filled with constant values (the opcodes 0xB8 and 0xEA).
The WORD at offset 1 is set to the value of the hinstance parameter to
MakeProclnstance, and the D W O R D at offset 4 is set to the lpProc

parameter value.

Pseudocode for MakeProclnstance

// Parameters:

// FARPROC lpProc

// HINSTANCE hinst

ValidateCodePtr(lpfnProc);

ValidateHInstance(hinst);

goto IMakeProcInstance

// If either of these functions faiT,

// the function returns without JMP'ing

// to IMakeProcInstance.

Pseudocode for ValidateHInstance()

// Parameters (in AX):

// HANDLE handle

if (handle == 0)

return;

// Make sure the LDT bit is on. Win16 code only deals with LDT

// selectors, and not with GDT selectors.

if ((handle & 0x0004) == 0)

RIP in the debug KERNEL (code 6022 ERR BAD GLOBALHANDLE)

if (handle == -1) // Apparently -1 is allowed.

return;

L A R

542

LAR handle // Get access rights WORD.

if (LAR instruction fails)

RIP in the debug KERNEL (code 6022 - ERR BAD GLOBAL HANDLE)

return

Pseudocode for ValidateCodePtr()

// Parameters (in CX:AX):

// FARPROC lpfn;

// Locals:

// WORD opcode

LAR SELECTOROF(lpfn)

if (LAR instruction fails)

RIP in the debug KERNEL (code 7088)

// Get access rights WORD.

if (Code bit (0x0008) not set in access rights)

RIP in the debug KERNEL (code 7088)

AL = *(LPBYTE)lpfn // Test to see if the memory can be read. If it

// GP faults, the KERNEL GP handler will catch it.

opcode = *(LPWORD)(lpfn+2); // Grab the opcode bytes 2 bytes into the PROC.

// Verify that the code pointer passed to us has an export prologue

// in it. 0x581E == PUSH DS / POP AX, 0xD88C == MOV AX,DS.

if ((opcode != 0x581E) && (opcode != 0xD88C))

RIP in the debug KERNEL (code 7088);

return;

Pseudocode for IMakeProclnstance()

typedef struct

{
BYTE mov_ax_opcode

WORD hinstValue;

BYTE imp_far_opcode;

DWORD lpfn;

} MAKEPROCINSTANCE_THUNK;

// Parameters:

L P M O D U L E

 543

// FARPROC lpProc

// HINSTANCE hinst

// Locals:

// LPMODULE lpModule;

// MAKEPROCINSTANCE_THUNK far * lpThunk;

// WORD newThunkSegment; // If additional thunk slots are needed.

if (hInstance)

if (HIWORD(GlobalHandle(hinst)) !- Calling application's DS.)

_KRDebugTest("fatl K16 %dx2 MakeProcInstance only for"

"current instance.");
}

// Get the owner of the hinst segment, which should be an HMODULE,

// and make a far pointer out of it.

lpModule = MAKELP(FarGetOwner(hinst), 0);

// Check if the owning segment is a valid HMODULE by looking for

// the NE signature. If HMODULE isn't valid, something is seriously wrong,

// so pop into a debugger with an INT 3.

if ('NE' != lpModule->ne_signature)

INT 3

// If the owning module is a DLL, just return the FARPROC passed in.

// MakeProcInstance thunks aren't necessary for DLLs

if (lpModule->ne_flags & MODFLAGS DLL)

return lpProc;

if (spaces left in TDB for thunk)

lpThunk = MAKELP(TDB, TDB->TDB_next_MPI_thunk)

goto InsertThunk

space in the add on thunk segment (offset B2h in TDB))

lpThunk = MAKELP(segment & offset of next free slot in

add on segment);

goto InsertThunk

// Allocate memory for a new thunk segment (0x40 bytes in size).

newThunkSegment = GlobalAlloc(GMEM_ZEROINIT, 0x40);

if (newThunkSegment == 0)

goto ReturnFailure;

T O O L H E L P

544

Use AllocSelector and PrestoChangoSelector to make a new code segment

alias for the thunk segment.

if (AllocSelector fails)

goto ReturnFailure;

Initialize fields of new thunk segment to be the same format as offsets

BOH through Flh of the Task Database. Link this new segment into

the linked list of thunk segments. The head of this list is the

WORD at offset OxB2 in the current TDB.

lpThunk = first slot in newly created thunk segment

goto InsertThunk;

ReturnFailure:

KRDEBUGTEST("err K16 MakeProcInstance failed. Did you check return"

"values?");

return 0;

InsertThunk:

Update the nextThunk field to point at the next available slot in

whatever segment we're putting the new thunk into.

lpThunk->mov_ax_opcode = 0xB8;

lpThunk->hinstValue = hinst;

lpThunk->imp_far_opcode = 0xEA;

lpThunk->lpfn = lpProc;

// Return a far pointer that's a callable code address.

return MAKELP(code alias selector, OFFSETOF(lpThunk));

The TaskFindHandle() function
I chose to include the TOOLHELP TaskFindHandle function in this chapter
since many programmers are under the impression that the TOOLHELP
functions are somehow magic. As you can see in the pseudocode,

TaskFindHandle is merely a convenient way to access selected fields in a task
database. A downside to TaskFindHandle is that you'll get a whole collection
of information, even if you only need to know one particular value. If you

h T a s k

 545

have time-critical code that's called many times a second, you might want to
forego TaskFindHandle and read the information out of the Task Database
directly. Some might argue that you sacrifice portability, but at this stage in
the game, the fields in the TDB that TaskFindHandle collects aren't going to
change; too many applications would break.

Like almost all the TOOLHELP functions, TaskFindHandle first
checks to make sure that you've passed reasonable parameters. This
means that you've passed a valid pointer to a TASKENTRY structure,
and that the first field (dwSize) is initialized to the size of a TASKENTRY
structure. After these tests, TaskFindHandle calls an internal routine that
does the real work of copying the information out of the TDB and into
the TASKENTRY struct. I've called this function CopyTasklnformation
in the pseudocode.

The only test that CopyTasklnformation makes to ensure you've passed
a valid HTASK is to look for the TD signature WORD at offset 0xFA in the
TDB. You could easily construct a dummy segment that passes this very lax
test. In its defense, the IsTask APl function isn't any more stringent.
Assuming that the TD signature test succeeds, the majority of
CopyTasklnformation consists of copying fields in the TDB segment into
the TASKENTRY structure. At the very end of the routine, the code makes
a brief excursion into the task's stack segment in order to copy the stack's
top, bottom, and minimum values into the TASKENTRY structure.

The code for CopyTasklnformation has two changes from the
Windows 3.1 version of TOOLHELP; both changes are related to 32-bit
tasks. The first change was made because the pseudo tasks created for
Win32 processes don't have an HINSTANCE segment. For these tasks,
TOOLHELP fills in the TASKENTRY. hlnst field with the task's TDB seg-
ment. The second change involves the stack boundary fields (wStackTop,
and so on). The TDBs of Win32 processes have 0 in the fields where the
SS:SP would normally go. Therefore, CopyTasklnformation doesn't bother
to fill in the wStackTop, wStackMinimum, and wStackBottom fields for
Win32 tasks.

Pseudocode for TaskFindHandle

// Parameters:

// TASKENTRY far * IpTask

// HTASK hTask

// Verify that TOOLHELP has been initialized, that a nonzero LPTASKENTRY

// has been passed, and that the dwSize field of the TASKENTRY struct

// has been filled in.

if ((ToolhelpInitialized == FALSE)

II (lpTask == NULL)

II (lpTask->dwSize != sizeof(TASKENTRY)))

return FALSE;

// Internal function that fills in the TASKENTRY struct.

CopyTaskInformation(lpTask, hTask);

Pseudocode for Copy Tasklnformation

/ / Parameters:
// TASKENTRY far * lpTask

// HTASK hTask

// Locals:

// LPTDB

hTask l = 1;

Make sure the segment referenced by the hTask segment is at least

8x204 bytes long. If not, return FALSE.

]pTDB = MAKELP(hTask, 0); // Make a pointer to the TDB segment.

if (lpTDB->tdb_sig != 0x4454) // Verify TD signature is present.

return FALSE:

lpTDB;

// If a MOVEABLE handle was passed, convert to a selector.

lpTask->hNext = lpTDB->TDB_next;

lpTask->hTask = hTask;

lpTask->hTaskParent = lpTDB->TDB_Parent:

lpTask->wSS =]pTDB->TDB_taskSS;

lpTask->wSP = lpTDB->TDB_taskSP;

lpTask->wcEvents = lpTDB->TDB_nEvents;

lpTask->hQueue = lpTDB)TDB_Queue;

lpTask->wPSPOffset =]pTDB->TDB_PSP;

if (lpTOB->TDB_flags & TDB_FLAGS_WIN32)

lpTask->hInst = hTask;

// Next task.

// Current task.

// Parent task.

// Task's SS:SP.

// Number of waiting events.

// Message queue handle.

// PSP/PDB of task.

// Win32 programs don't have real HINST's.

// Start filling in fields in the TASKENTRY struct, copying the data

// from the TDB segment.

546

N T ,

547

else

lpTask->hInst = lpTDB->TDB_HInstance; // HINSTANCE of task.

lpTask->hModule = lpTDB->TDB_HMODULE; // HMODULE of task.

// Copy the module name from the TDB over into the TASKENTRY struct.

memcpy(&lpTask->szModule, lpTDB->TDB_ModName, 8)

lpTask->szModule[8] = 0; // Null terminate the string.

// If it's a Win32 program, don't bother to try and retrieve the

// stack Pounds values listed below. Just return TRUE.

if (lpTDB->TDB_flags & TDB_FLAGS_WIN32)

return TRUE;

if (VERR lpTDB->wSS fails)

return TRUE;

// Make sure the task's stack segment

// is accessible.

// Copy the stack boundary fields:

lpTtask->wStackTop = WORD at offset 0x0A in lpTask->wSS segment;

lpTtask->wStackMinimum = WORD at offset 0x0C in lpTask->wSS segment;

lpTtask->wStackBottom = WORD at offset 0x0E in lpTask->wSS segment;

return TRUE;

THE SHOW16 PROGRAM

I wrote the SHOW16 program to illustrate the concepts I've described in
this chapter. (The source code for SHOW16 is on the accompanying disk.)
This program shows the task list, the module list, and details about the cur-
rently selected task or module. In addition, you can double-click certain
lines in the details window to access even more in-depth information about

that particular line.
SHOW16 is a Windows 95-specific application, and is almost guaran-

teed to not work properly on other Win16 environments such as Windows
3.1, NT, or OS/2 2.x. The goal of SHOW16 is to show as much as possible

about Windows 95 tasks and modules, not to be portable.
When you first start up SHOW16, it looks something like the screen-

shot in Figure 7-2. The listbox on the left shows either the task list (the
default when starting up) or the module list. Clicking on the two radio but-
tons in the top left of this listbox toggles between the two lists. Each time

l i s t b o x e s

548

you click on a radio button, the appropriate list is updated from scratch, so
this is a handy way to force a refresh of either list.

Figure 7-2
The opening screen o f the SHOW 16 program contains two listboxes that provide
information about the currently selected task or module. The listbox on the left lets you
view either the task list or the module list, and the listbox on the right shows details about
items in those lists.

The listbox on the right (the details window) shows details on whatever
item is selected in the left listbox. These details are made up of information
extracted from the Task Database or Module Database directly, rather than
from TOOLHELP functions. Items in the details window preceded by a +
(plus) symbol can be double-clicked to change the details window. If the line
is a TDB or HMODULE line, the details window changes to show the
details for the TDB or HMODULE you double-clicked. Otherwise, the
details window changes to a more detailed report on the specific line you
double-clicked.

The task view in Figure 7-2 has several items of note. In the task list in
the left listbox, task names that are followed by (Win32) are 32-bit
processes. In the right listbox, the second line down shows the HMODULE

H M O D U L E

549

associated with the task, and has a + at the beginning. The HMODULE
value has been passed to GetModuleFileName to retrieve the path of the
associated EXE or DLL, which is also displayed. If you double-click this
line, the details window will change to the module database details view for
this HMODULE. (The module database detail view is described a bit later
in this section.} The other line that you can double-click in the task details
window is the parent task. This changes the details view to the details view
of the parent task.

The task details window shows all the fields in a task database that
might be of even remote interest. Fields in the TDB that don't provide any
useful information are not shown. In addition, fields that are described as
unused in the earlier TDB description receive special treatment. At the end
of the code that displays the task details is a series of assert statements. Each
of the assert lines checks to make sure that an unused field is set to 0. If any
of these asserts fails, it indicates that the field is probably used for some-
thing that I haven't uncovered.

Figure 7-3 shows the other major display given by SHOW16. This is
the module list, which is obtained by selecting the Modules radio button.
The first set of modules in the left listbox are regular module databases
from 16-bit EXEs and DLLs. These modules are found by walking the
module database list using the linked list fields described earlier. At the end
of the list of modules are the pseudo module databases created for Win32
EXEs and DLLs (you may have to scroll down to see them). These modules
all have (Win32) appended to the end of the module name. Since these
modules aren't in the regular module database list, SHOW16 takes a brute
force approach to finding them. At the end of the UpdateModuleList func-
tion in SHOW16.C, the code examines every possible ring 3 LDT selector,
looking for segments that are module databases. For each module database
it finds, the code looks for the MODFLAGS_WIN32 flag at offset 0xC in
the module database; if this flag is set, the code adds the module to the end
of the window's list.

Figure 7-3 shows the module details window, which has many interest-
ing things to click on. For starters, look at the "imported modules" line.
Each of the indented lines below it is a DLL that the module implicitly links
to. Double-clicking on one of these indented lines causes the module details
window to show details about the selected module. There are also numerous
more specialized details views available at the top of this view. Specifically,
you can switch to a details view of the following module-database items:

l i s t b o x

550

* Segment table
* Entry table
* Resources
* Resident names
* Nonresident names

Figure 7-3
The module list in the left listbox shows the regular module databases and the pseudo
module databases. The right listbox shows the details of the currently highlighted module.

A typical segment table is shown in Figure 7-4. For each segment in the
module's segment table, the details view shows the segment's ordinal num-
ber (the segment portion of a logical address), global heap handle, type
(either code or data), and size. An ambitious programmer could modify the
SHOW16 source to bring up a hex dump window when one of these lines is
double-clicked. Incidentally, font modules don't have segment tables, so
double-clicking on the segments, entry table, resident names, or nonresident
names table lines won't change the details view.

W i n l 6

551

Figure 7-4
The details window for this segment window table shows each segment's ordinal number,
global heap handle, type, and size.

Figure 7-5 shows a resource view details window. As you can see, the
information in this window is presented in a format similar to the layout
of the resource table in the module database. Each section starts out with
the type of the resources that will follow (for example, Version Info, Icon,
and so on). Immediately following the resource-type line is a series of
indented lines, each representing one resource instance (that is, one
bitmap, one cursor, and so on). Each of the indented lines provides the
following information about that resource: the offset of the resource in
the file (in sectors for Winl6 modules), the size of the resource (in sec-
tors), the ASCII name or ID of the resource, and the resource's global
heap handle (if loaded in memory). An expanded version of SHOW16
would let you double-click on each of these lines and see the resource
graphically.

552

Figure 7-5
The resource view details window presents information in a format similar to the layout of
a resource table in the module database.

Figure 7-6 shows a resident names details view. This view shares the
same format as the nonresident names detail view. In the SHOW16 code,
the main difference between the two views is that nonresident names have
to be read in from the disk file, whereas resident names can be processed
straight out of the module database. Each line in the resident/nonresident
names detail view starts with an export ordinal and is followed by the name
of the exported function or variable. The first line in the resident names
view has an export ordinal of 0 and is the module name (for example,
USER). The first line in the nonresident names view has an export ordinal
of 0 and is the module description (for example, Microsoft Windows User
Interface).

D L L ,

553

Figure 7-6
The resident names detail view, showing exported functions and their ordinal value. It has
the same format as the nonresident names detail view.

Figure 7-7 shows the last details view, which is the entry table. Each line
represents one slot in the module's entry table, and starts with the export
ordinal and logical address for the entry. The remainder of the line contains the
flags for the entry. Every entry is either MOVEABLE or FIXED, and usually
is EXPORTED. It would have been really nice to display the function name
of the entry. However, this would have required a significant amount of time
to do, since most of a module's names are usually found in the nonresident
names table, which requires a disk read to get at. In addition, there's no way
to quickly find the name for a given export ordinal in a resident/nonresident
names tables. The overhead of displaying the entry names wouldn't be bad
for a small DLL, but for something like USER (which has several hundred
entries), you could tie up the system for quite a while.

554

Figure 7-7
The entry table view shows the export ordinal, the logical address, and the flags for the entry.

SUMMARY

Although Windows 95 is marketed as a 32-bit operating system, there are
still many parts of it that rely on 16-bit code. In addition, until most appli-
cation development becomes 32-bit based, Windows 95 will primarily be
used to run 16-bit programs. Therefore, it's useful to have an understanding
of how the 16-bit components of Windows 95 work. In this chapter, we've
looked at two of the key 16-bit data structures (the module and task data-
bases). I've shown in some places how these 16-bit data structures run par-
allel to their 32-bit equivalents (which I discussed in Chapter 3). Although I
haven't covered all aspects of Windows 95's support for 16-bit modules and
tasks, the information I've presented in this chapter should be sufficient for
all but the most hard-core spelunker.

m a n yTHE PORTABLE

EXECUTABLE AND

COFF OBJ
FORMATS

T he format of an operating system's executable file is in many
ways a mirror of the operating system s built-in assumptions

and behaviors. Although studying the ins and outs of an exe-
cutable file format isn't something that usually appears high
on most programmers' list of things to do, a great deal of useful
knowledge about the operating system can be gleaned from
doing this. Dynamic linking, loader behavior, and memory
management are just three examples of operating system
specifics that can be inferred by studying the executable format.

In this chapter, I'll provide a real-world tour of the Portable
Executable (PE) file format that Microsoft has designed for use by
all its Win32 operating systems (Windows NT, Windows 95,
and Win32s).

You may be wondering why I cover the PE format in this
book, since there are several descriptions of the format on the
Microsoft Developer Network CD-ROM. The primary reason
I describe PE format executables here is because the structures
used in PE files are also key data structures within Windows 95
itself. For example, Windows 95 maps the header section of a
PE file into memory and uses it to represent a loaded module.
To understand how the Windows 95 kernel works, you need to
understand the PE format: It's that simple.

P E

556

Another reason I discuss PE files in this book is that, like almost all
specifications from Microsoft, Microsoft's PE documentation assumes that
you live and breathe this executable file format. Calling the Microsoft docu-
mentation terse would be an understatement. My goal in this chapter is to
flesh out that documentation and correlate it to things you experience every
day. Along the way I've shown a variety of ways in which the PE format
affects the operating system implementation and vice versa.

The PE format plays a key role in all of Microsoft's operating systems
for the foreseeable future, including Cairo. Even if you're programming for
Windows 3.1 using Visual C++, you're still using PE files (the 32-bit DOS
extended components of Visual C++ use this format). If you're going to do
almost any sort of low-level system programming in Windows 95, a work-
ing knowledge of PE files is essential.

In discussing the PE format, I won't be laboriously going over endless hex
dumps and explaining the significance of individual bits for pages on end.
Instead, I'll present the concepts embedded in the PE file format and relate
them to things you encounter everyday as part of your Win32 programming.
For example, the notion of thread local variables (• la "declspec(thread))
drove me crazy until I saw how it was implemented with elegant simplicity in
the executable file. Since many Win32 programmers are coming from a
Win16 background, I'll correlate the constructs of the PE file format back to
their 16-bit file-format equivalents.

At the same time that Microsoft introduced a different executable for-
mat, it also introduced new object module and library formats that its com-
pilers and assemblers produce. (The new LIB file format is essentially just a
bunch of OBJ files strung together along with an index, so when I refer to
OBJ files from here on out, I'm referring to both COFF OBJ and LIB files.)
These new OBJ and LIB file formats share many concepts with the PE format.
Until recently, there was no publicly available information on Microsoft's OBJ
and LIB files - - and even at the time of this writing, information is scant.
Therefore, it's worthwhile to cover the OBJ and LIB file formats as well.

It's common knowledge that Windows NT (the first of the Win32 operating
systems) has a VAX VMS and UNIX heritage. Many of the key NT developers
designed and coded for those platforms before coming to Microsoft. When it
came time to design NT, it was only natural that they tried to minimize their
bootstrap time by using previously written and tested tools. The executable and
object module format that these tools produced and worked with is called
COFF (Common Object File Format).

5 5 7

 5 5 7

The relatively old (in computer years) nature of COFF can be seen in
the fact that certain fields in the files are specified in octal format. The
COFF format by itself was a good starting point, but needed to be extended
to meet all the needs of a modern operating system such as Windows NT or
Windows 95. The result of this updating is the PE (remember, this stands for
Portable Executable) format. It's called portable because all the implementa-
tions of NT on various platforms (Intel 386, MIPS, Alpha, Power PC, and
so on) use the same executable format. Sure, there are differences in things
such as the binary encodings of CPU instructions. You can't run a MIPS
compiled PE executable on an Intel system. However, the important thing is
that the operating system loader and programming tools don't have to be
completely rewritten for each new CPU that arrives on the scene.

The strength of Microsoft's commitment to get Windows NT up and
running quickly is evidenced by the fact that it abandoned existing
Microsoft 32-bit tools and file formats. Virtual device drivers written for
Windows 3.x were using a different 32•bit file layout (the LE format) long
before NT appeared on the scene. In a testimonial to the "if it ain't broke,
don't fix it" nature of Windows, Windows 95 uses both the PE format and
the LE format. This allowed Microsoft to use existing Windows 3.x code in
a big way.

Although it's reasonable to expect a completely new operating system
(Windows NT, that is) to have a completely different executable format, it's a
different story when it comes to object module (.OBJ and LIB) formats.
Before Visual C++ 32-bit edition 1.0, all Microsoft compilers used the Intel
OMF (Object Module Format) specification. The Microsoft compilers for
Win32 implementations produce COFF format OBJ files. Some Microsoft
competitors such as Borland have chosen to forego the COFF format OBJs
and stick with the Intel OMF format. The result of this is that companies pro-
ducing OBJs or LIBs for use with multiple compilers will need to go back to
distributing separate versions of their products for different compilers (if they
weren't already).

Those of you who like to read conspiracy into Microsoft's actions might
see the decision to change OBJ formats as evidence of Microsoft trying to
hinder its competitors. To claim true Microsoft "compatibility" down to the
OBJ level, other vendors will need to convert all their 32-bit tools over to
the COFF OBJ and LIB formats. In short, the OBJ and LIB file format can
be viewed as yet another example of Microsoft abandoning existing standards
in favor of something that suits it better.

P E

558

The PE format is documented (in the loosest sense of the word) in the
WINNT. H header file, along with certain structure definitions for COFF
format OBJs. (I'll be using the field names from WINNT. H later in the
chapter.) About midway through WINNT. H is a section titled "Image
Format." This section of the file starts out with small tidbits from the old
familiar DOS MZ format and NE format headers before moving into the
newer PE information. WINNT. H provides definitions of the raw data
structures used by PE files, but contains only the barest hint of useful
comments to explain what the structures and flags mean. The author of
the header file for the PE format (a certain Michael J. O'Leary) is certainly
a believer in long, descriptive names, along with deeply nested structures
and macros. When coding with WINNT. H, it's not uncommon to have
expressions like this:

pNTHeader->OptionalHeader.DataDirectory[IMAGE_DIRECTORY_ENTRY_DEBUG].VirtualAddress;

Besides just reading about what PE files are composed of, you'll also
want to dump out some PE files to see for yourself the concepts presented
here. If you use Microsoft tools for Win32 development, the DUMPBIN
program from Visual C++ and the Win32 SDK can dissect and output PE
files and COFF OBJ/LIB files in human-readable form. DUMPBIN even has
a nifty option to disassemble the code sections in the file it's taking apart. In
light of Microsoft's claims that you're not allowed to disassemble its prod-
ucts, it's pretty interesting that it would provide a tool that makes it so easy
to disassemble its programs and DLLs. If the ability to disassemble EXEs
and OBJs wasn't useful, why would Microsoft have bothered to add this
feature to DUMPBIN? It sure sounds like another case of "Do as we say,
not as we do."

Borland users can use TDUMP to view PE files, but TDUMP doesn't
understand the COFF style OBJ files. This isn't a huge issue since the Borland
compiler doesn't produce COFF format OBJs in the first place. Throwing my
own hat into the ring, I've written a PE and COFF OBJ/LIB file dumping pro-
gram (PEDUMP) that I think provides more understandable output than
DUMPBIN. Although it doesn't have a disassembler, it is otherwise function-
ally equivalent to DUMPBIN, and adds a few new features to make it worth
considering. The source code for PEDUMP is on the disk included with this
book, so I won't list it here in its entirety. Instead, I'll provide sample output
from PEDUMP to illustrate the concepts as I describe them.

P E D U M P

559

THE PEDUMP PROGRAM

The PEDUMP program is a command-line utility for dumping PE files and
COFF OBJ/LIB format files. It uses the Win32 console capabilities to elimi-
nate the need for extensive user-interface work. The syntax for PEDUMP is
as follows:

PEDUMP [switches] filename

The switches can be seen by running PEDUMP with no arguments.
PEDUMP uses the following switches:

/A
/H

/I

/L

/R

/S

include everything in dump (essentially, enable all the switches)

include a hex dump of each section at the end of the dump

include Import Address Table thunk addresses

include line number information (both PE and COFF OBJ files)

show base relocations (PE files only)

show symbol table (both PE and COFF OBJ files)

By default, none of the switches are enabled. That way, most of the
information you need will be available, but you won't create a huge
amount of output.

PEDUMP sends its output to the standard output file (for example, the
screen), so its output can be redirected to a file with an > (greater-than sign) on
the command line.

The sources for PEDUMP are included with it. PEDUMP was built with
the Microsoft Visual C++ 2.0 compiler, although I have also compiled it with
Borland C++ 4.x throughout its development.

BASIC WIN32 AND PE CONCEPTS

Before jumping into a discussion of the layout of a PE file, I need to go over
a few fundamental ideas that permeate its design. For this discussion, I'll use
the term module to mean the code, data, and resources of an executable file
or DLL that has been loaded into memory. Besides code and data that your
program uses directly, a module is also composed of the supporting data
used by Windows to determine where the code and data is located in mem-
ory. In Win16, the supporting data structures are in the module database
(the segment referred to by an HMODULE). In Win32, this information is
kept in the PE header (the IMAGE_NT_HEADERS structure), which I'll
explain in detail shortly.

R V A

560

The most important thing to know about PE files is that the executable
file on disk is very similar to what the module will look like after Windows
has loaded it. That's because the Windows loader doesn't need to work
extremely hard to create a process from the disk file. Rather, the loader can
take it easy and use Win32 memory mapped files to load the appropriate
pieces of the PE file into a program's address space. To use a construction
analogy, a PE file is like a prefabricated house: There are relatively few
pieces, and each piece can be snapped into place with just a small amount
of work. And, just as it's fairly easy to hook up the electricity and water
connections in a prefab house, it's also a simple matter to wire a PE file up
to the rest of the world (that is, connect it to its DLLs, and so on).

This same ease of loading applies to DLLs as well. Once an EXE or
.DLL module has been loaded, Windows can effectively treat it like any
other memory mapped file. This is in marked contrast to the situation in
16-bit Windows. The 16-bit NE file loader reads in portions of the file and
creates separate data structures to represent the module in memory. When
a code or data segment needs to be loaded, the loader has to allocate a new
segment from the global heap, find where the raw data is stored in the exe-
cutable file, seek to that location, read in the raw data, and apply any
applicable fixups. In addition, each 16-bit module is responsible for
remembering all the selectors it's currently using, whether the segment has
been discarded, and so on.

For Win32, however, all the memory used by the module for code, data,
resources, import tables, export tables, and other things is in one contiguous
range of linear address space. All you need to know in this situation is the
address where the loader mapped the executable file into memory. You can
then easily find all the various pieces of the module by following pointers
stored as part of the image.

Another idea you should be acquainted with before we start is the
Relative Virtual Address, or RVA. Many fields in PE files are specified in
terms of RVAs. An RVA is simply the offset of some item, relative to where
the file is memory mapped to. For example, let's say the Windows loader
mapped a PE file into memory starting at address 0x400000 in the virtual
address space. If a certain table in the image starts at address 0x401464,
the table's RVA is 0x1464:

(virtual address 0x401464)- (base address 0x400000) = RVA 0x1464

R V A

561

To convert an RVA into a usable pointer to memory, simply add the
RVA to the base address where the module was loaded into. The term
base address is another important concept to remember. A base address
describes the starting address of a memory mapped EXE or DLL. For
convenience, Windows NT and Windows 95 use the base address of a
module as the module's instance handle (HINSTANCE). In Win32, call-
ing the base address of a module an HINSTANCE is somewhat confus-
ing, because the term instance handle comes from 16-bit Windows. Each
copy of an application in Winl6 gets its own separate data segment (and
an associated global handle) that distinguishes it from other copies of the
application; hence the term, instance handle.

In Win32, applications don't need to be distinguished from one
another because they don't share the same address space. Still, the term
HINSTANCE persists to keep at least the appearance of continuity
between Winl6 and Win32. What's important for Win32 is that you can
call GetModuleHandle() for any DLL that your process uses, and get a
pointer that you can use to access the module's components. By compo-
nents, I mean its imported and exported functions, its relocations, its
code and data sections, and so on.

Another concept to be familiar with when investigating PE files and
COFF OBJs is the section. A section in a PE file or COFF OBJ file is
roughly equivalent to a segment or the resources in a 16-bit NE file.
Sections contain either code or data. Some sections contain code or data
that your program declared and uses directly, while other data sections
are created for you by the linker and librarian, and contain information
vital to the operating system. In some of Microsoft's descriptions of the
PE format, sections are also referred to as objects. This term has so many
possibly conflicting meanings, however, that I'll stick to calling the code
and data areas sections. I'll discuss sections more thoroughly in the
"Commonly Encountered Sections" part of this chapter; for now, it's just
important for you to know what a section is.

Before jumping into the details of the PE file, examine Figure 8-1,
which shows the overall layout of a PE file. I'll be explaining the pieces
individually, but it's helpful to see them all together in one place.

P E

562

F i g u r e 8- 1
The overall layout of a PE file.

THE PE HEADER
The first stop on our tour of the PE format is the PE header. Like all other
Microsoft executable file formats, the PE file has a collection of fields at a
known (or easy-to-find) location that define what the rest of the file looks
like. The PE header contains vital pieces of information such as the location
and size of the code and data areas, what operating system the file is
intended to be used with, and the initial stack size.

As with other executable formats from Microsoft, the PE header isn't at
the very beginning of the file. Instead, the first few hundred bytes of the typical
PE file are taken up by the DOS stub. This stub is a minimal DOS program
that prints out something to the effect of "This program cannot be run in DOS
mode." The intent is that if you run a Win32 program in an environment that
doesn't support Win32, you'll get an informative (and frustrating) error mes-
sage. When the Win32 loader memory maps a PE file, the first byte of the file
mapping corresponds to the first byte of the DOS stub. That's right. With every
Win32 program you start up, you get a complimentary DOS program loaded
for free! (In Win16, the DOS stub isn't loaded into memory.)

W I N N T .

As in other Microsoft executable formats, you find the real header by
looking up its starting offset, which is stored in the DOS header. The
WINNT. H file includes a structure definition for the DOS stub header that
makes it very easy to look up where the PE header starts. The e_lfanew field is
a relative offset (or RVA, if you prefer) to the actual PE header. To get a pointer
to the PE header in memory, just add the field's value to the image base:

// Ignoring typecasts and pointer conversion issues for clarity...

pNTHeader = dosHeader + dosHeader->e_lfanew;

Once you have a pointer to the main PE header, the real fun begins. The
main PE header is a structure of type IMAGE_NT_HEADERS, defined in
WINNT. H. The IMAGE_NT_HEADERS structure in memory is what
Windows 95 uses as its in-memory module database. Each loaded EXE or
DLL in Windows 95 is represented by an IMAGE_NT_HEADERS structure.
This structure is composed of a DWORD and two substructures, and is laid
out as follows:

DWORD Signature;

IMAGE_FILE_HEADER FileHeader;

IMAGE_OPTIONAL_HEADER OptionalHeader;

The Signature field viewed as ASCII text is PE\0\0 (PE followed by two
0 bytes). If the e_lfanew field in the DOS header pointed to an NE signature
at this location instead of a PE signature, you'd be working with a Win16
NE file. Likewise, an LE in the signature field would indicate a Virtual
Device Driver (VxD) file. An LX here would be the mark of a file for
Windows 95's arch rival, OS/2.

Following the PE signature DWORD in the PE header is a structure of type
IMAGE_FILE_HEADER. The fields of this structure contain only the most
basic information about the file. The structure appears to be unmodified from
its original COFF implementations. Besides being part of the PE header, it also
appears at the very beginning of the COFF OBJs produced by the Microsoft
Win32 compilers. The fields of the IMAGE_FILE_HEADER follow.

WORD Machine
The CPU that this file is intended for. The following CPU IDs are defined:

Intel I386 0x14C
Intel i860 0x14D
MIPS R3000 0x162

563

O B J

564

MIPS R4000
DEC Alpha AXP
Power PC
Motorola 68000
PA RISC

0x166
0x184
0x1F0(little endian)
0x268
0x290(Precision Architecture)

WORD NumberOfSections
The number of sections in the EXE or OBJ.
DWORD TimeDateStamp
The time that the linker (or compiler for an OBJ file) produced this file. This
field holds the number of seconds since December 31, 1969, at 4:00 P.M.

DWORD PointerToSymbolTable

The file offset of the COFF symbol table. This field is used only in OBJ files and
PE files with COFF debug information. PE files support multiple debug formats,
so debuggers should refer to the IMAGE_DIRECTORY_ENTRY_DEBUG
entry in the data directory (defined later).
DWORD NumberOfSymbols
The number of symbols in the COFF symbol table. See the preceding field.
WORD SizeOfOptionalHeader
The size of an optional header that can follow this structure. In executables,
it is the size of the IMAGE_OPTIONAL_HEADER structure that follows
this structure. In OBJs, Microsoft says this field is supposed to always be 0.
However, in dumping out the KERNEL32.LIB import library, there's an
OBJ in there with a nonzero value in this field, so take their advice with a
grain of salt.
WORD Characteristics
Flags with information about the file. Some important fields are described
here (other fields are defined in WINNT. H):

0x0001
0x0002
0x2000

There are no relocations in this file.
File is an executable image (that is, not a OBJ or LIB).
File is a dynamic link library, not a program.

. b s s .

565

The third component of the PE header is a structure of type IMAGE_
OPTIONAL_HEADER. For PE files, this portion certainly isn't optional.
The COFF format allows individual implementations to define a structure
of additional information beyond the standard IMAGE_FILE HEADER.
The fields in the IMAGE_OPTIONAL_HEADER are what the PE designers
felt was critical information beyond the basic information in the
IMAGE_FILE_HEADER.

All the fields of the IMAGE_OPTIONAL_HEADERS aren't necessarily
critical for you to know. The more important ones are the ImageBase and
the Subsystem fields. If you want, you can skim over or skip the following
description of the fields.
WORD Magic
A signature WORD that identifies the state of the image file. The following
values are defined:

0x0107
0x010B

A ROM image.
A normal executable image. (Most files contain this value.)

BYTE MajorL ink erVersion
BYTE MinorLinkerVersion
The version of the linker that produced this file. The numbers should be dis-
played as decimal values, rather than as hex. A typical linker version is 2.23.

DWORD SizeOfCode
The combined and rounded-up size of all the code sections. Usually, most
files have only one code section, so this field typically matches the size of
the .text section.
DWORD SizeOfinitializedData
This is supposedly the total size of all the sections that are composed of ini-
tialized data (not including code segments.) However, it doesn't seem to be
consistent with the size of the initialized data sections in the file.

DWORD SizeOfUninitializedData
The size of the sections that the loader commits space for in the virtual
address space, but that don't take up any space in the disk file. These sec-
tions don't need to have specific values at program startup, hence the term
uninitialized data. Uninitialized data usually goes into a section called .bss.

N T

566

DWORD AddressOfEntry
The address where the image begins execution. This is an RVA, and usually
can be found in the .text section. This field is valid for both EXEs and DLLs.

DWORD BaseOfCode
The RVA where the file's code sections begin. The code sections typically
come before the data sections, and after the PE header in memory. This RVA
is usually 0x1000 in Microsoft Link produced EXEs. Borland's TLINK32
typically has a value of 0x10000 in this field because it defaults to aligning
objects on 64K boundaries, rather than 4K like the Microsoft linker.
DWORD BaseOfData
The RVA where the file's data sections begin. The data sections typically
come last in memory, after the PE header and the code sections.
DWORD ImageBase
When the linker creates an executable, it assumes that the file will be memory
mapped to a specific location in memory. That address is stored in this field.
Assuming a load address allows linker optimizations to take place. If the file
really is memory mapped to that address by the loader, the code doesn't need
any patching before it can be run. I'll talk more about this in the discussion of
the base relocations. In NT 3.1 executables, the default image base was
0x10000. For DLLs, the default was 0x400000. In Windows 95, the address
0x10000 can't be used to load 32-bit EXEs because it lies within a linear
address region that's shared by all processes. Therefore, in Windows NT 3.5,
Microsoft changed the default base address for Win32 Executables to
0x400000. Older programs that were linked assuming a base address of
0x10000 will take longer to load under Windows 95 because the loader needs
to apply the base relocations. I'll describe base relocations in detail later.
DWORD SectionAlignment
When mapped into memory, each section is guaranteed to start at a virtual
address that's a multiple of this value. For paging reasons, the minimum sec-
tion alignment is 0x1000, which is what the Microsoft linker uses by default.
Borland C++'s TLINK defaults to 0x10000 (64KB).
DWORD FileAlignment
In the PE file, the raw data that comprises each section is guaranteed to start at
a multiple of this value. The default value is 0x200 bytes, probably to ensure
that sections always start at the beginning of a disk sector (which are also
0x200 bytes in length). This field is equivalent to the segment/resource align-
ment size in NE files. Unlike NE files, PE files typically don't have hundreds of
sections, so the space wasted by aligning the file sections is usually very small.

T L I N K 3 2

568

WORD Subsystem
The type of subsystem that this executable uses for its user interface.
WINNT. H defines the following values:

NATIVE = 1

WINDOWS_GUI = 2
WINDOWS_CUI = 3

OS2_CUI = 5

POSIX_CUI = 7

Doesn't require a subsystem (for example,
a device driver)
Runs in the Windows GUI subsystem
Runs in the Windows character subsystem
(a console application)
Runs in the OS/2 character subsystem
(OS/2 1.x applications only)
Runs in the Posix character subsystem

WORD DllCharacteristics (marked as obsolete in NT 3.5)
A set of flags indicating which circumstances a DLL's initialization function
(for example, DllMain()) will be called for. This value appears to always be
set to 0, yet the operating system still calls the DLL initialization function
for all four events.

The following values are defined:

1 - - Call when DLL is first loaded into a process's address space.
2 - - Call when a thread terminates.
4 - - Call when a thread starts up.
8 - - Call when DLL exits.

DWORD SizeOfStackReserve
The amount of virtual memory to reserve for the initial thread's stack. Not all
of this memory is committed, however (see the next field). This field defaults
to 0x100000 (1MB). If you specify 0 as the stack size to CreateThread(), the
resulting thread will also have a stack of this same size.

DWORD SizeOfStackCommit
The amount of memory that's initially committed for the initial thread's
stack. This field defaults to 0x1000 bytes (1 page) in Microsoft Linkers,
while TLINK32 sets it to 0x2000 bytes (2 pages).

I M A G E _ D I R E C T O R Y _ E N T R Y _ x x x

DWORD SizeOfHeapReserve
The amount of virtual memory to reserve for the initial process heap. This
heap's handle can be obtained by calling GetProcessHeap(). Not all of this
memory is committed (see the next field).
DWORD SizeOfHeapCommit
The amount of memory initially committed in the process heap. The linker
defaults to putting 0x1000 bytes in this field.
DWORD LoaderFlags (marked as obsolete in NT 3.5)
From WINNT. H, these appear to be fields related to debugging support. I've
never seen an executable with either of these bits enabled, nor is it clear how
to get the linker to set them. The following values are defined:

1 - - Invoke a breakpoint instruction before starting the process?
2 - - Invoke a debugger on the process after it's been loaded?

569

DWORD NumberOfRvaAndSizes
The number of entries in the DataDirectory array (see the following field
description). This value is always set to 16 by the current tools.
IMAGE_DATA_DIRECTORY DataDirectory[IMAGE_NUMBEROF_DIRECTORY_ENTRIES]
An array of IMAGEDATA_DIRECTORY structures. The initial array elements
contain the starting RVA and sizes of important portions of the executable
file. Some elements at the end of the array are currently unused. The first
element of the array is always the address and size of the exported function
table (if present). The second array entry is the address and size of the imported
function table, and so on. For a complete list of defined array entries, see the
IMAGE_DIRECTORY_ENTRY_xxx #define's in WINNT. H.

The intent of this array is to allow the loader to quickly find a particu-
lar section of the image (for example, the imported function table), without
needing to iterate through each of the image's sections, comparing names as
it goes along.

Most array entries describe an entire section's data. However, the
IMAGE_DIRECTORY_ENTRY_DEBUG element encompasses only a small
portion of the bytes in the .rdata section. There's more information on this
in "The .rdata section" portion of this chapter.

P E D U M P

570

THE SECTION TABLE

Between the PE header and the raw data for the image's sections lies the
section table. The section table contains information about each section in
the image. The sections in the image are sorted by their starting address
rather than alphabetically.

At this point, it would be worthwhile to clarify what a section is. In an NE
file, your program's code and data are stored in distinct segments in the file.
Part of an NE header is an array of structures, one for each segment your
program uses. Each structure in the array contains information about one
segment. The stored information includes the segment's type (code or data),
its size, and its location elsewhere in the file. In a PE file, the section table is
analogous to the segment table in the NE file.

Unlike an NE file segment table though, a PE section table doesn't store a
selector value for each code or data chunk. Instead, each section table entry
stores an address where the file's raw data has been mapped into memory.
Although sections are analogous to 32-bit segments, they really aren't individ-
ual segments. Instead, a section simply corresponds to a memory range in a
process's virtual address space.

Another way in which PE files diverge from NE files is how they manage
the supporting data that your program doesn't use, but that the operating sys-
tem does. Two examples are the list of DLLs that the executable uses and the
location of the fixup table. In an NE file, resources aren't considered to be seg-
ments. Even though they have selectors assigned to them, information about
resources isn't stored in the NE header's segment table. Instead, resources are
relegated to a separate table toward the end of the NE header. Information
about imported and exported functions also doesn't warrant its own segment,
but is instead crammed into the confines of the NE header.

The story with PE files is different. Anything that might be considered vital
code or data is stored in a full-fledged section. Thus, information about
imported functions is stored in its own section, as is the table of functions that
the module exports. The same is true for the relocation data. Any code or data
that might be needed by either the program or the operating system gets its
own section.

I'll discuss specific sections in just a bit, but first I need to describe the data
that the operating system manages the sections with. Immediately following
the PE header in memory is an array of IMAGE_SECTION_HEADERs. The
number of elements in this array is given in the PE header (the IMAGE NT
HEADER.FileHeader.NumberOfSections field). The PEDUMP program out-
puts the section table and all of the section's fields and attributes. Figure 8-2
shows the PEDUMP output of a section table for a typical EXE file. Figure 8-3
shows the output of a section table in an OBJ file.

V i r t A d d r :

571

01 .text VirtSize: 00005AFA VirtAddr: 00001000

raw data offs: 00000400 raw data size: 00005C00

relocation offs: 00000000 relocations: 00000000

line # offs: 00009220 line #'s: 0000020C

characteristics: 60000020

CODE MEM_EXECUTE MEM_READ

02 .bss VirtSize: 00001438 VirtAddr: 00007000

raw data offs: 00000000 raw data size: 00001600

relocation offs: 00000000 relocations: 00000000

line # offs: 00000000 line #'s: 00000000

characteristics: C0000080

UNINITIALIZED_DATA MEM_READ MEM_WRITE

03 .rdata VirtSize: 0000015C VirtAddr: 00009000

raw data offs: 00006000 raw data size: 00000200

relocation offs: 00000000 relocations: 00000000

line # offs: 00000000 line #'s: 00000000

characteristics: 40000040

INITIALIZED_DATA MEM_READ

04 .data VirtSize: 0000239C VirtAddr: 0000A000

raw data offs: 00006200 raw data size: 00002400

relocation offs: 00000000 relocations: 00000000

line # offs: 00000000 line #'s: 00000000

characteristics: C0000048

INITIALIZED_DATA MEM_READ MEM_WRITE

05 .idata VirtSize: 0000033E VirtAddr: 0000D000

raw data offs: 00008600 raw data size: 00000400

relocation offs: 00000000 relocations: 00000000

line # offs: 00000000 line #'s: 00000000

characteristics: C0000040

INITIALIZED DATA MEN_READ MEM_WRITE

06 .reloc VirtSize: 000006CE VirtAddr: 0000E000

raw data offs: 00008A00 raw data size: 00000800

relocation offs: 00000000 relocations: 00000000

line # offs: 00000000 line #'s: 00000000

characteristics: 42000040

INITIALIZED DATA MEM_DISCARDABLE MEM_READ

Figure 8-2
A typical section table from an EXE file.

a

572

01 .drectve PhysAddr: 00000000 VirtAddr: 00000000

raw data offs: 000000DC raw data size: 00000026

relocation offs: 00000000 relocations: 00000000

line # offs: 00000080 line #'s: 00000000

characteristics: 00100A00

LNK_INFO LNK_REMOVE

08 .debug$S PhysAddr: 00000026 VirtAddr: 00000000

raw data offs: 00000102 raw data size: 000016D0

relocation offs: 000017D2 relocations: 00000032

line # offs: 00000080 line #'s: 00000000

characteristics: 42100048

INITIALIZED_DATA MEM_DISCARDABLE MEM_READ

03 .data PhysAddr: 000016F6 VirtAddr: 00000000

raw data offs: 000019C6 raw data size: 00000D87

relocation offs: 0000274P relocations: 00000045

line # offs: 00000000 line #'s: 00000000

characteristics: C0480048

INITIALIZED_DATA MEM_READ MEM_WRITE

04 .text PhysAddr: 0000247D VirtAddr: 00000000

raw data offs: 000029FF raw data size: 000010DA

relocation offs: 00003AD9 relocations: 000000E9

line # offs: 000043F3 line #'s: 000000D9

characteristics: 60500020

CODE MEM_EXECUTE MEM_READ

85 .debug$T PhysAddr: 00003557 VirtAddr: 00000000

raw data offs: 00004909 raw data size: 00000030

relocation offs: 00000008 relocations: 00000000

line # offs: 00000000 line #'s: 00000000

characteristics: 42]00048

INITIALIZED_DATA MEM_DISCARDABLE MEM_READ

Figure 8-3
A typical section table fram an OBJ file.

Each IMAGE_SECTION_HEADER is a complete database of informa-
tion about one section in the EXE or OBJ file, and has the following format:

BYTE Name[IMAGE_SIZEOF_SHORT_NAME]
This is an 8-byte ANSI name (not Unicode) that names the section. Most
section names start with a . (a period; for example, .text), but this is not a

573

requirement, in spite of what some PE documentation would have you believe.
You can name your own sections with either the segment directive in assembly
language, or with #pragma data_seg and #pragma code_seg in the Microsoft
C/C++ compiler. (Borland C++ users should use #pragma codeseg.) It's impor-
tant to note that if the section name takes up the full 8 bytes, there is no NULL
terminator byte. (TDUMP from Borland C++ 4.0x overlooked this fact, and
would spew forth garbage on certain PE EXEs.) If you're a printf() devotee,
you can use "%.8s" to avoid having to copy the name string to another buffer
to null terminate it.

union {
DWORD PhysicalAddress
DWORD VirtualSize
} Misc;
This field has different meanings, depending on whether it occurs in an EXE
or an OBJ. In an EXE, it holds the virtual size of the code or data section.
This is the size before rounding up to the nearest file-alignment multiple.
The SizeOfRawData field later on in the structure holds this rounded-up
value. Interestingly, Borland's TLINK32 reverses the meaning of this field
and the SizeOfRawData field, and appears to be the correct linker. For OBJ
files, this field indicates the physical address of the section. The first section
starts at address 0. To find the physical address of the next section, add the
SizeOfRawData value to the physical address of the current section.

DWORD VirtualAddress
In EXEs, this field holds the RVA for where the loader should map the sec-
tion to. To calculate the real starting address of a given section in memory,
add the base address of the image to the section's VirtualAddress stored in
this field. With Microsoft tools, the first section defaults to an RVA of
0xl000. In OBJs, this field is meaningless and is set to 0.

DWORD SizeOfRawData
In EXEs, this field contains the size of the section after it's been rounded up to
the file-alignment size. For example, assume a file-alignment size of 0x200. If
the VirtualSize field says that the section is 0x35A bytes in length, this field
will say that the section is 0x400 bytes long. In OBJs, this field contains the
exact size of the section emitted by the compiler or assembler. In other words,
for OBJs, it's equivalent to the VirtualSize field in EXEs.

574

DWORD PointerToRawData
This is the file-based offset to where the raw data for the section can be found.
If you memory map a PE or COFF file yourself (rather than letting the operat-
ing system load it), this field is more important than the VirtualAddress field.
That's because in this situation you'll have a completely linear mapping of the
entire file, so you'll find the data for the sections at this offset rather than at the
RVA specified in the VirtualAddress field.
DWORD PointerToRelocations
In OBJs, this is the file-based offset to the relocation information for this
section. The relocation information for each OBJ section immediately fol-
lows the raw data for that section. In EXEs, this field (and the subsequent
field) are meaningless, and are set to 0. When the linker creates the EXE, it
resolves most of the fixups, leaving only base address relocations and
imported functions to be resolved at load time. The information about
base relocations and imported functions is kept in the base relocation and
imported functions sections, so there's no need for an EXE to have per-section
relocation data following the raw section data.
DWORD PointerToLinenumbers
The file-based offset of the line number table. A line number table correlates
source-file line numbers to the addresses where the code generated for a
given line can be found. In modern debug formats like the CodeView format,
line number information is stored as part of the debug information. In the
COFF debug format, however, the line number information is conceptually
distinct from the symbolic name/type information. Usually, only code sections
(for example, .text or CODE) have line numbers. In EXE files, the line num-
bers are collected toward the end of the file, after the raw data for the sections.
In OBJ files, the line number table for a section comes after the raw section
data and the relocation table for that section. I'll discuss the format of line
number tables in "The COFF Debug Information" section later in the chapter.

WORD NumberOfRelocations
The number of relocations in the relocation table for this section (the
PointerToRelocations field listed previously). This field appears to be used
only in OBJ files.
WORD NumberOfLinenumbers
The number of line numbers in the line number table for this section (the
PointerToLinenumbers field listed previously).

D W O R D

575

DWORD Characteristics
What most programmers call flags, the COFF/PE format refers to as charac-
teristics. This field is a set of flags that indicate the section's attributes
(code/data, readable, writeable, and so on). For a complete list of all possible
section attributes, see the IMAGE_SCN_XXX XXX #defines in WINNT. H.
Some of the more important flags are listed in Table 8-1:

Table 8-1
COFF section flags

0x00000020 This section contains code. It is usually set in conjunction with the
executable flag (0x80000000).

0x00000040 This section contains initialized data. Almost all sections except executable
and the .bss section have this flag set.

0x00000080 This section contains uninitialized data (for example, the .bss section).

0x00000200 This section contains comments or some other type of information. A typical
use of this section is the .drectve section emitted by the compiler, which
contains commands for the linker.

0x00000800 This section's contents shouldn't be put in the final EXE file. This section is
used by the compiler/assembler lo pass information to the linker

0x02000000 This section can be discarded, since it's not needed by the process
once it's been loaded. The most common discardable section is the
base relocations section (.reloc).

0x10000000 This section is shareable. When used with a DLL, the data in this section is
shared among all processes using the DLL. The default is for data sections to
be nonshared, meaning that each process using a DLL gets ils own separate
copy of this section's data.

In more technical terms, a shared section tells the memory manager
to set the page mappings for this section so that all processes using
the DLL refer to the same physical page in memory. To make a section
shareable, use the SHARED attribute at link time. For example:

LINK/SECTION:MYDATA, RWS ...
tells the linker that the section called MYDATA should be readable, write
able, and shared. By default, Borland C++ DLL data segments have the
shared attribute.

0x20000000 This section is executable. This flag is usually set whenever the Contains
Code flag (0x00000020) is set.

0x40000000 This section is readable. This flag is almost always set for sections in EXE flies.

0x80000000 The section is writeable. If this flag isn't set in an EXE's section, the loader
should mark the memory mapped pages as read-only or execute-only.
Typical sections with this attribute are .data and .bss.

Flag Usage

P R E L O A D

576

It's interesting to note what's missing from the information stored for
each section. First, notice there's no indication of any PRELOAD attributes.
The NE file format lets you specify a PRELOAD attribute for segments that
should be loaded immediately at module load time. The OS/2 2.0 LX format
has something similar, allowing you to specify that up to 8 pages should be
preloaded. The PE format, on the other hand, has nothing like this. Based
on this, we have to assume that Microsoft is confident in the performance
of the demand-paged loading of their Win32 implementations.

Also missing from the PE format is an intermediate page lookup table.
The equivalent of an IMAGE_SECTION_HEADER in the OS/2 LX format
doesn't point directly to where the code or data for a section can be found
in the file. Instead, an OS/2 LX file contains a page lookup table that speci-
fies attributes and the location in the file of specific ranges of pages within a
section. The PE format dispenses with all that and guarantees that a sec-
tion's data will be stored contiguously in the file. Of the two formats, the
LX method may allow more flexibility, but the PE style is significantly sim-
pler and easier to work with. Having written file dumpers and disassemblers
for both formats, I can personally vouch for this!

Another welcome change in the PE format from the older NE format is
that the locations of items are stored as simple DWORD offsets. In the NE
format, the location of almost everything was stored as a sector value. To find
the real file offset, you need to first look up the alignment unit size in the NE
header, and convert it to a sector size (typically, 16 or 512 bytes). You then
need to multiply the sector size by the specified sector offset to get an actual
file offset. If by chance something isn't stored as a sector offset in an NE
file, it's probably stored as an offset relative to the NE header. Since the NE
header isn't at the beginning of the file, you need to drag around the file off-
set of the NE header in your code. In contrast, PE files specify the location
of various items by using simple offsets relative to where the file was mem-
ory mapped to. All in all, the PE format is much easier to work with than
the NE, LX, or LE formats (assuming you can use memory mapped files).

COMMONLY ENCOUNTERED SECTIONS

Now that you've got an overall picture of what sections are and how they're
located, you can learn more about the common sections you'll find in EXE
and OBJ files. Although this list of sections is by no means complete, it does
include the sections you encounter every day (even if you're not aware of it).
The sections are presented in order of their importance and by how frequently
they're likely to be encountered.

G e t M e s s a g e

577

The .text section
The .text section is where all general-purpose code emitted by the compiler
or assembler ends up. Since PE files run in 32-bit mode and aren't restricted
to 16-bit segments, there's no reason to break up the code from separate
source files into separate sections. Instead, the linker concatenates all the
.text sections from the various OBJs into one big .text section in the EXE. If
you use Borland C++ the compiler emits its code to a segment named
CODE. Thus, PE files produced with Borland C++ have a section named
CODE, rather than a .text section. See the section of this chapter called
"The Borland CODE and .icode sections" for details.

I was surprised to find out that there was additional code in the .text section
beyond what I created with the compiler or used from the runtime libraries. In a
PE file, when you call a function in another module (for example, GetMessage()
in USER32.DLL), the CALL instruction emitted by the compiler doesn't transfer
control directly to the function in the DLL. Instead, the call instruction transfers
control to a JMP DWORD PTR [XXXXXXXX] instruction that's also in the
.text section. The JMP instruction jumps to an address stored in a DWORD in
the .idata section. This .idata section DWORD contains the real address of the
operating system function entry point, as shown in Figure 8-4.

After contemplating this for awhile, I came to understand why calls to
DLLs are implemented this way. By funneling all calls to a given DLL func-
tion through one location, there's no longer any need for the loader to patch
every instruction that calls a DLL. All the PE loader has to do is put the cor-
rect address of the target function into the DWORD in the .idata section. No
CALL instructions need to be patched. This is markedly different from NE
files, where each segment contains a list of fixups that need to be applied to
the segment. If the segment calls a given DLL function 20 times, the loader
must copy the function's address into that segment 20 times. The downside
to the PE method is that you can't initialize a variable with the true address
of a DLL function. For example, you'd think that something like:

FARPROC pfnGetMessage = GetMessage;

would put the address of GetMessage into the variable pfnGetMessage. In
Win16, this works, but in Win32 it doesn't. In Win32, the variable
pfnGetMessage ends up holding the address of the JMP DWORD PTR
[XXXXXXXX] thunk in the .text section that I mentioned earlier. If you
wanted to call through the function pointer, things would work as you'd

_ _

578

expect. If you want to read the bytes at the beginning of GetMessage(),
however, you're out of luck (unless you do additional work to follow the
.idata "pointer" yourself). I'll come back to this topic later, in the "PE File
Imports" section.

Figure 8-4
APE file calling imported functions.

After I wrote the original version of this chapter, Visual C++ 2.0 was
released; this version introduced a new twist to calling imported functions.
If you look in the system header files from Visual C++ 2.0 (for example,
WINBASE.H), you'll see a difference from the Visual C++ 1.0 headers. In
Visual C++ 2.0, the operating system function prototypes in the system
DLLs include a __declspec(dllimport) as part of their definition. The
__ declspec(dllimport) turns out to have quite a useful effect when calling
imported functions. When you call an imported function prototyped with
__ declspec(dllimport), the compiler doesn't generate a call to a JMP DWORD
PTR [XXXXXXXX] instruction elsewhere in the module. Instead, the com-
piler generates the function call as CALL DWORD PTR [XXXXXXXX].

[X X X X X X X X]

579

The [XXXXXXXX] address is in the .idata section. It's the same address
that would have been used had the old JMP DWORD PTR [XXXXXXXX]
form been used. To my knowledge, up to and including version 4.5, Borland
C++ doesn't have this feature.

The Borland CODE and .icode sections
The Borland C++ compiler and linker don't work with COFF format OBJs.
Instead, Borland has chosen to stick with the 32-bit version of Intel OMF
format. Although Borland could have had the compiler emit segments with
a name of .text, it chose a default segment name of CODE. To determine a
section name in the PE file, the Borland linker (TLINK32.EXE) takes the
segment name from the OBJ file and truncates it to 8 characters (if neces-
sary). Because of this, PE files with Borland C++ will have a CODE section,
not a .text section.

The difference in the section names is a small matter, But there's a more
important difference in how Borland PE files link to other modules. As I
mentioned previously in the .text description, all calls to OBJs go through a
JMP DWORD PTR [XXXXXXXX] thunk. Under the Microsoft system,
this thunk comes to the EXE from the .text section of an import library. The
library manager creates the import library (and the thunk) when you link
the external DLL. As a result, the linker doesn't have to "know" to generate
these thunks itself. The import library is really just some more code and
data to link into the PE file.

The Borland system of dealing with imported functions is different, and
is simply an extension of the way things were done for 16~bit NE files. The
import libraries that the Borland linker uses are really just a list of function
names and the DLL they're in. TLINK32 is therefore responsible for deter-
mining which fixups are to external DLLs, and for generating an appropri-
ate JMP DWORD PTR [XXXXXXXX] thunk for it. In Borland C++ 4.0,
TLINK32 stored the thunks it creates in a section named .icode. In Borland
C++ 4.02, TLINK32 was changed to incorporate all the JMP DWORD PTR
[XXXXXXXX] thunks into the CODE section.

The .data section
Just as .text is the default section for code, the .data section is where your
initialized data goes. Initialized data consists of global and static variables
that are initialized at compile time. It also includes string literals (for

O B J

580

example, the string "Hello World" in a C/C++ program). The linker com-
bines all the .data sections from the OBJ and LIB files into one .data section
in the EXE. Local variables are located on a thread's stack and take no
room in the .data or .bss sections.

The DATA section
Borland C++ uses the name DATA for its default data section. This is
equivalent to the .data section for Microsoft's compiler (see the previous
section, "The .data section").

The .bss section
The .bss section is where any uninitialized static and global variables are
stored. The linker combines all the .bss sections in the OBJ and LIB files
into one .bss section in the EXE. In the section table, the RawDataOffset
field for the .bss section is set to 0, indicating that this section doesn't
take up any space in the file. TLINK32 doesn't emit a .bss section.
Instead, it extends the virtual size of the DATA section to account for
uninitialized data.

The .CRT section
The .CRT section is another initialized data section used by the Microsoft
C/C++ runtime libraries (hence the name .CRT). The data in this section is
used for things such as calling the constructors of static C++ classes before
main or WinMain is invoked.

The .rsrc section
The .rsrc section contains the resources for the module. In the early days of
NT, the .RES file output of the 16-bit RC.EXE wasn't in a format that the
Microsoft linker could understand. The CVTRES program converted these
.RES files into a COFF format OBJ, placing the resource data into a .rsrc
section within the OBJ. The linker could then treat the resource OBJ as just
another OBJ to link in, which meant the linker didn't have to "know" any-
thing special about resources. More recent linkers from Microsoft appear

" P E

581

to be able to process the .RES files directly. I'll cover the format of the
resource section in the "PE File Resources" section later in this chapter.

The section
The .idata section contains information about functions (and data) that the
module imports from other DLLs. This section is equivalent to an NE file's
module reference table. A key difference is that each function that a PE file
imports is specifically listed in this section. To find the equivalent information
in an NE file, you'd have to go digging through the relocations at the end of
the raw data for each of the segments. I'll cover the format of the imports table
in detail in the "PE File Imports" section later in this chapter.

The .edata section
The .edata section is a list of the functions and data that the PE file exports
for use by other modules. Its NE file equivalent is the combination of the
entry table, the resident names table, and the nonresident names table.
Unlike in Winl6, there's seldom a reason to export anything from an EXE
file, so you usually see only .edata sections in DLLs. The exception to this is
EXEs produced by Borland C++, which always appear to export a function
(__GetExceptDLLinfo) for internal use by the runtime library.

The format of the exports table is discussed in the "PE File Exports"
section later in this chapter. When using Microsoft tools, the data in the
.edata section comes to the PE file via the .EXP file. Put another way, the
linker doesn't generate this information on its own. Instead, it relies on the
library manager (LIB32) to scan the OBJ files and create the .EXP file that
the linker adds to its list of modules to link. Yes, that's right! Those pesky
.EXP files are really just OBJ files with a different extension. You can see
the functions exported via an .EXP by using the PEDUMP program
(presented later in this chapter) with the/S (show symbol table) option.

The .reloc section
The .reloc section holds a table of base relocations. A base relocation is an
adjustment to an instruction or initialized variable value; an EXE or a DLL
needs this adjustment if the loader couldn't load the file at the address where
the linker assumed it would be. If the loader can load the image at the

T l s A l l o c ()

582

linker's preferred base address, the loader ignores the relocation information
in this section.

If you want to take a chance and hope that the loader can always load the
image at the assumed base address, you can use the/FIXED option to tell the
linker to strip this information. Although this might save space in the executable
file, it might also cause the executable to not work on other Win32 platforms.
For example, let's say you built an EXE for NT and based the EXE at 0x10000.
If you told the linker to strip the relocations, the EXE wouldn't run under
Windows 95, where the address 0x10000 isn't available (the minimum load
address in Windows 95 is 0x400000; that is, 4MB).

It's important to note that the JMP and CALL instructions generated by
a compiler use offsets relative to the instructions, rather than actual offsets
in the 32-bit fiat segment. If the image needs to be loaded somewhere other
than the location the linker assumed was a base address, these instructions
don't need to change, since they use relative addressing. As a result, there
are not as many relocations as you might think. Relocations are usually
needed only for instructions that use a 32-bit offset to some data. For
example, let's say you had the following global variable declarations:

int i;

int *ptr = &i;

If the linker assumed an image base of 0x10000, the address of the vari-
able i will end up containing something like 0x12004. At the memory used
to hold the pointer ptr, the linker will have written out 0x12004, since that's
the address of the variable i. If the loader (for whatever reason) decided to
load the file at a base address of 0x70000, the address of i would then be
0x72004. However, the pre-initialized value of the ptr variable would then
be incorrect because i is now 0x60000 bytes higher in memory.

This is where the relocation information comes into play. The .reloc
section is a list of places in the image where the difference between the
linker-assumed load address and the actual load address needs to be taken
into account. I'll talk more about relocations in the "PE File Base
Relocations" section.

The .tls section
When you use the compiler directive "__declspec(thread)", the data that
you define doesn't go into either the .data or .bss sections. Rather, a copy of
it ends up in the .tls section. The .tls section derives its name from the term
thread local storage, and is related to the TlsAlloc() family of functions.

N T

583

To briefly summarize thread local storage, think of it as a way to have
global variables on a per-thread basis. That is, each thread can have its set
of static data values, yet the code that uses the data does so without regard
to which thread is executing. Consider a program that has several threads
working on the same task, and thereby executing through the same code. If
you declared a thread local storage variable, for instance:

__declspec (thread) int i = 0: / This is a global variable declaration.

each thread would transparently have its own copy of the variable i.
It's also possible to explicitly ask for and use thread local storage at run-

time by using the TlsAlloc, TlsSetValue, and TlsGetValue functions. (Chapter 3
describes the TlsXXX functions in detail.) In most cases, it's much easier to
declare your data in your program with __declspec (thread) than it is to
allocate memory on a per-thread basis and store a pointer to the memory in
a TlsAlloc()'ed slot.

There's one unfortunate note that must be added about the .tls section
and __declspec(thread) variables. In NT and Windows 95, this thread local
storage mechanism won't work in a DLL if the DLL is loaded dynamically
by LoadLibrary(). In an EXE or an implicitly loaded DLL, everything works
fine. If you can't implicitly link to the DLL, but need per-thread data, you'll
have to fall back to using TlsAlloc() and TlsGetValue() with dynamically
allocated memory. It's important to note that the actual per-thread memory
blocks aren't stored in the .tls section at runtime. That is, when switching
threads, the memory manager doesn't change the physical memory page
that's mapped to the module's .tls section. Instead, the .tls section is merely
the data used to initialize the actual per-thread data blocks. The initializa-
tion of per-thread data areas is a cooperative effort between the operating
system and the compiler runtime libraries. This requires additional data - -
the TLS directory - - that's stored in the .rdata section.

The .rdata section
The .rdata section is used for at least four things. First, in EXEs produced by
Microsoft Link, the .rdata section holds the debug directory (there is no debug
directory in OBJ files). In TLINK32 EXEs, the debug directory is in a section
named .debug. The debug directory is an array of IMAGE_DEBUG_DIREC-
TORY structures. These structures hold information about the type, size, and
location of the various types of debug information stored in the file. Three

d i r e c t o r y .

584

main types of debug information can appear: CodeView, COFF, and FPO.
Figure 8-5 shows the PEDUMP output for a typical debug directory.

Type Size Address FilePtr Charactr TimeData Version

COFF 000065C5 00000000 00009200 00000000 2CF8CF3D 0.00
(unknown) 00000114 00000000 0000F7C8 00000000 2CFSCF3D 0.00
FPO 000004B0 00000000 0000F8DC 00000000 2CF8CF3D 0.00
CODEVIEW 0000B0B4 00000000 0000FD8C 00000000 2CFBCF3D 0.00

Figure 8-5
A typical debug directory.

The debug directory isn't necessarily found at the beginning of the .rdata
section. Instead, to find the start of the debug directory, you have to use the
RVA found in the seventh entry (IMAGE_DIRECTORY_ENTRY_DEBUG)
of the data directory. (The data directory is at the end of the PE header portion
of the file.) To determine the number of entries in a Microsoft Link debug
directory, divide the size of the debug directory (found in the size field of the
data directory entry) by the size of an IMAGE_DEBUG_DIRECTORY struc-
ture. In contrast, TLINK32 emits an actual count of the debug directories in
the size field, not the total length in bytes. The PEDUMP sample program
handles either situation.

The second useful portion of an .rdata section is the description string. If
you specified a DESCRIPTION entry in your program's .DEF file, the speci-
fied description string appears in the .rdata section. In the NE format, the
description string is always the first entry of the nonresident names table. The
description string is intended to hold a useful text string describing the file.
Unfortunately, I haven't discovered an easy way to find it. I've seen PE files
that had the description string before the debug directory, and other files that
had it after the debug directory. I'm not aware of any consistent method of
finding the description string (or even to determine if it's present at all).

A third use of the .rdata section is for GUIDs used in OLE programming.
The UUID.LIB import library contains a collection of 16-byte GUIDs that are
used for things such as interface IDs. These GUIDs end up in the EXE or
DLL's .rdata section.

The final use of the .rdata section that I'm aware of is as a place to put the
TLS (Thread Local Storage) directory. The TLS directory is a special data
structure used by the compiler runtime library to transparently provide thread
local storage for variables declared in program code. The format of the TLS

585

directory is found on the MSDN (Microsoft Developer Network) CD-ROM
under Specs: Portable Executable and Common Object File Format. Of primary
interest in the TLS directory are pointers to the start and end of a copy of the
data to be used to initialize each thread local storage block. An RVA for the
TLS directory can be found in the IMAGE_DIRECTORY_ENTRY_TLS entry
in the PE header's data directory. The actual data to be used for TLS block
initialization is found in the .tls section (described earlier).

The .debug$S and .debug$T sections
The .debug$S and .debug$T sections appear only in COFF OBJs, and contain
the CodeView symbol and type information. The section names are derived
from the segment names used for this purpose by previous Microsoft compilers
($$SYMBOLS and $$TYPES). The sole purpose of the .debug$T section is to
hold the pathname to the .PDB file that holds the CodeView type information
for all the OBJs in the project. The linker uses the .PDB file to create certain
portions of the CodeView information for the generated EXE file.

The .drective section
This section appears only in OBJ files. It contains textual representations of
commands for the linker. For example, in any OBJ I compile with the Microsoft
Visual C++ compiler, the following strings appear in the .drectve section:

-defaultlib:LIBC -defaultlib:OLDNAMES.

When you use __ declspec(export) in your code, the compiler simply
emits the command-line equivalent into the .drectve section (for instance,
export:MyFunction).

Sections containing $ (OBJs/LIBs only)
In OBJ files, sections with names containing $ (for example, .idata$2) are
treated specially by the linker. The linker combines all sections that have the
same name up to the $ character. The name of the finished section is every-
thing up to the $ character. Thus, if the linker encountered two sections,
.idata$2 and .idata$6, it would combine them into a section called .idata.

p r a g m a

586

The ordering of sections to be combined is governed by the charac-
ters after the $. The linker sorts in lexical order, so .idata$2 will come
before .idata$6. .dataSA will likewise come before .data$B.

So what is this $ convention used for? The most prevalent use is by
import libraries, which use .idata$x sections to hold various portions of
a final .idata (import) section. This is rather interesting. The linker itself
doesn't have to generate the .idata section from scratch. Rather, the final
.idata section is built primarily from sections in OBJ and LIB files that
the linker treats just like any other section to be linked in.

Miscellaneous sections
In playing around with PEDUMP, I've encountered other sections from
time to time. For instance, the Windows 95 GDI32.DLL contains a data
section named _GPFIX, which presumably has something to do with GP
fault handling.

The points to be drawn from this are twofold. First, don't feel constrained
to use only the standard sections provided by the compiler or assembler. If
you need a separate section, don't hesitate to use one. In the Microsoft
C/C++ compiler, use the #pragma code_seg and #pragma data_seg. Borland
users can use #pragma codeseg and #pragma dataseg. In assembly language,
just create a 32-bit segment with a name that is different from the standard
sections. TLINK32 combines code segments of the same class, so you'll
need to either give each of your code segments a unique class name or turn
off code segment packing. The other thing to take away from this discussion
is that unusual section names can often give a deeper insight into the purpose
and implementation of a particular PE file.

PE FILE IMPORTS

Earlier, I described how function calls to outside DLLs don't call the DLL
directlyl. Instead, the CALL instruction goes to a JMP DWORD PTR
[XXXXXXXX] instruction somewhere in the executable's .text section
(or .icode section if you're using Borland C++ 4.0). Alternatively, if _ _
declspec(dllimport) was used in Visual C++, the function call becomes a
"CALL DWORD PTR [XXXXXXXX]". In either case, the address that the
JMP or CALL instruction looks up is stored in the .idata section. The JMP
or CALL instruction transfers control to that address, which is the intended
target address. If you're still unclear on this, refer back to Figure 8-4.

Before it's loaded into memory, the information stored in a PE file's
.idata section contains the information necessary for the loader to deter-
mine the addresses of the target functions and patch them into the exe-
cutable image. After the .idata section has been loaded, it contains point-
ers to the functions that the EXE/DLL imports. Note that all the arrays
and structures I'm discussing in this section are contained in the .idata
section.

The .idata section (or import table, as I prefer to call it) begins with
an array of IMAGE_IMPORT_DESCRIPTOR's. There is one IMAGE_
IMPORT_DESCRIPTOR for each DLL that the PE file implicitly links
to. No count is kept to indicate the number of structures in this array.
Instead, the last element of the array is indicated by a final IMAGE_
IMPORT_DESCRIPTOR that has fields filled with NULLs. The format
of an IMAGE_IMPORT_DESCRIPTOR is as follows:
DWORD Charachteristics/OriginalFirstThunk

This field is an offset (an RVA) to an array of DWORDs. Each of these
DWORDs is actually an IMAGE_THUNK_DATA union. Each IMAGE_
THUNK_DATA DWORD corresponds to one function imported by this
EXE/DLL. I'll describe the format of an IMAGE_THUNK_DATA DWORD
a bit later in this section. If you run the BIND utility, this array of DWORDS
is left alone, whereas the FirstThunk DWORD array (described momentarily)
is modified.
DWORD TimeDateStamp

The time/date stamp indicating when the file was built. This field normally
contains 0. However, the Microsoft BIND utility updates this field with the
time/date stamp of the DLL that this IMAGE_IMPORT_DESCRIPTOR
refers to.
DWORD ForwarderChain

This field relates to forwarding, which involves one DLL forwarding refer-
ences to one of its functions to another DLL. For example, in Windows NT,
KERNEL32.DLL forwards some of its exported functions to NTDLL.DLL.
An application may think it's calling a function in KERNEL32.DLL, but it
actually ends up calling into NTDLL.DLL. This field contains an index into
the FirstThunk array (described momentarily). The function indexed by this
field will be forwarded to another DLL. Unfortunately, the format of how a
function is forwarded is just barely described in the Microsoft documentation.
For more information on forwarding, see the "Export forwarding" section
presented later in this chapter.

587

I M A G E _ T H U N K _ D A T A

588

DWORD Name
This is an RVA to a null-terminated ASCII string containing the imported
DLL's name (for example, KERNEL32.DLL or USER32.DLL).
PIMAGE_THUNK_DATA FirstThunk;
This field is an offset (an RVA) to an array of IMAGE_THUNK_DATA
DWORDs. In most cases, the DWORD is interpreted as a pointer to an
IMAGE_IMPORT_BY_NAME structure. However, it's also possible to
import a function by ordinal value.

The important parts of an IMAGE_IMPORT_DESCRIPTOR are the
imported DLL name and the two arrays of IMAGE_THUNK_DATA
DWORDs. Each IMAGE_THUNK_DATA DWORD corresponds to one
imported function. In the EXE file, the two arrays (pointed to by the
Characteristics and FirstThunk fields) run parallel to each other, and are
terminated by a NULL pointer entry at the end of each array.

Why are there two parallel arrays of pointers to the IMAGE_THUNK_
DATA structures? The first array (the one pointed to by the Characteristics
field) is left alone and is never modified. It's sometimes called the hint-name
table. The second array (pointed to by the FirstThunk field in the IMAGE_
IMPORT_DESCRIPTOR) is overwritten by the PE loader. The loader iterates
through each IMAGE_THUNK_DATA and finds the address of the function
that it refers to. The loader then overwrites the IMAGE_THUNK_DATA
DWORD with the address of the imported function.

Earlier, I mentioned that CALLs to DLL functions go through a "JMP
DWORD PTR [XXXXXXXX]" thunk. The [XXXXXXXX] portion of the
thunk refers to one of the entries in the FirstThunk array. Since the array of
IMAGE_THUNK_DATAs that's overwritten by the loader eventually holds
the addresses of all the imported functions, it's called the "Import Address
Table." Figure 8-6 shows these two arrays.

For you Borland users, there's a slight twist to this description. APE file
produced by TLINK32 is missing one of the arrays. In such an executable,
the Characteristics field in the IMAGE_IMPORT_DESCRIPTOR (a.k.a. the
hint-name array) is 0 (apparently the Win32 loaders don't need this array).
Therefore, only the array pointed to by the FirstThunk field (the Import
Address Table) is guaranteed to exist in all PE files.

The story would end here, except that I ran into an interesting problem
when writing PEDUMP. In the never-ending search for optimizations, Microsoft
"optimized" the IMAGE_THUNK_DATA arrays in the Windows NT system
DLLs (for example, KERNEL32.DLL). In this optimization, the IMAGE_
THUNK_DATAs don't contain the information to find the imported function.

I M A G E _ T H U N K _ D A T A

589

Instead, the IMAGE_THUNK_DATA DWORDs already contain the addresses
of the imported function. In other words, the loader doesn't need to look up
function addresses and overwrite the thunk array with the imported function's
addresses. The array already contains the imported function's addresses even
before it was loaded. (The BIND utility program from the Win32 SDK per-
forms this optimization.) Unfortunately, this causes a problem for PE dumping
programs that are expecting the array to contain RVAs to IMAGE_THUNK_
DATAs. You might be thinking, "But Matt, why don't you just use the hint-
name table array?" That would be an ideal solution, except that the hint-name
table array doesn't exist in Borland files. The PEDUMP program handles
both of these situations, but the code is understandably messy.

Additional
IMAGE IMPORT_DESCRIPTORs

for other DLLs, as necessary...

Figure 8-6
How a PE file imports functions.

Since the import address table is usually in a writeable section, it's relatively
easy to intercept calls that an EXE or a DLL makes to another DLL. You
simply patch the appropriate import address table entry to point to the
desired interception function. There's no need to modify any code in either the
caller or callee images. This capability can be very useful. In fact, in Chapter
10, I build a Win32 APl spy program that relies heavily on this trick.

It's interesting to note that in Microsoft-produced PE files, the import
table isn't wholly synthesized by the linker. Instead, all the pieces neces-
sary to call a function in another DLL reside in an import library. When
you link a DLL, the library manager (LIB.EXE) scans the OBJ files being
linked and creates an import library. This import library is different from

(0 x 8 0 0 0 0 0 0 0)

590

the import libraries used by 16-bit NE file linkers. The import library that
the 32-bit LIB produces has a .text section and several .idata$ sections.
The .text section in the import library contains the JMP DWORD PTR
[XXXXXXXX] thunk that I mentioned earlier. That thunk has a name
stored for it in the OBJ's symbol table. The name of the symbol is identical
to the name of the function being exported by the DLL (for example,
_DispatchMessage@4).

One of the .idata$ sections in the import library contains the DWORD
that the thunk dereferences through. Another of the .idata$ sections has a
space for the "hint ordinal" followed by the imported function's name.
These two fields make up an IMAGE_IMPORT_BY_NAME structure.
When you later link a PE file that uses the import library, the import
library's sections are added to the list of sections from your OBJs that the
linker needs to process. Since the thunk in the import library has the same
name as the function being imported, the linker thinks the thunk is really
the imported function, and fixes up calls to the imported function to point
at the thunk. The thunk in the import library is essentially seen as the
imported function.

Besides providing the code portion of an imported function thunk, the
import library provides the pieces of the PE file's .idata section (or import
table). These pieces come from the various .idata$ sections that librarian put
into the import library. In short, the linker doesn't really know the differences
between imported functions and functions that appear in a different OBJ file.
The linker just follows its preset rules for building and combining sections, and
everything falls into place naturally.

The IMAGE_THUNK_DATA DWORD
As I mentioned earlier, each IMAGE_THUNK_DATA DWORD corresponds
to an imported function. The interpretation of the DWORD varies depend-
ing on whether the file has been loaded into memory yet and whether the
function was imported by name or by ordinal (importing by name is much
more common).

When a function is imported by its ordinal value (the rare case), the high
bit (0x80000000) is set in the EXE file's IMAGE_THUNK_DATA DWORD.
For example, consider an IMAGE_THUNK_DATA with the value 0x80000112
in the GDI32.DLL array. This IMAGE_THUNK_DATA is importing the 112'th
exported function from GDI32.DLL. The problem with importing by ordinal
is that Microsoft didn't bother to keep the export ordinals of the Win32 API
functions consistent between Windows NT, Windows 95, and Win32s.

I M A G E _ T H U N K _ D A T A

If a function is imported by name, its IMAGE_THUNK_DATA DWORD
contains an RVA for an IMAGE_IMPORT_BY_NAME structure. An
IMAGE_IMPORT_BY_NAME structure is very simple, and looks like this:
WORD Hint
The best guess as to what the export ordinal for the imported function is.
Unlike with NE files, this value doesn't have to be correct. Instead, the
loader uses it as a suggested starting value for its binary search for the
exported function.

BYTE[?]
An ASCIIZ string with the name of the imported function. The final interpreta-
tion of the IMAGE_THUNK_DATA DWORD is after the PE file has been
loaded by the Win32 loader. The Win32 loader uses the initial information in
the IMAGE THUNK_DATA DWORD to look up the address of the imported
function (either by name or by ordinal). The loader then overwrites the
IMAGE_THUNK_DATA DWORD with the address of the imported function.

591

Putting IMAGE_IMPORT DESCRIPTORs and
IMAGE_THUNK_DATAs together
Now that you've seen both the IMAGE_IMPORT_DESCRIPTOR and
IMAGE_THUNK_DATA structures, it's easy to construct a report on all the
imported functions that an EXE or a DLL uses. Simply iterate through the
array of IMAGE_IMPORT DESCRIPTORs (each of which corresponds to
one imported DLL). For each IMAGE_IMPORT_DESCRIPTOR, locate the
array of IMAGE_THUNK_DATA DWORDs and interpret them appropri-
ately. Figure 8-7 shows the PEDUMP output for this operation. (Functions
with no name are imported by ordinal.)

Imports Table:

USER32.dll

Hint/Name Table: 0001F50C

TimeDateStamp: 2EB9CE9B

ForwarderChain: FFFFFFFF

First thunk RVA: 0001FC24

Ordn Name

268 GetScrollInfo

0 0 0 1 F A 0 8

592

133 DispatchMessageA

333 IsRectEmpty

431 SendMessageCallbackA

255 GetMessagePos

// Rest of table omitted...

GDI32.dll

Hint/Name Table: 0001F178

TimeDateStamp: 2EB9CE9B

ForwarderChain: FFFFFFFF

First thunk RVA: 0001F890

Ordn Name

31 CreateCompatibleDC

389 SetTextColor

276 SetBkColor

99 ExtTextOutA

9 BitBlt

// Rest of table omitted...

MPR.dll

Hint/Name Table: 0001F2F8

TimeDateStamp: 2EAF4824

ForwarderChain: FFFFFFFF

First thunk RVA: 0001FA08

Ordn Name

26

35

34

33

55

// Rest of table omitted...

KERNEL32.dll

Hint/Name Table: 0001F1CC

TimeDateStamp: 2EB9DA61

ForwarderChain: FFFFFFFF

First thunk RVA: 0001F8E4

Ordn Name

636 SetEvent

348 GetTimeFormatA

375 GlobalGetAtomNameA

301 GetProcAddress

572 RtlZeroMemory

// Rest of table omitted...

COMCTL32.dll

Hint/Name Table: 0801FODC

TimeDateStamp: 2EAD4AE5

ForwarderChain: FFFFFFFF

First thunk RVA: 0001F7F4

Ordn Name

152

21 ImageList Draw

354

352

28 ImageList_GetIconSize

// Rest of table omitted...

ADVAPI32.dll

Hint/Name Table: 0001F0A0

TimeDateStamp: 2EA8A148

ForwarderChain: FFFFFFFF

First thunk RVA: 0001F7B8

Ordn Name

149 RegQueryValueA

119 RegCloseKey

142 RegOpenKeyExA

13] RegEnumKeyExA

126 RegDeleteKeyA

// Rest of table omitted...

Figure 8-7
A typical impart table fram an EXE file (EXPLORER. EXE).

PE FILE EXPORTS

The opposite of importing a function is exporting a function for use by
EXEs or other DLLs. APE file stores information about its exported func-
tions in the .edata section. Generally, Microsoft LINK-produced PE EXE
files don't export anything, so they don't have an .edata section. TLINK32
EXEs, on the other hand, usually export one symbol, so they do have an
.edata section. Most DLLs export functions and have an .edata section. The
primary components of an .edata section (a.k.a. the export table) are tables
of function names, entry point addresses, and export ordinal values. In an
NE file, the equivalents of an export table are the entry table, the resident
names table, and the nonresident names table. In the NE file, these tables
are stored as part of the NE header rather than in segments or resources.

593

R V A

At the beginning of an .edata section is an IMAGE_EXPORT_
DIRECTORY structure. This structure is immediately followed by the data
pointed to by fields in the IMAGE_EXPORT_DIRECTORY structure. An
IMAGE_EXPORT_DIRECTORY looks like this:
DWORD Characteristics
This field appears to be unused and is always set to 0.
DWORD TimeDateStamp

The time/date stamp indicating when this file was created.
WORD MajorVersion
WORD MinorVersion
These fields appear to be unused and are set to 0.
DWORD Name
The RVA of an ASCIIZ string with the name of this DLL (for example,
MYDLL.DLL).
DWORD Base

The starting export ordinal number for functions exported by this module.
For example, if the file exported functions with ordinal values of 10, 11,
and 12, this field would contain 10.
DWORD NumberOfFunctions

The number of elements in the AddressOfFunctions array. This value is also
the number of functions exported by this module. Usually this value is the
same as the NumberOfNames field (see the next description), but they can
be different.
DWORD NumberOfNames
The number of elements in the AddressOfNames array. This value contains
the number of functions exported by name, which usually (but not always)
matches the total number of exported functions.
PDWORD *AddressOfFunctions

This field is an RVA and points to an array of function addresses. The function
addresses are the entry-point RVAs for each exported function in this module.
PDWORD *AddressOfNames
This field is an RVA and points to an array of string pointers. The strings
contain the names of the functions exported by name from this module.

594

T h e - o t h e r

595

PWORD *NumberOfNameOrdinals
This field is an RVA, and points to an array of WORDs. The WORDs are
essentially the export ordinals of all the functions exported by name from this
module. However, don't forget to add the starting ordinal number specified in
the Base field (described a few fields back).

The layout of the export table is somewhat odd. As I mentioned earlier, the
requirements for exporting a function are an address and an export ordinal.
Optionally, if you export the function by name, there will be a function name.
You'd think that the designers of the PE format would have put all three of
these items into a structure and then have an array of these structures. Instead,
you have to look up the various pieces in three separate arrays.

The most important of the arrays pointed to by the IMAGE_EXPORT_
DIRECTORY is the array pointed to by the AddressOfFunctions field. This
is an array of DWORDs, each DWORD containing the address (RVA) of an
imported function. The export ordinal for each exported function corresponds
to its position in the array. For instance (assuming ordinals start at 1), the
address of the function with export ordinal 1 would have its address in the
first element of the array. The function with export ordinal 2 would have its
address in the second element of the array, and so on.

There are two important things to remember about the AddressOf-
Functions array. First, the export ordinal needs to be biased by the value in
the Base field of the IMAGE_EXPORT_DIRECTORY. If the Base field con-
tains the value 10, then the first DWORD in the AddressOfFunctions array
corresponds to export ordinal 10, the second entry to export ordinal 1 1,
and so forth. The-other thing to remember is that the export ordinals can
have gaps. Let's say that you explicitly export two functions in a DLL, with
ordinal values 1 and 3. Even though you exported only two functions,
the AddressOfFunctions array has to contain three elements. Any entries
in the array that don't correspond to an exported function contain the
value 0.

When the Win32 loader fixes up a call to a function that's imported by
ordinal, it has very little work to do. The loader simply uses the function's
ordinal value as an index into the target module's AddressOfFunctions
array. Of course, the loader also has to take into account that the lowest
export ordinal may not be 1, and must adjust its indexing appropriately.

More often than not, Win32 EXEs and DLLs import functions by
name rather than by ordinal. This is where the other two arrays pointed
to in the IMAGE_EXPORT_DIRECTORY structure come into play. The
AddressOfNames and AddressOfNameOrdinals arrays exist to allow the
loader to quickly find the export ordinal corresponding to a given function
name. The AddressOfNames and AddressOfNameOrdinals arrays both

A d d r e s s O f N a m e O r d i n a l s [

596

contain the same number of elements (given by the NumberOfNames field
of the IMAGE_EXPORT_DIRECTORY). The AddressOfNames array is an
array of pointers to function names, and the AddressOfNameOrdinals array
is an array of indexes into the AddressOfFunctions array.

Let's see how the Win32 loader would fix up a call to a function
that's imported by name. First, the loader would search the strings
pointed to in the AddressOfNames array. Let's say it finds the string it's
looking for in the third element. Next, the loader would use the index it
found to look up the corresponding element in the
AddressOfNameOrdinals array (in this case, the third element). This
array is just a collection of WORDs, with each WORD acting as an
index into the AddressOfFunctions array. The final step is to take the
value in the AddressOfNameOrdinals array and use it as an index into
the AddressOfFunctions array.

In C code, finding a function address that's imported by name would
look something like this:

WORD namelndex = FindIndexOfString(AddressOfNames, "GetMessageA");

NORD functionIndex = AddressOfNameOrdinals[nameIndex];

DWORD functionAddress = AddressOfFunctions[functionIndex OrdinalBase];

Figure 8-8 shows the format of the export section and its three arrays.

Figure 8-8
A typical exports table from an EXE file.

! U N I C O D EFigure 8-9 shows the PEDUMP output for the KERNEL32.DLL

e x p o r t section.

597

Name: KERNEL32.dll

Characteristics: 00000000

TimeDateStamp: 2C4857D3

Version: 0.00
Ordinal base: 00000001

of functions: 0000021F

of Names: 0000021F

Entry Pt Ordn Name

00005090 1 AddAtomA

00005100 2 AddAtomW

00025540 3 AddConsoleAliasA

00025500 4 AddConsoleAliasW

00026AC0 5 AllocConsole

00001000 6 BackupRead

00001E90 7 BackupSeek

00002100 8 BackupWrite

0002520C 9 BaseAttachCompleteThunk

00024C50 10 BasepDebugDump

// Rest of table omitted...

Figure 8-9
The PEDUMP output for the KERNEL32.DLL export sect/an.

Incidentally, if you dump out the exports from the system DLLs (for
example, KERNEL32.DLL and USER32.DLL), you'll see that in many
cases two functions differ only by one character at the end of the name,
for instance, CreateWindowExA and CreateWindowExW. This is how
Unicode support is implemented "transparently." The functions that end
with A are the ASCII (or ANSI) compatible functions; those ending in W
are the Unicode version of the function. In your code, you don't explic-
itly specify which function to call. Instead, the appropriate function is
selected in WINDOWS.H with preprocessor #ifdefs. The following
excerpt from the NT WINDOWS.H is an example of how this works:

#ifdef UNICODE

#define DefWindowProc DefWindowProcW

#else
#define DefWindowProc DefWindowProcA

#endif // !UNICODE

(forwarder ->

598

Export forwarding
Sometimes it can be useful for a DLL to export a function, but to have
the actual code exist in another DLL. In this scenario, a DLL can for-
ward a function to another DLL. When the Win32 loader encounters a
call to a forwarded function, it resolves the fixup to the function to point
at the function in the DLL containing the actual code.

An example will make this clearer. Consider the following excerpted
PEDUMP output for the Windows NT 3.5 KERNEL32.DLL:

00043FC3 335 HeapAlloc (forwarder -> NTDLL.RtlAllocateHeap)

00044005 339 HeapFree (forwarder -> NTDLL.RtlFreeHeap)

0004402C 341 HeapReAlloc (forwarder -> NTDLL.RtlReAllocateHeap)

0004404D 342 HeapSize (forwarder -> NTDLL.RtlSizeHeap)

0004466F 442 RtlFillMemory (forwarder -> NTDLL,RtlFillMemory)

00044691 443 RtlMoveMemory (forwarder -> NTDLL.RtlMoveMemory)

000446AF 444 RtlUnwind (forwarder -> NTDLL.RtlUnwind)

000446CD 445 RtlZeroMemory (forwarder -> NTDLL.RtlZeroMemory)

Each function in this output is forwarded to a function in NTDLL.
Thus, a program that calls HeapAlloc is really calling the RtlAllocateHeap
function in NTDLL.DLL. Likewise, 4 call to HeapFree is really a call to
NTDLL's RtlHeapFree function.

So how do you tell if a function is forwarded? The only indication that
a function is forwarded is that the function's address falls within the export
table (the .edata section). If this is the case, the so-called function address
is really an RVA to a string containing the forwarded DLL and function
name. For example, in the previous output, HeapAlloc's RVA is 0x43FC3.
Offset 0x43FC3 in KERNEL32.DLL is inside the .edata section. At offset
0x43FC3 in KERNEL32.DLL is the string NTDLL.RtlAllocateHeap. The
DumpExportsSection function in the PEDUMP program shows how
forwarded functions can be identified.

Although export forwarding looks like a really nifty feature, Microsoft
doesn't describe how you can use forwarding in your own DLLs. Also, to date,
I've seen forwarding used by only one DLL (the aforementioned Windows NT
KERNEL32.DLL). Even though I haven't seen any DLLs with forwarders in
Windows 95, the Windows 95 loader does support this functionality, as I
showed in Chapter 3.

D i r e c t o r y E n t r i e s

599

PE FILE RESOURCES

Compared to their NE file equivalents, finding resources in a PE file is
more complicated. The formats of the individual resources (for example,
a menu) haven't changed significantly from their NE siblings, but you
need to traverse a complex hierarchy to find them.

Navigating the resource directory hierarchy is like navigating on a
hard disk. There's a master directory (the root directory) which has sub-
directories. The subdirectories have subdirectories of their own. In those
subdirectories you can find files. The files are analogous to the raw
resource data containing things such as dialog templates. In the PE file,
both the root directory and all its subdirectories are structures of type
IMAGE_RESOURCE_
DIRECTORY. The IMAGERESOURCE_DIRECTORY structure has the
following format:
DWORD Characteristics
Theoretically, this field could hold flags for the resource, but it appears
to always be 0.

/

DWORD TimeDateStamp
The time/date stamp describing the creation time of the resource.
WORD MajorVersion
WORD MinorVersion
Theoretically, these fields would hold a version number for the resource. These
field appear to always be set to 0.
WORD NumberOfNamedEntries
The number of array elements (described later) that use names, and that follow
this structure. See the description for the DirectoryEntries field for more
information.

WORD NumberOfIdEntries
The number of array elements that use integer IDs, and that follow this
structure and any named entries. See the following description for the
DirectoryEntries field for more information.
IMAGE_RESOURCE_DIRECTORY_ENTRY DirectoryEntries[]
This field isn't formally part of the IMAGE_RESOURCE_DIRECTORY
structure. Rather, it's an array of IMAGERESOURCE_DIRECTORY_
ENTRY structures that immediately follow it. The number of elements in the

P E

600

array is the sum of the NumberOfNamedEntries and NumberOfldEntries
fields. The directory entry elements that have name identifiers (rather than
integer IDs) come first in the array.

A directory entry can either point to a subdirectory (that is, to another
IMAGE_RESOURCE_DIRECTORY) or to an IMAGE_RESOURCE_
DATA_ENTRY, which describes where the resource's raw data can be found in
the file. Generally, there are at least three directory levels before you get to the
IMAGE_RESOURCEDATA_ENTRY for a given resource. The top-level
directory (of which there's only one) is always found at the beginning of the
resource section (.rsrc). The subdirectories of the top-level directory correspond
to the various types of resources found in the file. For example, if a PE file
includes dialogs, string tables, and menus, these three subdirectories would be
a dialog directory, a string table directory, and a menu directory. Each of these
"type" subdirectories will in turn have "ID" subdirectories. There will be one
ID subdirectory for each instance of a given resource type. In the above
example, if there are four dialog boxes, the dialog directory will have four ID
subdirectories. Each ID subdirectory will have either a string name (for
example, MyDialog) or the integer ID used to identify the resource in the
.RC file. Figure 8-10 shows the resource directory hierarchy in a more
understandable visual form.

Figure 8-10
A typical PE file resource hierarchy.

P E D U M P

601

Figure 8-11 shows the PEDUMP output for the resources in the
Windows NT 3.5 CLOCK.EXE. Looking at the second level of indenta-
tion, you can see there are icons, menus, dialogs, stringtables, group
icons, and version resources. On the third level, there are two icons (with
IDs 1 and 2), two menus (with names CLOCK and GENERICMENU),
two dialogs (one named ABOUTBOX, and the other with integer ID
0x64), and so forth. And at the fourth level of indentation, the data for
icon 1 is at RVA 0x9754 and is 0x130 bytes long. Likewise, the data for
the CLOCK menu is at offset 0x952C and takes up 0xEA bytes.

Resources
ResDir (0) Named:00 ID:06 TimeDate:2E601E3C Vers:0.00 Char:0

ResDir (ICON) Named:00 ID:02 TimeDate:2E601E3C Vers:0.00 Char:0
ResDir (1) Named:00 ID:01 TimeDate:2E601E3C Vers:0.00 Char:0

ID: 0000409 DataEntryOffs: 000001E0
Offset: 09754 Size: 00130 CodePage: 0

ResDir (2) Named:00 iD:01 TimeDate:2E601E3C Vers:0.00 Char:0
ID: 00000409 DataEntryOffs: 000001F0
Offset: 09884 Size: 002E8 CodePage: 0

ResDir (MENU) Named:02 ID:00 TimeDate:2E601E3C Vers:0.00 Char:0
ResDir (CLOCK) Named:00 ID:01 TimeDate:2E601E3C Vers:0.00 Char:0

ID: 00000409 DataEntryOffs: 00000200
Offset: 0952C Size: 000EA CodePage: 0

ResDir (GENERICMENU) Named:00 ID:01 TimeDate:2E601E3C Vets:O,00 Char:0

ID: 00000409 DataEntryOffs: 00000210
Offset: 09618 Size: 0003A CodePage: 0

ResDir (DIALOG) Named:01 IO:01 TimeDate:2E601E3C Vets:O,00 Char:0
ResDir (ABOUTBOX) Named:00 ID:01 TimeDate:2E601E3C Vets:O,00 Char:0

ID: 00000409 DataEntryOffs: 00000220

Offset: 09654 Size: 000FE CodePage: 0
ResDir (64) Named:00 ID:01 TimeDate:2E601E3C Vers:0.00 Char:0

ID: 00000409 DataEntryOffs: 00000230
Offset: 092C0 Size: 0026A CodePage: 0

ResDir (STRING) Named:00 ID:02 TimeDate:2E601E3C Vers:0.00 Char:0

ResDir (1) Named:00 ID:01 TimeDate:2E681E3C Vers:0.00 Char:0

ID: 00000409 DataEntryOffs: 00000240

Offset: 09EA8 Size: 000F2 CodePage: 0
ResDir (2) Named:00 ID:O1 TimeDate:2E601E3C Vers:O.00 Char:O

ID: 00000409 DataEntryOffs: 00000250

Offset: 09F9C Size: 00046 CodePage: 0
ResDir (GROUP ICON) Named:01 ID:00 TimeDate:2E601E3C Vers:0.00 Char:0

ResDir (CCKK) Named:00 ID:01 TimeDate:2E601E3C Vers:0.00 Char:0

ID: 00000409 DataEntryOffs: 00000260
Offset: 09B6C Size: 00022 CodePage: 0

ResDir (VERSION) Named:0 ID:01 TimeDate:2E601E3C Vers:0,00 Char:0
ResDir (1) Named:00 ID:01 TimeDate:2E601E3C Vers:0.00 Char:0

ID: 00000409 DataEntryOffs: 00000270
Offset: 09B90 Size: 00318 CodePage: 0

Figure 8-1 1
Resources hierarchy forCLOCK.EXE.

Each resource directory entry is a structure of type IMAGE_RESOURCE_
DIRECTORY_ENTRY (boy, these names are getting long!). Each IMAGE_
RESOURCE_DIRECTORY_ENTRY has the following format:

DWORD Name
This field contains either an integer ID or a pointer to a structure that contains
a string name. If the high bit (0x80000000) is 0, this field is interpreted as
an integer ID. If the high bit is nonzero, the lower 31 bits are an offset
(relative to the start of the resource section) to an IMAGE_RESOURCE_
DIR_STRING_U structure. This structure contains a WORD character count,
followed by a Unicode string with the resource name. Yes, even PE files
intended for non-Unicode Win32 implementations use Unicode here. To con-
vert the Unicode string to an ANSI string, see the WideCharToMultiByte()
function.

DWORD OffsetToData
This field is either an offset to another resource directory or a pointer to
information about a specific resource instance. If the high bit (0xS0000000)
is set, this directory entry refers to a subdirectory. The lower 31 bits are an
offset (relative to the start of the resources) to another IMAGE_RESOURCE_
DIRECTORY. If the high bit isn't set, the lower 31 bits are an offset (relative
to the resource section) to an IMAGE_RESOURCE_DATA ENTRY structure.
The IMAGE_RESOURCE_DATA_ENTRY structure contains the location of
the resource's raw data, its size, and its code page.

To go further into the resource formats, I'd need to discuss the format of
the individual resource types (dialogs, menus, and so on). Covering these
topics could easily fill an entire chapter; and besides, I'd like to save some
trees. If you're interested, read the RESFMT. TXT file from the Win32 SDK,
which has a detailed description of all the resource type formats. The
PEDUMP program shows the resource hierarchy, but doesn't decompose
individual resources instances.

PE FILE BASE RELOCATIONS

When the linker creates an EXE file, it makes an assumption about where
the file will be mapped into memory and then puts the assumed addresses of
code and data items into the executable file. If the executable ends up being
loaded somewhere else in the virtual address space, the addresses the linker

602

plugged into the image were incorrect. The information stored in the .reloc
section allows the PE loader to correct these addresses in the loaded mod-
ule. If the loader was able to load the file at the base address assumed by the
linker, the .reloc section data isn't needed, and is ignored. The entries ill the
.reloc section are called base relocations since their usage depends on the
base address of the loaded image.

Unlike relocations in the NE file format, PE file base relocations are
extremely simple. They don't refer to external DLLs or even to other sections
in the module. Instead, the base relocations boil down to a list of locations
in the image that need a value added to them.

Here's an example to show how base relocations work: Let's say an exe-
cutable file is linked assuming a base address of 0x400000. At offset 0x2134
within the image is a pointer containing the address of a string. The string
starts at physical address 0x404002, so the pointer contains the value
0x404002. You then load the file, but the loader decides that it needs to
map the image starting at physical address 0x600000. The difference
between the linker-assumed base load address and the actual load address is
called the delta. In this case, the delta is 0x200000 (0x600000 - 0x400000).
Since the entire image is 0x200000 bytes higher in memory, so is the string
(now at address 0x604002). The pointer to the string is now incorrect. It
needs to have the value of the delta (0x200000 in this case) added to it to
make it correct again.

To let the Windows loader do this adjustment, the executable file con-
tains a base relocation for the memory location where the pointer resides (at
offset 0x2134 in the image). To resolve a base relocation, the loader adds
the delta value to the original value at the base relocation address. In this
case, the loader would add 0x200000 to the original pointer value
(0x404002), and store the result (0x604002) back into the pointer's mem-
ory. Since the string really is at 0x604002, everything is once again correct.
Figure 8-12 shows what this process looks like.

The formation of the base relocation data is somewhat quirky. The relo-
cations are packaged in a series of contiguous chunks of variable length. Each
chunk describes the relocations for one 4K page in the image, and starts out
with an IMAGE_BASE_RELOCATION structure that looks like this:
DWORD VirtualAddress

This field contains the starting RVA for this chunk of relocations. The offset
of each relocation that follows is added to this value to form the actual RVA
where the relocation needs to be applied.

603

h i g h

604

Figure 8-12
PE file base relocations.

DWORD SizeOfBlock
The size of this structure, plus all the WORD relocations that follow. To
determine the number of relocations in this block, subtract the size of an
IMAGE_BASE_RELOCATION (8 bytes) from the value of this field, and
then divide by 2 (the size of a WORD). For example, if this field contains 44,
there are 18 relocations that immediately follow:

(44 - sizeof(IMAGE BASE RELOCATION)) / sizeof(WORD) = 18

WORD TypeOffset
This isn't just a single WORD but rather an array of WORDs, the number
of which is calculated by the formula in the previous DWORD description.
The bottom 12 bits of each WORD are a relocation offset, and need to be
added to the value of the Virtual Address field from this relocation block's
header. The high 4 bits of each WORD are a relocation type. For PE files
that run on Intel CPUs, you'll see only two types of relocations:

* 0 (IMAGE_REL_BASED_ABSOLUTE): This relocation is meaning-
less, and is used only as a placeholder to round the relocation infor-
mation up to a DWORD multiple size.

* 3 (IMAGE_REL_BASED_HIGHLOW): Relocation means add both
the high and low 16 bits of the delta to the DWORD specified by the
calculated RVA.

There are other relocations defined in WINNT. H, most of which are
specific to architectures other than the i386.

Figure 8-13 depicts some base relocations as shown by PEDUMP.
Note that the RVA values shown in the figure have already been biased
by the VirtualAddress in the IMAGE_BASE_RELOCATION field.

Virtual Address: 00001000 size: 0000012C

00001032 HIGHLOW

0000106D HIGHLOW

000010AF HIGHLOW

000010C5 HIGHLOW

// Rest of chunk omitted.. .

Virtual Address: 00002000 size: 0000009C

000020A6 HIGHLOW

00002110 HIGHLOW

00002136 HIGHLOW

00002156 HIGHLOW

// Rest of chunk omitted...

Virtual Address: 00003000 size: 00000114

0000300A HIGHLOW

0000301E HIGHLOW

0000303B HIGHLOW

0000306A HIGHLOW

// Rest of relocations omitted,..

 Figure 8-13
 The base relocations from an EXE file.

THE COFF SYMBOL TABLE

If you're just interested in the actual portions of the PE file used by the
operating system, you can skip this section and the section that follows
(The "COFF Debug Information"). You can continue reading again at
the section called "Differences Between PE Files and COFF OBJ Files."

605

s t : E X T E R N A L

606

In any COFF-style OBJ file produced by a Microsoft compiler, you'll
find a symbol table. Unlike CodeView information, this symbol table
isn't just extra baggage that's only used if you link the executable file
with debugging information. Rather, this symbol table holds the informa-
tion about all public and external symbols referenced by the module. The
fixup information emitted by the compiler refers to specific entries in this
symbol table. The format of the COFF symbol table is surprisingly sim-
ple -- in fact, it's so simple that it puts the Microsoft/Intel OMF format
scheme with its LNAMEs, PUBDEFs, and EXTDEFs to shame.

If you compile without debugging information enabled, you'll get
only the bare minimum number of symbols in the OBJ's symbol table. If
you turn debugging information on (with/Zi), the compiler adds addi-
tional information about the beginning, length, and end of each function
in the module. If you then link with either/DEBUGTYPE:COFF or
/DEBUGTYPE:BOTH, the linker will output a COFF-style symbol table
into the resulting EXE.

Why would you want COFF information when there's the much-
more-complete CodeView information available? If you intend to use the
NT system debugger (NTSD) or the NT Kernel debugger (KD), COFF is
the only game in town. In addition, if your PE program crashes under
Windows NT, DRWTSN32 can use this information to produce a useful
symbolic postmortem dump.

For both EXE and OBJ files, you find the location and size of the
COFF symbol table by looking in the IMAGE_FILE_HEADER (see "The
PE Header" section that is presented earlier in this chapter if you need a
refresher on this structure). The symbol table is reasonably simple in
structure, and is composed of an array of IMAGE_SYMBOL structures.
The number of elements in the array is given by the NumberOfSymbols
field in the IMAGE_FILE_HEADER structure. Figure 8-14 shows a sampling
of symbols output by the PEDUMP program.

Symbol Table - 433 entries (* = auxiliary symbol)

Indx Name Value Section cAux Type Storage

0000 .file 0000005B sect:DEBUG aux:I type:00 st:FILE

* EXEDUMP.c
0002 .debug$S 0001B457 sect:7 aux:l type:00 st:STATIC

* Section: 0000 Len: 017C8 Relocs: 002C LineNums: 0000

0004 .data 0000B040 sect:4 aux:l type:00 st:STATIC

* Section: 0000 Len: 006CA Relocs: 0020 LineNums: 0000

0006 _SzRelocTypes 0000B1E0 sect:4 aux:0 type:00 st:EXTERNAL

0007 _SzResourceTypes 0000B148 sect:4 aux:0 type:00 st:EXTERNAL

S h o r t N a m e

0008 _SzDebugFormats 0000B088 sect:4 aux:0 type:00 st:EXTERNAL

0009 _PCOFFDebugInfo 0000B040 sect:4 aux:0 type:00 st:EXTERNAL

000A .text 000026A0 sect:1 aux:1 type:00 st:STATIC

* Section: 0000 Len: 00CE0 Relocs: 00A3 LineNums: 00D0

000C _DumpDebugDirectory 000026A0 sect:1 aux:1 type:20 st:EXTERNAL

* tag: 000E size: 01A4 Line

000E .bf 00000000

0010 .lf 0000001A

0011 .ef 000001A4

0013 _GetResourceTypeName 00002844

* tag: 0015 size: 004A Line

0015 .bf 000001A4

0017 .lf 00000006

0018 .ef 000001EE

// Rest of symbols omitted...

#'s: 00009220 next fn: 0013

sect:4 aux:1 type:00 st:FUNCTION

sect:4 aux:0 type:00 st:FUNCTION

sect:4 aux:1 type:00 st:FUNCTION

sect:1 aux:1 type:20 st:EXTERNAL

#'s: 000092BC next fn: 001A

sect:4 aux:1 type:00 st:FUNCTION

sect:4 aux:0 type:00 st:FUNCTION

sect:4 aux:1 type:00 st:FUNCTION

Figure 8-14
A fypical COFF symbol table

Each IMAGE_SYMBOL structure has the following format:

typedef struct _IMAGE_SYMBOL {

union {

BYTE ShortName[8];

struct {

DWORD Short;

DWORD Long;

/ Name:

PBYTE LongName[2];

// If 0, use LongName.

// Offset into string table.

} N:
DWORD Value;

SHORT SectionNumber;

WORD Type;

BYTE StorageClass;

BYTE NumberOfAuxSymbols;

} IMAGE SYMBOL;

typedef IMAGE_SYMBOL UNALIGNED *PIMAGE_SYMBOL;

Let's examine each of these fields in detail:

union N (Symbol name union)

The symbol name can be represented in two ways, depending on its length. If
the symbol name has 8 characters or less, the ShortName member of the union
contains the ASCIIZ symbol name. Be careful if the symbol name is exactly 8
characters long; if it is, the string isn't null terminated. If the Name. Short field
is nonzero, you have to use the ShortName member of the union.

0 .

608

The second way to represent a symbol name occurs when the Name. Short
field is 0. In this situation, the Name. Long field is a byte offset into the
string table. The string table is nothing more than an array of ASCIIZ
strings one after the other in memory. The table starts immediately after the
symbol table in memory. To find the string table's starting address, multiply
by the number of symbols by the size of an IMAGE_SYMBOL. Add that
result to the beginning address of the symbol table. The length of the string
table is specified in bytes via a DWORD at offset 0 in the string table.

DWORD Value
This field contains the value associated with the symbol. For normal and
data symbols (that is, functions and global variables), the Value field con-
tains the RVA of the item that the symbol refers to. The value is interpreted
differently for some other symbols. Table 8-2 provides a short list of some
meanings for the Value field of special symbols.

Table 8-2
Special Symbols in COFF Symbol Tables

Symbol Name Usage

.file The symbol table index of the next .fiLe symbol. You can use
this index to quickly traverse the list of all files in the EXE.

.data The starting RVA for a region of data. l-his region is defined
by the source file given by the preceding Jile symbol.

.text The starting RVA for a region of code. This region is defined by
the source file given by the preceding .file symbol.

.If The number of entries in the line number table for a function. The
function is specified by the preceding symbol that defines the function.

SHORT SectionNumber
The SectionNumber field contains the section number that the symbol
belongs in. For example, symbols for global variables will typically have the
section number of the .data section. Besides the standard sections in a PE
file, three other special section values are defined:

0 (IMAGE_SYM_UNDEFINED): The symbol is undefined. This section
number is used in OBJ files to represent symbols outside the module, for
instance, external functions and external global variables.

W I N N T .

609

* -1 (IMAGE_SYM_ABSOLUTE): The symbol is an absolute value and is
not associated with any given section. Examples include local and register
variables.

* -2 (IMAGE_SYM_DEBUG): The symbol is used only by the debugger,
and isn't visible to the program. The .file symbols that give the name of
a source file are examples of this symbol section.

WORD Type
The type of the symbol. The WINNT. H file defines a fairly rich set of sym-
bol types (int, struct, enum, and so on). (See the IMAGE_SYM_TYPE_xxx
#defines for the complete list.) Unfortunately, the Microsoft tools don't
seem to generate all the various symbol types. Instead, all global variables
and functions are, either of type NULL or of type function returning NULL.
BYTE StorageClass
The storage class of the symbol. As with the symbol types, WINNT. H defines
a rich set of storage classes (automatic, static, register, label, and so on). (See
the IMAGE_SYM_CLASS_xxx #defines for a complete list.) Again, as with
types, the Microsoft tools appear to generate only the bare minimum of infor-
mation. All global variables and functions are of storage class external. There
doesn't seem to be a way to get symbols for local variables, register variables,
and so on.
BYTE NumberOfAuxSymbols
Okay, I lied. The symbol table isn't precisely an array of IMAGE_SYMBOL
structures. If a symbol has a nonzero value in its NumberOfAuxSymbols
record, the symbol is followed by that same number of IMAGE_AUX_
SYMBOL structures. For example, a .file symbol is followed by as many
IMAGE_AUX_SYMBOL structures as it takes to contain the entire
pathname for a source file.

Luckily, the size of an IMAGE_AUX_SYMBOL is the same as an
IMAGE_SYMBOL, so you can still treat the symbol table as an array of
IMAGE_SYMBOLs. Remember that a symbol index should be treated as an
array index, even though some of the elements may be auxiliary records. To
calculate the index of the next regular symbol, you need to add in the num-
ber of auxiliary structures that the symbol uses. For example, let's say you
have a symbol with index 1. If it uses 3 auxiliary symbols, the next regular
symbol index will be 4.

r e c o r d

610

An IMAGE_AUX_SYMBOL is a messy union of fields. To determine which
union members to use, you need to know the type of the regular symbol associ-
ated with the auxiliary symbol. Although I haven't figured out which auxiliary
union fields should be used in each case, I was able to figure out these two:

* Symbols of storage class IMAGE_SYM_CLASS_FILE use the File union
member in the IMAGE_AUX_SYMBOL structure.

* Symbols of storage class IMAGE_SYM_CLASS_STATIC use the
Section union member in the IMAGE_AUX_SYMBOL structure.

The sum total of my knowledge of how to interpret the auxiliary sym-
bols is contained in the DumpAuxSymbols() routine in the COMMON.C
source file from PEDUMP. If you figure more out on your own, feel free to
add to this routine.

If you examine the information within the symbols section, you'll see
that the symbols aren't ordered randomly. Instead, they're grouped by the
object module (or source file, if you prefer) that they came from. The first
record in the COFF symbol table is a .file record. The value of a .file record
is a symbol table index to the next .file record. By following the .file record
value chain, you can iterate through each of the object modules in the EXE.
Immediately following each .file record are other records that are associated
with the source file. For example, all the public symbols (global variables
and functions) that are declared in a source file follow the .file record repre-
senting that source file. For a regular source module, the "hierarchy" of
symbol records looks like this:

Source File record // Name of the source file.
Data Section record (e.g., ".data") // Data declared in file.

GlobalVariablel record // Information about variable.

GlobalVariable2 record
// Rest of global variable records

Code Section record (e.g., ".text") // Code declared in file.
Function1 record // Information about function.

.BF record // Function begin info.

.LF record // Function length info.

.EF record // Function end info.

Function2 record
.BF record

.LF record

.EF record
// Rest of function records

C O F F

611

THE COFF DEBUG INFORMATION

To the average PC programmer, the term debug information includes both
symbol and line-number information. In the COFF format, the symbol and
line-number records are in separate regions of the file. (In the Borland or
CodeView symbol table formats, line numbers and symbol information
come from the same part of the file.) I discussed the COFF symbol table
portion first because it appears in both the OBJ and EXE files. Also, very
early in the process of learning the PE format, you come across the
PointerToSymbolTable field in the IMAGE_FILE_HEADER. For these
reasons I chose to describe the symbol table as a separate entity.

The entire COFF symbol table in an EXE file is composed of three
parts: a header, the line-number information, and the symbol table. They
don't have to be contiguous in memory, but the Microsoft linker lays them
out this way. A complete COFF symbol table looks like this:

IMAGE_COFF_SYMBOLS_HEADER structure
Line Number tables
Symbol Table (previously discussed)

The IMAGE COFF_SYMBOLS_HEADER structure is intended to
allow debuggers to get a quick fix on the important information they need
to know. This structure contains pointers to the line number and symbol
tables, as well as information that can be found elsewhere in the file.

To find the IMAGE_COFF_SYMBOLS HEADER structure, look in the
array of IMAGE_DEBUG_DIRECTORY structures in the .rdata section of
the file. The IMAGE_DEBUG_DIRECTORY that has a Type field contain-
ing the value 1 (IMAGE_DEBUG_TYPE_COFF) contains a pointer to the
COFF symbol table. To quickly recap this process: The data directory (at the
end of the PE header) contains an RVA to an array of IMAGE_DEBUG_
DIRECTORYs. There is one IMAGE_DEBUG_DIRECTORY for each type
of debug information present in the file. If one of these IMAGE_DEBUG_
DIRECTORYs refers to COFF style debug information, then it contains an
RVA to a IMAGE_COFF_SYMBOLS_HEADER structure. The IMAGE_
COFF_SYMBOLS_HEADER structure in turn contains pointers to the COFF
symbol table and line-number information. The IMAGE_COFF_SYMBOLS_
HEADER structure has the following format:

612

Let's look at the fields of the IMAGE_COFF_SYMBOLS_HEADER in
detail:
DWORD NumberOfSymbols
The number of symbols in the COFF symbol table. This field contains the
same value as the IMAGE_FILE_HEADER.NumberOfSymbols field, as
discussed in "The PE Header" section earlier in this chapter.
DWORD LvaToFirstSymbol
The byte offset to the COFF symbol table, relative to the start of this structure.
Adding this value to the RVA of this IMAGE_COFF_SYMBOLS_HEADER
will yield the same result as the IMAGE_FILE_HEADER.PointerToSymbol-
Table field.
DWORD NumberOfLinenumbers
The number of entries in the line number table (see Figure 8-15).
DWORD LvaToFirstLinenumber
The byte offset to the COFF line number table, relative to the start of this
structure.
DWORD RvaToFirstByteOfCode
The RVA of the first byte of executable code in the image. This field is usually
the same as the RVA of the .text section. This value could also be found by
scanning the executable's section table.
DWORD RvaToLastByteOfCode
The RVA of the last byte of executable code in the image. Assuming you
only have one code section (.text), this field will be equal to the section's
RVA plus its raw data size. This value could also be found by scanning the
section table.

typedef struct _IMAGE_COFF SYMBOLS_HEADER {
DWORD NumberOfSymbols;

DWORD LvaToFirstSymbol;

DWORD NumberOfLinenumbers;
DWORD LvaToFirstLinenumber;
DWORD RvaToFirstByteOfCode;
DWORD RvaToLastByteOfCode;

DWORD RvaToFirstByteOfData;

DWORD RvaToLastByteOfData;
} IMAGE_COFF_SYMBOLS_HEADER, *PIMAGE_COFF_SYMBOLS_HEADER;

R V A

613

Line Numbers

SymIndex: C (DumpDebugDirectory)
Addr: 016A9 Line: 0008

Addr: 016B5 Line: 0009

Addr: 016BF Line: 000A

Addr: 016C4 Line: 000E

// Rest of line number for function omitted.,.

SymIndex: ,13 (GetResourceTypeName)

Addr: 0184A Line: 0001

Addr: 01854 Line: 0002

Addr: 0186F Line: 0003

Addr: 01874 Line: 0004

// Rest of line number for function omitted,..

SymIndex: 1A (GetResourceNameFromLd)

Addr: 01897 Line: 0004

Addr: 018A1 Line: 0006

Addr: 018B6 Line: 0007

Addr: 018BB Line: 000A

// Rest of line numbers omitted...

Figure 8-1 5
Typical COFF line-number informatian in an EXE file.

DWORD ToFirstByteOfData

The RVA of the first byte of data in the image. This field is usually the same
as the RVA of the .bss section.

DWORD RvaToLastByteOfData

The RVA of the last byte of program accessible data in the image. The region
encompassed by the FirstByteOfData and the LastByteOfData fields may
span several sections (for instance, .bss, .rdata, and .data).

THE COFF LINE-NUMBER TABLE

The COFF line-number table pointed to by the IMAGE_COFF_SYMBOLS_
HEADER structure is very simple: It's just an array of IMAGE_LINENUM-
BER structures. Each structure correlates one line of source code to its RVA
in the executable image. Figure 8-15 shows a sample line-number table as
shown by PEDUMP. The format of an IMAGE_LINENUMBER has two
fields, a union and word.

L i n e n u m b e r

614

union {
DWORD SymbolTablelndex
DWORD
} Type
If the Linenumber field (below) is nonzero, this field should be treated as;
RVA for a line of code. If the Linenumber field is 0, this field contains an
index into the symbol table. The symbol record referred to by this index
identifies a function. All the line-number records for that function follow
this special record. From looking at the PEDUMP output, you can see that
the line-number table is comprised of a symbol table index record, followei
by regular line-number records, followed by another symbol table index
record, and so on.
WORD Linenumber
Contains a line number, relative to the start of the function. This field is not
a line number in the file. To convert this field to a usable line number in the
file, look up the starting line number for the associated function in the sym-
bol table. The associated function is the function with a 0 in this field in the
most recent line-number record. See the PEDUMP output in Figure 8-15 if
this is unclear.

If you want to access only the line numbers for a given code section, you
can look up just the relevant range of line-number entries from the section
table. A section's IMAGE_SECTION_HEADER contains a file offset and a
count for its line numbers within the table. COFF format OBJs also contain
line-number information in the format I've just described. Since there is no
IMAGE_COFF_SYMBOLS_HEADER structure in an OBJ file, you'll need
to find the line-number records through the IMAGE_SECTION_HEADER
structures.

DIFFERENCES BETWEEN PE FILES AND COFF OBJ FILES

At many points throughout the preceding discussion, I've noted that many
structures and tables are the same in both a COFF OBJ file and the PE file
that's created from it. Both COFF OBJ and PE files have an IMAGE_FILE_
HEADER at or near their beginning. This header is followed by a section
table that contains information about all the sections in the file. The two
formats also share the same line number and symbol table formats,
although the PE file can have additional non-COFF symbol tables as well.
The amount of commonality between the two formats can be seen in the
PEDUMP source code. The largest file in the program is COMMON.C.

P E

This source file contains all the routines that can be used by both the PE-
and OB J-dumping portions of the program.

This similarity between the two file formats isn't happenstance. The goal
of this design is to make the linker's job as easy as possible. Theoretically,
creating an EXE file from a single OBJ should be just a matter of inserting a
few tables and modifying a couple of file offsets within the image. With this
in mind, you can think of a COFF file as an embryonic PE file. Only a few
things are missing or different, so I'll list them here.

* COFF OBJ files start immediately with an IMAGE_FILE_HEADER.
There's no DOS stub preceding the header, nor is there a PE signature
preceding the IMAGE_FILE HEADER.

* OBJ files don't have the IMAGE_OPTIONAL_HEADER. In a PE file,
this structure immediately follows the IMAGE_FILE_HEADER.
Interestingly, some OBJs inside COFF LIB files do have an
IMAGE_OPTIONAL_HEADER.

* OBJ files don't have base relocations. Instead, they have regular symbol-
based fixups. I haven't gone into the format of the COFF OBJ file relo-
cations because they're fairly obscure. If you want to dig into this par-
ticular area, the PointerToRelocations and NumberOfRelocations fields
in the section table entries point to the relocations for each section. The
relocations are an array of IMAGE_RELOCATION structures, which is
defined in WINNT. H. The PEDUMP program can show OBJ file reloca-
tions if you enable the proper switch.

* The CodeView information in an OBJ file is stored in two sections
(.debug$S and .debug$T). When the linker processes the OBJ files, it
doesn't put these sections in the PE file. Instead, it collects all these sec-
tions and builds a single symbol table that's stored at the end of the file.
This symbol table isn't a formal section (that is, there's no entry for it in
the PE's section table).

615

COFF LIB FILES

Once you understand COFF OBJ files, using COFF LIB files isn't much harder.
COFF LIB files are essentially just a collection of COFF OBJ files, along with
some initial sections that let you quickly look up the location of a desired OBJ
file embedded within the library. The sparse documentation for the COFF LIB
format refers to LIB files as archives, so I'll do so here to remain consistent.

W I N N T .

616

All LIB files start out the same 8-byte signature. This signature is
defined in WINNT. H:

#define IMAGE_ARCHIVE_START "!<arch>\n"

The remainder of the file is a series of variable-length records, with each]
record starting with an IMAGE_ARCHIVE_MEMBER_HEADER structure,s]

typedef struct _IMAGE_ARCHIVE_MEMBER_HEADER {

BYTE Name[16];

BYTE Date[12];

BYTE UserID[6];

BYTE GroupID[6];

BYTE Mode[8];

BYTE Size[18];

BYTE EndHeader[2];

} IMAGE_ARCHIVE_MEMBER_HEADER, *PIMAGE_ARCHIVE_MEMBER_HEADER;

Each IMAGE_ARCHIVE_MEMBER_HEADER corresponds to either
an OBJ file within the library or to one of a small collection of special
records. These special records come at the beginning of the library, and exist
to let the linker quickly look up OBJ files later in the file. The raw data for
the archive member immediately follows the IMAGEARCHIVE_MEM-
BER_HEADER that starts each record. For most archive member records,
the raw data is exactly the same file as an OBJ file would contain. In fact,
when dumping out LIB files, the PEDUMP program calls the same OBJ
dumping routines that PEDUMP would use if it were processing an OBJ
file. Figure 8-16 shows the format of LIB files.

Let's look at the fields of the IMAGE_ARCHIVE_MEMBER_HEADER:
BYTE Name[16]
The name of the archive member. If a / appears after an ASCII string (for
example, FOO.OBJ/), then the string preceding the / is the member name. If
the name starts with a / followed by a decimal number (for example,/104),
the number is the offset of the archive member name within the Longnames
member of the LIB file. In the previous example, the member name would
start 104 bytes into the Longname area.

There are also special names that identify the special archive members:

#define IMAGE_ARCHIVE_LINKER_MEMBER "/

#define IMAGE_ARCHIVE_LONGNAMES_MEMBER "//

U s e r I D [6]

617

Figure 8-16
The layout of COFF format LIB files.

For OBJ files within an import library, this field is the name of the DLL
containing the functions to be imported.
BYTE Date[12]
The date/time that this member was created. This number is stored in ASCII
decimal form.
BYTE UserID[6]
ASCII decimal representation of the user ID. Appears to always be a
NULL string.
BYTE GroupID[6]
ASCII decimal representation of the group ID. Appears to always be a
NULL string.

618

BYTE Mode[8]
ASCII decimal representation of the file's mode. Appears to always be 0.
BYTE Size[10]
The size of the member data to follow, represented in ASCII decimal form.
The format of the data depends on what type it is (indicated in the previously
described Name field).
BYTE EndHeader[2]
The ASCII string \n.

Linker members
Every LIB file has two Linker member sections that act as a table of contents
for the rest of the file. Both members have the name/, and are differentiated
by the order in which they appear in the file. The first Linker member is the
first archive member with the name/, while the second Linker member is the
second archive member with the name/.

Both Linker members are essentially lists of the public symbols in the
LIB file, along with the file offsets to the OBJ members that contains the
public symbol. The two Linker members have different formats. Why two
copies of the same information? The first Linker member stores its informa-
tion sorted by the order in which the OBJs appear later in the LIB file. This
leads to non-optimal searching. The second Linker member has its symbols
sorted in alphabetical order, thereby making it much more useful to the
linker. According to the Microsoft documentation, the linker ignores the
first Linker member, and always uses the second Linker member.

The first Linker member has the following format:
DWORD NumberOfSymbols
This is the number of public symbols in this library. This number is in big-
endian format (reflecting COFF's heritage in machines other than the i386).
The ConvertBigEndian function in PEDUMP's LIBDUMP. C file can handle
switching from big-ending format to the little-endian format that the i386 uses.
DWORD Offsets[NumberOfSymbols]
This is an array of file offsets to other archive members. The offsets are in
big-endian format. Each of these members is an OBJ-type member. Each
element of this array corresponds to the equivalently ordered symbol name
in the list of ASCII strings that immediately follows.

D W O R D

619

BYTE StringTable[?]
This is an unbroken series of C-style strings in memory.

Essentially, each element in the Offsets array corresponds to one public
symbol whose name appears in the StringTable area. For example, the third
element of the Offsets array is associated with the third string in the
StringTable area. The PEDUMP output makes this clearer:

First Linker Member:

Symbols: 00000006
MbrOffs Name

00000180 _DumpCAP@0

00000180 _StartCAP@0
00000180 _StopCAP@0

The format of the second Linker member is more complex because of
the addition of an array necessary for fast symbol lookup. The format of the
second Linker member is as follows:
DWORD NumberOfMembers
This DWORD contains the number of OBJ file archive members that
appear later in the file.
DWORD Offsets[NumberOfSymbols]
This is an array of file offsets to other archive members. Unlike the first
Linker member, these offsets are in the native format of the machine (that is,
in little-endian format for i386 machines).
DWORD NumberOfSymbols
This is the number of public symbols in the StringTable array (and hence,
the number of public symbols in the library). This field also contains the
number of elements in the Indices array that immediately follows.
WORD Indices[NumberOfSymbols]
This array holds 1-based indexes into the Offsets array (described two fields
up). This array runs parallel to the strings in the StringTable array.
BYTE StringTable[NumberOfSymbols]
This is an unbroken series of C-style strings in memory.

O B J

620

To find the OBJ file that corresponds to a given symbol using the second
Linker member, the linker first searches the StringTable array and calculates
the relative index of the string in the array. Next, the linker uses the index
to look up a WORD in the Indices array. Finally, the linker subtracts 1 from
this Indices array WORD and uses the result as an index into the Offsets
array. The Offsets array DWORD that's looked up is the file offset of the
OBJ file that contains the public symbol. The DumpSecondLinkerMember
function in PEDUMP's LIBDUMP. C shows this process in action.

The Longnames member
The data in the Longnames archive member section is simply a collection of
C-style strings, one after the other. A string is placed into the Longnames
section if its too big to fit into the 16 bytes reserved in the Name field of an
IMAGE_ARCHIVE_MEMBER_HEADER structure. In this case, the Name
field contains a/, followed by an ASCII decimal representation of the
string's offset in the Longnames section.

SUMMARY

With the advent of Win32, Microsoft made a sweeping change in the OBJ
and executable file formats. This change allowed Microsoft to save time by
building on work previously done for other operating systems. A primary
goal of these revamped file formats is to enhance portability across different
platforms. The COFF OBJ format existed before Win32 was created. The
PE format is an extension to the COFF format and was designed for use
with Win32 platforms.

The useful part of both the OBJ and executable files begins with an
IMAGEFILEHEADER structure. Following that structure (and possibly
an additional optional structure) is a section table. The section table con-
tains the location and attributes of all the sections in the file. A section is a
collection of code or data that logically belongs together. To facilitate find-
ing information quickly, the PE file contains a data directory that points to
useful locations in the file (for example, the location of the file's export
table). Besides the header(s), section tables, and raw section data, COFF
OBJ files and PE files can also contain information regarding symbolic
names and line numbers. This information is stored at the end of the file,
after all the headers and section data.

O NSPELUNKING ON

OUR OWN

U nlike the rest of this book, this chapter doesn't focus on
the workings or architecture of Windows 95. Instead, it

describes some of the more basic elements of exploring code on
your own. Consider the adage "Give someone a fish and they'll
eat for a day. Teach someone to fish and they'll eat for a lifetime."
The other chapters in this book give you fish. This chapter
teaches you how to fish for Windows secrets on your own.

Of course, what you'll learn here can also be applied to other
situations, such as to device drivers and end-user applications.

In the ideal world, you would be able to find all the operat-
ing system information you needed in the documentation, allow-
ing you to treat the operating system components as a black box.
You wouldn't need to understand the internal behaviors and
data structures of such an operating system because understand-
ing and using the documented interfaces would be sufficient to
write your program, library, or device driver.

In the absence of complete documentation (ah, that perfect
world is starting to crumble...), the operating system's source
code can act as a surrogate source of information. Although
you have to look at other people's code (shudder!), the answer
to almost every operating system question can be found with
enough digging through the operating system sources. In fact,
Eric S. Raymond's The New Hacker's Dictionary contains an
entry for UTSL, an acronym for Use the Source Luke.

622

In the UNIX world, access to the operating system sources is fairly com-
mon. Unfortunately for us programmers who work with Windows, source
code isn't available. Granted, some actual Windows 95 code appears in the
DDK. For the most part though, the majority of programming questions
concern topics that neither the SDK nor the DDK provide source code for.
Microsoft's documentation in these areas has improved markedly in recent
years, but there are still many holes in the Windows SDK documentation
that real source code would fill.

Insufficient documentation and source code unavailability aren't the
only problems you can encounter when working with the operating system.
Your application may need to interact with another application whose
exact behavior is unknown to you. The prototypical example of this is the
programmer who is forced to spend a great deal of time trying to pin down
what DDE messages Microsoft Excel sends, and in what order. Another
example from Windows 3.1 is the program that, when run, causes other
programs to be unable to run. The problem in this case is that some program
is sucking up all the memory below 1MB in the address space.

In this chapter I discuss the following methods of spelunking used by
Windows programmers:

* File-dumping utilities
* API and message spy programs (such as APISPY32 from Chapter 10)
* Disassembly

In each section I describe the commonly available tools and give examples
of how to use these tools to find useful information. The final section on
disassembly techniques is especially detailed because disassembly is considered
to be a form of "black magic" and is rarely covered in print. A lot of the art
of reading assembler listings and stepping through code in a debugger is just
knowing common compiler code-generation patterns. There's also a certain
amount of real-world experience involved, but I'll save a full discussion of
that for later.

Most of this chapter describes general spelunking concepts that beginning
and intermediate programmers will find helpful. But the final section of this
chapter is a collection of advanced tips and tricks for the serious spelunker.
After all, I've learned a lot of lessons the hard way, and those of you who are
interested might as well benefit from my hard-won knowledge.

6 2 3

623

Although Windows 95 is a Win32 operating system, vital parts of it still
use 16-bit code and the 16-bit NE file format. Describing Winl6 spelunking
techniques is therefore a must for this chapter. Although some spelunking
techniques carry over from Winl6 to Win32, there are significant differ-
ences. Therefore, I'll cover tools and techniques for Win32 programs as
well.

SPELUNKING OVERVIEW

The easiest and most readily available method of learning the details of a piece
of code is to use file-display programs such as Borland's TDUMP, Microsoft's
EXEHDR and DUMPBIN, or the PEDUMP program from Chapter 8. These
programs can tell you such things as what DLLs and APl functions a program
uses, but won't be able to provide you with information about internal
algorithms and data structures. Think of it this way: File dumping is to
spelunking rather what looking out your front window is to conducting a full-
scale surveillance operation on the house across the street. It's relatively easy,
but you may not be able to get all the information you need.

For more sophisticated snooping into the internals of a program, you can
use a spy program. Programs such as SPY from the Microsoft Windows SDK
and WinSight from Borland C++ show the window messages that a program
sends and receives. Recently, programs such as Nu-Mega's BoundsChecker
products and Periscope's WinScope added the capability to see your program's
calls to the operating system APl functions. And Chapter 10 offers an extensi-
ble Win32 APl spy program that you can use. With all this information and
a little bit of work, you can figure out how almost any nifty piece of code is
implemented. I'll give an example of spelunking with a spy program later in
this chapter. Returning to our spying-on-the-house analogy, spy programs can
be thought of as intercepting the mail and phone conversations going into and
out of the house.

Finally, when you need to know a program or DLL's internal algorithms
or data structures, you can pull out all the stops by using disassembly. Although
you can do limited disassembly work with just a good debugger, you'll probably
want to use a file-based disassembler such as V-Communications' Sourcer or
Win2Asm from Eclectic Software. The capability to add your own comments
and formatting to the listing file makes file-based disassemblers a far better
choice than your favorite debugger for serious disassembly. To carry our house
surveillance analogy one step further, disassembly is like breaking down the
front door and rifling through the contents of the house. I'll describe disassem-
bly tools and techniques in the "Spelunking Using Disassembly" section.

6 2 4

624

SPELUNKING WITH FILE-DUMPING TOOLS

The usual first step in spelunking a program is to dump out the file's contents.
This is a quick and easy way to get a handle on what type of file you're dealing
with and what the file might be used for. Table 9-1 lists the capabilities of
some well-known tools that are expressly written to dissect a file's contents.

Table 9-1
Capabilities of common file-dissection tools

Notes:
DUMPBIN is from Microsoft Win32 SDK and Visual C++.
DUMPEXE is from Symantec C++
EXEHDR is from Microsoft Visual C++
TDUMP is from Borland C++

If you develop with Borland C++, try out TDUMP. EXE from the BIN
subdirectory. If you develop with 16-bit Microsoft C/C++, EXEHDR is
probably your tool of choice. If you use Visual C++ or the Win32 SDK, the
DUMPBIN program in the BIN directory works with Portable Executables
(PEs) and the COFF format OBJs produced by the Microsoft 32-bit compilers.
As Table 9-1 shows, no one program does everything, so it's a good idea
to have at least a couple of programs on hand. The combination of TDUMP
and DUMPBIN is a good one that should cover most bases.

The most useful information you get from a file-dumping program is
usually the names of the DLLs and functions that a program or DLL imports.
Often just knowing that a program uses a certain function is enough to get
you going when you're stuck. For example, in Windows 3.0 there was no
documented way to change the desktop wallpaper, yet the Control Panel
application was able to change the wallpaper. The capability had to exist some-
where in Windows. By running TDUMP or EXEHDR on the Windows 3.0

s w i t c h

625

control panel program, you would have seen that the program made use
of the undocumented SetDeskWallPaper function. (In Windows 3.1 the
documented SystemParameterslnfo APl took over this functionality.)

Finding the functions that a 16-bit New Executable (NE) program or DLL
uses is a two-step process. The NE file doesn't contain a simple list of all
functions imported from other DLLs. Therefore, the first step in this process
is to find the fixup data for the executable's segments. If you use EXEHDR,
you'll have to use the /VERBOSE switch to get the fixup information. This
output shows the TDUMP version of a typical sequence of that occurs
in the Windows 3.1 CALC.EXE:

PTR OAD9h GDI.91

PTR 0121h GDI.93

PTR OOEAh USER.89

PTR 0223h USER.90

PTR 04ADh USER.91

PTR 1DCAh USER.92

The important information in this output is the module name and import
ordinal at the end of each line. In this case, the program is importing six
functions, two from GDI and four from USER. Function names such as
GDI.91 aren't particularly useful by themselves, so the second step of the
process is to convert the module name (GDI) and ordinal (91) to a real
function name.

When an EXE or a DLL exports functions, the function names and their
associated export ordinal values are stored in the executable file, as well as
in an import library. Since there's no easy way for Microsoft users to dump
the contents of a 16-bit import library, I'll show you how to get the function
name from the DLL directly. But back to our second step: We have to figure
out what GDI.91 is. That means dumping out GDI.EXE to see what exported
function 91 is. The output that follows shows a fragment of the Non-Resident
Name Table section produced by running TDUMP on GDI.EXE. If you use
EXEHDR, you'll find similar information in the section titled "Exports":

Looking at the TDUMP output for GDI.EXE, notice that the function
GetTextExtent corresponds to GDI.91. Putting two and two together, it's

Non-Resident Name Table offset: OC41h

Module Description: 'Microsoft Windows Graphics Device Interface'

Name: GETWINDOWEXTEX Entry: 474

Name: GETTEXTEXTENT Entry: 91

r e s t

626

evident that CALC.EXE calls GetTextExtent (GDI.91). The names of the other
imported functions can be determined by repeating the two-step process I just
described. Bear in mind that this method won't find functions that a program
links to at runtime by calling GetProcAddress. In that particular case, you'll
have to resort to disassembly to find these calls.

Finding the functions that a 32-bit PE file imports is much simpler.
Running DUMPBIN or PEDUMP from Chapter 10 on a Win32 program
shows that a PE file contains a simple list of all the functions it imports.
(The list looks simple in the dump. Inside the file, the imports section is
fairly complex. For a complete description of the exports section and the
PE format in general, see Chapter 8.) The list of imported functions is even
sorted by module. This output contains fragments of the imports section
emitted by running DUMPBIN on the Windows NT 3.5 USER32.DLL:

ntdll.dll

Hint/Name Table: 0002F31C

TimeDateStamp: 2E67E68D

ForwarderChain: FFFFFFFF

First thunk RVA: 0002F050

Ordn Name

78 NtCreateSection

226 NtUnmapViewOfSection

503 RtlUnwind

901 strrchr

890 sscanf

... rest of functions omitted

KERNEL32.dll

Hint/Name Table: 0002F3CC

TimeDateStamp: 2E67E68D

ForwarderChain: FFFFFFFF

First thunk RVA: 0002F100

Ordn Name

119 FindClose

150 GetAtomNameW

378 LocalReAlloc

368 LoadLibraryW

236 GetModuleFileNameW

... rest of functions omitted

In this output, the first number on each line containing a function name
is the hint ordinal. Win32 operating systems import functions by name, but
the hint ordinal can speed up the process. It gives the loader a hint of where
it should start its binary search for the APl name in the DLL that exports
the functions.

By looking at USER32.DLL's import table (in the output), we can see that
it calls KERNEL32 functions such as GetAtomNameW and LocalReAlloc. It's
interesting to note that when the NT USER32.DLL has a choice of calling
either an ASCII or a Unicode API, it calls the Unicode version (GetAtom-
NameW, LoadLibraryW, and so on). This is consistent with Microsoft's
claim that Windows NT uses Unicode strings internally.

This output also shows that NT's USER32.DLL uses many functions
from NTDLL.DLL. NTDLL.DLL is an entire DLL of undocumented func-
tions! Interestingly, in NT, KERNEL32.DLL relies heavily on functions
in NTDLL.DLL. In contrast, NTDLL.DLL still exists in Windows 95,
but KERNEL32.DLL doesn't appear to use it for anything. In fact, the
Windows 95 NTDLL.DLL is the opposite of the NT version, and relies
heavily on KERNEL32 functions.

Although it's useful to know what APIs an EXE or a DLL uses, the flip
side is equally important. File-dumping programs can show you what APIs
a DLL exports for use by other programs and DLLs. The exported functions
are often a dead giveaway to the purpose and capabilities of the DLL.
Sometimes a name by itself is enough information to guess what the para-
meters are to an undocumented function. Other times you'll need to use the
disassembly techniques along with the exported API names to figure out
how to call an undocumented DLL function.

The next output shows the TDUMP output of the exports from a 16-bit
NE file, SPELL.DLL. This DLL comes with Microsoft Word for Windows 2.0,
but its APIs aren't documented.

Non Resident Name Table offset: 02A8h

Module Description: 'Word for Windows v. 2.0 Spell Checker DLL'

Name: SPELLOPENUDR Entry: 8

Name: SPELLGETSIZEUDR Entry: 13

Name: SPELLADDUDR Entry: 9

Name: SPELLOPTIONS Entry: 3

Name: SPELLDELUDR Entry: 11

Name: SPELLTERMINATE Entry: 5

Name: SPELLADDCHANGEUDR Entry: 10

Name: SPELLINIT Entry: 2

Name: SPELLVER Entry: 1

Name: SPELLCLOSEMDR Entry: 15

Name: SPELLCHECK Entry: 4

Name: SPELLVERIFYMDR Entry: 6

Name: SPELLOPENMDR Entry: 7

Name: SPELLCLOSEUDR Entry: 16

Name: SPELLCLEARUDR Entry: 12

Name: SPELLGETLISTUDR Entry: 14

627

6 2 8

628

Some of the function names give obvious clues as to what the DLL does,
as well as an idea of how you might call that function. For example, the
SpellVer() function probably doesn't take any parameters, and probably
returns a version number in the AX or DX:AX registers. It's very easy to
write a small program that tests this theory. Just do a LoadLibrary on
SPELL.DLL, call GetProcAddress to get the address of SpellVer(), and
then call it.

News flash: Having written a small program to test this, I discovered
that the function always returns 0 when called in this manner. Resorting to
disassembly, I discovered that the SpellVer function actually takes three far
pointers to WORDs (LPWORD) that it fills in. The lesson here: Although
file-dumping is the easiest form of spelunking, it can't give you adequate
information in all cases.

Returning to the other functions exported from SPELL.DLL, note that
there are Spelllnit(), SpellCheck(), and SpellTerminate functions - - so the
DLL probably expects to be initialized, called to check some text, and then
shut down. What we don't know is what sort of parameters these APIs expect.
Again, this is where disassembly comes into play.

If you want to see what new and exciting things changed between different
versions of a product, a good way to start is to compare the exports of two
corresponding DLLs. Table 9-2 shows the difference between the functions
exported by KRNL386 in Windows 3.1 and Windows 95. To obtain this
information, I used EXEHDR to dump the exports of the Windows 3.1
KRNL386.EXE and the Windows 95 KRNL386.EXE to separate files. Next, I
sorted the list of functions in each file alphabetically. Finally, I ran a DIFF pro-
gram to show the differences.

As Table 9-2 shows, some obsolete functions were deleted and a whole
bunch of intriguing new functions were added. Some of the new functions
are documented (for example, GetPrivateProfileStruct), but many are
undocumented (for instance, Piglet_361 and GetVDMPointer32W).
Noticeably missing from the table are numerous new exported KRNL386
functions that are exported by ordinal only, and that don't have names in
KRNL386's resident or nonresident names tables.

In Table 9-2, notice that some function names are hidden by referring to
them as, for example, K209 and K210. If we knew the names of these func-
tions, it would sure make it easier to guess what their purpose is. As it turns
out, some of the new Kxxx functions (such as K209) are for allocating or
freeing memory in a Win32 heap from a 16-bit application. A good example
of code that uses the Kxxx functions is USER.EXE, which stores the WND
structures in the upper part of the USER DGROUP (above the 64K limit
that plagued programmers prior to Windows 95). Chapter 5 contains more
information on these functions.

O n

Table 9-2

Windows 95 versus Windows 3.7 KRNL386 exported functions:
What's new, what's been deleted

629

KRNL386 exported functions

New in
Windows 95

CALLPROC32W, CREATEDIRECTORY, DELETEFILE, FINDCLOSE,
FINDFIRSTFILE, FINDNEXTFILE, FREELIBRARY32W, GETCURRENTDIRECTORY,
GETDISKFREESPACE, GETFILEATFRIBUTES, GETLASTERROR,
GETMODULENAME, GETPRIVATEPROFILESECTION,
GETPRIVATEPROFEESECTION NAMES, GETPRIVATEPROFJLESTRUCT,
GETPROCADDRESS32W, GETPRODUCTNAME, GETPROFILESECTION,
GETPROFILESECTIONNAMES, GETVDMPOINTER32W, GETVERSIONEX,
GLOBALSMARTPAGELOCK, GLOBALSMARTPAGEUNLOCK,
INVALIDATENLSCACHE, ISBADFLATREADWRITEPTR, K208, K209, K210,
K211, K213, K214, K215, K228, K229, K237, [OADLIBRARYEX32W,
LSTRCATN, OPENFILEEX, PIGLET_361, REGCLOSEKEY, REGCREATEKEY,
REGDELETEKEY, REGDELETEVALUE, REGENUMKEY, REGENUMVALUE,
REGFLUSHKFY, REGPSTERSERVICEPROCESS, REGLOADKEY, REGOPENKE¥,
REGQUERYVALUE, REGQUERYVA[UEEX, REGSAVEKEY, REGSETVALUE,
REGSETVALUEEX, REGUNLOADKEY, REMOVEDIRECTORY,
SETCURRENTDIRECTORY, SETFILEATTRIBUTES, SETLASTERROR,
WRITEPRIVATEPROFILESECTION, WRITEPRIVATEPROFILESTRUCT,
WRITEPROFILESECTiON, _CALLPROCEX32W

Deleted in
Windows 95

DIAGOUTPUT, DIAGQUERY, DOSIGNAL, EMSCOPY, GETFREEMEMINFO,
GETTASKQUEUEDS, GElq-ASKQUEUEES, GETWINOLDAPHOOKS,
INIT1-ASK1, K327, K329, K403, K404, REGISTERWINOLDAPHOOK,
RESERVED1, RESERVED2, RESERVED3, RESERVED4, RESERVED5,
SETSIGHANDLER, SElq-ASKQUEUE, SETTASKSIGNALPROC,
WINOLDAPCALL

1 0 AddAtomA (00040475)

2 1 AddAtomW (000134aa)

3 2 AddConsoleAliasA (00014a6a)

4 3 AddConsoleAliasW (00014ab1)

5 4 A11ocConsole (00•1c4f2)

6 5 AllocLSCallback (00029d84)

7 6 AllocMappedBuffer (0003ea55)

8 7 AllocSLCallback (00029db7)

9 8 BackupRead (0001490d)

A 9 BackupSeek (00014733)

B A 8ackupWrite (00014928)

On the Win32 side of things, here's a fragment of the output from running
DUMPBIN on the Windows 95 version of KERNEL32.DLL:

3 9

630

There are two important things to note in this output. First, several of
the exported APIs come with two variations - - for example, AddAtomA
and AddAtomW. AddAtomA is the version of AddAtom that uses ASCII
strings, and AddAtomW is the equivalent function that uses Unicode strings.
(In Windows 95 and Win32s, most of the Unicode versions of the functions
simply pop their parameters and return, since these Win32 platforms don't

support Unicode.)
The second thing to note in the output is the number at the end of each

line. This number is the relative virtual address (RVA) of the function in the
module. This is great news! The exports section contains enough information
to connect a symbolic name to a code address. As you'll see later, having sym-
bolic names increases the ease of spelunking by several orders of magnitude.

The following output shows a small portion of the DUMPBIN display
of the exported functions from the Windows NT 3.5 NTDLL.DLL.

ordinal hint name

13 12 DbgBreakPoint (0000aa58)

14 13 DbgPrint (0000aa5e)

15 14 DbgPrompt (0000aaa2)

24 23 LdrGetProcedureAddress (000082ff)

25 24 LdrInitializeThunk (00001108)

39 38 NtAllocateVirtualMemory (80001198)

3A 39 NtCancelIoFile (000011a8)

49 48 NtCreateMutant (00001298)

4A 49 NtCreateNamedPipeFile (000012a8)

4B 4A NtCreatePagingFile (00001268)

4C 4B NtCreatePort (000012c8)

4D 4C NtCreateProcess (000012d8)

4E 4D NtCreateProfile (000012e8)

4F 4E NtCreateSection (000012f8)

50 4F NtCreateSemaphore (000013•8)

A1 AO NtQuerySystemInformation (00001800)

19E 19D RtlLocalTimeToSystemTime (0001963c)

19F 19E RtlLockHeap (00011178)

1A0 19F RtlLogStackBackTrace (00016120)

1A1 1A0 RtlLookupElementGenericTable (0001a104)

1A2 1A1 RtlLookupSymbolByAddress (0001bcdf)

1A3 1A2 RtlLookupSymbolByName (0001bb8b)

6 3 1

631

With functions like DbgPrint(), NtCreateProcess(), and NtQuerySystem-
Information(), NTDLL.DLL has a lot of intriguing functionality buried in it.
In Windows NT, many of these undocumented APIs uncovered with
DUMPBIN do the real work of creating processes, managing memory, and
so on. For numerous APl functions in Windows NT, KERNEL32.DLL is
nothing more than a very thin layer over the real code in NTDLL.DLL. You
might be thinking, "This is nice, but I probably can't use NTDLL.DLL
myself." Wrong! If you run DUMPBIN or PEDUMP on some NT programs
such as WPEREEXE, you'll see that they call undocumented NTDLL.DLL
functions such as NtQuerySystemInformation.

You can often gain additional insight into the file by examining some of
the text strings it contains. One of the most useful text strings is the descrip-
tion field. The linker puts whatever you specify on the DESCRIPTION line
of the .DEF file into the executable's description field. In 16-bit NE files, the
description string is the first entry in the nonresident names table. The out-
put that follows shows some typical description strings in the files from the
Windows 95 \WINDOWS directory.

RUMOR.EXE:

WINBUG10.DLL:

DEFRAG.EXE:

MCIOLE.DLL:

SCANDSKW.EXE:

CARDS.DLL:

WINPOPUP.EXE:

MORICONS.DLL:

CHARMAP.EXE:

PROGMAN.EXE:

RUNDLL.EXE:

WINFILE.EXE:

DIALER.EXE:

Party Line

DLL for LZ compression functions for WINBUG

Disk Defragmenter (Optimizer)

OLE handler DLL for MCI objects

ScanDisk for Windows

Card Display Technology

Microsoft Windows Message Popup Application

MS-DOS Application Icons For Windows 3.1

Utility for easily selecting special characters.

Windows Program Manager 3.1

Turn a DLL into an App

Windows File System 3.1

Microsoft Windows Telephony Dialer

In 32-bit PE files, the linker puts the description string somewhere in the
.rdata section. Unfortunately, there doesn't appear to be any consistent pattern
to its placement. If you want to see these strings, your best bet is to do a
raw hex dump of the .rdata section and look for an embedded ASCII string.
Also, since the Microsoft Win32 tools generally don't need a .DEF file,
you'll find many files that don't have a description string.

Another interesting place to get useful strings from dumping an EXE or
a DLL is the resource section. In both Win16 and Win32 programming you
can specify resources by ordinal number or by name. Sometimes dialogs have
interesting names or hidden controls that are outside the dialog rectangle.

c a n

632

Stringtable resources often contain goodies that you may ordinarily never see.
For instance, in the Microsoft game TAIPEI.EXE, the program rewards you
with a proverb if you win a game. If you want to see all the possible
proverbs, you can either master the game, or you can cheat like I did and
just dump out the string tables.

There are numerous ways to get at the resources in a file. Programs like
Borland's Resource Workshop let you view and edit the resources in any
file interactively. If you like doing things from the command line, Eclectic
Software's disassembler (Win2Asm) comes with a utility that reads in the
binary resources from an executable file. It emits a proper .RC file that you
can feed back into the resource compiler if you need to.

When using file-dumping programs, the jackpot is when you encounter
a file that still contains debugging information. Debugging information
contains all sorts of goodies about a program. Modern compiler debug
information includes the names of all your variables and functions, your
source file names, the layout of your structure definitions, your class
hierarchy, and many other things. In short, in the hands of those who
know what they're looking for, debug information is almost as good as
source code.

Borland's TDUMP dumps out both flavors of Borland debug information
(16 and 32 bits), in addition to Microsoft C7 debugging information.
Microsoft users can use CVDUMP to break apart CodeView information
into readable text. In addition to CodeView information, Microsoft's 32-bit
compiler produces another type of debugging information called COFE
(DUMPBIN.EXE and PEDUMP. EXE from Chapter 8 can break apart
COFF debug information.) Finally, the DBG2MAP from Nu-Mega's
SoftIce/W can create a human-readable .MAP file from both Borland and
Microsoft 32-bit debug formats.

.SYM files are another form of debug information that can be useful for
spelunking. Although .SYM files are relatively old and crude, they're still
helpful if you happen to get hold of them. Microsoft ships .SYM files for
some of the debug binaries as part of the Windows 95 SDK. Alas, there
aren't good .SYM files for the system DLLs that most people would want
to examine.

The first and most obvious thing that debugging information (with the
exception of .SYM files) tells you is which company's linker was used to
produce the executable. (You can also find that information by looking at
the copyright strings that the compiler runtime libraries put into the pro-
gram's data area.) More importantly, however, you can learn the names of
all the executable's functions and variables. Along with the functions and

6 3 3

633

variables names, the debug information also contains the address of these
symbols. If you need to resort to disassembly, having symbolic names will
increase the odds of success manyfold.

Beside symbolic names, the debug information might contain the types
of the variables, the argument lists for the functions, and the layout of the
structures and classes. In short, the debugging information contains almost
everything about your program that you wouldn't want a competitor to
know about. I once shocked a programmer by telling him about a GP fault
in his code, and on what line it occurred. I had downloaded the program
from a bulletin board and didn't have the source. The debug information
alone was enough for me to pinpoint the problem and the source line
number. Your competitors may not be so nice! That's why it's important for
you to check that you don't ship debugging information with your product.
Many companies, including Microsoft, Borland, and Delrina, have been
guilty of this in the past. You can see this yourself by running TDUMP or
CVDUMP on SOUNDREC.EXE from Windows 3.1.

Even if you don't leave debugging information in your EXEs and DLLs,
there's still a lot that can be learned about a file by dumping its contents and
analyzing the results. In the July 1993 issue of Microsoft Systems Journal, I
presented a utility called EXESIZE that scans 16-bit NE files and looks for
wasted space caused by inefficient or lazy coding practices. EXESIZE deter-
mines if the file alignment should be smaller, if inefficient real-mode code is
being generated, if you've left debug information in the file, and so on. In
some cases EXESIZE found files that wasted well over 100K. Over time, I
found that in most cases, the files that wasted the most space were created
by sloppy practices or unknowing programmers. Put another way, if an exe-
cutable passed all the EXESIZE tests, it was probably created by seasoned
professionals who pay attention to the details.

While I've been focusing on file dumping of EXEs and DLLs, don't
overlook the wealth of information that can be found in other related files.
In particular, OBJ and LIB files contain quite a bit of information about a
given source module (or collection of modules). Borland's TDUMP takes
apart Intel OMF OBJ files to show you public and external symbols, seg-
ment names, and so on. Symantec C++ includes the OBJ2ASM utility that
symbolically disassembles the code contained in an Intel OMF OBJ file.
Microsoft's DUMPBIN and my PEDUMP program both perform general-
purpose COFF OBJ and LIB file dumping. DUMPBIN can even disassemble
COFF OB J/LIB files.

6 3 4

634

SPELUNKING WITH SPYING TOOLS

While file dumping can be interesting and informative, it often doesn't tell
you everything you need to know about the code in question. Tools that let
you spy on a program's interactions with the operating system are often
much better suited to this task. The most well-known Windows spying tools
are the message-spying programs: SPY from Microsoft and WINSIGHT
from Borland. Message-spying programs show the messages that a window
receives, and how the program responds to these messages.

Although this information can be useful, programmers often need even
more information to get to the root of what they're trying to figure out.
Programs such as Nu-Mega's BoundsChecker for Windows and Periscope's
WinScope have raised spy tools to a new level. Besides window messages, these
programs intercept APl calls that a program or its DLLs make. Additionally,
some spy programs monitor and log hook callbacks, TOOLHELP notifications,
and other callbacks. The idea behind these programs is to put "probes" at
all the well-defined places where controls enter or exit the program's code
(window procedures, APl calls, and so on). The information that passes
across these boundaries is located in consistent places. For example, all
window procedures are called with a consistent set of parameters on the
stack (the HWND is at [BP+0E], the MSG number is at [BP+0C] and so on).
Spy programs take advantage of this knowledge to save off, analyze, and
display the information.

The best spying tools are those that don't require any modification of the
code that's being spied on. These programs rely solely on the information in
the executable file and the calls it makes to insert their probes. As I'll show
later in this section, this allows these programs to spy on almost any EXE or
DLL, even those that you can't relink or modify in some way.

Another group of spying tools requires you to relink the code you want
to spy on. These tools work by fooling the linker into resolving the program's
APl calls to point to the tool's own code rather than to the operating system
DLLs. A closely related class of tools modifies the executable file after it's
been linked. The effect is still the same. The spy program redirects APl calls
to the tool's own code, which logs the call before passing control on to the
operating system.

A variety of spying tools are available for 16-bit Windows applications.
Although the primary purpose of BoundsChecker/W (BCHKW) is to find
bugs, it accomplishes this by intercepting all the Windows APl and certain
of the C library calls that a program makes, and validating the parameters.

6 3 5

635

Since BCHKW has already done the hard work of intercepting all APl function
calls, it wasn't much more work to make BCHKW retain the information in
a trace buffer. To give a clearer picture of the sequence of events that lead up
to a bug, BCHKW also watches window and dialog messages, hook callbacks,
TOOLHELP notifications, and other assorted callbacks.

If you choose to save the trace information to a disk, you can use the
BCHKW's TVIEW program to get two different views of your program's
actions: an expandable view and a collapsible hierarchical view. TVIEW
includes a variety of event filters that do things like removing repetitive
sequences of APIs and messages that you're probably not interested in. A
typical sequence of this sort would be: GetMessage/TranslateMessage/
DispatchMessage/Window Message/DefWindowProc.

Although BCHKW takes advantage of debugging information for its
bug-finding roles, it isn't necessary for its spying capabilities. As a result,
you can run BCHKW with just about any Windows program, not just
your own programs during development.

Another popular spying program for 16-bit programs is Periscope's
WinScope. Unlike BoundsChecker/W, which concentrates on one program at
a time, WinScope is a systemwide spy tool. WinScope shows you all the API
calls, hooks, and messages that occur anywhere in the system. Sometimes
this is very useful; other times it leads to information overflow.

Luckily, WinScope provides a very high level of customization for what
you want to spy on. You can enable or disable spying on individual APIs or
on groups of APIs. You can also enable or disable spying on windows mes-
sages and hooks. Like BoundsChecker/W, WinScope can save off a copy of
the memory that an API's far pointer parameters point to. This enables you
to see the strings and data structures that were passed to CreateWindow,
GetPrivateProfileString, and so on. WinScope can also save timing information
for each event, allowing WinScope to function as a crude profiler. WinScope
uses the information in an NE file to hook APl calls, so you don't need to
relink the code you want to spy on.

If you're willing to sacrifice usability and features in exchange for saving
some money, you might consider Microsoft's API parameter profiler. Although
both 16- and 32-bit versions of this spying tool appear on the Windows NT
SDK, very few people know of its existence.

The Microsoft profiler is crude in its implementation and requires you to
modify any EXEs or DLLs that you want to examine. The core of this spy tool
is a collection of DLLs (ZERNEL.DLL, ZSER.DLL, ZERNEL32.DLL,
ZSER32.DLL, and so on). Each DLL has the same base filename as an
operating system DLL, but with the first letter changed to Z. These DLLs have

D L L s

636

a small stub for each API exported from the DLL they replace. For example
USER.EXE exports the function CreateWindow(). Therefore, ZSER.DLL
exports a CreateWindow() function. You connect your program or DLL to the
special DLLs with the APFCNVRT program (or APF32CVT for you Win32s
users). The APFCNVRT and APF32CVT programs modify your program so
that it imports its functions from the parameter profiling DLLs rather than in
normal operating system DLLs. When you run the modified program, all calls
to the affected DLLs go through the parameter spying DLLs before they're
passed to the operating system. The parameter profiler saves its collected
information to a disk file for viewing. For 32-bit programs, Microsoft provides
an alternative set of DLLs that do real profiling rather than APl logging.

Besides the 32-bit version of Microsoft's parameter profiler, Nu-Mega's
BoundsChecker32 (BCHK32) programs (for NT, Windows 95, and Win32s)
also spy on API calls and window messages in Win32 programs. For the
purposes of API spying, BCHK32 is similar to BoundsChecker/W. However,
it has a few new features not present in its Win16 sibling. First, when an
API call fails, the API usually stores an error code with SetLastError(), indi-
cating why the call failed. BCHK32 knows when an API fails and records the
error code. Second, since Win32 supports threads, BCHK32 saves the thread
ID for each API call and window message. The TVIEW program uses the
thread information to provide additional filtering options, such as showing
only the events for a specified thread.

The final Win32 API spy program I'll mention here is my APISPY32
program from Chapter 10. Although APISPY32 isn't nearly as full-featured
as BoundsChecker32, it does provide the rudimentary elements of API spying
(including showing function parameters and return values). It's easily extensible
to monitor any Win32 DLL that you want to spy on, and doesn't require
any modification to your programs.

A key thing to consider when evaluating spying tools is which parts of the
system the various tools allow you to watch. WinScope spies on calls to a
dozen of the standard Windows DLLs (USER, KERNEL, GDI, and so on). More
importantly, WinScope has the capability to spy on other DLLs through scripts
that you write. BoundsChecker/W spies on ten standard DLLs (roughly the
same set that WinScope includes by default). In contrast, the Microsoft
parameter profile watches only the main three system DLLs (USER, KERNEL,
and GDI). BoundsChecker32 currently spies on calls to KERNEL32, USER32,
GDI32, and ADVAPI32, and on several other important DLLs.

In APl spying, the information the spy tool can't show you is often the
difference between figuring out what's going on and scratching your head in

N O S I Z E : S W P 637

confusion. As a rule of thumb, the more data points (that is, API calls, window
messages, hook callbacks, TOOLHELP notifications, and so on) you record,
the better. For instance, the Microsoft parameter profiler is useless if you're try-
ing to figure out how a program uses TOOLHELP to perform some action.

Enough descriptions of API spying tools! Let's solve a real-world problem
so you can see these tools in action. Many times on programming forums I see
questions relating to the Windows CLOCK.EXE program. The most common
query is, "How do I make my program switch between having a title bar and
not having a title bar, like CLOCK.EXE does?" You can find the answer by
using a spy program to determine what API calls CLOCK.EXE makes when it
toggles the title bar on and off. Here, I'm going to use the 32-bit CLOCK.EXE
program from Windows NT. I could just as easily have used the 16-bit
CLOCK.EXE. (Windows 95 doesn't include a separate CLOCK program, but
you can run the NT CLOCK.EXE on Windows 95.)

For my tool, I'll use BoundsChecker32/NT, although any of the tools I've
mentioned would do. If you have one of these programs, you can follow
along with the steps I'll show, although it's not necessary to do so in order to
understand the key points.

The first step is to run the program in question and collect the trace
information. To do this, run BoundsChecker, select CLOCK.EXE from the
FILEILOAD dialog, and choose Run. After CLOCK starts up, go to CLOCK's
Settings menu and select No Tide. (I'm assuming that when CLOCK started
there was a title bar and a menu.) Shut the Clock program down.

The next step is to examine the trace output and find the spot where the
program responded to the No Title command. The following output shows
a text file version of the relevant parts of the trace.

WNDMSG: HWND:0049016E MSG:WM_COMMAND(0111) WPARAM:00000006 LPARAM:00000000
APICALL: GetWindowLong(HWND:OO49016E, WINDOWLONG:GWL STYLE)
APIRET: GetWindowLong returns LONG:14CFO000

APICALL: SetWindowLong(HWND:•Od9016E, WINDOWLONG:GWL ID, DWORD:OOOO0000)
APIRET: SetWindowLong returns LONG:BEOOF2

APICALL: SetWindowLong(HWND:O•49016E, WINDOWLONG:GWL STYLE, DWORD:14840000)
APIRET: SetWindowLong returns LONG:14CFOO0•
APICALL: SetWindowPos(HWND:OO49016E, HWND:O0000000, DWORD:O0000000,

DWORD:00000000, DWORD:OO000000, DWORD:OOO00000,
SWP FLAGS:00000027:

SWP NOSIZE:SWP NOMOVE:SWP NOZORDER:SWP FRAMECHANGED)

You may be wondering, "How am I supposed to know where to look for
the information I need?" The answer is incredibly simple. Whenever you select

W M _ C O M M A N D

638

something from a menu, Windows delivers a WM_COMMAND message to
your program. Therefore, the first thing you need to do to find this sequence of
events is to search for the string WM_COMMAND. If you followed the steps
given above, there should be only one WM_COMMAND message in the entire
event log. However, for completeness, let's verify that the WM_COMMAND
message in the output is the correct one.

In a WM COMMAND message, the WPARAM parameter holds the ID
of the selected menu item. In the output, WPARAM is 6. If you examine the
resources in CLOCK.EXE with Resource Workshop or some other similar
program, you'll see that the No Title menu item has an ID of 6. We're now
sure that we're looking at the right section of the event log.

After receiving the WM_COMMAND message telling CLOCK to turn
off its title bar, the first thing CLOCK does is call GetWindowLong(), pass-
ing the GWL_STYLE parameter. The next line of output shows that
GetWindowLong() returns a DWORD of 0xl4CF0000. This value represents
the WS_xxx style bits passed to CreateWindow. You can decode these bits
yourself by looking in WINDOWS.H:

#define WS VISIBLE OxlOOOOOOOL

#define WS_CLIPSIBLINGS OxO4000000L

#define WS_BORDER OxOO800000L

#define WS DLGFRAME OxOO400000L

#define WS SYSMENU OxOOO8000•L
#define WS_THICKFRAME OxOOO40000L

#define WS MINIMIZEBOX OxOOO20000L

#define WS MAXIMIZEBOX OxOO•lOOOOL
 ====

Ox14CF0000

For now, temporarily ignore the next two lines in the output (I'11 come
back to them momentarily). After CLOCK has retrieved its style bits with
GetWindowLong(), it turns around and sets a slightly different set of style
bits with the call to SetWindowLong(). In this call, the style bits are
0x14840000. It looks like CLOCK retrieves its WS xxx style bits, modifies
a few of them, and sets the revised style bits back out to the window. So
what styles did CLOCK change? Comparing the original 0xl4CF0000 to
the new 0x14840000, the new style DWORD is missing the following styles
from the original value:

#define WS_DLGFRAME

#define WS_SYSMENU
#define WS_MINIMIZEBOX

#define WS_MAXIMIZEBOX

0x0040000L

0x0008000L

0x00020000L

0x00010000L

f a c t o i d ,

639

This is consistent with CLOCK's behavior. When you select the No Title
menu item, the system menu and the minimize and maximize buttons go away.

Now I'll return to the two lines in the output that I previously skipped.
The first of these lines is a call to SetWindowLong(). This line appears to be
setting the windows control ID (GWL_ID) to 0. With only that bit of infor-
mation to go on, you're probably confused as to what the intent of the code
is. To keep things moving, I'll let you in on the secret. All windows have an
internal field that can be either a menu handle or a control ID. Top-level
windows (such as CLOCK.EXE's) use this field to hold a menu handle
(HMENU). Child windows (such as dialog box controls) use this field to
hold their control ID. For official verification of this, refer to the hMenu
field description in the documentation for CreateWindow().

Knowing this obscure factoid, we can see that CLOCK.EXE is setting its
window's HMENU to 0. It probably would have been better (and clearer)
for CLOCK to have used SetMenu() to change its HMENU value. However,
there may have been underlying reasons why CLOCK's author(s) didn't use
SetMenu(). One possible reason is that SetMenu() forces the menu area to be
redrawn to reflect the change in menus.

The last line in the output is a call to SetWindowPos(). SetWindowPos() is
an all-purpose routine that can move windows, change their Z-order, or cause
Windows to recalculate and redraw the window. That last part (causing
Windows to recalculate and redraw the window) probably has something to
do with why SetMenu() wasn't used in CLOCK. Here's why: After CLOCK
has twiddled the style bits and the HMENU, it needs to redraw itself using
the new styles. Calling SetMenu() would cause parts of the window to be
redrawn. The subsequent call to SetWindowPos() would then cause the win-
dow to be redrawn again, causing window flicker. CLOCK's implementors
may have figured that it was okay to reduce flicker by directly bashing the
new HMENU value into the window with $etWindowWord(). They knew
that the window would be redrawn later by calling SetWindowPos().

The parameters that CLOCK passes to SetWindowPos() are interesting.
The only nonzero parameters are the HWND and the SWP_xxx flags. The
first three flags tell Windows that CLOCK doesn't want the window's size,
screen position, or Z-ordering changed. The last parameter is the important
one. It tells Windows that the window's frame has changed. This forces
Windows to recalculate the client and nonclient areas, and to repaint the
entire window. If I were to show more of the event trace, you'd see that the
SetWindowPos() calls set off a flurry of messages and APl calls that doesn't
quiet down for several hundred lines. I highly encourage you to check this
out for yourself. Also, if you want to see for yourself that the event trace

C L O C K . E X E

640

mirrors reality, Microsoft supplies the source for CLOCK.EXE in the
SAMPLES\DDEML\CLOCK\ directory of the Win32 SDK.

In examining CLOCK.EXE, we've seen how spying tools can show you
how a visual effect (removing the title bar) is implemented. Spy tools are also
useful for learning about what's going on underneath the surface, hidden from
view. A favorite trick among programmers is to add some undocumented
behavior or functionality to their program. For instance, the programmer
might want the program to be able to write out debugging diagnostics to a
file. Since this feature would only be used in rare situations, the program-
mer doesn't want to confuse the end user by having additional options in
the user interface. Also, adding this option to the user interface requires
describing it and documenting it, taking up additional precious time for a
rarely used feature. The end result? Undocumented features.

One technique you can use to find these undocumented features is to look
for entries in the program's .INI file that wouldn't appear there normally. In
other words, the program looks for a particular .INI file entry, but never
writes out a value for that entry when saving its options. To use the undocu-
mented entry, the user of the program has to know the entry exists, and has to
add the entry to the .INI file by hand. Although this discussion focuses on the
.INI files, the same thing applies to the Win32 registry, which for the most
part, replaces .INI files.

Finding situations such as I've just described is particularly easy with
spying tools that save a copy of what an APls pointer parameters refer to.
Although I could have used BoundsChecker/W or WinScope, I've chosen
to show an example of this using the Microsoft Parameter profiler. The
following output shows a snippet of the event trace from running the
Windows 3.1 WINMINE.E×E program.

01

01

01

01

O1

O1

01

01

01

O1

01

O1

APICALL:GetPrivateProfileInt "Minesweeper"

APIRET:GetPrivateProfileInt 105

APICALL:GetPrivateProfileInt "Minesweeper"

APIRET:GetPrivateProfileInt 105

APICALL:GetPrivateProfileInt "Minesweeper"

APIRET:GetPrivateProfileInt 105

APICALL:GetPrivateProfileInt "Minesweeper"

APIRET:GetPrivateProfileInt 105

APICALL:GetPrivateProfileInt "Minesweeper"

APIRET:GetPrivateProfileInt 0

01 APICALL:GetPrivateProfileInt "Minesweeper"

01 APIRET:GetPrivateProfileInt 0

01 APICALL:GetPrivateProfileInt "Minesweeper"

APIRET:GetPrivateProfileInt 0
APICALL:GetPrivateProfileInt "Minesweeper"

01 APIRET:GetPrivateProfileInt 0

"Ypos"

"Ypos"

"Ypos"

"Ypos"

"Sound"

"Sound"

"Sound"

"Sound"

50 "winmine.ini"

50 "winmine.ini"

50 "winmine.ini"

50 "winmine.ini"

0 "winmine.ini"

0 "winmine.ini"

0 "winmlne.ini"

0 "winmine.ini"

0

641

01APICALL:GetPrivateProfileInt "Minesweeper"

01 APICALL:GetPrivateProfilelnt "Minesweeper"

01 APIRET:GetPrivateProfileInt 0

01 APICALL:GetPrivateProfilelnt "Minesweeper"

01 APIRET:GetPrivateProfilelnt 0

O1 APICALL:GetPrivateProfileInt "Minesweeper"

01 APIRET:GetPrivateProfileInt 0

O1 APICALL:GetPrivateProfilelnt "Minesweeper"

01 APIRET:GetPrivateProfileInt 1

... 3 more "Menu" calls not shown,.,

"Tick" O "winmine.ini"

"lick" 0 "winmine.ini"

"Tick" 0 "winmine.ini"

"Tick" 0 "winmine.ini"

"Menu" • "winmine.ini"

The first part of each "APICALL:" line in the output is the call nesting
level. In the output, all the calls are at level 01, the topmost level. This means
that WINMINE didn't call the functions while in the middle of another APl
function. After the "APICALL:" is the name of the function, followed by its
parameters. The Microsoft parameter profiler is nice enough to show actual
ASCII strings rather than pointer values (for example, 0x10b7:003A).
GetPrivateProfileInt takes three LPSTR parameters, so this feature is
particularly helpful in this case.

In examining the fragment of WINMINE's event trace, notice that the
code looks for each INI entry four times. Why it does this is a mystery to
me. Trying to figure out strange sequences like this is part of the fun of
spelunking.

Putting that behavior aside, look at the second parameter of each
APICALL line. This parameter is the name of an entry in one of the INI's
sections. The first group of APICALLs is looking for an entry called Ypos.
If you look in the WINMINE.INI file, you'll see that there is in fact an entry
called Ypos. However, if you continue and look for the next three entries
(Sound, Tick, and Menu), you won't find them anywhere in the INI file.
Looking further on in the event trace where WINMINE writes out new INI
file values as part of its shutdown sequence, you won't find Sound, Tick, or
Menu in there either.

What we've uncovered are three undocumented ways to affect WINMINE's
behavior. I experimented with WINMINE by adding those three entries to the
WINMINE.INI file myself. Although I didn't get any effect with Tick, adding
the entry "Menu=l" caused WINMINE to not display a main menu. Adding
an entry "Sound=3" (or a higher number) makes WINMINE play a little song
when you win or lose a game.

D L L

642

SPELUNKING USING DISASSEMBLY

Although disassembly is complex and difficult, it's often the only way to
crack open a mysterious algorithm or technique.

Disassembling a program or DLL isn't necessarily something you do only
with other people's code either. When you encounter a strange bug in your
code that's not immediately apparent from viewing the source, knowing how
to correlate high-level language code to the compiler-generated assembler
code is an incredibly valuable skill. Disassembling your own code also lets
you to see whether the compiler has generated optimal code for a heavily
used routine. Yet another situation in which you might disassemble your
own code is when your program is mysteriously GP faulting at a customer
site. If the user can give you the address where the program blows up, you
can disassemble your code at that address to see what the program is doing.

Before continuing, I want to emphasize that disassembly is not for those
who don't like to dive in details. If the sight of an assembler opcode strikes the
remotest hint of fear in your heart, disassembly is not for you. You have to
either know assembly language programming or be willing to learn it. This is
not to say that you must program in assembly language yourself. It's per-
fectly fine to prefer to work in a high-level language. You just have to be
willing to work at the very low level of machine opcodes and register values.

Your choice in disassemblers is sometimes constrained by the type of files
you want to take apart. To do any sort of decent job, a disassembler needs to
know quite a bit about the executable file format it will be working with. The
simplest file disassembler isn't much more than the brains of a file-dumping
program connected to a disassembly "engine" that takes raw bytes as input,
and outputs assembler mnemonics. A perfect of example of this is the
/DUMPBIN/DISASM option in the Visual C++ 32-bit edition linker. More
advanced disassemblers can read in symbolic data that associates a symbolic
name with a program address. These disassemblers can produce assembly
listings that use real variable and function names rather than hexadecimal
addresses.

The most well-known PC-based disassembler is probably Sourcer, from
V-Communication's. By itself, Sourcer works with DOS EXE and COM
files. With additional add-on components that produce script files, Sourcer
also takes apart 16-bit NE files, VxDs (LE files), and Win32 PE files.
Eclectic Software has the Win2Asm disassembler, which works with NE,
LE, and PE files natively. RJ Swantek has the DisDoc Profesional disassem-
bier, which works with the same types of files as Win2Asm. If you're only

D U M P B I N

643

concerned with Win32 files and if price is a concern, it's hard to beat the
DUMPBIN program that comes with Microsoft's Win32 SDK. I'll give an
example using DUMPBIN shortly.

In case you're wondering what I used to do the research for this book, I
have a pair of disassemblers of my own devising (one for Winl6 NE files,
the other for Win32 PE files and VxDs). Although they aren't multi-pass
like Sourcer, they do just fine for me. The advantage of writing my own dis-
assemblers is that I can modify them to take advantage of special tricks I've
lcarned as well as making them read symbol information from a variety of
sources. Neither one of them is currently being marketed.

If you just want to tinker with the disassembly techniques I'll describe,
you might be able to get away with using the disassembler in your debugger.
This is assuming that you don't use one of those battery-powered integrated
development environment debuggers that doesn't have an assembly window.
Some debuggers can dump the contents of their windows to a file. By dump-
lng the contents of several disassembly windows in a row, you can get a
somewhat reasonable listing. However, this is tedious and time-consuming,
especially if the routine in question calls other functions elsewhere in the
program. If you're at all serious about disassembly, get a real disassembler
such as Sourcer, DisDoc, or Win2Asm. They're inexpensive, especially when
you consider all the power they give you.

Zen and the art of disassembly
There is no single correct approach to disassembling a piece of code. What
I'll describe here is what works for me. If some other methodology works
for you, by all means use it! My basic approach to disassembly can be
summed up as "divide and conquer." Starting with the raw output from a
disassembler, I don't tackle the entire function or section in one big piece.
Instead, I go through a series of steps that manipulate and break up the raw
listing into small manageable pieces. I then attack the small pieces with a
much greater chance of success. My ultimate goal is to work a disassembly
listing into a piece of commented C code that I can refer to later.

Depending on the code you're working with, the importance and order
of the following steps to break up a piece of code can vary. First, I'll describe
in general terms the steps I take to disassemble a function. Afterward, I'll
jump into the nitty-gritty details of identifying parameters, local variables,
branch statements, function calls, and so on. Finally, I'll show a real example
of how to work a raw disassembly listing into something usable. The steps you
need to take to disassemble a function are discussed in the following sections.

d i s a s s e m b l e r

644

Step 1: Disassemble the file

Run the executable through your disassembler to get a listing file. If your
disassembler takes additional symbolic input (for instance from .SYM files
or debug information), give it to the disassembler now.

If you're interested in one particular function, you might find it helpful
to delete other code in the listing that comes before or after that function.
This makes the file more manageable in your editor. For instance, some dis-
assembly listings I've made started out as 3MB files. This caused my editor
to take a long time to load and save the file. Cutting out the uninteresting
code really speeds up this process.

Step 2: Label known entities

Go through the function and label all the known entities with more descriptive
names. By known entities, I mean arguments to the function, local variables,
and global variables. The idea of this phase is to do all the easy work first.
When doing a jigsaw puzzle, most people do the easy parts such as the borders
and the distinctive portions first. This reduces the number of unknown pieces
that you have to sort through. It also gives you a better context from which to
fill in the remaining pieces. This same concept applies to disassembly.

Assuming you know the arguments and calling convention for the function,
you can easily identify the stack-based arguments to the function and
replace them all with meaningful names (for example, hWnd). (I'11 discuss
identifying stack-based arguments later on.)

Unless there's debugging information in the executable, determining
names for the local variables will be more difficult than labeling the para-
meters. Don't worry if you can't figure out every single name at this point.
If a local variable jumps out at you though, by all means replace it with a
meaningful symbolic name.

If you have symbolic information for global variables, the disassembler
may have already replaced the global variable addresses with the symbolic
name. However, if it didn't, you should do it by hand now.

Step 3: Break up instruction sequences

Disassembly listings often contain long sequences of instructions with no
intervening blank lines. I find it helpful to insert blank lines between
instruction sequences that logically belong together. This sounds vague, but
it's not hard in practice. An example of such a sequence is the function's

f o l l o w e d

645

prologue code. Another sequence of instructions that logically belong together
is the code that pushes parameters onto the stack and calls another function.
A third logical instruction sequence is where the code performs some calcula-
tion and stores the result to a variable. A helpful (but not ironclad) guideline
is to try to create sequences of instructions that form one statement in the
program's source code. Put a blank line between each group of instructions
to break up the listing visually.

Later on in the disassembly process you may need to decode branch state-
ments. In high-level languages, these are statements such as if, while, do, switch,
and so on. I've found that putting a blank line after each conditional or uncon-
ditional jump instruction makes it much easier to understand the listing. If your
disassembler doesn't do this for your automatically, do it yourself. I used to do
this quickly with an editor macro that searches for instructions that start with
the letter J and then inserts a blank line following that instruction. Lately, I've
modified my disassembler to automatically do this for me (yet another reason
why I prefer to write my own disassembler).

Step 4: Add in string literals

If the function looks like it uses any string literal values, add comments that
contain the string. Put the comments near the function calls that use the
string. Later on, this will help reduce several lines of assembler code down
to one C statement.

Step 5: Condense instructions into single C statements

Condense function calls and interrupts into single statements. At this point
the function should be broken up into numerous little pieces. Find the
instruction sequences that include calls to other functions for which you
know the name and parameters. Study what's being pushed on the stack
and try to construct what the arguments to the function should look like.

Step 6: Identify branch statements

Identify and convert conditional branch statements into the high-level language
equivalent. If you see a TEST or a CMP instruction immediately followed by a
conditional jump instruction (such as JE), you're probably looking at an if
statement in a high-level language. The location where the Jxx instruction
jumps to is usually the end of a compound statement. In C, a compound state-
ment is everything between matching {}'s. In Pascal, a compound statement is
everything inside a BEGIN/END combination.

m i g h t

646

If you see a long series of test and conditional jumps, you're probably
looking at a C switch statement or a Pascal case statement. Figuring out the
conditional branching code is a tricky task. Multiple tests in a high-level
language if statement can really make it challenging to figure out what the
generated assembler code is doing. A C statement like:

if ((G e t M o d u l e H a n d l e (" M Y D L L . D L L ") != 0)
&& ((hWnd != GetDesktopWindow()) II (styleFlags & wS_POPUP)))

generates a rat's nest of conditional jumps, temporary results stored in registers,
and so on. If nothing else, you'll end up with a newfound respect for compiler
writers. It's not uncommon to stare at the same 20 or so instructions for an
hour and still not have the faintest clue of what the code's intent is. That's
why I recommend spelunking only as a last resort.

Step 7: Repeat as necessary

Repeat the preceding steps as necessary. This might sound trite, but it's not
intended to be; this is an iterative process. You make a pass through the
code, doing as much as you can with the information you currently have.
You then step back, look at how the picture has changed, and make another
pass. By figuring out one piece of the puzzle, a dozen more may fall into
place quickly. In some ways, spelunking is like playing "Connect the Dots."
The more dots you have, and the more you connect, the clearer the rest of
the picture becomes.

Recognizing common code sequences
and conventions
Having discussed in broad strokes how you might go about disassembling a
function, I'll now examine some common code sequences and code-generation
conventions. This will help you to mentally translate raw assembler code
into its high-level language equivalent.

Identifying functions and procedures

The first thing to do when looking at the raw output from a disassembler is
to figure out where a function (or procedure for you Pascal types) starts and
ends. The easiest way to find the start of a function is to look for some sort

of standard prologue code generated by a compiler. For 16-bit code, the
standard prologue code is some variation of this process:

* Save original BP register on stack

* Assign stack pointer to BP register

* Decrement the stack pointer to make room for local variables

* Save the calling function's register variables on the stack

Expressed in assembly language, the same information looks like this:

PUSH BP

MOV BP,SP

SUB SP,XX

PUSH SI

PUSH DI

;; Save caller's BP frame.

;; Set up new BP frame.

:; XX is the number of bytes need for local variables.

;; DI and SI are commonly used as register variables.

or, when 80286 or better code-generation is enabled:

ENTER XX,O ;: XX is the number of bytes needed for locals

PUSH SI ;; DI and SI are commonly used as register variables

PUSH DI

These stack frames are what compilers generate for code that should run
only in 16-bit protected mode. Back in the bad old days of real mode,
Windows itself would often need to walk the stack of a program when
moving segments around in memory. Since it can be quite tricky to walk a
program stack that contains a mix of near and far calls, the compilers
helped out via the odd BP stack frames. When odd BP-frame code genera-
tion is enabled, all far functions increment the BP register before pushing it
on the stack (near functions leave BP alone). After restoring the original BP
in a far function's epilogue, the code decrements the BP register. When
walking the stack frames, if Windows saw an odd value for a saved BP, it
knew that the function was a far function. The standard stack frame for an
odd BP-style far function looks like this:

INC BP

PUSH BP

MOV BP,SP

SUB SP,XX

PUSH SI

PUSH DI

Indicate a far frame.

Save caller's BP frame.

Set up new BP frame.

XX is the number of bytes need for local variables.

DI and SI are commonly used as register variables.

647

R E T F

648

Moving now to 32-bit programs, the standard prologue code looks
like this:

PUSH EBP

MOV EBP, ESP

SUB ESP, XX

PUSH ESI

PUSH EDI

PUSH EBX

; Save caller's EBP frame.

; Set up new EBP frame.

: Make space for local variables on stack.

;; ESI, EBI, and EBX are commonly used as

;; register variables.

or:

ENTER XX,O

PUSH ESI

PUSH EDI

PUSH EBX

:: XX is the number of bytes needed for loca]s.

The previous sequences are the full-blown prologues. In real-world code,
parts or all of the prologue may be missing or different:

* If the function's code doesn't alter a register-variable register (for
example, ESI, EDI, and EBX), it won't bother to save it in the prologue
code. Also, in 32-bit code, EBX is sometimes used as a register variable,
while in 16-bit code it usually isn't.

* In 16-bit code, if the function doesn't take any parameters or use any
local variables, the compiler may omit the PUSH BP / MOV BP, SP
sequence.

* In 32-bit code, even if the function takes parameters and uses local vari-
ables, the compiler may still not set up an EBP frame. The 32-bit
addressing modes of the 386 and better CPUs allow the compiler to
address parameters and locals with the ESP register, for instance:

MOV EAX,EESP+1C].

Recognizing the function epilogue is a little trickier. If the compiler's
optimizer is turned on, there may be multiple places within the function
where it does a RET or RETF to the caller. Assuming the function has a
single epilogue at the end of the function, the full-blown, 16-bit epilogue
will look something like this:

D I 649

POP DI ;; Restore caller's register variables

POP SI

LEAVE ;; or ADD SP,XX / POP BP

RETF ;; far return. Near return is a RET.

For 32-bit code, the epilogue will look like this:
POP EBX

POP EDI

POP ESI

LEAVE

RET

Restore caller's register variables.

A 32 bit near return.

When determining where one routine starts and another ends, remember
that right after the end of one routine, you're likely to find the start of
another. If you see something that looks like it's epilogue code, verify it by
looking for something that looks like prologue code for another function
after it. If you don't see this, either the compiler has optimized away the
prologue code for the next function, or the current function has multiple
points of exit.

Function return values

When functions return a value, they return the result in a register or in a
combination of registers. To determine if a routine's return value is being
used, examine the register usage in the code that calls the routine. If you see
code that calls a routine and then uses the return value register(s) without
explicitly setting them, you know the code uses the function's return value.
For example, if you see code that calls a function and them uses the AX
afterward without setting its value, you know that the called function
returns its value in the AX register.

In 32-bit code, the convention is that functions return their values in
EAX. 16~bit code uses AX for returning 16-bit values, and the DX:AX
combination for returning 32-bit values. If the code is written in assembly
language, however, all bets are off because assembly-language programmers
can return values however they want. One common assembler convention is
that if the routine only needs to return a success or failure code, the routine
sets or clears the carry flag (CF) as appropriate. You can ferret out these
routines by looking for JC and JNC instructions immediately after CALL
instructions.

(E) S P ,

650

Identifying parameters
If you know the parameters for the function you're taking apart, labeling
them in the assembler code is particularly easy. With one exception (which
I'll cover later in this section), compilers always pass arguments to a function
or procedure on the stack. By adding up the sizes of each parameter that's
passed, you can quickly locate where each parameter resides on the stack.
Before I show an example of this, however, I first need to do a quick review
of compiler calling conventions used in Windows and Win32.

In 16-bit Windows code, most exported functions use the Pascal calling
convention. In the Pascal calling convention, the calling code pushes parameters
onto the stack from the leftmost parameter to the rightmost parameter. As
an example, the 16-bit code generated for a call to "foo(0xl0, 0x20, 0x30)"
would look something like this:

PUSH 0010h

PUSH 0020h

PUSH 0030h

CALL FAR PTR FO0

Besides specifying that parameters are passed from right to left, the
Pascal calling convention also dictates that the called function must remove
the arguments from the stack before returning. In the example I just cited,
the foo function needs to pop 6 bytes off the stack before it returns. It will
probably do this with a RETF 6 instruction.

The immediate opposite of the Pascal calling convention is the C calling
convention. The standard C/C++ runtime library functions use the C calling
convention. In the C calling convention, the parameters are passed from the
rightmost to the leftmost. (The primary advantage of passing arguments from
right to left is to support functions such as printf that take a variable number
of arguments.) The code that calls a C-style function is responsible for remov-
ing the parameters from the stack after the call returns. A call to "foo(0xl0,
0x20, 0x30)" using the C calling convention would look like this:

PUSH 0030h ;; Parameters pushed right to left.

PUSH 0020h

PUSH 0010h

CALL FAR PTR FO0
ADD SP,O6h ;; Remove parameters from the stack.

You shouldn't expect to always see an "ADD (E)SP, XX" after a C-style
call. If the compiler pushes only one or two parameters, it sometimes POPs

C + +

651

them into an unneeded register to remove them from the stack. The Borland
C++ compiler is known for this particular code-generation sequence.

For Win32, Microsoft has adopted the stdcall calling convention for almost
all functions exported by the operating system DLLs. The stdcall convention is
a hybrid of the C and Pascal conventions. The caller pushes the parameters
from right to left, as in the C style. The callee function cleans the parameters
off the stack like the Pascal style does. Incidentally, when you use a stdcall
declared function with Microsoft's C++, the compiler internally adds on an
"@xx" to the end of the function name. The xx is a string representing the
number of bytes that the function expects as parameters, for instance,
_GetWindowLong@8 or _PeekMessage@20.

After you've figured out the calling convention of the function you're
examining, you can determine where the parameters are on the stack.
Knowing the offset of the parameter relative to the stack frame, you can
look for the instructions that reference that memory location and then
replace the assembly language address with a symbolic name. Having
symbolic names around when staring at a disassembly listing is extremely
helpful when figuring out what the code's intent is.

After a function has executed its prologue code, the stack frame looks
like the one shown here:

As you can see, the (E)BP register points to where the previous (E)BP
value is saved. Within the function, all the parameters can now be accessed
as positive displacements from BP or EBP. This is an important point worth
restating: Instructions that access memory using addresses such as [BP+xx]
or [EBP+xx] are probably using the routine's parameters.

For a far 16-bit function like the APIs exported by 16-bit Windows, the
actual stack frame looks like this:

W n d P r o c

652

Assuming WORD-sized parameters and the Pascal calling convention,
the last parameter to the function will be at [BP+06], the second-to-last
parameter at [BP+08], and so on. If there are any DWORD parameters, the
calculations need to be adjusted accordingly. Also, if the function was a
near function, the locations given would again need adjustment because
there's only a return IP on the stack, and no return CS.

Let's look at a real-world example now to get a better feel for what I've
just described. A window procedure for a 16-bit program has the following
declaration:
LRESULT WINAPI WndProc(HWND hWnd, UINT msg, WPARAM wParam, LPARAM lParam);

Inside the WndProc code, the stack frame looks like this:

hWnd WORD PTR [BP+OE]
msg WORD PTR [BP+OC]
wParam WORD PTR [BP+OA]

lParam DWORD PTR [BP+06]
return CS WORD PTR [BP+04]
return IP WORD PTR [BP+02]
previous BP WORD PTR [BP+00]

;; Parameters pushed left to right.

Armed with this knowledge, you can use your editor's search and
replace feature to find all the references to [BP+0E] and replace them with
the much more meaningful [hWnd]. Likewise, you can replace [BP+0C]
with [msg], and so forth.

Now let's look at the 32-bit equivalent to the above window procedure. In
Win32, all parameters are 32 bits. The return address is a 32-bit near pointer,
and the code uses EBP rather than BP. And don't forget that the window proce-
dure uses the stdcall convention, making the parameters appear in the reverse
order from the equivalent 16-bit code. The stack frame for a 32-bit window
procedure therefore looks like this:

1Param

wParam
msg
hWnd
return EIP
previous EBP

DWORD PTR [EBP+14]
DWORD PTR [EBP+iO]
DWORD PTR [EBP+OC]
DWORD PTR [EBP+08]
DWORD PTR [EBP+04]
DWORD PTR [EBP+O0]

;; Parameters pushed right to left.

Now that I've described the normal stack frame for a 32-bit function,
I'll spring some bad news on you. 32-bit compilers have the option of not
generating standard EBP frames. They do this to save time and space by not
including the code to set up and take down the stack frame.

B o t h

653

The problem is that the generated code doesn't address parameters and
local variables with an offset from EBP anymore. Instead, the code may
address the parameters with an offset from ESP (for example, [ESP+14]). If
this thought alarms you, it should! The value of ESP changes throughout
the function as it pushes parameters in preparation for calling other routines.
Thus, an [lParam] that's at [ESP+14] early on in the function could later be
found at [ESP+IS] if the code pushes a DWORD onto the stack. If the code
pushes a second DWORD, [1Param] will now be at [ESP+IC]. This makes it
nearly impossible to search and replace memory references like MOV
EAX,[ESP+14] with references like MOV EAX,[lParam]. Because of this,
you'll need to mentally track the relative location of ESP throughout the
function, giving symbolic names to parameters on an instruction by
instruction basis. Yuck! Your only real hope is that the compiler has copied
a parameter into a register and used the register's copy of the value wherever
it was needed.

If you're taking apart a function that you don't know the parameters
for, there are still some small things you can do to make this process easier
on yourself. For instance, you'll most definitely want to figure out how
many bytes of parameters the function is passed. To do this, look at the exit
epilogue of the function. Does it pop stuff off the stack with something like
RETF 8 ? If so, you know how many bytes of parameters the function takes
(in this case, 8). If the function's exit code doesn't remove anything from the
stack, find a place in the code where there's a call to the function. Is the
next instruction after the CALL instruction something like ADD ESP, 12? If
so, then the function takes 12 bytes of parameters.

Beyond knowing how many bytes of parameters a function takes, you can
often glean more information by studying the code that pushes parameters on
the stack in preparation for calling the function. For instance, let's say you saw
the following disassembly listing fragment from a Win32 program:

CALL GetFocus

PUSH EAX

CALL GetCurrentThread

PUSH EAX

CALL DoSomething

From this code fragment, you can determine that the DoSomething
function takes two parameters, an HWND and a thread HANDLE. How
did I figure that out? Both GetFocus0 and GetCurrentThread() are Win32
APIs that return a value in EAX. After calling GetFocus(), EAX holds an

D I , [m y B u f f e r]

654

HWND value. After calling GetCurrentThread(), EAX holds a thread
HANDLE. By logical deduction, the DoSomething() function expects an
HWND and a HANDLE as parameters.

Although parameters are usually passed on the stack, it's also possible
to pass parameters in registers. This calling convention is usually called the
fastcall convention because passing parameters in registers can be faster than
passing them on the stack. For instance, many KRNL386 internal heap
management routines pass parameters around in registers to speed things
up. The compiler or assembly language programmer decides whether register
parameters will be used on a function by function basis. The Microsoft
compilers preface function names that use the fastcall style with an "@"
(asterisk) character. Function "Foo" in your source code shows up as
"@Foo" in the MAP file or debug information if the compiler used the fast-
call convention. Fastcall style functions aren't limited to register parameters
only. The compiler can pass some parameters and registers and others on
the stack.

Finally, if the code you're examining uses interrupts, get out your interrupt
list documentation and look up which parameters go in which registers. (You
do have Ralf Brown's Interrupt List, right?) Add a comment to the INT
instruction that describes what the instruction does. For instance,

MOV AX,0500
LES DI,[myBuffer]

INT 31

would become something like:

MOV AX,0500

LES DI,[myBuffer]

INT 31

; DPMI function 0500h Get Free Memory Information

; ES:DI > structure to fill with information

Identifying local variables
Like function parameters, a routine's local variables are also usually found
on the stack. The key difference in distinguishing between a parameter and
a local variable is that the code references local variables with a negative
offset from the stack frame. For example, in 16-bit code, [BP-04], or in
32-bit code, [EBP-04].

Unlike parameters, there's no semi-mechanical method for determining
the types, uses, and locations of local variables. Instead, you have to examine
how the function's code uses a particular memory location. Sometimes it's

D W O R D

 655

fairly easy to determine a local variable's meaning. For example, look at the
following Win32 code snippet:

PUSH DWORD PTR [EBP+08]

CALL GetParent

MOV [EBP-0C].EAX

The GetParent() function is a Win32 API that takes an HWND parameter
and returns that window's parent HWND in EAX. Since the code snippet
copies EAX into [EBP-0C], it's obvious that [EBP-0C] is an HWND.
Additionally, you can make a wild guess that this variable is probably called
something like "hWndParent" in the original source code. Once you've gotten
that far, it's time to use your editor's search and replace feature to change all
occurrences of [EBP-0C] to [hWndParent]. Look at your disassembly listing
after you do this. Odds are, it's starting to become clearer.

Some of you may be saying, "That's nice Matt, but not every local vari-
able is going to be such easy picking." True, but there's more than one way
to attack problems like this. Sometimes it's easier to identify locals from
their use as parameters to other functions. This Win32 assembly fragment
shows such an example:

LEA EAX.[EBP-30]

PUSH EAX

PUSH [EBP+08]

CALL GetWindowRect

Get address of EBP 30h into EAX.

Push it as an LPRECT.

Push an HWND (a parameter).

Call into USER32 to get the RECT coordinates.

Looking up GetWindowRect() in the SDK documentation, we know
that it takes an HWND and a pointer to a RECT structure to be filled in.
Since GetWindowRect is a stdcall function, the RECT pointer should be
pushed first, followed by the HWND. In the listing, we see that for the
LPRECT parameter, the code pushes an address 30h bytes below the EBP
value. Therefore, there must be a local variable of type RECT at [EBP-30].
This is a bonanza of information! Since WINDEEH contains the format of
a RECT structure (4 DWORDS), we can figure out where all the RECT's
fields are on the stack:

RECT.left = [EBP-30]

RECT.top = [EBP-2C]

RECT.right = [EBP-28]

RECT.bottom = [EBP-24]

D I

656

Again, use this opportunity to search and replace those [EBP-xx]'s with
more meaningful symbolic names.

Compilers can copy local variables (and parameters) into registers tem-
porarily. The code uses the register wherever it needs the variable's value.
This saves both code space and clock cycles. When working with a disas-
sembly listing, you need to be on the lookout for places where the code
begins using a register variable. Wherever you see this register used after-
ward, substitute the variable name you've figured out. Be aware, however,
that the compiler (or assembler programmer) may use the same register for
different variables at different places within the function.

In 16-bit programs, the SI and DI variables are most commonly used as
register variables. Since these registers are only 16 bits long, they usually
aren't used for pointers because most pointers in 16-bit Windows code are
32-bit far pointers. Instead, SI and DI are typically used for 16-bit values
such as HWNDs and DCs. In Win32 programs, the ESI, EDI, and EBX
registers are the most common register variables. In Win32, pointers are
32-bit near pointers, so it's common to see these registers used as pointers
in addition to other types of variables. None of these guidelines are hard
and fast, however. Use your own intuition and judgment when dealing
with register variables.

Identifying global variables
Determining that a program is using a global variable is particularly easy.
Almost any memory reference that uses a hardcoded address is a global
variable. Put another way, global variables don't require the assistance of
registers like EBP to address them. In 32-bit code, a global variable reference
would look something like this:

MOV EAX,[00464398]

If you're lucky and have symbol information, the disassembler may already
have replaced the "[00464398]" with the name used in the program's source.
If it hasn't, you should find all the instructions that use that memory location
and replace the address with the symbolic name. If you don't have symbolic
information, try to figure out what the variable is used for and make up your
own name.

In 16-bit code, identifying global variables is much the same as in 32-bit
code, albeit with 16- rather than 32-bit addresses. If the code you're working
with has multiple data segments, however, you'll need to be extra careful.

D G R O U P ,

657

The problem is that the same offset can be in use in several data segments.
When accessing global variables in a segment other than the default
DGROUP, the code sets up a segment register (usually ES) to point to that
segment. The code then accesses variables within the segment with hard-
coded offsets - - for instance, MOV AX,ES:[001C]. The lesson here is to be
careful when replacing global variable addresses with symbolic names.

If you have symbolic information for an executable file, but encounter a
memory location that's not in the list of global variables, you might be facing
one of two likely situations. In the first situation, that memory location
might be used for a static variable. If your symbol information includes only
public symbols, the variable won't show up in the list. In the second situation,
you might be looking at a member of a structure or an array. For instance, a
16-bit program has a global variable "MSG MyMsg;" that ends up in the
program's DGROUP segment at offset 0364h. Four bytes into the MSG
structure lies the wParam field. MyMsg.wParam will therefore be at offset
0368h in the data segment. Symbol information generated for this executable
will include a public symbol called "MyMsg" at offset 0364h, but will contain
nothing about offset 0368h.

To illustrate this process, imagine you're watching over my shoulder as I
examine a disassembly listing. As I'm working along, I encounter an instruction
that reads the value at offset 0368h. To my chagrin, the symbol information
doesn't show any symbols at this offset.

All is not lost, though. By looking for the closest symbol occurring before
address 0368h, I see there's something called "MyMsg" at offset 0364. Based
on that name and a hunch, I hypothesize that the MyMsg symbol at offset
0364h is a MSG structure. I then need to test this theory. If offset 0364h
really is a MSG structure, will offset 0368h be the address of one of the
structure's fields? In this case, yes!

However, before I assume that I've guessed correctly, I would look for
other code that backs up the theory. Does the memory location 0368h look
like it's being used as a WPARAM? Does the next structure field (at offset
036Ah) look like it's being used as an LPARAM? Unfortunately, there are
no hard and fast techniques that I can use here. I've got to make reasonable
guesses about what's going on and test those guesses until I'm sufficiently
confident in my theory.

One nice aspect of global variables is that the compiler rarely puts them
into register variables. It's generally not a good idea to enregister global
variables. If the only correct copy of the variable was in a register, interrupt
service routines and callback functions could fail if they tried to use the
memory version of the global variable.

e x e c u t a b l e s

658

Identifying string literals
Many API functions take strings as parameters. By matching up the ASCII
strings with the functions that use them, you can often get a much better
idea of what the code is doing. For instance, in a 16-bit program you might
encounter the following instruction sequence:

PUSH DS
PUSH 0437
CALL GETMODULEHANDLE

or in a 32-bit program, something like this:

PUSH 00471784
CALL GETMODULEHANDLE

Turning to your trusty APl documentation, which you should always have
at your fingertips, you see that GetModuleHandle() takes one argument, a
pointer to a string. Those PUSH instructions are pushing the address of a string
onto the stack as the parameter to GetModuleHandle(). Therefore, at address
00471784 (or DS:0437 for you 16-bit types), there must be a null-terminated
string (for example, "USER32"). If your disassembler has done a hex/ASCII
dump for the data sections of the file, go to the address and retrieve the string.
Back in the code that referenced the string literal, make a comment that
includes the retrieved string. For instance:

PUSH 00471784 ;; "USER32"

CALL GETMODULEHANDLE

If the code you're disassembling uses a lot of string literals, you'll be
amazed at how much clearer the code becomes after you do this. Filling
in string literals is one of the trickier and more time-consuming aspects
of disassembly.

Some executables contain string literals in the code sections themselves.
Often the string occurs in memory immediately after the code that references
the string. A good disassembler can pick up on this situation and switch to a
hex dump mode temporarily. However, disassemblers often make mistakes.
Sometimes you'll need to examine the surrounding code to look for clues that
tell you where the code starts and the data ends. Often, embedded data like
switch statement JMP tables creates temporary garbage in your disassembly
listing. By looking at the surrounding code, you can frequently gain clues as

B i t f i e l d

 659

to what's really code and what's embedded data in a code area. You can then
feed this information back into the disassembler and make a second listing
that correctly differentiates the code from the data. Nobody said this stuff
was easy!

Identifying if statements

The simplest type of conditional execution code to figure out is a simple if
statement:

if (some test) {

do some sequence of code
}

Before discussing variations of this statement, I want to show what it
looks like in assembly language. Viewed from the disassembly listing level,
there are three major types of tests that you encounter:

* Equality tests: if (a == b), if (a != b), and so o n . . .
* Boolean TRUE/FALSE tests: if (a), if (!a), and so o n . . .
* Bitfield tests: if (a & 0x0040), and so o n . . .

Although compilers generate different code sequences for each type of
test, the goal in each case is to set or clear the CPU's Zero Flag (ZF). After
setting or clearing the Zero flag, the code uses the JZ (Jump if Zero) or JNZ
(Jump if Not Zero) conditional branch instruction to either execute or skip
over the next section of code. In the spirit of keeping assembly language
confusing, the JZ instruction mnemonic can also be expressed as JE (Jump
if Equal) and JNZ can also be written as JNE (Jump if Not Equal).

The basic algorithm of the "test, then conditionally jump" model is as
follows: If the test expression resolves to a FALSE result, the CPU takes the
conditional jump, and the following code inside the {}'s or BEGIN/END block
doesn't get executed. If the expression evaluates to TRUE, the conditional
jump isn't taken, and control falls into the code inside the {} block.

Warning: What I've just described here is the simple version of what
occurs. In the real world, the generated code might be more complex. For
example, in 16-bit code there might be a JZ or JNZ instruction that's only
job is to jump over a regular JMP statement. This would happen if the code
inside the "if" block was longer than 127 bytes, the limit of a conditional
jump instruction in 16-bit code. The basic premise of what I've just described
still applies, though.

E A X .

660

For equality tests, compilers uses the CMP instruction. This snippet of
output produced with "DUMPBIN/DISASM" shows an example:

0000101E: cmp dword ptr [ebp-04],04

00001022: jne 0000102E

00001028: inc byte ptr [ebp-04]

00001028: inc byte ptr [ebp-08]

0000102E: ...

The first instruction compares the DWORD at [EBP-04] to the value 4. If
they're the same, the CMP instructions sets the Zero flag; otherwise, it clears
the Zero flag. The next instruction (the JNE) jumps over the code that follows,
but only if the Zero flag was clear. Therefore, the two INC instructions execute
only if the Zero flag was set. The Zero flag could be set only if [EBP-04] was
equal to 4. Expressed in C code, the above snippet could look something
like this:

if (SomeVariable1 == 4)
{

SomeVariable1++ // INC [EBP-04]

SomeVariable2++ // INC [EBP-08]
}

When the expression in the if statement is only concerned with whether the
expression is TRUE or FALSE, the compiler has a choice of code-generation
options. In some cases, the generated code can look like the if statement code
described earlier. For example, the expression "if (MyVariable)" could also
be written as "if (MyVariable != 0)". The other situation to consider is when
the expression's value is in a register. When this occurs, the compiler can use
a smaller instruction to determine if the value is TRUE (nonzero) or FALSE
(zero). The shorter instruction is an "OR register, register" instruction, like this:

0000102E: call 00001000

00001033: or eax,eax

00001035: je 0000103E

0000103B: inc byte ptr [ebp-04]

0000103E: ...

In this code, the first instruction calls a function that returns its value in
EAX. Rather than using three bytes with a "CMP EAX,0", the compiler
uses an OR instruction. The OR instruction does a logical OR on all the
bits in EAX. The Zero flag is set only if none of these bit are set (and hence,
EAX == 0).

The compiler generates the following code:

0000101E: cmp dword ptr [ebp-08],04

00001022: jne 00001042 ;; Jump past code inside {}'s.

00001028: cmp dword ptr [ebp-0C],02

0000102C: jne 00001042 ;; Jump past code inside {}'s.

00001032: cmp dword ptr [ebp-04],06

00001036: jne 00001042 ;; Jump past code inside {}'s.

0000103C: inc byte ptr [ebp-08]

0000103F: inc byte ptr [ebp-0C]

00001042: . . .

The code here is straightforward, with three tests in succession. If any of
them fails, the code skips any remaining tests and the code inside the {}'s. If
you see a series of test and branch combinations that all jump to a common
spot, you're probably dealing with an if statement with multiple conditions
that each must be true.

The code generated for the OR case - - in which there are multiple tests,
any one of which can be true - - is similar to the code generated for the
AND case. You'll see a series of consecutive test and branches. All tests
except the last one jump to the code inside the {}'s if they resolve to TRUE.
If a test fails, the code simply falls through to the next test. If the last test
resolves to TRUE, it falls into the code inside the {}'s. If the last test fails, it
jumps around the {} code.

This section has just covered the basics; for instance, I didn't discuss
"for" loops or "while" loops. You're certain to encounter things that are
more complicated. However, almost everything you'll encounter can be
broken down into combinations and variations of the code sequences I've
described here.

663

Identifying switch statements

Until the advent of class libraries like MFC and OWL, most Windows pro-
grams had a large switch statement very near the beginning of their window
procedures. The switch statement directs the various window messages to their
appropriate handler code. If you need to see a program's window procedure

if ((i == 4) && (j == 2) && (k == 6))

{
i++;
j++; }

W M _ x x x

664

to discover what it does with a particular message, you'll need to know how
to crack a switch statement. Luckily, that's not hard to do.

The general process for cracking a switch statement is this: For each
conditional jump, go to where the target code is. Immediately above the
code, put a big bold comment that labels which case that code handles. This
is especially helpful for decoding the switch statements that so often occur
in window procedures. For each message that the code checks for, put the
corresponding WM_xxx message name above the section of code that
handles it. For example:

; CASE WM_NCHITTEST

00413254: XOR EAX,EAX

08413256: JMP 00413454

; CASE WM_GETTEXTLENGTH

0041325B: MOV EAX,[cbTextBuffer]

00413260: JMP 0•413454

Recognizing a switch statement is incredibly easy, although there are three
common variations in how they're encoded. The easiest switch statement to
decode is what I call the "idiot encoding." It's very easy to follow but wastes a
lot of space in the process. The assembler code will look something like this:

MOV EAX,[EBP+0C]

CMP EAX,00000045

JE someAddress

CMP EAX,00000169

JE someAddress2

CMP EAX,00000265

JE someAddress3

The first instruction loads the switch statement's argument into a register.
In this example, the register is EAX, but it could just as easily be some other
register, such as EDI. 16-bit code seems to always use AX, though.

After loading a register with the test value, the code enters a series of
CMP/JE combinations. For each "case" clause within the switch statement,
there's a corresponding CMP/JE combination. As a result, it's easy to find
the handler code for a given switch input value. If a program uses a switch
statement to dispatch messages inside a window proc, just look up the
WM_xxx values for the windows messages of interest. It's then a simple
matter to look for the CMP instruction that tests for that value. The JE
instruction that follows has the address of the code that handles that message.

M O V

 665

If you want to take apart the entire routine to see how it handles every
message, it's helpful to find the handler code for each message and label it
prominently with the message name.

The second variation of switch statements is closely related to the one
I've just described. The difference is that the testing instructions use fewer
bytes and require you to keep track of intermediate values. Consider the
following code sequence:

MOV EAX,[EBP+OC]

SUB EAX,2

JE someAddress

DEC EAX

JE someAddress2

DEC EAX

JE someAddress3

SUB EAX,5

JE someAddress4

At first glance, this code is confusing. It doesn't compare any values like
the first switch statement variation does. The only real action is that EAX's
value keeps dropping. To make sense of the code, you need to know that
the DEC and SUB instructions set the Zero flag if the result of their opera-
tion is 0. Each SUB or DEC instruction eats away at the input value. If the
value ever drops to exactly 0, its time is up and a JE instruction dispatches it
to the appropriate handler. Lower initial values will be taken out early on,
while higher input values are dispatched later on.

To see which value is being tested at a given JE instruction, you need to
sum up all the values that have been previously subtracted. When taking
apart a switch statement of this type, I find it helpful to label each JE
instruction with the current running total. Here's how I would annotate the
above sequence:

MOV EAX,[EBP+OC] ; Load EAX with the switch() argument.

SUB EAX,2

JE someAddress ; 2 (Jumps only if EAX was initially 2.)

DEC EAX

JE someAddress2 ; 3 (Jumps only if EAX was initially 3.)

DEC EAX

JE someAddress3 ; 4 (Jumps only if EAX was initially 4.)

SUB EAX,5

JE someAddress4 ; 9 (Jumps only if EAX was initially 9.)

E A X .

666

The third type of switch statement encoding you'll encounter is called a
jump table. If a series of input values are sufficiently close together, the com-
piler may decide to build an array of addresses. Each array entry corresponds
to one case value. The advantage of jump tables is that they're fast. The
code doesn't need to include a test for every possible case value. The follow-
ing C code shows a switch statement that the compiler could use a jump
table for:

switch (i)

{

case 0x0: i = 2; break;

case 0x1: j = 2; break;

case 0x2: k = 3; break;

// Cases 3 through 8 not shown.

case 0x9: j = j + k + i; break;

}

The meat of the code that the compiler generates comes down to this:

00001008: mov eax,dword ptr [ebp-0C]

0000100B: cmp eax,09

0000100E: ja 00001068

00001010: jmp dword ptr [eax*4+0040108F]

The first instruction loads the switch statement's input value into EAX.
The next two instructions determine if the input value is within the range of
listed case values. If not, the JA instruction jumps to the code after the switch
statement. The final instruction uses EAX as an index into the handler
address array, and jumps to that location.

In the previous code, the compiler put the handler address array into the
data area of the executable. However, don't be surprised if the array comes
immediately after the JMP instruction. This is especially prevalent in 16-bit
programs. It's easy to tell when this occurs because the JMP instruction uses
a CS override as part of the memory address. If the handler address array
follows the JMP statement, you may see garbage instructions for awhile. This
is because the disassembler doesn't know that those bytes are really data rather
than code. A good disassembler will either recognize these situations or, at the
minimum, let you tell it which areas of code are really data.

1 2 F 3 B 3 6 :

667

A disassembly example
Now that I've covered the basics of disassemblers, let's look at a real-world
example to show how these concepts can be applied. For this example, I'm
going to use the routine in the Windows NT CLOCK.EXE that switches the
program between having a titlebar and not having a titlebar. I chose this
function for two reasons. First, since I've already examined this routine from
the perspective of spy programs, we can do a bit of sanity checking by com-
paring the results of the two methods. And second, the source for CLOCK
comes with the samples that Microsoft ships for Win32 programming. With
this, you'll be able to judge how accurate the disassembly process was.

For this example, I'll use the output from my own disassembler. I could
just as easily have used Microsoft's own DUMPBIN program. However,
my disassembler automates some of the things that you'd have to do by
hand with the DUMPBIN program, in particular, matching up the call to
an API function with its symbolic name. Here's the initial output from the

disassembler for the routine in question:

12F3B00: PUSH ESI

12F3B01: PUSH EDI

12F3B02: MOV ESI,DWORD PTR [ESP+0C]

12F3B06: PUSH FO

12F3B08: PUSH ESI

12F3B09: CALL GetWindowLongA

12F3BOE: MOV EDI,EAX

12F3B10: CMP DWORD PTR [012F612C],00

12F3B17: JE 012F3B30

12F3B19: AND EDI,FFB4FFFF

12F3B1F: PUSH 00

12F3B21: PUSH F4

12F3B23: PUSH ESI

12F3B24: CALL SetWindowLongA

12F3B29: MOV [012F6000],EAX

12F3B2E: JMP 012F3B44

12F3B30: OR EDI,00CF0000

12F3B36: MOV EAX,[812F6000]

12F3B3B: PUSH EAX

12F3B3C: PUSH F4

12F3B3E: PUSH ESI

12F3B3F: CALL SetWindowLongA

12F3B44: PUSH EDI

12F3B45: PUSH FO

12F3B47: PUSH ESI

12F3B48: CALL SetWindowLongA

1 2 F 3 B 0 2 :

668

12F3B4D: PUSH 27

12F3B4F: PUSH 00

12F3B51: PUSH 00

12F3B53: PUSH 00

12F3B55: PUSH 00

12F3B57: PUSH 00

12F3B59: PUSH ESI

12F3B5A: CALL SetWindowPos

12F3B5F: PUSH 05

12F3B61: PUSH ESI

12F3B62: CALL ShowWindow

12F3B67: POP EDI

12F3B68: POP ESI

12F3B69: RET 0004

The first two lines and the last three lines are readily identifiable as the
prologue and epilogue. They're of no real interest except for two things: The
"RET 0004" tells us that the function takes one parameter (all parameters in
32-bit code are 4 bytes). Second, the code doesn't set up an EBP stack frame,
so we'll need to keep track of what's on the stack to determine where the
parameters are.

As luck would have it, there's only one instruction in the entire routine
that references parameters on the stack. That's the "MOV ESI,DWORD
PTR [ESP+0C]" instruction right after the prologue. The instruction copies
a parameter into ESI, which is then seen in several other spots throughout
the function. It's likely that ESI is some kind of register variable. H m m m . . .
what possible meaning could ESI have? Scanning through the routine,
we see that ESI is passed as a parameter to GetWindowLong(),
SetWindowLong(), SetWindowPos(), and ShowWindow(). Might ESI be
holding an HWND? It sure looks like it!

Let's take this opportunity to rewrite the previous listing to take advantage
of what we've already found, break up the instructions into manageable
sequences, and eliminate the prologue and epilogue code.

12F3B02: MOV hWnd(ESI),DWORD PTR [ESP+OC]

12F3B06: PUSH F0

12F3B08: PUSH hWnd(ESI)

12F3B09: CALL GetWindowLongA

12F3BOE: MOV EDI,EAX

12F3B10: CMP DWORD PTR [012F612C],00

12F3B17: JE 012F3B30

12F3B19: AND EDI,FFB4FFFF

12F3B1F: PUSH 00

12F3B21: PUSH F4

12F3B23: PUSH hWnd(ESI)

12F3B24: CALL SetWindowLongA

12F3B29: MOV [012F6000],EAX

12F3B2E: JMP 012F3B44

1273B30: OR EDI,00CF0000

12F3B36: MOV EAX,[012F6000]

12F3B3B: PUSH EAX

12F3B3C: PUSH F4

12F3B3E: PUSH hWnd(ESI)

12F3B3F: CALL SetWindowLongA

12F3B44: PUSH EDI

12F3B45: PUSH F0

12F3B47: PUSH hWnd(ESI)

12F3B48: CALL SetWindowLongA

12F3B4D: PUSH 27

12F3B4F: PUSH 00

12F3B51: PUSH 00

12F3B53: PUSH 00

12F3B55: PUSH 00

12F3B57: PUSH 00

12F3B59: PUSH hWnd(ESI)

12F3B5A: CALL SetWindowPos

12F3B5F: PUSH 05

12F3B61: PUSH hWnd(ESI)

12F3B62: CALL ShowWindow

At this point, several function calls -- in particular, GetWindowLong(),
the first SetWindowLong(), SetWindowPos(), and ShowWindow() - - are
screaming to be turned into their C equivalents. Each parameter to these rou-
tines is either the hWnd we discovered or a numeric value that we can look up
in WINDOWS.H. Let's rewrite the routine yet again to condense some of

these instruction sequences into a single C statement:

12F3B02: MOV hWnd(ESI),DWORD PTR [ESP+OC]

GetWindowLong(hWnd, GWL_STYLE); // GWL_STYLE == -16 == 0F0h

12F3B0E: MOV EDI,EAX

12F3B10: CMP DWORD PTR [012F612C],00

12F3B]7: JE 012F3B30

669

670

While we were able to rewrite some of the function calls in their C
equivalent, we didn't know enough about the parameters to the last two
SetWindowLong()'s to condense them. In one case we need to know what
EDI contains, while in the other we need to know what the global variable
at address [012F6000] is.

Wait a minute! We've already seen that the GetWindowLong() retrieved the
window's style value and copied it into EDI. EDI could be another register
variable for holding the window's style bits. As for the global variable
[012F6000], notice that the code saves the return value from the
SetWindowLong(GWL_ID) into it. Earlier, I described how the window
ID field (GWL_ID) is used to store the HMENU for top-level windows.
Combined with the fact that SetWindowLong() returns the previous value
of the field, you can guess that [012F6000] is a global variable containing
a menu handle (HMENU).

Let's rewrite the routine once again to take advantage of these two
new discoveries (the window style variable in EDI and the HMENU
global variable):

12F3B19: AND EDI,FFB4FFFF !

SetWindowLong(hWnd, GWL_ID, 0); // GWL_ID == 12 == 0F4h

12F3B29: MOV [012F6000],EAX

12F3B2E: JMP 012F3B44

12F3B30: OR EDI,00CF0000

12F3B36: MOV EAX,[012F6008]

12F3B3B: PUSH EAX

12F3B3C: PUSH F4

12F3B3E: PUSH hWnd(ESI)

12F3B3F: CALL SetWindowLongA

12F3B44: PUSH EDI

12F3B45: PUSH F0

12F3B47: PUSH hWnd(ESI)

12F3B48: CALL SetWindowLongA

SetWindowPos(hWnd,0,0,0,0,0, // 0x27 == the flags on the next line

SWP_NOSIZE | SWP_NOMOVE | SWP_NOZORDER | SWP_FRAMECHANGED);

ShowWindow(hWnd, SW_SHOW);

C M P

671

At this point, all we're left with is the conditional branch statement at
address 012F3B10. The CMP instruction compares the global variable at
address [012F612C] to 0. The destination of the conditional jump is imme-
diately preceded by a JMP instruction. This looks like the classic if-else
statement that I described earlier. The global variable at [012F612C] looks
like it's some sort of boolean. Let's give it a name (for example, "MyBool"),
stick in some {}'s and indentation, and see if the code starts to make sense:

H M e n u

672

Amazing! We've taken some raw assembler code and worked it back
into readable C code. If you compare this code to what we obtained from
spying tools, you'll see that they're entirely consistent. However, the disas-
sembly listing contains more information than you could have obtained via
spy tools. For instance, the spy tools didn't give any indication that there
were two global variables involved (the HMenu and the boolean).

To some of you, the series of steps from raw assembler code to C code
may have gone a little fast. It's true that not every disassembly attempt goes
this smoothly or this quickly. However, I hope that I've shown how disas-
sembling a function is an iterative process. As you hypothesize and find
things out about the code, you feed that information back into the listing
in the hope that it'll shake something else loose.

As a final note on disassembly, don't hesitate to load the code in question
into a debugger and step through it yourself. Seeing the code execute with
real live values can often break a mental block about the code's purpose.
Many times I've been unable to figure out what a function returns. By
stepping through the code in a debugger and seeing actual return values,
I've often been able to deduce a pattern in the returned values. For example,
a routine may always return a global memory handle. The point is, every
scrap of information can help. You'd be surprised how the tiniest thing can
help you break a piece of code wide open.

ADVANCED HACKING TIPS

Before finishing this chapter, I thought it would be useful to throw in
some general-purpose tips that don't fall into the general topics I've
already described.

S o f t l c e / W i n d o w s

673

Using Softlce/Windows
If you're at all serious about exploring, SoftIce/Windows is a must. Before I
go any further, I'm obligated to point out that I work for Nu-Mega, the
company that makes SoftIce/Windows. The only tool that can even
remotely compare to SoftIce/W is Microsoft's WDEB386 system-level
debugger, which doesn't have nearly as many commands to dump data
structures or use symbolic debug information.

SoftIce/W gets its capabilities because it's a system-level debugger. Unlike
application-level debuggers like Turbo Debugger, CodeView, or the debuggers
built into your compilers IDE, SoftIce/W doesn't rely on Windows for any-
thing. It operates between Windows and the hardware itself. Because of this,
SoftIce/W can step through any code in the system, including ring 0 VxDs and
real mode DOS code. This makes it very useful for studying code like the
Windows scheduler and the routines for switching memory contexts. Don't
even think about trying something like that with a regular debugger. They just
won't work.

In fairness to Microsoft, WDEB386 has similar capabilities in this par-
ticular area. One pitfall of Windows 95 is that you can't step through the
ring 3 system DLLs (like KERNE132.DLL) with an application debugger.
The problem is that Windows 95 shares this code with all processes, so
placing INT 3's in this code would almost always crash the system. Since
SoftIce/W operates underneath the system, it doesn't have these restrictions,
and can easily step through any system code.

Unlike regular debuggers, you don't load SoftIce/W from within Windows.
Nor do you have to explicitly debug a program to use it. Instead, SoftIce/W
loads underneath Windows and is always present. Unless you press its hotkey
to bring up its user interface, SoftIce/W silently sits underneath the rest of
Windows. For this reason, you can load SoftIce/W every time you load
Windows. When you need it, just pop it up. Otherwise, you can ignore its
presence. Rather than a program, it's much more like a super version of
Windows that you can stop and poke around in at will. Sort of like the
ultimate Windows TSR.

Unlike WDEB386, Softlce/W contains numerous commands to dump
out data structures and lists at all levels of the system. At the lowest level, it
can dump out the CPU's page tables and selectors in the global and local
descriptor tables. Moving up a level, it can display important VxD-related
items such as the list of VxDs, the device descriptor block for a VxD, and
the context tables used to maintain per-process address spaces. In fact,
SoftIce/W can even switch address contexts to any arbitrary memory context,

S o f t I c e / W

674

allowing you to see all the memory of any process in the system. Up yet
another level, SoftIce/W can list out all the processes, threads, modules, and
Win16 tasks, along with detailed information about each item. This is
invaluable when your code is using a system-supplied handle and you need
to know what the handle refers to. At the highest level, SoftIce/W can display
detailed information on windows and window classes. The point of all this
isn't to praise SoftIce/W. Rather, it's to give you a feeling for how much system
information is at your fingertips.

A couple of SoftIce/W features are particularly useful and simply must
be mentioned here. When stepping through 16-bit code, you'll often be
working with handles that look like they could be global heap handles.
Simply give that handle to the SoftIce/W HEAP command, and you can
instantly verify whether or not it's a valid global heap handle. If it is a valid
heap handle, SoftIce/W will tell you what the handle's purpose is (Who
owns it? Is it code, data or a resource? If it's code, which segment in the NE
file does it correspond to?).

In either 16- or 32-bit code, the SoftIce/W U and D commands come
in very handy. Given a code address, you can feed it to the U command
and quickly disassemble at that address. Likewise, the D command lets
you view anything in memory in a variety of formats. Unlike application
debuggers or other programs, these commands aren't restricted to where
they can disassemble or view memory.

Another thing SoftIce/W has over other debuggers is that it can load the
exported function information from 16- and 32-bit EXE/DLL files, and use
this as a pseudo symbol table. Thus, wherever you're stopped in Windows,
SoftIce/W can tell you what EXE/DLL/VxD you're in, and often can pinpoint
the exact routine. It even uses this information in its disassembler so that
instead of seeing something like:

CALL BFFB0149

You'll instead see:

CALL GetModuleHandleA

Another nifty SoftIce/W command (added for Win32s and Windows 95
support) is the MAP32 command. With MAP32, you can easily determine
where all the sections of an EXE and its DLLs (including system DLLs)
reside in memory. Yet another handy feature of SoftIce/W is the STACK
command. Wherever you're stopped in the system, you can almost always

D W O R D

 675

get a call stack that shows how you got there. Also, at any given time, if you
need to know what the current task or thread is, try the TASK and THREAD
commands. These commands quickly let you know what process and thread
you're executing in.

Using hardware breakpoints
If you need to step through code when a certain condition is true, you can
often use the CPU's hardware breakpoints to quickly get to that point in the
code. For example, a coworker of mine wanted to know when a certain rarely
used thread was activated. By using the SoftIce/W THREAD command, we
were able to find out the thread ID of the thread we were interested in. We
set a breakpoint on the code that executes after the thread switch, but that
approach turned out to be hopeless because the system is constantly switching
threads. The breakpoint was constantly going off, but the current thread was
never the thread we were interested in.

To get around this problem, we found the DWORD in memory
where the system keeps the current thread ID (hint: unassemble at the
GetCurrentThreadld function). We then set a conditional hardware break-
point on the DWORD holding the thread ID. The condition was that the
breakpoint would trigger only when the thread ID we were interested in
was written to the thread ID DWORD. Problem solved. The system ran
normally until we undertook the action that made the thread in question
wake up.

Another example: One of my programs was using SetThreadContext to
change the EIP of another program. SetThreadContext was reporting success,
yet the other process was always bombing. To see what was happening, I set a
hardware breakpoint on the DWORD in the thread context structure where
the new EIP value should have been written to. Upon running the program, I
found that SetThreadContext was indeed copying the EIP value to the right
location. Unfortunately, the breakpoint went off again a bit later, and I could
see that KERNEL32.DLL was overwriting my EIP value with a garbage value.
Without using hardware breakpoints, I'd probably still be wondering if my
code was doing something wrong or if there was a bug in Windows 95.

B F F D 4 4 D 0 h .

676

The VxD. (dot) commands
Users of WDEB386 and SoftIce/W have quite a bit of system information
available to them through the "." (dot) commands. The dot commands (so
called because they all start with a ".") are implemented in various VxDs.
To use them, break into your system-level debugger and, at the prompt,
enter the command name (which always starts with a "."). Some of them
are available all the time, while others are available only in the debug version.
Some commands to try include:

..? .vtd

.m? .dosmgr

.vmm .vmpoll

.vxdldr .vtdapi

.vpicd

The VAR2MAP utility
In Windows 95, the Win32 system DLLs such as USER32, KERNEL32, and
so on are "based." That is, they always load at the same linear address every
time you start Windows 95. You can take advantage of this fact to add your
hard-won knowledge about where functions and variables are located to
WDEB386 or SoftIce/W. Doing this lets you use these symbols when step-
ping through system code. How's this? Take a look at the code for the
GetSystemDefaultLangID function in KERNEL32.DLL:

GetSystemDefaultLangID proc

BFFB69FD: MOV AX,[BFFD44DO]

BFFB6A03: RET

It's pretty obvious that the address BFFD44D0h holds a global variable
called SystemDefaultLangID (or something to that effect). And since
KERNEL32.DLL has a unique base address in the linear address space,
the SystemDefaultLangID variable will always be at address BFFD44D0h.
Wouldn't it be great if you could tell your system debugger this fact
and have it automatically replace the address "BFFD44D0h" with
"SystemDefaultLangID" in its disassembly? I thought so, too, so I wrote
the VAR2MAP program.

A d d r e s s I n H e x

 677

To use VAR2MAP, you create a file that contains a list of 32-bit addresses
and their associated names (you have to come up with the names). The file
can contain both variable names and function names. The only restriction is
that all the names and addresses must be in the same EXE or DLL. VAR2MAP
takes the file you create as input and emits a .MAP file. What good is a .MAP
file? Well, you can run the .MAP file through a program like Microsoft's MAP-
SYM or Nu-Mega's MSYM. Either of these programs will create a .SYM file
from the supplied .MAP file. Both WDEB386 and Softlce/W know how to
load .SYM files for use with symbolic disassembly. I used VAR2MAP through-
out the writing of this book to give meaningful symbolic names to functions in
KERNEL32.DLL and other system modules.

A typical input file to VAR2MAP is shown in the following code snip-
pet. The first line of the file must contain the path to the EXE or DLL that
will contain these addresses. Why is this necessary? If you look at a .MAP
file, you'll see that all the addresses for public symbols are given in logical
addresses, that is, ObjectNumber:Offset (for example, 0004:00013484).
VAR2MAP needs the EXE or DLL file to figure out where each of the code
and data sections will be mapped to in memory. This allows VAR2MAP to
translate the linear address that you give it into a logical address like
0004:00013484.

FILE : C:\WINDOWS\SYSTEM\KERNEL32.DLL

IGetProcAddress = BFF81DC1

IGlobalHandle = BFF76E78

ILocalReAlloc = BFF833C8

ILocalSize = BFF890CB

ppCurrentThread = BFFCB3D4

ppCurrentProcess = BFFCB3D8

ppgurrentTDBX = BFFCB3DC

pWin16Mutex = BFFD34D0

pK16SysVar = BFFD33A4

pKrn32Mutex = BFFCB3FC

The rest of the lines should be of the form:

SymbolName = AddressInHex

After creating the input file, run VAR2MAP and pass it the name of the
input file on the command line (for example, VAR2MAP KERNEL32.VAR).
The output .MAP file will be placed in the same directory as the file whose
name is on the "FILE =" line of the input file. This makes sense, because the
.SYM file you create must be in the same directory as the EXE or DLL it
corresponds to. Otherwise, the debugger won't know to load the .SYM file.
See your debugger documentation for information on loading .SYM files.

N a m e > _ S e r v i c e

6 7 8

Identifying VxD services
For this type of exploration, it's helpful to know how calls to VxD services
are made and implemented. A VXD service is a function that's exported
from a VxD for use by other VxDs. A VxD doesn't directly call services in
other VxDs (at least not when it's first loaded). Instead, you invoke a VxD
service from another VxD with an INT 20h. A quick look at the VxDCall
macro in the DDK's VMM.INC shows this in action. The INT 20h is handled
by the VMM, which in turn changes the INT 20h instruction into a call to
the address of the actual VxD service code.

How does the INT 20h handler know which VxD service you're invoking?
Immediately following the INT 20h is a DWORD that specifies the service to
be invoked. The high WORD of this DWORD is the device ID of the VxD
containing the service to be invoked. The low WORD contains the service
number in the VxD's service table. A value of 0 in the low WORD means the
first service in that particular VxD, a value of 1 means the second service,
and so on.

The device ID in the high WORD is either one of the standard VxD
IDs defined in VMM.INC, or one of your company's VxD IDs (which are
assigned by Microsoft). The first 16 VxD device IDs are listed here:

VMM_DEVICE_ID lh
DEBUG_DEVICE_ID 2h
VPICD_DEVICE_ID 3h
VDMAD_DEVICE_ID 4h
VTD_DEVICE_ID 5h
V86MMGR_DEVICE_ID 6h
PAGESWAP_DEVICE_ID 7h
PARITY_DEVICE_ID 8h

REBOOT_DEVICE_ID 9h
VDD_DEVICE_ID 0Ah
VSD_DEVICE_ID 0Bh
VMD_DEVICE_ID 0Ch
VKD_DEVICE_ID 0Dh
VCD_DEVICE_ID 0Eh
VPD_DEVICE_ID 0Fh
BLOCKDEV_DEVICE_ID 1 0h

If you're working with one of the standard VxDs, you can usually find a
list of the VxDs services by looking at the .H or .INC file for that VxD in the
DDK. The Begin_Service_Table macro indicates the start of the services list.
Each service provided in that VxD has its own line that starts with <VxD
Name>_Service (for example, VPICD Service). The first service listed in the
table will have a low WORD of 0 in the INT 20h DWORD, the next service
will have a value of 1, and so forth. Armed with this knowledge, you can easily
figure out the DWORD that must follow an INT 20h in order to invoke a

given function. For example, knowing that the VMM VxD has a device ID of
1 (which will go in the high WORD), you can easily calculate the DWORDs
for each of VMM's services, as shown here:

Begin_Service_Table VMM, VMM
VMM_Service Get_VMM_Version
VMM_Service Get_Cur_VM_Handle
VMM_Service Test_Cur_VM_Handle
VMM_Service Get_Sys_VM_Handle
VMM_Service Test_Sys_VM_Handle

O0010000h
O0010001h
O0010002h
O0010003h
O0010004h
O0010005h

Debuggers or disassemblers that give the actual names of the services
that will be invoked via an INT 20h simply keep a big table that matches up
DWORD values to function names. Earlier, I mentioned that the INT 20h
handler patches the INT 20h instruction and its following DWORD into a
CALL instruction. That isn't strictly true. If the service number in the low
WORD has its high bit set, the INT 20h will instead be patched to a JMP
instruction. For example, using the VMM services shown in the preceding
list, an INT 20h followed by a DWORD of 00018001 would become a JMP
to the Get_Cur_VM_handle function, rather than a CALL. To generate a
JMP to a VxD service, you'd use the VxDJmp macro in VMM.INC, rather
than the normal VxDCall macro.

679

Identifying Win32 VxD services
One of the nifty new features in Windows 95 is the addition of Win32 VxD
services. The Win32 services are sort of like VxD services, except that they
can be called by ring 3 application code. To invoke a Win32 service, a pro-
gram calls the VxDCall0 function exported by KERNEL32.DLL.

One of the parameters to the VxDCall0 function is a DWORD that's
similar in nature to the VxD service ID I described in the previous section.
The high WORD of the DWORD is the device ID (just like a regular INT
20h DWORD would have). The low WORD is the Win32 service number.
This WORD corresponds to the relative order of the Win32 services within
the Win32 service table. 0 is the first service, 1 the second service, and so on.

Let's look at an example to make this clearer. This short snippet of code
is from GetThreadContext in KERNEL32.DLL:

p r o c

680

BFFABD8D: PUSH EAX

BFFABD8E: PUSH DWORD PTR [EBX+5C]

BFFABD91: PUSH 002A0014

BFFABD96: CALL VxDCall•

The first two PUSH instructions are parameters for the Win32 service.
The final PUSH of 002A0014 informs the VxDCall0 function that it should
invoke the 0xl5th Win32 service in device 2Ah. What's device 2Ah? Nothing
more than VWIN32, the source of much of KERNEL32's functionality.

Identifying parameter validation and
Ixxx functions
In Windows 3.1, Microsoft introduced parameter-validated functions. These
are API functions that check the validity of the parameters you pass to it. If
your parameters aren't up to standard (if you have an invalid pointer, for
instance), the functions simply return to you without doing anything. In the
debug version, the function may also emit a warning diagnostic to the debug
terminal.

The complete code for a function with parameter validation typically
exists in two separate places. The code that validates the parameters is
always found at the beginning of the function. Assuming all the validity
test are passed, the code then JMPs to the real code. In Windows 3.1, the
real code for a function had its own name - - an I, followed by the function
name. For example, there's an exported WinExec function that checks its
parameters and then JMPs to an internal IWinExec function. In this book,
I've followed the same convention for Win32 code.

A commented listing of theWindows 95 32-bit WinExec function fol-
lows. The code sets up a structured exception handling (SEH) frame and
then verifies that all characters in the string pointed to by the lpszCmdLine
parameter can be accessed. If the validation fails, a page fault occurs, and
the SEH frame causes the function to return through another code path not
shown here. If the validation succeeds, the code removes the SEH frame and
then JMPs to the IWinExec code.

WinExec proc

BFFB2569: PUSH EDI Preserve EDI,

BFFB256A:

BFFB256C:

BFFB256E:

BFFB2573:

PUSH 22

SUB EDX,EDX

PUSH BFFB1172

PUSH DWORD PTR FS:[EDX]

Set up a structured exception

handler frame in case the

following validations cause a

fault.

 681

A key point here is identifying the I version of the function. When you
see code that looks similar to what I've shown here and that ends with a
JMP elsewhere, it's probably a function with parameter validation. The
destination of the JMP instruction is most likely the address of the I ver-
sion of the code. You can use this knowledge to build up the addresses of
additional symbols. For example, in "The VAR2MAP utility" section, I
showed four functions that fall into this category:

IGetProcAddress = BFF81DC1
IGlobalHandle = BFF76E78
ILocalReAlloc = BFF833C8
ILocalSize = BFF890CB

If you add these internal names to your debugger, stepping through the
system code can be much easier. It appears that the parameter validation stubs
are lumped together in one location, while the real code for the functions is
spread throughout the module. Adding in additional symbols for internal
functions gives you a fighting chance of figuring out where you are in a given
system module. It also greatly enhances the usability of stack traces.

Using the debug version
Beyond just finding bugs in your code, the debug version of Windows
makes it much easier to figure out what Windows is doing. The various
debug versions of system DLLs that come in the SDK are littered with help-
ful diagnostic trace messages. These strings often contain the name of the
function that they're being emitted from as part of the message. Likewise,

BFFB2576: MOV DWORD PTR FS:[EDX],ESP

BFFB2579: MOV EDI,DWORD PTR [ESP+14] ; Validate the lpszCmdLine

BFFB257D: SUB EAX,EAX ; parameter by touching every

BFFB257F: LEA ECX,[EAX-01] ; character in the string. A

BFFB2582: REPNE SCASB ; page fault will trigger the

; exception handler above.

BFFB2584: POP DWORD PTR FS:[EDX] If we got here, everything was

BFFB2587: ADD ESP,08 OK. Remove the SFH frame.

BFFB258A: POP EDI Restore EDI.

BFFB258B: JMP IWinExec JMP to the real WinExec code.

C M P

682

there are many messages that print out or otherwise comment on the value
of system variables. You can usually go back a few instructions in the code to
find the variable that they're referring to. For example, consider this code:

BFFCZ88A: PUSH

BFFC788D: PUSH

BFFC7892: CALl

DWORD PTR [ESI+18]

BFFDBF9C ;; D e f a u l t Heap: %8x\n

BFFC6092

Here, ESI is pointing to the Win32 process database structure. The sec-
ond instruction is passing a pointer to a printf-style format string. From this
information, it's fairly easy to figure out that you'll find the process's heap
handle at offset 18h.

Another way the debug version of Windows is helpful is in all of the
sanity checking and assert-like code. The debug DLLs are always checking
the parameters to their functions and the state of system variables. You can
use all this sanity-checking code to confirm or disprove your guesses about
what a certain piece of code is doing or working with.

Pentium-optimized code
One of Microsoft's claims about Windows 95 is that it is optimized for the
Pentium. I'm here to tell you that this claim certainly appears to be true. The
main optimization that compilers do specific to the Pentium CPU is to reorga-
nize the instruction sequences to let the Pentium's two execution units execute
together without stalling. Consider this code snippet from KERNEL32.DLL:

1) PUSH EBP

2) NOV EBP,ESP

3) SUB ESP.04

4) CMP DWORD PTR [EBP+SC],0FFFFF98

5) PUSH EBX

6) PUSH ESl
7) PUSH EDI

8) JBE BFF741AB

Instructions 1,2,3,5,6, and 7 together make up the prologue that sets
up the function's stack frame and preserve the register variable registers.
Instructions 4 and 8 together make up the standard instructions for an if
statement. Were Pentium optimizations not enabled, the code would make
much more sense. The JBE instruction would occur immediately after the
CMP instruction, rather than four instructions later.

P e n t i u m - o p t i m i z e d

683

Why am I bringing this up? When stepping through Pentium-optimized
code (such as the Windows 95 system DLLs), the instruction sequences may
not immediately make sense. You have to be aware of this and look for
instruction sequences that are doing two different things. I try to keep these
sequences straight by rearranging the instructions into two groups. In most
cases, the two groups correspond to two different C source code statements.
After rearranging the instructions, I focus first on one group, then on the other.

SUMMARY

In this chapter, I've shown several different methods of exploration.. On the
low end, the methods center around simplistic file-dumping programs. In
the middle are spying tools that are extremely useful if you're interested in
the interactions between a program and the operating system. At the high
end, you and your disassembler can go head to head with an optimizing
compiler to crack open practically every aspect of a program. Disassembly
is messy, imprecise, and frustrating work. On the other hand, it can be an
extremely valuable asset that few programmers take the time to learn.

If you're not already using the tools and techniques I've described, I
hope this discussion has taken away enough of their mystique so that you're
willing to try them if you need to do so. Although some of the things these
tools do seem like magic, they're really not. If you have a firm grounding in
hardware and operating system basics, these tools and techniques can be
viewed as just another part of your toolbox, rather than as something
reserved for programming wizards.

l s t r c p y

WRITING A WIN32

API SPY 10
A s programmers, we often see another programmer's code and

wonder, "How does it do that?" In these situations, pro-
gramming tools that let you peer under the hood of a running
application are invaluable in tracking down what some program
or DLL is doing. For live analysis of a running program, nothing
beats an API spy program (a spy).

API spying tools show you which Windows functions are
called by a program and its DLLs. In addition to showing the
names of the API functions in the order in which they're called,
API spy programs also record the parameter values to the API
functions, as well as the return value for the function. More
advanced API spy programs may even record additional perti-
nent information such as window messages, hook callbacks, and
other program events. With all this information on tap, it's usu-
ally easy to figure out what a given section of code is doing.
Chapter 10 discusses the more popular API spy programs, and
has an example showing how to use the output from an API
spy. In this chapter, I'm going to construct a simple but power-
ful Win32 API spying tool that's easily extensible.

The technique I'll be using to intercept API function calls
for the APl spy program can also be easily adapted for use in
your own Win32 programs. For example, let's say you wanted
to replace the Win32 lstrcpy function with your own routine.

A P I

686

Doing this is only a function call away with the code I'll be presenting. If
you're just interested in getting the code to intercept API function calls, skip
ahead to the last section in this chapter ("Intercepting Functions in Your
Own Programs"). However, if you're interested in Win32 system-level
programming and learning how this technique works, read on.

Why bother writing a simple API spy program when more powerful ones,
such as BoundsChecker32, are available commercially? By writing you own
API spy for Win32 programs, you can gain a thorough understanding of the
Win32 operating system philosophy, and develop an in-depth knowledge
about the important differences between the three Win32 implementations
(Windows NT, Windows 95, and Win32s).

On the surface, the subject of this chapter appears to be "How to build an
API spy program." However, my real goal is to present a set of real-world
Win32 programming problems, and show how they can be solved. In the
process, you should see many facets of the Win32 architecture. As you'll
soon realize, writing an API spy for Win32 programs forces you to come into
contact with such issues as address spaces, multithreading, dynamic linking,
debugging mechanisms, process management, and thread control. In short,
the program I'll be building will give you a good tour of many core Win32
concepts.

Before jumping into details about the program, I need to list the API spy
program specifications:

1. For a given Win32 process, the program should log the function calls it
makes to a given list of DLLs.

2. The set of DLLs to be monitored should be extendible by the user via a
configuration file.

3. If the parameters to a function are known, they can be specified in the
configuration file, and their values will be logged along with the
function name.

4. The spy program must log the return values of functions.
5. The spy program should be able to run on Windows NT, Windows 95,

and Win32s.
6. No modification to the program's source code or executable file should

be required.
7. Log output should go to a disk file, rather than being shown live.

" s p y e e ' s "

687

When this program is completed (at the end of the chapter), it will be
able to do several things: it will let you pick another program to spy on, it
will run that program, and it will produce an ASCII text file with the logged
information. After the chosen program terminates, you can view the text file
with an editor or viewer of your choice.

An important limitation of this spy program - - and one that needs to be
pointed out very clearly - - is that this program is a per-process API spy.
Unlike programs such as the Win16 WinScope spy program, my Win32 API
spy doesn't watch calls made by all processes in the system. Rather, it
watches only the calls made by a single process. In a system with separate
address space for each process, writing a global APl spy is a significant
undertaking and beyond the scope of this chapter. (How's that for truth in
advertising?)

INTERCEPTING THE FUNCTIONS

The basic idea behind any sort of spy program is that the spy program
inserts itself into the flow of control of the program being spied on. The spy
program gets control before the intended target of the call is reached, and
does whatever logging it needs to before transferring control to the original
intended target of the call. The first problem we're faced with is how to let
our spy program gain control somewhere between the "spyee's" call to a
DLL function, and the execution of the function in the DLL.

One approach to this problem that's been used in the past is to make
your own DLL that exports functions with the same names as the functions
you want to intercept. For example, if you wanted to intercept calls to the
GetProcAddress function in KERNEL32.DLL, you'd make your own DLL
with an exported GetProcAddress function. By putting this DLL's import
library first in the list of import libraries, the linker will fix up calls to
GetProcAddress to point to your interception DLL, rather than to
KERNEL32.DLL. The interception DLL logs the information about the call
before jumping to the real function (for example, GetProcAddress in
KERNEL32.DLL). As an alternative to creating an import library, you
could just alias the imported functions in your DEF file. However, both of
these approaches share the common characteristic of requiring the linker to
set up the APl interception at link time - - something that's not an option if
the program you're spying on isn't one you wrote.

J M P

688

This method of intercepting calls to API functions is exactly what the
Microsoft API parameter profiler in the Win32 SDK does. Included with
this profiler are five DLLs: ZDI32.DLL, ZDVAPI32.DLL, ZERNEL32.DL
ZRTDLL.DLL, and ZSER32.DLL; these DLLs intercept calls to GDI32.DLL
ADVAPI32.DLL, KERNEL32.DLL, CRTDLL.DLL, and USER32.DLL,
respectively. Instead of linking with these DLLs, you run a program
(APF32CVT) that modifies the EXE you want to spy on. The net effect is
the same as if you had linked with the import libraries. At least no source
code is required to use APF32CVT.

For our purposes, there are two problems with this dummy DLL
approach. First, it's not easy to extend it to accommodate new DLLs. For
each new APl function you want to intercept, you need to modify the inter-
ception DLL and rebuild it. You also have to relink or modify the EXE to
be spied on. The second, and bigger, problem is that this approach requires
changing the program to be spied on, which is a direct violation of one of
our design specifications.

Another approach to intercepting calls to API functions is to somehow
modify the target of the call. By changing the initial portion of the function
being called, a program can enable itself to get control before the body of
the function is executed. There are two methods of modifying a function's
prologue code to transfer control elsewhere. The first and most obvious
method is to place a breakpoint instruction (opcode 0xCC) at the first byte
in the function's code. When the function is called, an interrupt handler
installed by the spy program gets control and does its logging. The spy pro-
gram then restores the original byte of the function before making the CPU
execute exactly one instruction (via the trap flag single-step mechanism). In
its single-step exception handler, the API spy program then reinserts the
breakpoint opcode so that subsequent calls to the function will be caught.

Although some Win16 spy programs use breakpoints to intercept calls
to DLL functions, trying to do something similar under Win32 would be
more difficult. For starters, under Win32, one process can't see another
process's exceptions unless it's acting as a debugger to that process. Next,
forcing every call to an API function to go through the Win32 structured
exception-handling code could seriously impair performance. Also, the
separate address spaces of processes under Win32 would force the spy
program to use ReadProcessMemory to see the target applications's function
parameters. This is far clunkier than being able to read the memory directly.

The second method of modifying a function's prologue code to transfer
control to the spying code is to insert a JMP or CALL instruction at the
start of the function. One problem with this approach is that in 32-bit code,

J M P

689

a JMP or a CALL instruction will take at least 5 bytes. If the DLL has func-
tions less than 5 bytes apart (yes, this has happened!), patching in a JMP or
CALL becomes impractical because the function that comes later in the
code will start in the middle of a JMP or CALL instruction. Unlike break-
points that can be handled by another process, patching in JMPs and
CALLs requires your code to be running in the process context of the program
being spied on. To run in any arbitrary process requires that your code be in
a DLL. However, as you'll see later, running your spy code in the context of
the process being spied on isn't such a bad idea. Still, patching JMPs or
CALLs into the process being spied on is a real nuisance, especially with the
need to constantly switch between the original code and your JMP/CALL
instructions.

Having looked at and discarded two obvious approaches to interception
(linking to a custom DLL and patching the API function's code), let's look
at a third approach that's not so obvious. Nothing in the rule book says that
the target code in the API function has to be patched. It's equally valid to
modify the call to the API function. If the spy program can somehow find
the CALLs to the API functions, it can modify the CALL to point to the spy
program's logging code. As in a previously discussed method, the spy pro-
gram's logging code will need to execute in the process context of the program
being spied on. The "Injecting a DLL into Another Process" section will
show how it's possible to "inject" a DLL into the address space of a
process. Here, we're concentrating on the interception part of the problem.

You might be thinking to yourself, "A program might have hundreds or
even thousands of calls to APl functions in just the system DLLs alone.
How on earth can I hope to find all those CALL instructions?" Never fear,
the manner in which Win32 EXEs and DLLs dynamically link to each other
makes this almost incredibly easy: All calls to a given API function end up
traveling through the same spot in the executable file. By patching that one
location to point at the spy's logging code, you intercept all calls made by
the EXE to that function.

To see how this works, let's look at the actual code generated for three
separate calls to the GetVersion() API function in KERNEL32.DLL. Let's
start with the following small C program:

int main()

GetVersion();

GetVersion();

GetVersion();

G e t V e r s i o n ()

690

From this program, the compiler generates the following assembler code

410052: CALL 0042003C

410057: CALL 0042003C

41005C: CALL 0042003C

42003C: JMP DWORD PTR [00440064]

The important thing to notice here is that CALL instructions don't c a l l
directly to the GetVersion() code in KERNEL32.DLL. Instead, each call
transfers control to a JMP statement elsewhere in the EXE's code. That JM
instruction dereferences a DWORD in memory and jumps to that location.
In the above example, the DWORD is at address 00440064. What's the
address stored in this DWORD? As you might suspect, it's the address of
GetVersion() in KERNEL32.DLL. All calls to APl functions end up going
through a JMP DWORD PTR [XXXXXXXX] thunk. For each function
that an executable imports, there's a corresponding JMP DWORD PTR
[XXXXXXXX]. Who generates these JMP thunks? In Microsoft compilers,
the JMP thunks are code in the import libraries for the DLLs being linked
to. In Borland C++, the linker (TLINK) generates the JMP thunks.

The questions that naturally arise from this JMP thunk mechanism are
"Where is the DWORD with the function's address found?" and "Who's
responsible for initializing it?" The DWORD containing the imported function's
address is found in what is known as the import address table (or IAT, for
short). The IAT typically resides in the .idata (import data) section of each
executable. For each DLL that an executable links to, there's an associated
array of DWORDs containing addresses of functions in the imported DLL.
When the Win32 loader brings an executable into memory, it fills in the
array of DWORD with the proper addresses, as shown in Figure 10-1. In
the executable file prior to loading, each DWORD contains an offset to an
ASCIIZ string that names the desired function (for example GetVersion).
When the loader brings the executable into memory, it overwrites the array
of names offsets with the actual addresses of the functions.

Having seen how an executable imports functions from other DLLs, it's
easy to understand how a spy program can intercept and log those functions
with a minimum of fuss and overhead. The spy program merely needs to
find the array of function addresses in the executable's imports section and
overwrite those addresses with the addresses of its own logging routines. No
actual code patching is required, so there's no need to constantly switch
between the original code and the code as modified by the spy program.
The executable ends up calling the API spy's code directly, so the only over-

691

head is that of the logging functions. After the spy code has logged the
function's data, it JMPs to the original intended target of the JMP DWORD
PTR [XXXXXXXX] thunk. Simple, no?

Figure 10-1
The. idata section of the executable usually holds the DWORD containing the imported

 function's address, although the imports table can be located elsewhere.

Even if spying isn't your goal, you can use this trick of modifying the
addresses in the imports section to selectively intercept APIs. For example,
you might want to replace a function in a DLL with your own custom-written
code. It's easy to implement a function that takes a DLL name and function
name and returns a pointer to the DWORD in the imported data section that
holds the functions's address. Your code would then overwrite the DWORD
with the address of your own custom function. If you want to chain on to
the original address, simply save off the original DWORD value before
overwriting it.

r e l i n k i n g

692

In the spy program I'll be building in this chapter, I've chosen to inter-
cept calls to APl functions in the manner just described. In making this dec
sion, I've committed myself to running the spy's logging code in the process
context of the application being spied on. Since the design goals for the APl
spy program don't allow relinking or modification of the target application,
I need to somehow force the logging code into the target program's address
space. It also means that the majority of the APl spy program's code must
reside in a DLL.

INJECTING A DLL INTO ANOTHER PROCESS

Now that we know how we'll intercept calls to API functions, the next hurdle
is to force the spying code into the target application's address space. In 16-bit
Windows, this wouldn't be an issue since all programs share a common
address space. In Win32, however, each process has its own address space, and
its own set of loaded DLLs. Just because one process is using a DLL doesn't
mean that another process can use it. Each process that wants to use a DLL
needs to load the DLL for its own use, either by implicitly linking to it, or by
calling LoadLibrary(). Since the programs we'll want to spy on have no knowl-
edge of our APl spy DLL, we'll need to resort to dirty tricks to force the DLL
into their address space.

There are at least three ways to inject a DLL into the context of an
arbitrary process. Jeffrey Richter's May 1994 Microsoft Systems Journal
article describes each approach in quite a bit of detail. Here, I'll give a brief
overview of the two methods that we won't take advantage of, and then
spend more time on the DLL injection method that the APl spy program
will actually use. The final method that Richter chooses for a general-purpose
implementation is similar (but not identical) to the method I'll use for
our spy program. The key difference is that Richter's method uses the
CreateRemoteThread function, which isn't available in Win32s or Windows
95. My version of injecting the DLL is portable to all three platforms.

The first and best known way to force a DLL into another process's
address space is to install a windows hook using SetWindowsHookEx(). If
you specify an hThread for a different process, or if you request a systemwide
hook, the operating system automatically loads the DLL containing the hook
procedure into the address spaces of all processes affected by the hook.
Installing a windows hook to force our APl spy DLL to load is ineffective
for two reasons. The first reason is that you have to have an existing

D l l M a i n ()

693

process to install the hook for. By the time this occurs, the target process has
undoubtedly called APl functions. The spy program would miss all the APl
function calls made by the target process up to that point. The second reason
is that the hook DLL won't actually be loaded in the target process until
that process takes some action that causes the hook callback to be invoked.
Trying to use hooks to force a DLL to load in another process context just
doesn't offer enough precision with regard to when the DLL loads.

A second way to force a DLL into the address space of a process falls
into the barely documented category. It seems there's an obscure registry key
value buried deep down in the registry hierarchy:

HKEY_LOCAL_ MACHINE\Software\Microsoft\Windows NT\CurrentVersion\Windows\APPINIT_DLLS

By adding your DLL's name to this key, the operating system automatically
loads the DLL into the address space of each process as the process starts up.
There are several reasons why this method isn't suitable for a spy program.
The primary reason is that this change to the registry won't have an effect
until the next time the system is booted. To spy on a program, you'd have to
reboot the system first. Not feasible! Another downside to this approach is
that the spy DLL will need to determine on a case by case basis if it wants
to spy on the process it was just loaded for. For applications you don't want
to spy on, the APl spy DLL should return 0 in its DllMain() procedure in
response to the DLL_PROCESS_ATTACH notification. Returning 0 from
DllMain tells the operating system that this DLL shouldn't be loaded for
this process. Yet another problem is that the operating system will try to
load the DLL in every process, even in those hidden processes that you don't
interact with (like MPREXE.EXE). This slows down the entire system.

The third way to inject a DLL into another process is the brute-force
approach; this is the approach I'll use in the APl spy program. In an ideal
world, we would somehow convey to the target process that it should call
LoadLibrary to load our spy DLL, and that it should call LoadLibrary
immediately upon starting up. While we can't do this directly, there's no
reason why we can't trick the process into loading the DLL for us.

Let's look at an analogy to get a better feel for what I'm proposing.
Suppose you wanted access to a vault that's locked via a voice-recognition
lock. Only one person has the proper voice pattern to unlock the door, and
you're not that person. The person with the proper voice won't willingly
unlock the door for you. However, you could hypnotize the person, and
while they're in the trance, tell them to speak the words to unlock the door.
Before bringing them out of the hypnotic state, you tell them to forget
everything that just happened.

L o a d L i b r a r y

694

So, how does this apply to loading a DLL? If we can freeze (or hypnotise
if you prefer) the target process, we can modify the process's memory and reg-
isters so that it looks like the process is calling LoadLibrary of its own volity.
After setting up the registers and memory properly, we unfreeze the program
and let it execute. The end result is that the target process calls LoadLibrary
and the operating system obliges by loading the API spying DLL into the target
process's address space. After the LoadLibrary call returns, we freeze the target
process again, restore the memory and registers to their original values, an
let the process resume as if nothing happened.

As you might imagine, the code to fake the target process into calling
LoadLibrary is complex. It'll be modifying the code of the target process, so
the first step is to calculate which code page it will modify and save that
page away for later restoration. The injection code also needs to modify
registers in the target process, so it should save away a copy of all the original
register values. Luckily, Win32 provides the GetThreadContext function,
which retrieves all the register values for a given thread into a C structure.

Next, my code creates a code snippet to call LoadLibrary from within
the context of the target process. Included in this code snippet is an ASCII
string with the name of the spy DLL (APISPY32.DLL). Immediately after
the call to LoadLibrary in the code snippet is a breakpoint instruction that
allows the loader program to gain control immediately after the LoadLibrary
executes. Once the code snippet is created, I write it out to the first page of
the target process with the WriteProcessMemory function. Immediately
after, I'll change the EIP register in the target process so that execution will
resume at the beginning of my code snippet.

After setting up the memory and registers just so, the APl spy program
lets the target process execute. If all goes according to plan, the process
successfully executes the LoadLibrary code and returns to the breakpoint I
set. When it hits the breakpoint, the target process is temporarily frozen
again. The spy program takes this opportunity to restore the original code
page it saved away, and to restore the original register values (again, using
SetThreadContext()). With everything back to the way it was originally
(except for the addition of our APl spy DLL to the process's address space),
the breakpoint handler lets the target process resume execution. I'll come
back to this method of forcing another process to load a DLL in more detail
when I show the code for the program in "The APISPY32 Code" section.

D L

695

USING THE DEBUG APl TO
CONTROL THE TARGET PROCESS

When loading a DLL in another process's context, it's essential to have precise
control over the child process's execution. The Win32 debug APl provides all
the essential information we'll need. In particular, we need to know exactly
when the target process is about to execute the first instruction so that we can
inject the spy's DLL. We'll also need the debug APl to know when the target
process terminates. In addition, when we're performing surgery in the target
process's address space, we need to be sure that the process isn't going to take
off and start executing while we're in the middle of it. Using the debugging
APl takes care of this problem. Whenever the debugged process reports some-
thing to the debugger, all threads in the debuggee are suspended until the
debugger tells the operating system to let the debuggee resume execution.

If we were writing a spy program for 16-bit Windows programs, the
TOOLHELP NotifyRegister and InterruptRegister functions would be just
the ticket. The TOOLHELP NFY_STARTTASK notification would allow us
to know when the new task is about to begin execution, but before it actually
executes any of the task's code. Unfortunately, the TOOLHELP model of
notification callbacks assumes a single address space for all processes. The
TOOLHELP notification callback model won't work under the separate
address spaces of NT and Windows 95, so we'll need to use the closest
equivalent, the Win32 debug APl.

Using the Win32 debug APl to monitor the target process's execution
imposes a certain architecture on our APl spy program. The APl spy will
consist of two components. The first component is the code that intercepts
the APl functions in the target process and logs them. This code must reside
in a DLL since we'll be injecting it into the address space of the process to
be spied on. The second component of the APl spy consists of a loader pro-
gram that loads the process to be spied upon. After loading the program,
the spy executable enters into a debugging loop, which consists primarily of
calls to WaitForDebugEvent() and ContinueDebugEvent(). As debugging
events are returned by WaitForDebugEvent(), the loader program examines
the events and takes whatever action is necessary. The type of events that
can be returned by WaitForDebugEvent()are

EXCEPTION_DEBUG_EVENT
CREATE_THREAD_ DEBUG_EVENT
CREATE_PROCESS_DEBUG_EVENT

W a i t F o r D e b u g E v e n t

696

EXIT_THREAD_DEBUG_EVENT

EXITPROCESS_DEBUG_EVENT

LOAD_DLL_DEBUG_EVENT

UNLOAD_DLL_DEBUG_EVENT

OUTPUT_DEBUG_STRING_EVENT

RIP_EVENT

Incidentally, if you compare the Win32 debug events to the notifications
returned by a Win16 NotifyRegister callback function, you'll notice a striking
similarity. Also, if you want a program that uses WaitForDebugEvent and
displays all the possible information returned by it, check out the DEB sample
program in the Win32 SDK.

Once our loader program has handled the debug event notification, it
calls ContinueDebugEvent() to inform the operating system that it's okay
for the debuggee to resume execution. By putting WaitForDebugEvent and
ContineDebugEvent() in a loop, the loader can see all significant events in
the life of the process being spied on.

The most important debug event for our APl spy program is the
EXCEPTION_DEBUG_EVENT. Immediately before a process is about to
begin execution, WaitForDebugEvent() returns an EXCEPTION_DEBUG_
EVENT notification, with the exception being of type STATUS_BREAK-
POINT. The API spy loader program takes this as its cue to force the spy
DLL into the process's address space in the manner I described earlier.
When the LoadLibrary call returns to the breakpoint we inserted into the
process's code area, the loader program sees another STATUS_BREAK-
POINT exception. The loader program uses this to know when it should
restore the original registers and memory pages that we modified earlier.

Once the loader program has executed the target process past the two
breakpoint exceptions, its work is mostly done. However, the Win32 API
apparently doesn't offer a way for a debugger to tell the system that it
doesn't want to receive debug notifications anymore. Once you begin using
the debug API on a process, that process will be suspended each time it
generates a debug event. A debugger call to ContinueDebugEvent for each
debug event is the only way to keep the debuggee process running. Because
of this, the APl spy loader program needs to spin around in a WaitFor-
DebugEvent and ContinueDebugEvent loop until the target process terminates.
Even though we only really need a couple of the debug events, we're forced
to receive them all. We can ignore any debug event that we're not interested
in, and call ContinueDebugEvent without any further processing. In
pseudocode form, the APl spy loader looks like this:

p r o c e s s ' s

697

Load Process to be spied on

while (TRUE)
{

WaitForDebugEvent()

if (debug event is a breakpoint) {

if (first breakpoint)

modify debuggee to make it load the spy DLL

else if (second breakpoint)

restore original register and data pages of debuggee

} else if (debug event is an EXIT PROCESS)

break out of loop

ContinueDebugEvent()
}

BUILDING STUBS TO LOG APl FUNCTIONS

At this point, we've worked out the major architectural questions relating to
the operating system:

* How API functions will be intercepted
* How to load the spy DLL into the target process's address space
* How to precisely control the target process's execution

There are still other issues to deal with, but they're not as directly
related to operating system concerns. One such area is the code that will
handle the redirected APl function calls. While it would be tempting to try
to make a single entry point for all the function calls we redirect to our spy
DLL, that just isn't feasible. There would be no way for a single entry point
in the spy DLL to know which function call it's currently logging. Instead,
we'll need to create a unique block of code for each function that we inter-
cept. The word thunk is commonly used to describe short pieces of code
that do some processing before transferring control elsewhere. While the
blocks of code I'll be creating could be called thunks, I'll use the term stub
to avoid ambiguity between my code and Window's thunks. All the code
stubs for our spy program will be similar, but will differ slightly. When each
stub receives a redirected function call, it pushes information unique to that
function onto the stack before calling a common routine to log the call.

D L L

698

If all we needed to do was to intercept a known fixed set of functions, it
would be easy to create some macros and generate all the code stubs at com-
pile time. Since our specification dictates that this APl spy be extendible, build-
ing the stubs when we compile the spy program isn't an option. Instead, we'll
need to dynamically create the stubs based on information in a configuration
file. Luckily, under Win32 this isn't hard.

For each stub we need, we can simply allocate some memory and write
the appropriate code into it. Under 16-bit Windows this would be harder,
since we would need to somehow allocate memory in code segments, rather
than in the data segments returned by memory allocation functions. Once
we had proper code segments, we couldn't just write our stub code into the
memory block because writing into code segments isn't allowed. To write
to the code stubs, we'd have to use alias selectors or the TOOLHELP
MemoryWrite() function. Under Win32 these issues don't come up since both
the code data segments map to the identical range of addresses. We can write
out our code using regular flat model data pointers and later execute through
that code.

To build the stubs, the spy DLL reads an input file (APISPY32.API) that
contains the following information about each function to be intercepted:

* The DLL containing the function
* The name of the function
* Optional information about the function's parameters

For each function, the spy DLL builds a stub containing code and data,
and which is of the form shown in Figure 10-2. The code portion of the
stub first preserves all the general-purpose 32-bit registers. This isn't strictly
necessary, but good coding practice dictates that you leave things the way
you found them. Next, the stub pushes three pointers on the stack in prepa-
ration for the call to the logging function. The three pointers point at the
function's name, its return address and parameters on the stack, and infor-
mation about the function's parameters. (I'll come back to the parameter
information in a bit.) After the logging function has done its work, the stub
code restores all the general-purpose registers and JMPs to the code that
originally should have been called (had we not intercepted the call).

D I R E C T O R Y

699

DWORD RealAddressOfInterceptedFunction;

pushad

lea

push

push

push

call

popad

jmp

Preserve all registers.

EAX, [ESP+32]

EAX : Push pointer to the return addr and params.

[pParamInfo] ; Push pointer to byte encoded parameter info.

[pszFunctionName] ; Push pointer to the function's name.

LogCall ; Call function that does logging.

; Restore original registers.

[RealAddressOfInterceptedFunction] ; Jump to the original code.

char szFunctionName[] ; ASCIIZ name of the function.

BYTE paramInfo[] ; Optional byte encoded parameter info.

; First byte is the length of the info.

Figure 10-2
For each intercepted function, the SPY DLL builds a stub containing code and data.

As you might expect, the entire collection of stubs needs to be built before
we can start the redirection of APl function calls. As the spy DLL builds each
stub, it adds that stub's address to an array of stub pointers. Redirecting the
function calls in the target program to the appropriate stub is easy. For each
imported function in the target process, the spy DLL retrieves the address of
the imported function. The imported function's addresses are kept in a table
pointed to by the DataDirectory[IMAGE DIRECTORY ENTRY
IMPORT].VirtualAddress field in the PE header. Next, the spy DLL iterates
through the array of stubs it's built, searching for a stub containing the same
address in the stub's first DWORD. If it finds a match, the spy DLL patches
the appropriate DWORD in the target program's imports table with the
address of the stub's first instruction. This process is shown in Figure 10-3.

PARAMETER INFORMATION ENCODING

A large part of the usefulness of API spy programs comes from the fact that
they show the actual values of the parameters to API functions. It would be
prohibitively expensive for the logging function to have a separate section of
code for each function and its parameters. In addition, you'd have to add
code and recompile the API spy in order to add new functions.

A P I S P Y 3 2

700

Figure 10-3
The imparted function addresses are redirected through stubs built on the fly. These stubs
invoke the APISPY32 code that lags the function call's name and parameters.

A better approach is to represent the function parameters in a condensed
format that can be interpreted as part of logging a function call. Since there's
a limited number of parameter types in Win32 programming, I decided to
encode each of the basic types as a unique BYTE value. These fundamentals
types include BYTEs, WORDs, DWORDs, and LPSTRs. To keep things sim-
ple, I encoded all pointers to data as an LPDATA type, with the exception of
LPSTRs and LPWSTRs. If you want to make the spy program fancier, you
can expand the parameter encodings to include other types, including point-
ers to specific data structures (for example, an LPRECT). The logging code
could use this additional parameter type information to display more details
about the parameters (such as what the fields in the LPRECT were).
However, as I said, my goal was to keep things simple, so there are only
ten unique parameter types in the supplied code.

In our API spy program, the parameter information is kept at the very
end of the stub that's built for each APl function. The first byte of the para-
meter information holds the number of parameters for that function. The
BYTE codes for each parameter come immediately afterward, in the order
of their appearance in the function declaration. For example, let's say that

0

701

HWND parameters are represented by the BYTE value 8, while DWORD
parameters use the value 1. The parameter encoding for the GetWindow-
Word(HWND,DWORD) function would be: 2,8,1 (two parameters, the
first an HWND (8) and the second a DWORD (1)). A function that has no
arguments is represented by a single 0 value.

Decoding the parameter information to display the parameter values is
very simple. One of the values that the API function's stub passes to the
logging function is a pointer to the top of the stack (the ESP register) imme-
diately upon entry to the function. The DWORD at the top of the stack is
the return address that control will return to after the API function has
completed. Immediately higher in memory are the parameters that the call-
ing function pushed on the stack. To decode the parameters, the logging
function iterates through the BYTE-encoded parameter information. For
each encoded parameter, the logging function retrieves a DWORD from the
stack and emits a string containing the parameter type and its value (for
instance: LPSTR:00410068).

After each parameter, the code increments the pointer to the stack area
by 4 bytes to point at the next parameter. One nice advantage to the Win32
API is that parameters are pushed in last-to-first order, making the first
parameter appear at the lowest address. If the Win32 API used the pascal
calling convention (first-to-last) like the Win16 API does, decoding the
parameters would be more difficult because the first parameter would
appear at different locations on the stack for different APIs.

FUNCTION RETURN VALUES

At this point, we've got the mechanics of intercepting functions and logging
their parameters well in hand. We could go off now and start implementing
code. However, our design specification says that we need to log the value
that the function returns. This makes things more difficult, and in more
ways than one. While all calls to a given function end up being routed
through one place (allowing us to intercept them all), the API function can
return to a multitude of different places. How can we get control at that
point to retrieve the value of the EAX register, which is where return values
are placed?

Before we let the API function's real code execute, the only thing we
know about what the function returns is the address that it will RET to.
One obvious solution that springs to mind is to set a breakpoint at that

D i s p a t c h M e s s a g e .

702

address. A related method would be to stick in a JMP to our logging code,
While both of these methods would work (usually), they're messy and have
the same set of problems I described earlier when talking about intercepting
the function call. A less obvious but cleaner solution (and one that doesn't
require code modification) is to change the return address on the stack to
point at the spy DLL's return value logging code. Of course, you would have
to temporarily remember the original address, doing all this before you let
the real APl function code execute. After letting the original function code
execute, the return value logging code will be entered. After logging the
function's return value, the logging code copies the original return address
back to the stack so that when the logging code returns, control ends up
back in the target program.

Lest you think that the above method of obtaining function return values
is too simple, be aware that there is a catch. In both Win16 and Win32, an APl
function might be in the middle of executing when it needs to call another APl
function. The classic example of this is DispatchMessage. DispatchMessage
is the code that calls your program's window procedure. When you call
Windows functions in your window procedure, you're actually calling an APl
function from within another APl function (DispatchMessage, in this case). So
what's wrong with that? In the simple method of grabbing return values that I
just described, a single variable holds the original return address. If you get into
a situation with nested APIs, only the most recent call's return address will be
saved. The return addresses of the more deeply nested functions will be lost.

To deal with this problem of nested API functions, I've implemented a
stack of return addresses. Whenever the code patches a function call's return
address to point at our logging code, it adds the original return address to
the top of our return address stack. When the return value logging code is
ready to return to the calling program, it grabs the topmost entry off the
return address stack and returns to that address. Our function return
address stack is similar to the real program stack in some ways. The key
difference is that the return address stack doesn't hold parameters, and only
contains address for functions that are intercepted by the spy DLL.

With this situation of nested API function calls taken care of, we're
ready to start coding, right? Not so fast. Programs under Windows NT and
Windows 95 support multiple threads of execution. Each thread uses its
own separate stack and is oblivious to what the other threads are doing. To
deal with multiple threads, the API spy DLL maintains a separate return
address stack for each thread that the target program starts up. Since the
spy program can't know ahead of time how many threads the process to be
monitored will start up, the memory for the per-thread return address stack

_ d e c l s p e c (t h r e a d)

703

is allocated whenever a new thread starts up. Luckily for our spy program,
Win32 makes it easy to know when a thread is created. The operating system
calls the entry point of all DLLs (for example, DllMain) each time it starts
a new thread. As you'll see in the next section, where I present the spy pro-
gram's code, the DllMain function allocates memory to hold a per-thread
stack for each thread that starts.

The pointer to the per-thread return address stack is stored using the Win32
Thread Local Storage (TLS) mechanism. Thread local storage allows you to
store a collection of unique DWORDs for each thread, but retrieve them in a
consistent manner, no matter which thread is executing. Chapter 3 describes
the implementation of thread local storage in detail. To use thread local storage,
you first allocate an index value with the TlsAlloc function and store the
index in a global variable. Thereafter, each thread can retrieve its thread-specific
data by passing the index to TlsGetValue. To save away a per-thread value,
you call TlsSetValue, passing both the TLS index allocated earlier and the
value you want to save for the currently executing thread. In the case of our
API spy DLL, the per-thread value we want to save is a pointer to our return
address stack for that thread. The APl spy DLL allocates the TLS index value
when the DLL is first loaded and is processing the DLL_PROCESS_ATTACH
code in DllMain.

Some of you Win32 programmers might be aware of the _
_declspec(thread) compiler directive. Using _ _declspec(thread) is a con-
venient way to create per-thread variables without using the TlsXXX func-
tions. (See the description of the .tls section in Chapter 8 for more informa-
tion on how __declspec(thread) works.) Wouldn't it be easier to make the
per-thread stack a _ _declspec(thread) variable, rather than use the TlsXXX
functions? Unfortunately, _ _declspec(thread) variables don't work properly
in a DLL that's loaded with LoadLibrary (they work fine in implicitly
loaded DLLs, though). Our API spy DLL is loaded with LoadLibrary, so _
_declspec(thread) variables are useless to us.

You might be wondering about what our spy program will do under
Win32s, since Win32s doesn't support multithreading. Microsoft did the
right thing and included the TLS functions in the Win32s libraries.
Although the TLS data for a Win32s program is essentially just global data,
the important thing is that our API spy DLL can use the TlsXXX functions
without worrying about which operating system it's running on.

As you can see, grabbing the return value from API functions is quite a
bit more difficult than it initially appears. Not only do we need to maintain

C + + ,

704

a stack of return addresses, but we have to have such a stack for each
thread in the target process. Things can't get any more complicated than
that, can they? Guess again.

One of the neat features of the Win32 APl is structured exception han-
dling, which is related to exceptions in C++, but isn't quite the same thing,
(For details on how structured exception handling works, see Chapter 3.)
The problem with structured exception handling is that it can play havoc
with our APl return address stack. Let's say that you placed a try/except{}
block around a call to DispatchMessage. Inside the window procedure that
DispatchMessage eventually calls, your code generates an exception (a
STATUS_ACCESS_VIOLATION, for instance). The except block that ends
up handling the exception is the except{} block after the DispatchMessage
code. The problem is that the CPU will effectively jump to the except{}
block without ever returning from DispatchMessage. Since our return value
logging code won't be called by the return from DispatchMessage, we don't
know to remove the DispatchMessage return address off our per-thread
return address stack. If this situation occurs repeatedly, the per-thread
return address stack will eventually overflow.

Unlike the other problems we've encountered with return value logging,
there is no elegant, clean solution to the problem caused by structured
exception handling. There are messy, complex, and incomplete solutions to
this problem that I've used in commercial programs (the BoundsChecker32
series), but I haven't included similar code in the APl spy DLL because it
complicates the code greatly. In defense of my decision to ignore structured
exception handling difficulties, programs that actually bounce out of nested
APl functions without returning are rare. To date, I've never seen a program
that has structured exception handling troubles with the logging code as
presented here, with the exception of contrived test programs I've written.

One nice side effect of the return address stack is that we can use the
stack pointer to figure out how deeply nested in API function calls we are.
The logging code takes advantage of this to indent the function call and
return lines for functions that are called inside another API function. The
more deeply nested the APl function, the more indented it appears in the log
file. When the logging code is about to write out a function call or return
value line, it checks the per-thread return address stack pointer and indents
the beginning of the line accordingly. In the log file, it's easy to match up a
return value with its call line by looking for the next line that starts at the
same indentation level. For instance, here you can easily see the call line (at
the top) that matches the return value (at the bottom):

0 x C 0 0 0 0 0 0 0) ;

7'05

DispatchMessageA(LPDATA:80B6AE68)

LoadCursorA(HANDLE:OOOOOOOO,LPSTR:OOOO7F00)

LoadCursorA returns: 2CE

SetCursor()

SetCursor returns: 2CE

DispabchMessageA returns: 0

THE APISPY32 CODE

Now that we've explored the theory involved in how we'll be implementing
the spying code, it's time to discuss the actual code I wrote to implement the
API spy program. I'll first describe the component functions of the DLL, and
then show the loader program code. Don't worry, there's not a whole ton of
code to go through here. I was pleasantly surprised by how little code was
needed.

The name of the APl spy program I've constructed is APISPY32, which
is also the source file name of the spy DLL's entry point. The first important
part of APISPY32.C is shown in Figure 10-4.

HINSTANCE HInstance;

BOOL FChicago = FALSE;

#if defined(_ _BORLANDC_ _)

#define DllMain DllEntryPoint

#endif

INT WINAPI DllMain

HANDLE hInst,

ULONG ul_reason_being_called,

LPVOID lpReserved

// OutputDebugString("In APISPY32.C\r\n");

switch (ul_reason_being_called)

{

case DLL_PROCESS ATTACH:

HInstance = hInst;

FChicago = (BOOL)((GetVersion() & 0xC0000000) == 0xC0000000);

if (InitializeAPISpy32() == FALSE)

return 0;

if (InitThreadReturnStack() == FALSE)

return 0;

break;

D l l M a i n

706

case DLL THREAD ATTACH:

if (InitThreadReturnStack() ==

return 0;

break;

FALSE)

case DLL THREAD_DETACH:

if (ShutdownThreadReturnStack() == FALSE)

return 0;

break;

case DLL PROCESS DETACH:

ShutDownAPISpy32();

if (ShutdownThreadReturnStack() == FALSE)

return 0;

break;

return 1;

Figure 10-4
The first part of the Dl lMain functions in APISPY32.C.

The DllMain function has a switch statement to direct the four important
process/thread events to the appropriate handler. When I say "event" in the
following description, I'm really talking about an invocation of DllMain with
the dwReason field set to a specific value. The DLL_PROCESS_ATTACH
event is our clue to intercept all the target processes calls and set up other
things related to function logging.

For the initial thread in a process, the operating system doesn't call
DllMain with a DLL_THREAD_AT TACH event. Instead, you need to
consider DLL_PROCESS_ATTACH as also containing an implicit
DLL_THREAD_ATTACH event. We'll need a per-thread return address
stack for all threads in the target process, so both the DLL_PROCESS_
ATTACH and DLL_THREAD_ATTACH handlers call InitThreadReturn-
Stack to create the per-thread stack. The implicit assumption being made
here is that both of these notifications are made in the context of newly
created threads. The DLL_THREAD_DETACH event handler calls
$hutdownThreadReturnStack to free the memory used by a per-thread
return address stack. The last event, DLL_PROCESS_DETACH, calls
ShutDownAPISpy32. Currently this function doesn't do much except close
the log file so that the operating system's internal buffers will be written to
the disk. We could actually go and patch back all the original addresses in
the imports section of the EXE, but there's really no reason to. As with

D L L _ T H R E A D _ D E T A C H

thread creation, there's no explicit DLL_THREAD_DETACH for the last
thread in the process. The DLL_PROCESS_ATTACH handler therefore also
calls ShutdownThreadReturnStack to get rid of the last remaining return
address stack.

The remaining parts of APISPY32.C are shown in Figure 10-5. The first
action of the InitializeAPISpy32 function is to invoke the LoadAPlConfig-
File routine. LoadAPIConfigFile loads the .APl file containing APl functions
and parameter information and builds the stubs with that data. (I'11 discuss
this function in more detail later on in the code walkthrough.)

707

BOOL InitializeAPISpy32(void)

HMODULE hModExe;

DWORD moduleBase;

if (LoadAPIConfigFile() == FALSE)

return FALSE;

if (OpenLogFile() == FALSE)

return FALSE;

hModExe : GetModuleHandle(O);

if (!hModExe)

return FALSE;

if ((GetVersion() & 0xC8000000) == 0x80000000) // Win32s???

moduleBase - GetModuleBaseFromWin32sHMod(hModExe);

else

moduleBase = (DWORD)hModExe;

if (!moduleBase)

return FALSE;

return InterceptFunctionsInModule((HMODULE)moduleBase);

BOOL ShutDownAPISpy32(void)
{

CloseLogFile();

return TRUE; }

 Figure 10-5
The APISPY32. C initialization and shutdown functions.

N T

708

After building the API function stubs, the next step in the initialization
is to open up the output file that the spy DLL writes its function call and
return value information to. The final portion of the initialization is to cai
InterceptFunctionslnModule to redirect the target program's function calls
to the stubs we built earlier. The InterceptFunctionslnModule function needs
to know the base load address of the target process in memory so that it can
go find the imported functions section table. In Windows NT and Windows
95 (Windows 4.0), the HMODULE of a running program is the same as its
base load address. Since our DLL isn't the main EXE, its HMODULE isn't
the one we need. Instead, we call GetModuleHandle(0), which under Win32
gives you the EXE's HMODULE, no matter where you call it from. Under
Win32s, we need to take an extra step, since an HMODULE isn't the same
as a base address. To get the base address of a Win32s module, I wrote
the GetModuleBaseFromWin32sHMod function. This routine uses two
undocumented Win32s functions to convert a Win32s HMODULE to a base
address, and is in the W32SSUPP. C file. Shutting down the API spy is much
simpler than the initialization code, and consists of a call to CloseLogFile.

The code in Figure 10-6 is responsible for reading in the APISPY32.API
file. After reading in the definition for one function, it calls AddAPIFunction
in INTRCPT. C to actually allocate memory for the function stub and initialize
it accordingly. The APISPY32.API file is a line-oriented ASCII text file.
Whitespace before lines and blank lines are tolerated, but extra characters
at the end of an otherwise valid line are not. Any line that isn't recognized is
ignored and processing continues with the next line.

The syntax for the APl definition is extremely simple. For each function
you want to intercept, add a line of the following form:

API:ModuleName:FunctionName

For instance:

API:USER32.dll:GetMessageA

Immediately after a new function definition, you can place parameter
information about that function, one parameter per line. For example:

API:USER32.dll:GetMessageA

LPDATA

HWND

DWORD

DWORD

H W N D

709

The valid parameter keywords are stored in the ParamEncodings array,
and consist of the following:

DWORD ; Any general purpose 4 byte value (DWORD, UINT, int, etc.)

WORD ; Any general purpose 2 byte value (WORD, USHORT, short, etc.)

BYTE ; Any general purpose 1-byte value (BYTE, char, etc.)

LPSTR ; Pointer to a null terminated ASCII string.

LPWSTR ; Pointer to a null terminated Unicode (wide) string.

LPDATA ; Pointer to any data, other than LPSTRs and LPWSTRs.

HANDLE ; A handle value (other than HWNDs).

HWND ; An HWND.

BOOL ; A BOOL parameter.

LPCODE ; Pointer to code (e.g., FARPROC, WNDPROC, etc.).

To allow you to use APISPY32 with a minimum of initial fuss, I've
included an APISPY32.API file containing function and parameter information
for KERNEL32.DLL, USER32.DLL, and GDI32.DLL, and ADVAPI32.DLL.
You can add additional functions definitions to this file. A likely candidate would
be COMCTL32.DLL. If you want to use APISPY32 with several different pro-
jects and DLLs, you might want to extend the LoadAPIConfigFile function to
read in multiple .API files.

In the parameter types I've defined, there is some overlap. For example,
an HWND could also be encoded as a HANDLE or a DWORD. My goal in
defining this set of keywords was to break out the most commonly encoun-
tered types to allow some flexibility in how the parameters will be displayed
in the output. By having separate LPSTR and LPDATA parameter types, we
can show a snippet of the actual string when we encounter an LPSTR para-
meter. If we lumped LPSTR parameters in with LPDATA parameters, we
wouldn't know which parameters to try to show characters from the string
for. Another possibility that I haven't implemented would be to show TRUE
or FALSE for BOOL parameters, rather than their numeric value. Yet
another option would be to take HWND parameters and include a portion
of the window title in the output. This makes it easier to connect an
HWND value to a specific window when viewing the log file.

If you're ambitious, feel free to extend the parameter encodings I've
defined here. Adding a new parameter type is easy. In the PARMTYPE.H file
is an enumeration called PARAMTYPE. Add your new parameter type to the
end of the enumeration. Then, add the name of the parameter as it should
appear in the API file, and your enumeration to the end of the
ParamEncodings array. Finally, in the logging code in LOG.C, add the code to
print out whatever you want for your new parameter. One obvious thing to

{

710

do would be to define more specific pointer types. For example, an LPMSG is
a common parameter. By defining an LPMSG parameter, the logging code
could dereference the LPMSG pointer to add the values of the MSG structure
members to the log. Figure 10-6 shows the beginning of LOADAPIS.C, the
.API file-parsing code.

BOOL IsNewAPILine(PSTR pszInputLine);

BOOL ParseNewAPILine(PSTR pszInput, PSTR pszDLLName, PSTR pszAPIName);

PARAMTYPE GetParameterEncoding(PSTR pszParam);

PSTR SkipWhitespace(PSTR pszInputLine);

extern HINSTANCE HInstance;

BOOL LoadAPIConfigFile(void)
{

FILE *pFile;

char szInput[256];

BYTE params[33];

BOOL fBuilding = FALSE;

char szAPIFunctionFile[MAX_PATH];

PSTR p;

// Create a string with the path to the API function file. This

// file will be in the same directory as this DLL.

GetModuleFileName(HInstance, szAPIFunctionFile, sizeof(szAPIFunctionFile));

p = strrchr(szAPIFunctionFile, '\\')+1;

strcpy(p, "APISPY32.API");

pFile = fopen(szAPIFunctionFile,

if (!pFile)

return FALSE;

"rt");

//

// Format of a line is moduleName:APIName

// (e.g., "KERNEL32.DLL:LoadLibraryA")
//

while (fgets(szInput, sizeof(szInput), pFile))
{

PSTR pszNewline, pszInput;

char szAPIName[128], szDLLName[128];

pszInput = SkipWhitespace(szInput);

if (*pszInput == '\n') // Go to next line if this line is blank

continue;

711

pszNewline = strrchr(pszInput. '\n');

if (pszNewline)

*pszNewline = 0;

// Look for the newline.

// Hack off the newline.

if (IsNewAPILine(pszlnput))
{

// Dispense with the old one we've been building.

if (fBuilding)

AddAPIFunction(szDLLName. szAPIName, params);

if (ParseNewAPILine(pszInput. szDLLName, szAPIName))

fBuilding = TRUE;

else

fBuilding = FALSE;

params[0] = 0; // New set of parameters.

} else { // A parameter line

BYTE param = (BYTE)GetParameterEncoding(pszlnput);

if (param ! = PARA M_NONE)

params[params[O] +1] = param; // Add param to end of list.

params[O]++; // Update the param count.

else

if ((*pszInput != O) && (stricmp(pszInput. "VOID") != 0))
{

char errBuff[256];

wsprintf(errBuff. "Unknown param %s in %sXrXn".

pszInput, szAPIName);

OutputDebugString(errBuff);
}

}
}

fclose(pFile);

return TRUE;

// Returns TRUE if this line is the start of an API definition. It assumes

// that any whitespace has already been skipped over.

BOOL IsNewAPILine(PSTR pszInputLine)

{ " L P C O D E " ,

712

 return 0 == strnicmp(pszInputLine, "API:", 4);

}

// Break apart a function definition line into a module name and a function

// name. Returns those strings in the passed PSTR buffers.

BOOL ParseNewAPILine(PSTR pszInput, PSTR pszDLLName, PSTR pszAPIName)

PSTR pszColonSeparator;

pszDLLName[O] = pszAPIName[O] = 0;

pszInput += 4; // Skip over "API:"

pszColonSeparator = strchr(pszInput, ':

if (!pszColonSeparator)

return FALSE;

');

*pszColonSeparator++ = 0; // Null terminate module name, bump up

// pointer to API name.

strcpy(pszDLLName, pszInput);

strcpy(pszAPIName, pszColonSeparator);

return TRUE;
}

typedef struct tagPARAM_ENCODING

PSTR pszName; // Parameter name as it appears in APISPY32.API

PARAMTYPE value; // Associated PARAM_xxx enum from PARMTYPE.H

PARAM ENCODING, * PPARAM_ENCODING;

PARAM_ENCODING ParamEncodings[] = {

{"DWORD", PARAM_DWORD},

{"WORD", PARAM_WORD},

{"BYTE", PARAM_BYTE},

{"LPSTR", PARAM_LPSTR},

{"LPWSTR", PARAM_LPWSTR},

{"LPDATA", PARAM_LPDATA},

{"HANDLE", PARAM_HANDLE},

{"HWND", PARAM_HWND},

{"BOOL", PARAM_BOOL},

{"LPCODE", PARAM_LPCODE},

};

}

713

// Given a line that's possibly a parameter line, returns the PARAM xxx

// encoding for that parameter type. Lines that don't match any of the

// strings in the ParamEncodings cause the function to return PARAM NONE

PARAMTYPE GetParameterEncoding(PSTR pszParam)
{

unsigned i;

PPARAM ENCODING pParamEncoding = ParamEncodings;

for (i=0; i < (sizeof(ParamEncodings)/sizeof(PARAM_ENCODING)); i++
{

if (stricmp(pParamEncoding->pszName, pszParam) == 0)

return pParamEncoding->value;

pParamEncoding++;

}

return PARAM_NONE;

}

// Given a pointer to an ASCIIZ string, return a pointer to the first

// non-whitespace character in the line.

PSTR SkipWhitespace(PSTR pszInputLine)

{
while (*pszInputLine && isspace(*pszInputLine))

pszInputLine++:

return pszInputLine;

I

 Figure 10-6
The beginning of the .AP/file-parsing process in LOADAPIS. C.

The INTRCPT. C source module contains all the code related to inter-
cepting functions calls from the target process. The first routine in INTR-
CPT. C is AddAPIFunction. After the LOADAPIS.C code has read in all the
information for one function, it passes the function name, the name of the
DLL that contains the function, and the byte-encoded parameter informa-
tion to AddAPIFunction. AddAPIFunction's two jobs are to construct
the function interception stub and to add that stub to the list of stubs.
AddAPIFunction delegates the grunge work of constructing the stub to the
BuildAPIStub routine.

BuildAPIstub first uses the function and module name to call
GetProcAddress to retrieve the address of the specified function. Assuming
GetProcAddess succeeds, the BuildAPIStub code calculates how much
memory will be needed for the stub (the APl name and the parameter

A P I F u n c t i o n

714

encodings are of variable length), and allocates the memory. Next
BuildAPIStub fills in the fields of the stub, the initial portions of which are
defined by the APIFunction structure given in INTRCPT2.H. At the end of
the allocated stub memory, BuildAPIStub copies the function's name and its
byte-encoded parameter information.

Besides building and maintaining the function interception stubs, the other
important duty of INTRCPT. C is to rummage through the target process's
memory image and redirect its JMP DWORD PTR [XXXXXXXX] calls
to point at the stubs built earlier. The InterceptFunctionslnModule func-
tion doesn't need anything except the load address of the module in mem-
ory to find the imported functions table, which I described in an earlier
section. The function first verifies that a valid module base address was
found by looking for the DOS MZ and Win32 PE signatures in the file.
Once the function knows that it has a valid base address, it uses the data
directory at the end of the IMAGE_NT_HEADERS structure to get a
pointer to the .idata section of the module.

To find all the functions that the EXE imports, InterceptFunctionsln-
Module iterates through the array of IMAGE_IMPORT_DESCRIPTOR
structures at the beginning of the .idata section. The PEDUMP from
Chapter 8 does something similar to this. There is one IMAGE_IMPORT_
DESCRIPTOR for each DLL that the EXE implicitly links to. Each IMAGE
IMPORT_DESCRIPTOR contains a relative offset to an array of IMAGE_
THUNK_DATA structures, with one IMAGE_THUNK_DATA structure for
each imported function.

Using two nested loops, InterceptFunctionslnModule walks through all
the functions imported by the EXE and retrieves the address of the imported
function. This address is stored as part of the IMAGE THUNK_DATA
structure. For each imported function, our routine passes the imported
function's address to LookuplnterceptedAPI. LookuplnterceptedAPI scans
through the array of function stubs we built, looking for a stub that has the
same address in its first DWORD. If a stub is found, InterceptFunctionsln-
Module overwrites the original imported function address in the IMAGE_
THUNK_DATA structure with a pointer to code in the stub we just looked
up (as shown in Figure 10-7). From this point on, whenever the process to
be spied on calls an imported function, its JMP DWORD PTR [XXXXXXXX]
thunk in the import address table will jump to our interception stub rather
than to the intended API function. Only after we've logged the function call
will our stub pass control along to the imported function.

P A P I F u n c t i o n

715

PAPIFunction BuildAPIStub(PSTR pszModule, PSTR pszFuncName, PBYTE params);

// MakePtr is a macro that allows you to easily add to values (including

// pointers) together without dealing with C's pointer arithmetic. It

// essentially treats the last two parameters as DWORDs. The first

// parameter is used to typecast the result to the appropriate pointer type.

#define MakePtr(cast, ptr, addValue) (cast)((DWORD)(ptr)+(DWORD)(addValue))

#define MAX_INTERCEPTED_APIS 2048
unsigned InterceptedAPICount = 0;

PAPIFunction InterceptedAPIArray[MAX_INTERCEPTED_APIS];

extern BOOL FChicago;
extern FILE * PLogFile;

BOOL AddAPIFunction

PSTR pszModule,

PSTR pszFuncName,

PBYTE params

// Exporting DLL name.

// Exported function name.

// Opcode encoded parameters of exported function.

PAPIFunction pNewFunction;

if (InterceptedAPICount >= MAX _INTERCEPTED _APIS)

return FALSE;

pNewFunction = BuildAPIStub(pszModule, pszFuncName, params);

if (!pNewFunction)

return FALSE;

InterceptedAPIArray[InterceptedAPICount++] = pNewFunction;

return TRUE;

PAPIFunction BuildAPIStub(PSTR pszModule, PSTR pszFuncName, PBYTE params)
{

UINT allocSize;

PAPIFunction pNewFunction;

PVOID realProcAddress;

UINT cbFuncName;

HMODULE hModule;

hModule = GetModuleHandle(pszModule);

if (!hModule)

return 0;

realProcAddress = GetProcAddress(hModule, pszFuncName);

if (!realProcAddress)

x x x x x x x x

716

return 0;

cbFuncName = strlen(pszFuncName);

allocSize = sizeof(APIFunction) + cbFuncName +1 + *params + 1;

pNewFunction = malloc(allocSize):

if (!pNewFunction)

return 0;

pNewFunction->RealProcAddress = realProcAddress;

pNewFunction->instr_pushad = 0x60;

pNewFunction->instr_lea_eax_esp_plus_32 = Ox2024448D:

pNewFunction->instr_push_eax = 0x50;

pNewFunction->instr_push_offset_params = 0x68;

pNewFunction->offset_params = (DWORD)(pNewFunction + 1) + cbFuncName + 1;

pNewFunction->instr_push_offset funcName = 0x68;

pNewFunction->offset_funcName = (DWORD)(pNewFunction + 1);

pNewFunction->instr_call_LogFunction = OXES;

pNewFunction->offset_LogFunction

= (DWORD)LogCall - (DWORD)&pNewFunction->instr_popad;

pNewFunction->instr_popad = 0x61;

pNewFunction->instr_jmp_dword_ptr_RealProcAddress = Ox25FF;

pNewFunction->offset_dword_ptr_RealProcAddrss = (DWORD)pNewFunction;

strcpy((PSTR)pNewFunction ->offset_funcName, pszFuncName);

memcpy((PVOID)pNewFunction->offset_params, params, *params+1);

return pNewFunction;

PAPIFunction LookupInterceptedAPI(PVOID address)

{
unsigned i;

PVOID stubAddress;

for (i=0; i < InterceptedAPICount; i++)

{
if (InterceptedAPIArray[i]->RealProcAddress == address

return InterceptedAPIArray[i];
}

// If it's Windows 95, and the app is being debugged (as this app is)

// the loader doesn't fix up the calls to point directly at the

// DLL's entry point. Instead, the address in the .idata section

// points to a PUSH xxxxxxxx / JMP yyyyyyyy stub. The address in

// xxxxxxxx points to another stub: PUSH aaaaaaaa / JMP bbbbbbbb.

// The address in aaaaaaaa is the real address of the function in the

// DLL. This ugly code verifies we're looking at this stub setup,

// and if so, grabs the real DLL entry point, and scans through

// the InterceptedAPIArray list of addresses again.

F C h i c a g o

717

// ***WARNING*** ***WARNING*** ***WARNING*** ***WARNING***

// This code is subject to change!

if (FChicago)
{

if (address < (PVOID)0x80000000) // Only shared, system DLLs

return 0; // have stubs.

if (IsBadReadPtr(address, 9) || (*(PBYTE)address != 0x68)

|| (*((PBYTE)address+5) != 0xE9))

return 0;

stubAddress = (PVOID) *(PDWORD)((PBYTE)address+1);

for (i=0; i < InterceptedAPICount; i++)
{

PVOID lunacy;

if (InterceptedAPIArray[i]->RealProcAddress == stubAddress)

return InterceptedAPIArray[i];

lunacy = InterceptedAPIArray[i] ->RealProcAddress;

if (!IsBadReadPtr(lunacy, 9) && (*(PBYTE)lunacy -= 0x68)

&& (*((PBYTE)lunacy+5) == 0xE9))
{

lunacy = (PVOID)*(PDWORD)((PBYTE)lunacy+1);

if (lunacy == stubAddress)

return InterceptedAPIArray[i]

return 0;
}

BOOL InterceptFunctionsInModule(PVOID baseAddress)
{

PIMAGE_DOS_HEADER pDOSHeader = (PIMAGE_DOS_HEADER)baseAddress;

PIMAGE_NT_HEADERS pNTHeader;

PIMAGE_IMPORT_DESCRIPTOR pImportDesc;

if (IsBadReadPtr(baseAddress, sizeof(PIMAGE_NT_HEADERS)))

return FALSE;

if (pDOSHeader->e_magic != IMAGE_DOS_SIGNATURE)

return FALSE:

pNTHeader = MakePtr(PIMAGE_NT_HEADERS, pDOSHeader, pDOSHeader->e lfanew);

if (pNTHeader->Signature != IMAGE_NT_SIGNATURE)

return FALSE;

}

718

pImportDesc = MakePtr(PIMAGE_IMPORT_DESCRIPTOR, baseAddress,

pNTHeader->OptionalHeader.

DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].

VirtualAddress);

// Bail out if the RVA of the imports section is 0 (it doesn't exist)

if (pImportDesc == (PIMAGE_IMPORT_DESCRIPTOR)pNTHeader)

return FALSE:

while (plmportDesc->Name)
{

PIMAGE_THUNK_DATA pThunk;

pThunk = MakePtr(PIMAGE_THUNK_DATA,

baseAddress, pImportDesc->FirstThunk);

while (pThunk->ul. Function)
{

PAPIFunction pInterceptedFunction;

pInterceptedFunction = LookupInterceptedAPI(pThunk->ul. Function);

if (pInterceptedFunction)
{

DWORD cBytesMoved;

DWORD src= (DWORD)&pInterceptedFunction->instr_pushad:

// Bash the import thunk. We have to use WriteProcessMemory,

// since the import table may be in a code section (courtesy

// of the NT 3.51 team!).

WriteProcessMemory(GetCurrentProcess(),

&pThunk->ul. Function,

&src, sizeof(DWORD), &cBytesMoved);

pThunk++:
}

pImportDesc++;
}

return TRUE;
}

Figure 10-7
The beginning of stub building and function interception in INTRCPT. C.

The LOG.C file contains all code related to writing the function call and
return information to the output file. The first routine, OpenLogFile, opens
the output file in the directory where the program to be spied on resides.
The output file has the same name as the executable file, but with a OUT
extension. Calling GetModuleFileName with the HMODULE of the target
program conveniently gives us the program's directory and filename, so all
we have to do is replace the EXE extension with OUT. OpenLogFile doesn't
take read-only media into account, so if you run the executable from a CD-
ROM, the fopen call will fail and you won't get a trace file.

The LogCall routine in LOG.C is the high-level routine responsible for
adding the information about a function call to the output file. LogCall is
called by the intercepted function stubs, and expects a pointer to the function
name, a pointer to the byte-encoded parameter information, and a pointer
to the stack upon entry to the stub code. The first thing LogCall does is pass
off the tedious job of decoding and formatting the function parameters to
the DecodeParamsToString function.

Afterward, LogCall emits a new line to the trace file with the function name
and its decoded parameters inside ()'s. If the intercepted function is nested inside
another intercepted function, the line will be indented with space characters
proportional to the nesting level. The final act of the LogCall code is to call
InterceptFunctionReturn. This routine (in RETURN. C) patches the return
address of the intercepted function to point at our return-value logging code.

The DecodeParamsToString helper function accepts a pointer to the
stack upon entry to the intercepted function stub, a pointer to the byte-
encoded function parameters, and a pointer to a buffer to write to. The
function first bumps up the stack frame pointer by 4 bytes to get past the
intercepted function's return address. Next, a for loop iterates through all
the byte-encoded parameters, grabs the associated DWORD out of the stack
frame, and formats the parameter accordingly. The general form of each
parameter is <type>:<value>, for instance, HWND:000200AC. If the para-
meter is of type LPSTR, the function calls the GetLPSTR helper function to
get a snippet (10 bytes maximum) of the string that the parameter points to.
If a valid string is pointed to, the string is appended to the other information,
separated by a: (a colon), as shown here:

LPSTR:80B70018:"FreeCellIc"

As DecodeParamsToString formats each parameter, it tacks the string on
to the end of the buffer passed in to the function. If there are multiple parame-
ters, a "," (a comma) separates them, just as it would in real C/C++ code. The

719

{

720

goal is to make the parameter information look as realistic as possible, for
example:

LoadAcceleratorsA(HANDLE:0001C9E,LPSTR:80B70004:"FreeMenu")

The flip side of logging the function's parameters is logging its return
value, which is performed by the LogReturn function. LogReturn is consid-
erably simpler than LogCall, and consists of indenting the return line appro-
priately for its nesting level and then printing out the function name and
return value.

Some of you may have noticed the complete lack of any thread synchro-
nization code in the LOG.C. Normally in a multithreading program that
does file I/O, you need critical sections or mutexes to prevent problems if a
thread gets switched away from at an inopportune time. The LOG.C
doesn't need to use thread synchronization since it doesn't use any global
variables that it modifies (neither the PLogFile pointer nor the TlsIndex
variables will change during program execution). But what about the
fprintf() calls? Won't there be problems if a thread switches in the middle of
one of them? If you don't pay attention, the answer is yes. However, the
APISPY32 DLL is linked using the multithreading runtime library
LIBCMT. LIB for Visual C++). These multithreading libraries internally use
synchronization mechanisms so that the user of the functions doesn't have
to. Interestingly enough, if you look through all the code for APISPY32, you
won't find any synchronization code. This is largely because global vari-
ables are written to only during the initialization phase, and never change
afterward. Figure 10-8 shows LOG.C, which writes the APl function names
and parameters to the output file.

// Helper function prototypes

void MakeIndentString(PSTR buffer, UINT level):

void DecodeParamsToString(PBYTE pParams, PDWORD pFrame,

BOOL GetLPSTR(PSTR ptr, PSTR buffer);

PSTR pszParams);

FILE *PLogFile = 0;

extern DWORD TlsIndex: // Defined in RETURN.C

BOOL OpenLogFile(void)
{

char szFilename[MAX _ PATH];

PSTR pszExtension;

GetModuleFileName(GetModuleHandle(O), szFilename, sizeof(szFilename));

721

pszExtension = strrchr(szFilename, '.');

if (!pszExtension)

return FALSE;

strcpy(pszExtension, ".out");

PLogFile = fopen(szFilename, "wt")

return (BOOk)PkogFile;

BOOL CloseLogFile(void)

if (PLogFile)

fclose(PLogFile);

return TRUE;

void __stdcall LogCall(PSTR pszName, PBYTE pParams, PDWORD pFrame

{

char szParams[512];

char szIndent[128];

PPER THREAD DATA pStack;

if (!PLogFile)

return;

DecodeParamsToString(pParams, pFrame, szParams);

pStack = (PPER THREAD DATA)TlsGetValue(TlsIndex);

if (!pStack)

return;

MakeIndentString(szIndent, pStack ->FunctionStackPtr);

fprintf(PLogFile, "%s%s(%s)\n", szIndent, pszName, szParams);

fflush(PLogFile);

// Patch the return address of this function so that returns to us

InterceptFunctionReturn(pszName, pFrame);

void DecodeParamsToString(PBYTE pParams, PDWORD pFrame, PSTR pszParams

{

w s p r i n t f (p s z P a r a m s ,

722

unsigned i;

unsigned paramCount;

unsigned paramShowSize;

PSTR pszParamName;

pszParams[0] = 0; // Null out string in case there's no parameters.

paramCount = *pParams++;

pFrame++;

// Get number of parameters and advance

// to first encoded param.

// Bump past the DWORD return address.

for (i=0; i < paramCount; i++)

{

switch (*pParams)

{

case PARAM DWORD:

pszParamName = "DWORD"; paramShowSize = 4; break;

case PARAM WORD:

pszParamName = "WORD" ; paramShowSize = 2; break;

case PARAM BYTE:

pszParamName = "BYTE"; paramShowSize = 1; break;

case PARAM LPSTR:

pszParamName = "LPSTR"; paramShowSize = 4; break;

case PARAM LPWSTR:

pszParamName = "LPWSTR"; paramShowSize = 4; break;

case PARAM LPDATA:

pszParamName = "LPDATA"; paramShowSize = 4; break;

case PARAM HANDLE:

pszParamName = "HANDLE" ; paramShowSize = 4; break;

case PARAM HWND:

pszParamName = "HWND"; paramShowSize = 4; break;

case PARAM_BOOL:

pszParamName = "BOOL"; paramShowSize = 4; break;

case PARAM LPCODE:

pszParamName = "LPCODE"; paramShowSize = 4; break:

default:

pszParamName = "<unknown>"; paramShowSize = 0;

pszParams += wsprintf(pszParams, "%s:", pszParamName);

switch (paramShowSize)

{

case 4: pszParamName = "%08X"; break;

case 2: pszParamName = "%04X"; break;

case 1: pszParamName = "%02X"; break;

723

pszParams += wsprintf(pszParams, pszParamName, *pFrame) ;

// Tack on the string literal value if it's a PARAM LPSTR

if (*pParams == PARAM LPSTR)

char buffer[30];

if (GetLPSTR((PSTR)*pFrame, buffer))

{

strcpy(pszParams, buffer);

pszParams += strlen(buffer);

if ((paramCount i) != 1)

*pszParams++ = ',';

// Tack on a comma if not last

// parameter.

pFrame++;

pParams++;

// Bump frame up to the next DWORD value

// advance to next encoded parameter.

// End of for() statement.

BOOL GetLPSTR(PSTR ptr, PSTR buffer)

{

PSTR p = buffer;

int i;

*p++ = ':';

*p++ = '\"';
// Write out initial -> :" <-

for (i=0; i < 10; i++)

{

if (!IsBadReadPtr(ptr, 1) && *ptr

{

*p = *ptr++;

if (*p == '\r') { *p++ = '\\'; *p : 'r'; }

else if (*p == '\n') { *p++ = '\\': *p = 'n'; }

else if (*p == '\t') { *p++ = '\\': *p = 't'; }

p++;

}
else

break;

R E T U R N . C

724

if (i == 0) // Not a valid string

return FALSE

*p++ = '\"';

*p++ = O;

/ Valid string ptr - end quote and null

/ terminate the string

return TRUE; }

void LogReturn(PSTR pszName, DWORD returnValue, DWORD level)

{

char szIndent[128];

if (!PLogFile)

return;

MakeIndentString(szIndent, level);

fprintf(PLogFile, "%s%s returns: %X\n",

fflush(PLogFile);

szIndent, pszName, returnValue);

void MakeIndentString(PSTR buffer, UINT level) {

DWORD cBytes = level * 2;

memset(buffer, ' ', cBytes);

buffer[cBytes] = 0;

}

Figure 10-8
LOG. C writes the APl function names and parameters to this output file.

The code in RETURN.C all relates to intercepting the return from an
API function in order to get its return value. The first two functions,
InitThreadReturnStack and ShutdownThreadReturnStack, are called once
for each thread in the target process. InitThreadReturnStack allocates a
block of memory the size of a PER_THREAD_DATA structure and initial-
izes it (see PERTHRED.H). The PER_THREAD_DATA structure holds the
two components necessary for that thread's return address stack: an array
of HOOKED_FUNCTION structures and a stack pointer (see Figure 10-9).

Each time an intercepted function is called, its original return address

and name pointer are written to the next available HOOKED_FUNCTION
structure. Afterward, the stack pointer is incremented by 1. Implementing
the stack in this way allows the stack pointer (really an index, not a pointer)

p o i n t e r

to correspon d to th e curren t nestin g level . Th e loggin g routine s tak e advan-
tag e o f thi s to inden t th e cal l an d retur n line s a s appropriat e fo r th e current
function-nestin g level . Th e pointe r to th e PER_THREAD_DAT A structur e is
store d in th e Threa d Loca l Storag e slo t allocate d fo r it a t DLL initialization.

725

Figure 10-9
The PER_THREAD_DATA structure contains the stack pointer and the array of
HOOKED_FUNCTION structures that hold that thread's return address stack.

Th e InterceptFunctionRetur n is calle d b y th e function-cal l loggin g code,
jus t prio r to lettin g contro l jum p to th e originall y intende d AP l function
code . Th e InterceptFunctionRetur n firs t add s th e intercepte d function's
retur n addres s an d nam e to th e retur n addres s stack . Afterward , it over-
write s th e retur n addres s wit h th e addres s o f th e AsmCommonReturnPoint
routin e in ASMRETRN.ASM.

The final function in RETURN. C is CCommonReturnPoint, which is
invoked by the assembler code in AsmCommonReturnPoint. Although I
could have had the assembler code do everything, I wanted to keep as much
of APISPY32 in C as possible. CCommonReturnPoint first calls LogReturn
to log the intercepted function's return value. It then writes the original
return value into a special space in the stack reserved for that purpose by
the assembler code, and returns to the assembler code. Figure 10-10 shows
RETURN.C, which handles the details of logging the function's return value.

p P e r T h r e a d D a t a

726

void AsmCommonReturnPoint(void);

DWORD TlsIndex = OxFFFFFFFF;

BOOL InitThreadReturnStack(void)

PPER_THREAD_DATA pPerThreadData;

static BOOL firstTime = TRUE;

if (firstTime)

TlsIndex = TlsAlloc();

firstTime = FALSE;

if (TlsIndex == OxFFFFFFFF)

return FALSE;

pPerThreadData = malloc(sizeof(PER_THREAD_DATA));

if (!pPerThreadData)

return FALSE;

pPerThreadData->FunctionStackPtr = 0;

TlsSetValue(TlsIndex, pPerThreadData);

return TRUE:
}

BOOL ShutdownThreadReturnStack(void)

I
PPER_THREAD_DATA pPerThreadData;

if (TlsIndex == OxFFFFFFFF)

return FALSE;

pPerThreadData = TlsGetValue(TlsIndex);
if (pPerThreadData)

free(pPerThreadData);

return TRUE;

BOOL InterceptFunctionReturn(PSTR pszName, PDWORD pFrame)

I
PPER_THREAD_DATA pStack;

DWORD i;

pStack = (PPER_THREAD_DATA)TlsGetValue(TlsIndex);
if (!pStack)

return FALSE;

p S t a c k - > F u n c t i o n S t a c k P t r + + ;

727

if (pStack ->nctionStackPtr >= (MAX_HOOKED_FUNCTIONS - 1))

return FALSE;

i = pStack->FunctionStackPtr;

pStack->FunctionStack[i].pfnReturnAddress = (PVOID)pFrame[0];

pStack->FunctionStack[i].pszName = pszName;

pStack->FunctionStackPtr++;PTR++;

pFrame[0] = (DWORD)AsmCommonReturnPoint:

return TRUE;

{

// return address <- pFrame[8]
// EAX <- pFrame[7]

// ECX <- pFrame[6]
// EDX <- pFrame[5]
// EBX <- pFrame[4]

// ESP <- pFrame[3]
// EBP <- pFrame[2]
// ESI <- pFrame[1]

// EDI <- pFrame[0]

//

// Common return point for all functions that we've intercepted.

// Called by AsmCommonReturnPoint in ASMRETRN,ASM
// pFrame is a pointer to the stack frame set up by the PUSHAD
// (see above comment for the layout of this frame)
//

void CCommonReturnPoint(PDWOR D pFrame)
{

PPER THREA D DAT A pStack;

DWO D i;

// Get the function stack for the current thread
pStack = (PPER_THREAD_DATA)TlsGetValue(TlsIndex);

if (!pStack)

return;

i = - pStack->FunctionStackPtr;

// Emit the information about the function return value to the logging

// mechanism,
LogReturn(pStack->FunctionStack[i].pszName, pFrame[7], i);

// Patch the return address back to what it was when the function

// was originally called.
pFrame[8] = (DWORD)pStack->FunctionStack[i].pfnReturnAddress:

 Figure 10-10
RETURN. C logs the function's return value.

7 2 8

When I set out to write APISPY32, I wanted to keep it entirely in C
code. Unfortunately, given the stack games we played to get control when
an intercepted function returns, I couldn't find a way to do it cleanly in C.
Also, C routines are allowed to trash registers. I wanted the APISPY32 code
to have as little effect as possible on the target process, so I chose to push

and pop all the general-purpose registers around the call to the C routines.
The ASMRETRN.ASM code does the bare minimum. It first subtracts 4
from the ESP register to reserve space for the original return address. The C
code eventually fills in that DWORD with the correct address, so that when

the assembler code returns, it will return to the correct location, and with
the stack pointer exactly as it was when the routine was entered. The
remainder of the code, shown in Figure 10-11, is just a PUSHAD and
POPAD around a call to the CCommonReturnPoint function.

.386

.model flat

extrn _CCommonReturnPoint:proc

.code

public _AsmCommonReturnPoint

_AsmCommonReturnPoint proc

SUB ESP,4 ; Make space for return address

PUSHAD

MOV

PUSH

CALL

ADD

POPAD

RET

EAX,ESP

EAX

_CCommonReturnPoint

ESP,4

_AsmCommonReturnPoint endp

END

Figure 10-11
The assembler portion of the function return hooking code in ASMRETRN.

I m t e F r o m H M o d u] e

729

WIN32S-SPECIFIC CODE

The last remaining bit of code m APISPY32.DLL is specific to Win32s, and
comes from the W32SSUPP. C file. The one function from this module,
GetModuleBaseFromWin32sHMod, is shown in Figure 10-12. The func-
tion's task is to take a Win32s hModule (which isn't a base load address of
a module in memory), and convert it into a base address. Browsing through
the Win32s documentation, I couldn't find any clean (or even documented)
way to do the conversion. However, I did know that functions like the
Win32 GetProcAddress would need to do something similar. Stepping
through the Win32s libraries in SoftIce/W revealed that two exported (but
undocumented) functions in W32SKRNL.DLL did exactly what I needed.
The first function is _ImteFromHModule@4, which takes a Win32s
HMODULE and returns an internal handle known as an IMTE. (IMTEs
were described in Chapter 3.) The second function I found is BaseAddr-
FromImte, which takes one of these IMTEs as a parameter and returns a
32-bit linear base address where the module is loaded.

Since these functions are specific to Win32s, I couldn't directly call them
from the APISPY32 DLL, since the DLL wouldn't then be able to load
under Windows 95 or Windows NT. Calling the functions directly would
place a fixup to those functions in the DLL, and the loader wouldn't be able
to find them when it brings APISPY32.DLL into memory. Therefore, I used
the standard technique of using GetProcAddress to get a pointer to the two
functions and then called through the pointer.

typedef DWORD (_ _stdcall *XPROC)(DWORD):

DWORD GetModuleBaseFromWin32sHMod(HMODULE hMod)
{

XPROC ImteFromHModule, BaseAddrFromImte;

HMODULE hModule;

DWORD imte;

hModule = GetModuleHandle("W32SKRNL.DLL");

if(!hModule)

return 0;

ImteFromHModu]e = (XPROC)GetProcAddress(hModule,

if (!ImteFromHModule)

return O;

"ImteFromHModule@4");

730

BaseAddrFromImte = (XPROC)GetProcAddress(hModule, "_BaseAddrFromImte@4');

if (!BaseAddrFromImte)

return O;

imte = ImteFromHModule((DWORD)hMod);

if (!imte)

return O;

return BaseAddrFromImte(imte);

Figure 10-12
W32SSUPP. C is the Win32s-specific code.

THE APISPYLD CODE

With the code for the API spy DLL behind us, all that remains is the program
loader. The program loader is itself a program, and uses CreateProcess to
start the process to be spied upon. Before the target process can execute any
code, the program loader injects the API spy DLL (APISPY32.DLL) into the
target process. Once injected, the program loader doesn't have much to do
except spin in a WaitForDebugEvent loop until the target process terminates.
I've named the program loader APISPYLD. Its source file is larger than the
other source files in the project, so I'll break up APISPYLD.C into several
pieces for examination.

The first portion of APISPYLD.C is the minimal user-interface code and
the code that loads the target process. The WinMain is a simple while loop
that cycles until a program has been successfully spied on or until the user
elects to quit the spy program. The while loop first invokes a dialog box to
get the program name to spy on. If the DialogBox returns nonzero, WinMain
calls LoadProcessForSpying. If the process is successfully started, WinMain
calls DebugLoop where it APISPYLD remains, pumping through all the debug
messages until the target process terminates.

The dialog box for APISPYLD is minimal, as you can see from Figure 10-13.
The single edit control is for typing in the command line (including parameters)
of the program to be spied on. For the sake of Convenience, the File.. . but-
ton brings up the GetOpenFileName common dialog box, enabling you to

o f

731

click your way to the filename, rather than tediously typing in the path by
hand. Clicking on Run dismisses the dialog and attempts to load the speci-
fied process for spying. Clicking on Cancel dismisses the dialog and exits
the program.

 Figure 10-13
The APISPYLD d/a/ag box lets you indicate the program to be spied on.

The dialog procedure code in APISPY32DlgProc is extremely simple, and
responds to only three messages: WM_INITDIALOG, WM_COMMAND,
and WM_CLOSE. The WM_INITDIALOG handler allows us the opportunity
to retrieve the last command line we gave to APISPYLD, and stuff it into the
edit control. The previous command line is stored in a private .INI file called
APISPY32.INI.

The meat of the dialog code is for processing WM_COMMAND messages;
it resides in the Handle_WM_COMMAND helper function. The only
WM_COMMAND messages handled are for the three buttons. The File...
button code calls the GetProgramName helper function, which is a wrapper
around the Common Dialog GetOpenFileName function. If GetProgram-
Name succeeds, the program name will be in the dialog's edit control.
Clicking on the Run button tells APISPYLD to copy whatever is in the edit
control into the SzCmdLine global variable and exit from the dialog with a
code of 1. The Cancel button also exits the dialog, but tells it to return 0 so
that WinMain won't try to load anything.

If the user correctly enters a proper command line and hits the Run but-
ton, the dialog box will exit and control returns to WinMain. WinMain
then calls LoadProcessForSpying, passing it the contents of the SzCmdLine
global variable. LoadProcessForSpying is just a shell around the Win32
CreateProcess API function. The only interesting part of this particular
CreateProcess call is that the fdwCreate flags parameter specifies DEBUG_
ONLY_THIS_PROCESS. This tells the operating system that our program
(APISPYLD) wants to act as a debugger for the program being loaded. It
also informs the operating system that we're interested only in debug events
for this particular process, and not in any of the newly created process's

S z I N I C m d L i n e K e y []

732

children. Had I specified DEBUG_PROCESS instead of DEBUG_ONLY_
THIS_PROCESS, APISPYLD would also get debug notifications for any
programs that the target process created. Figure 10-14 shows the beginning
of the APISPYLD.C user interface and process loading procedures.

char SzINISection[] = "Options";

char SzINICmdLineKey[] = "CommandLine";

char SzINIFile[] = "APISPY32.INI";

char SzCmdLine[MAX_PATH];

BOOL FFirstBreakpointHit = FALSE FSecondBreakpointHit = FALSE;

PROCESS_INFORMATION ProcessInformation;

CREATE_PROCESS_DEBUG_INFO ProcessOebugInfo;

CONTEXT OriginalThreadContext, FakeLoadLibraryContext;

PVOID PInjectionPage;

#define PAGE_SIZE 4096

BYTE OriginalCodePage[PAGE_SIZE];

BYTE NewCodePage[PAGE_SIZE];

// Code ...

//

// Function prototypes
//

BOOL

void

void

BOOL

BOOL

void

DWORD

void

void

BOOL

BOOL

PVOID

BOOL

CALLBACK APISPY32DlgProc(HWND, UINT, WPARAM, LPARAM);

Handle_WM_COMMAND(HWND hWndDlg, WPARAM wParam, LPARAM lParam);

Handle_WM_INITDIALOG(HWND hWndDlg, WPARAM wParam, LPARAM lParam);

GetProgramName(HWND hWndOwner, PSTR szFile, unsigned nFileBuffSize);

LoadProcessForSpying(PSTR SzCmdLine);

DebugLoop(void);

HandleDebugEvent(DEBUG_EVENT * event);

HandleException(LPDEBUG_EVENT lpEvent, PDWORD continueStatus);

EmptyMsgQueueOfUselessMessages(void);

InjectSpyDll(void);

ReplaceOriginalPagesAndContext(void);

FindUsablePage(HANDLE hProcess, PVOID PProcessBase);

GetSpyDllName(PSTR buffer, UINT cBytes);

int APIENTRY WinMain(HANDLE hInstance, HANDLE hPrevInstance,

LPSTR lpszCmdLine, int nCmdShow)

{

W r i t e P r i v a t e P r o f i l e S t r i n g (S z I N I S e c t i o n ,

733

// This dialog returns 0 if the user pressed cancel

while (0 != DialogBox(hInstance, "APISPY32_LOAD_DLG", 0,

(DLGPROC)APISPY32DlgProc))

if (LoadProcessForSpying(SzCmdLine))

{
DebugLoop();

break; }

MessageBox(O, "Unable to start program", 0, MB_OK);

return 0;

}

BOOL CALLBACK APISPY32DlgProc(HWND hWndDlg, UINT msg,

WPARAM wParam, LPARAM lParam)

{
switch (msg)
{

case WM_COMMAND:

Handle_WM_COMMAND(hWndDlg, wParam, lParam);

return TRUE:

case WM_INITDIALOG:

Handle_WM_INITDIALOG(hWndDlg, wParam, lParam);

return TRUE;

case WM_CLOSE:

EndDialog(hWndDlg, 0);

return FALSE;
}

return FALSE;

void Handle_WM_COMMAND(HWND hWndDlg, WPARAM wParam, LPARAM lParam)

if (wParam == IDC _RUN)
{

if (GetWindowText(GetDlgItem(hWndDlg, IDC_CMDLINE),

SzCmdLine, sizeof(SzCmdLine)))

WritePrivateProfileString(SzINISection, SzINICmdLineKey,

SzCmdLine, SzINIFile);

EndDialog(hNndDlg, 1); // Return TRUE

o f n . l p s t r I n i t i a l D i r

734

else
{

MessageBox(hWndDlg, "No program s e l e c t e d " , 0, MB_OK);

}
}

else i f (wParam == IDC_PILE)
{

i f (GetProgramName(hWndDlg, SzCmdLine, sizeof(SzCmdLine)))

SetWindowText(GetDlgItem(hWndDlg, IDC_CMDLINE), SzCmdLine);

}
else i f (wParam == IDCANCEL)
{

EndDialog(hWndDlg, 0);

}

void Handle_WM_INITDIALOG(HWND hWndDlg, WPARAM wParam, LPARAM lParam)

GetPrivateProfileString(SzINISection, SzINICmdLineKey, "", SzCmdLine,

sizeof(SzCmdLine), SzINIFile);

SetWindowText(GetDlgItem(hWndDlg, IDC_CMDLINE), SzCmdLine);

}

static char szFilter1[] = "Programs (*.EXE)\O*.EXE\0";

BOOL GetProgramName(HWND hWndOwner, PSTR szFile, unsigned nFileBuffSize)

{

OPENFILENAME ofn;

szFile[0] = 0;

memset(&ofn, 0, sizeof(OPENFILENAME));

ofn.lStructSize = sizeof(OPENFILENAME);

ofn.hwndOwner = hWndOwner;

ofn.lpstrFilter = szFilterl;

ofn.nFilterIndex = 1;

ofn.lpstrFile = szFile;

ofn.nMaxFile = nFileBuffSize;

ofn.lpstrFileTitle = 0;

ofn.nMaxFileTitle = 0;

ofn.lpstrInitialDir = 0;

ofn. Flags= OFN_PA[HMUSTEXIST | OFN_FILEMUSTEXIST;

return GetOpenFileName(&ofn);

}

A P I S P Y L D . C 735

BOOL LoadProcessForSpying(PSTR SzCmdLine)
{

STARTUPINFO startupInfo;

memset(&startupInfo, 0, sizeof(startupInfo));
startupInfo.cb = sizeof(startupInfo);

return CreateProcess(

0, // lpszImageName
SzCmdLine, // lpszCommandLine

0, // lpsaProcess

0, // lpsaThread

FALSE, // fInheritHandles

DEBUG ONLY_THIS PROCESS, // fdwCreate

0, // lpvEnvironment
0, // lpszCurDir
&startupInfo, // lpsiStartup•nfo

&Processlnformation // lppiProcInfo
).

 Figure I0-14
 The beginning of the APISPYLD C user interface and process loading functions.

The middle portion of APISPYLD.C is devoted to the debug loop: a loop
that calls WaitForDebugEvent and ContinueDebugEvent until the process
we're spying terminates. Each time WaitForDebugEvent returns, there's a new
XXX DEBUG_EVENT (for instance, EXCEPTION_DEBUG_EVENT or
CREATE_THREAD_DEBUG_EVENT). The DebugLoop passes each debug
event to the HandleDebugEvent helper function to let it do whatever process-
ing is necessary. For the most part, the code in HandleDebugEvent ignores
most of the events and passes DBG_CONTINUE to ContinueDebugEvent.
However, two EXCEPTION_DEBUG_EVENTs that occur during the lifetime
of the target process are of interest to our program loader. For this reason, I
broke out the handling of exceptions into yet another helper function,
HandleException.

The first EXCEPTION_DEBUG_EVENT that our program loader
should see is the breakpoint exception, EXCEPTION_BREAKPOiNT (from
WINBASE.H). This breakpoint isn't in the target process's code. Rather,
there's an embedded INT 3 in the operating system code that's executed
right before the first instruction of the new process. Our HandleException
routine explicitly looks for this first breakpoint exception; when it sees the
exception, it injects the spy DLL into the address space of the child (using
InjectSpyDll, described later in this section).

H a n d l e E x c e p t i o n

736

The second exception that HandleException looks for is the break-
point that InjectSpyDll injects into the code so that we'll get control after
APISPY32.DLL loads. When this breakpoint occurs, APISPYLD knows
that the target process has finished loading APISPY32.DLL. The original
memory pages and thread context modified by InjectSpyDll need to be put back
the way they were when the first breakpoint went off. HandleException uses
the ReplaceOriginalPagesAndContext helper function to perform this chore.

The final bit of code in this portion of APISPYLD is for Win32s only.
Earlier, I said that when WaitForDebugEvent returns, a new debug event is
waiting to be processed. Under Win32s this isn't necessarily true. Instead,
the Win32s WaitForDebugEvent returns TRUE if there's another message
waiting and FALSE if there's not. Another undocumented oddity under
Win32s is that the system posts window messages with NULL window
handles to the debugger's (APISPYLD's) message queue. The window
messages posted to the queue have message numbers that Win32s obtained
by making this call:

RegisterWindowMessage("W32S_Debug Msg").

If you don't empty these messages out of your queue, your message
queue will flu up and real window messages won't go into the queue. To
handle both of these strange Win32s behaviors, our debug loop calls
EmptyMsgQueueOfUselessMessages if WaitForDebugEvent returns
FALSE and if the program is running under Win32s.

EmptyMsgQueueOfUselessMessages is a simple routine that calls
PeekMessage(PM_REMOVE) until PeekMessage returns FALSE. Any
message with a nonzero HWND is given to DispatchMessage- but to
date, I haven't seen any messages with valid HWNDs come through this
routine. After emptying the queue of these messages, DebugLoop again calls
WaitForDebugEvent. This time WaitForDebugEvent blocks until there's
really a waiting debug event. Figure 10-15 shows the beginning of the debug
loop and debug event processing in APISPYLD.C.

void DebugLoop(void)

I
DEBUG_EVENT event.

DWORD continueStatus.

800L fWin32s.

BOOL fWaitResult.

fWin32s = (GetVersion() & 0×C0000000) == 0x80000000;

(f W a i t R e s u l t

737

while(1)

{
fNaitResult = WaitForDebugEvent(&event, INFINITE);

if ((fWaitResult == FALSE) && fWin32s)

EmptyMsgQueueOfUselessMessages();

continue;
}

continueStatus = HandleDebugEvent(&event);

if (event.dwDebugEventCode == EXIT_PROCESS_DEBUG_EVENT)

return;

ContinueDebugEvent(event.dwProcesstd,
event.dwThreadId,
continueStatus);

PSTR SzDebugEventTypes[] =

{
" "

"EXCEPTION",
"CREATE THREAD",

"CREATE PROCESS",
"EXIT THREAD",

"EXIT PROCESS",
i

"LOAD_DLL",
"UNLOAD_DLL",
"OUTPUT DEBUG STRING",

"RIP",

};

DWORD HandleDebugEvent(DEBUG_EVENT * event)
{

DWORD continueStatus = DBG_CONTINUE;

// char buffer[1024];

/ / wsprintf(buffer, "Event' %s\r\n",
/ / SzDebugEventTypes[event->dwDebugEventCode]);

// OutputDebugString(buffer);

if (event->dwDebugEventCode == CREATE_PROCESS_DEBUG_EVENT)

ProcessDebugInfo = event->u.CreateProcessInfo;
}

else if (event->dwDebugEventCode == EXCEPTION_DEBUG EVENT)
{

* c o n t i n u e S t a t u s

738

HandleException(event, &continueStatus);

}

return continueStatus;
}

void HandleException(LPDEBUG_EVENT lpEvent, PDWORD continueStatus)
{

// char buffer[128];
// wsprintf(buffer, "Exception code: %X Addr: %08X\r\n",
// lpEvent->u.Exception.ExceptionRecord.ExceptionCode,
// lpEvent->u.Exception.ExceptionRecord.ExceptionAddress);

// OutputDebugString(buffer);

if (lpEvent->u.Exception.ExceptionRecord.ExceptionCode
== EXCEPTION_BREAKPOINT)

{
if (FFirstBreakpointHit == FALSE)
{

InjectSpyDll ();
FFirstBreakpointHit = TRUE;

}
else if (FSecondBreakpointHit == FALSE)

{
Repl aceOriginalPagesAndContext();
FSecondBreakpointHit = TRUE;

}

}
else {

*continueStatus = DBG_CONTINUE;

*continueStatus = DBG_EXCEPTION_NOT_HANDLED;
}

}

void EmptyMsgQueueOfUselessMessages (void)

{
MSG msg; // See PeekMessage loop for explanation of idiocy.

// Win32s idiocy puts W32s_Debug_Msg message in our message queue.

// Dispose of them! They're useless!
while (PeekMessage(&msg, 0, 0, 0, PM_REMOVE))

{
if (ms g.hwnd)

DispatchMessage(&msg);
}

}

 F i g u r e 1 O- 15
 T h e beginning of the APISPYLD. C debug loop and debug event processing,

7 3 9

739

The final portion of our APISPYLD code is for injecting the APISPY32
DLL into the address space of the process to be spied on after it hits the first
breakpoint. InjectSpyDll is a complicated routine that can be roughly broken
up into three phases. The first phase of InjectSpyDll is for locating important
addresses in the child process. Of primary interest at this stage is the address
of the first writeable data page in the target process that's not in the .idata
section. Also important is the address of the LoadLibrary routine in
KERNEL32.DLL, the name of the DLL to load (APISPY32.DLL), and
saving the original thread context of the process's initial thread.

In its second phase, InjectSpyDll copies the contents of the first writeable
data page into a global variable called OriginalCodePage. (This variable is
badly named, by the way. Early versions of APISPY32 used the first code
page (instead of the first writeable data page) to store their injection code. I
simply haven't gotten around to changing the variable's name.) It's important
to note here that in order to make a copy of the page we'll be modifying, it's
necessary to call ReadProcessMemory. The page we're saving a copy of is in
another process, and the loader can't directly access that memory.

The third phase of InjectSpyDll sets things up so that when the target
process resumes execution, it calls LoadLibrary, telling the operating system
to load APISPY32.DLL. The code that will call LoadLibrary is constructed
by filling in the fields of the FAKE_LOADLIBRARY_CODE structure. Each
of the fields of this structure is either an assembler opcode or an operand
for the preceding instruction. At the end of the structure is a copy of the spy
DLL name. I put the DLL name in the structure because the DLL name
needs to be visible in the context of the target process, not the APISPYLD
program. After the structure is all filled in, i use WriteProcessMemory to
copy the structure into the appropriate page of the target process.
Afterward, the InjectSpyDll functions uses SetThreadContext to change the
EIP value that the target process thread will use when it resumes execution.
Specifically, the EIP register will be set to the first instruction of the code
snippet as it appears in the target process's address space.

Assuming InjectSpyDll worked correctly, the target process executes the
LoadLibrary code when it resumes execution. When LoadLibrary returns,
the CPU will be at the breakpoint instruction after the LoadLibrary call.
This causes the target process to again be frozen, and the call to WaitFor-
DebugEvent in the APISPYLD process to return with an EXCEPTION_
DEBUG_EVENT. When the HandleException function sees this particular
exception, it knows that it's time to restore the original page we modified
earlier, as well as the thread context. The code to restore the thread to its
original state is in the ReplaceOriginalPagesAndContext helper function. In

7 4 0

740

this routine, we use WriteProcessMemory to write the modified page back,
and then do a SetThreadContext, passing the thread context we saved off
before we injected the DLL. Figure 10-16 shows the InjectSpyDll section of

APISPYLD.C.

#pragma pack (1)

typedef struct

{
WORD instr_SUB;

DWORD operand_SUB_value;

BYTE instr_PUSH;

DWORD operand_PUSH_value;

BYTE i nstr_CALL;
DWORD operand_CALL_offset;

BYTE i nstr_INT_3;

char data_DllName[1];

} FAKE_LOADLIBRARY_CODE, * PFAKE_LOADLIBRARY_CODE'

BOOL InjectSpyDll (void)
{

BOOL retCode;

DWORD cBytesMoved;

char szSpyDllName[MAX_PATH];

FARPROC pfnLoadLibrary;

PFAKE_ LOADLIBRARY_CODE pNewCode;

// ====

// Phase 1 - Locating addresses of important things
//

pfnLoadLibrary = GetProcAddress(GetModuleHandle("KERNEL32.DLL"),

"LoadLibraryA");

if (!pfnLoadLibrary)

return FALSE;

PInjectionPage = FindUsablePage(ProcessInformatinon.hProcess;

ProcessDebugInfo.lpBaseOfImage);

if (!PInjectionPage)

return FALSE;

if (!GetSpyDllName(szSpyDllName, sizeof(szSpyDllName)))

return FALSE;

OriginalThreadContext.ContextFlags = CONTEXT_CONTROL;

if (!GetThreadContext(ProcessInformation.hThread, &OriginalThreadContext))

return FALSE;

7 4 1

 741

// Phase 2 - Saving the original code page away
// ---

// Save off the original code page

retCode = ReadProcessMemory(ProcessInformation.hProcess, PInjectionPage,

OriginalCodePage, sizeof(OriginalCodePage),

&cBytesMoved);

if (!retCode || (cBytesMoved != sizeof(OriginalCodePage)))

return FALSE;

//

// Phase 3 - Writing new code page and changing the thread context

//

pNewCode = (PFAKE_LOADLIBRARY_CODE) NewCodePage;

pNewCode->instr_SUB = 0xEC81;

pNewCode->operand_SUB_value = 0x1000;

pNewCode->instr_PUSH = 0x68;

pNewCode->operand_PUSH_value = (DWORD)PInjectionPage

+ offsetof(FAKE_LOADLIBRARY_CODE, data DllName);

pNewCode->instr_CALL = 0xE8;

pNewCode->operand_CALL_offset =

(DWORD)pfnLoadLibrary - (DWORD)PInjectionPage

- offsetof(FAKE LOADLIBRARY_CODE,instr_CALL) - 5;

pNewCode->instr_INT_3 = 0xCC;

lstrcpy(pNewCode->data_DllName, szSpyDllName); // Copy DLL name.

// Write out the new code page

retCode = WriteProcessMemory(ProcessInformation.hProcess, PInjectionPage,

&NewCodePage, sizeof(NewCodePage),

&cBytesMoved);

if (!retCode || (cBytesMoved != sizeof(NewCodePage)))

return FALSE;

FakeLoadLibraryContext = OriginalThreadContext;

FakeLoadLibraryContext. Eip = (DWORD)PInjectionPage;

if (!SetThreadContext(Processtnformation.hThread,

&FakeLoadLibraryContext))

return FALSE;

return TRUE;

7 4 2

742

BOOL ReplaceOriginalPagesAndContext(void)

{

BOOL retCode;

DWORD cBytesMoved;

retCode = WriteProcessMemory(ProcessInformation.hProcess, PInjectionPage,

OriginalCodePage, sizeof(OriginalCodePage),

&cBytesMoved);

if (!retCode || (cBytesMoved != sizeof(OriginalCodePage)))

return FALSE;

if (!SetThreadContext(ProcessInformation.hThread,

&OriginalThreadContext))

return FALSE;

return TRUE;

PVOID FindUsablePage(HANDLE hProcess, PVOID PProcessBase)

{
DWORD peHdrOffset;

DWORD cBytesMoved;

IMAGE_NT_HEADERS ntHdr;

PIMAGE_SECTION_HEADER pSection;

unsigned i;

// Read in the offset of the PE header within the debuggee

if (!ReadProcessMemory(ProcessInformation.hProcess,

(PBYTE)PProcessBase + 0x3C,

&peHdrOffset,

sizeof(peHdrOffset),

&cBytesMoved))

return FALSE;

// Read in the IMAGE_NT_HEADERS.OptionalHeader.BaseOfCode field

if (!ReadProcessMemory(ProcessInformation.hProcess,

(PBYTE)PProcessBase + peHdrOffset,

&ntHdr, sizeof(ntHdr), &cBytesMoved))

return FALSE'

pSection = (PIMAGE_SECTION_HEADER)

((PBYTE)PProcessBase + peHdrOffset + 4

+ sizeof(ntHdr.FileHeader)

+ ntHdr.FileHeader.SizeOfOptionalHeader);

for (i=0; i < ntHdr.FileHeader.NumberOfSections; i++)

{

i n j e c t i o n

IMAGE_SECTION_HEADER section;

if (!ReadProcessMemory(ProcessInformation.hProcess,

pSection, §ion, sizeof(section),

&cBytesMoved))

return FALSE;

// OutputDebugString("trying section:

// OutputDebugString(section.Name)'

// OutputDebugString("\r\n")'

") ;

// If it's writeable, and not the .idata section, we'll go with it

if ((section.Characteristics & IMAGE_SCN_MEM_WRITE)

&& strncmp(section. Name, ".idata", 6))
(

// OutputDebugString("using section. ") ;

// OutputDebugString(section. Name);

// OutputDebugString("\r\n");

return (PVOID) ((DWORD)PProcessBase +section. VirtualAddress);

pSection++; // Not this section. Advance to next section.

return 0;
}

BOOL GetSpyDllName(PSTR buffer, UINT cBytes)

char szBuffer[MAX_PATH] ;

PSTR pszFilename;

// Get the complete path to this EXE - The spy dll should be in the

// same directory.

GetModuleFileName(0, szBuffer, sizeof(szBuffer));

pszFilename = strrchr(szBuffer, '\\');

if (!pszFilename)

return FALSE;

lstrcpy(pszFilename+1, "APISPY32.DLL");

strncpy(buffer, szBuffer, cBytes);

return TRUE;
}

 Figure 10-16
 The APfSPYLD. C DLL injection routines.

M o s t
744

NOTES ON USING APISPY32

To spy on a program with APISPY32, run the APISPYLD program. In the
edit control, type in a command line, or use the File... button to browse for
the executable. Once the executable name is entered, click the Run button.
The APISPYLD dialog will go away, and the selected program should begin
running. After your target program has completed, there should be a file
with a OUT extension in the same directory as the executable. Figure 10-17
shows a portion of the output from running APISPY32 on the Win32
CLOCK program.

KillTimer(HWND:000826F4,DWORD:00080001)

KillTimer returns: 1

SetTimer(HWND:00026F4,DWORD:OOOOOOO1,DWORD:000001C2, LPDATA:00000000)

SetTimer returns: 1

CheckMenuItem(HANDLE:00S01EFS,DWORD:00000S08,DWORD:80000808)

CheckMenuItem returns: 0

wsprintfA(LPSTR:80E3AD68,LPSTR:80DEE190:"%s - %s")

wsprintfA returns: F

SetWindowTextA(HWND:000026F4,LPSTR:88E3AD68:"Clock - 4/")

DefWindowProcA(HWND:000026F4,DWORD:0000000C,DWORD:80000000,DWORD:80E3AD68)

DefWindowProcA returns: 0

SetWindowTextA returns: 1

GetSystemMenu(HWND:000026F4,BOOL:80000800)

GetSystemMenu returns: 1F68

AppendMenuA(HANDLE:00001F68,DWORD:00000800,DWORD:00000000,LPSTR:80000000)

AppendMenuA returns: 1

 Figure 10-17
 CLOCK32 output from APISPY32.

Most of the time, a line in the OUT file for a function call is immedi-
ately followed by a line with the return value from the function. However,
this isn't always the case. Notice (in Figure 10-17) how the DefWindow-
ProcA function and return lines are indented. This indicates that the function
was called during the execution of the surrounding function (in this case,
SetWindowTextA). This particular sequence makes sense, as the second
parameter to DefWindowProc (the message parameter) is shown with a
value of 0xC. Looking up the number in WINUSER.H, you'll find that
message 0xC (12) is WM_SETTEXT. Since the DefWindowProc was called

_ b e g i n t h r e a d

745

within the call to SetWindowText, it's a safe assumption that SetWindow-
Text sent a WM_SETTEXT message to the program's window procedure,
and that program didn't handle the message, but simply passed it on to
DefWindowProc. In this output from APISPY32, there was only one level
of nesting. It's not uncommon to have nested functions that are 4 or 5 levels
deep, especially during the program's shutdown sequence when the main
window gets a WM_CLOSE message.

When looking at LPSTR parameters, bear in mind that the complete
string may not be shown. Since garbage strings might be passed as buffers, I
had no way to know ahead of time how many characters to display for each
LPSTR parameter. The solution I decided on was to print out either the first
10 characters or up until the first NULL byte. Also, tabs, carriage returns
and linefeeds are represented by \t, \r, and \n, respectively. If I were to have
printed out the raw characters, the lines in the OUT file would be formatted
improperly.

If you run APISPY32 under early versions of Win32s (versions prior to
Win32s 1.2), you'll get numerous RIPs if you run the debug 16-bit USER.EXE.
This is a bug in Win32s related to message translations between Winl6 and
Win32. In the transition from Winl6 to Win32, several messages were
renumbered. The Win32s thunking layer needs to convert the numbers of
certain messages when a message passes between 16- and 32-bit code. To
know which messages to translate, Win32s needs to know which class the
window is for, so Win32s calls GetClassName in USER.EXE. The problem
arises when a message with an HWND of 0 is encountered. The debugging
version of GetClassName RIPs if a 0 HWND is passed to it. Where does
our spy program get messages with HWNDs of 0 ? As I described earlier, the
Win32s WaitForDebugEvent function posts RegisterWindowMessage-
(W32S_Debug_Msg) messages to the debugger's message queue.

If you build the APISPY32 program using Borland C++, you won't have
much luck when spying on multithreaded programs. The Borland C++ mul-
tithreading library uses per-thread data for certain functions (in APISPY32,
the function of interest is fprintf). In the Borland runtime library, the code
doesn't pay attention to the DLL THREAD_ATTACH notifications.
Instead, the runtime library relies on the program's call to the _beginthread
function to know when to allocate its per-thread data. Unfortunately, this
method breaks down when a thread is created in a different module than
yours. In the case of our spy program, the Borland runtime library code in
APISPY32.DLL won't see beginthread calls made in the EXE being spied
on. Borland has acknowledged this as a bug, but it still hasn't managed to
fix this problem as of BC++ 4.5.

h M o d) ;
746

INTERCEPTING FUNCTIONS IN
YOUR OWN PROGRAMS

At the beginning of the chapter, I promised you a method by which you
could use the APISPY32 function interception technique in your own code.
The code to do this is in HOOKAPI.C, which is shown in Figure 10-18. The
HooklmportedFunction in HOOKAPI.C allows you to intercept all the calls
that one module makes to a given function in another module. For example,
if you use a DLL called FOO.DLL, you could intercept all of FOO.DLL's
calls to the MessageBeep routine (even if you don't have source for FOO.DLL}.
If you also wanted to intercept MessageBeep calls made by BAR.DLL and
BAZ.DLL, you'd also need to call the HooklmportedFunction routine once
for each of those DLLs.

Another important point to remember is that this interception technique
only intercepts imported functions within your own process. It can't intercept
APl function calls made by other processes. In other words, you can only
intercept calls that your EXE and its DLLs make. You couldn't use it to do
something like intercepting all calls that WINFILE makes to OpenFile. Your
interception code won't be mapped into the address space of the WINFILE
process.

The first parameter to HooklmportedFunction is the module handle of
the EXE or DLL that you want to intercept calls from (in the above example,
FOO.DLL). The second parameter is the module name of the module that
contains the function you want to intercept. The third parameter to Hook-
ImportedFunction is the name of the function you want to intercept. The
final parameter is the address of the function that you want called. Hook-
ImportedFunction returns the original address of the function you just inter-
cepted. You can use this address to chain on to the original code if necessary.
Using the above example, the call to HooklmportedFunction looks like this:

pfnOriginalProc = HookImportedFunction(GetModuleHandle("BAR.DLL"),
"USER32.DLL",

"MessageBeep",
MyMessageBeepHandler);

// Macro for adding pointers/DWORDs together without C arithmetic interfering.
#define MakePtr(cast, ptr, addValue) (cast)((DWORD)(ptr)+(DWORD)(addValue))

DWORD GetModuleBaseFromWin32sHMod(HMODULE hMod); // Prototype (defined below)

/ /

747

PROC WINAPI HookImportedFunction(

HMODULE hFromModule,
PSTR pszFunctionModule,

PSTR pszFunctionName,

PROC pfnNewProc
)

PROC pfnOriginalProc;
PIMAGE_DOS_HEADER pDosHeader;
PIMAGE_NT_HEADERS pNTHeader;

PIMAGE_IMPORT_DESCRIPTOR pImportDesc;

PIMAGE_THUNK_DATA pThunk;

// Module to intercept calls from.

// Module to intercept calls to.

// Function to intercept calls to.

// New function (replaces old function).

if (IsBadCodePtr(pfnNewProc)) // Verify that a valid pfn was passed.

return 0;

// First, verify the module and function names passed to use are valid.

pfnOriginalProc = GetProcAddress(GetModuleHandle(pszFunctionModule),

pszFunctionName);

if !pfnOriginalProc)

return 0;

if (GetVersion() & 0xC0000000) == 0x80000000)

pDosHeader =

(PIMAGE_DOS_HEADER)GetModuleBaseFromWin32sHMod

else

pDosHeader = (PIMAGE_DOS_HEADER)hFromModule;

// Win32s

hFromModule);

// other

// Tests to make sure we're looking at a module image (the MZ header).

if (IsBadReadPtr(pDosHeader. sizeof(IMAGE_DOS_HEADER)))

return 0;

if (pDosHeader->e_magic != IMAGE_DOS_SIGNATURE)

return 0;

// The MZ header has a pointer to the PE header.

pNTHeader = MakePtr(PIMAGE_NT_HEADERS, pDosHeader, pDosHeader->e_lfanew);

// More tests to make sure we're looking at a "PE" image.

if (IsBadReadPtr(pNTHeader, sizeof(IMAGE NT HEADERS)))

return 0;

if (pNTHeader->Signature != IMAGE_NT_SIGNATURE)

return 0;

// We know have a valid pointer to the module's PE header. Now go

// get a pointer to its imports section.

pImportDesc = MakePtr(PIMAGE_IMPORT_DESCRIPTOR, pDosHeader,

pNTHeader->OptionalHeader.

p T h u n k + + ;

748

DataDirectory[IMAGE_DIRECTORY_ENTRY_IMPORT].

VirtualAddress);

// Bail out if the RVA of the imports section is 0 (it doesn't exist).

if (pImportDesc == (PIMAGE_IMPORT_DESCRIPTOR)pNTHeader)

return 0;

// Iterate through the array of imported module descriptors, looking

// for the module whose name matches the pszFunctionModule parameter.

while (pImportDesc->Name)
{

PSTR pszModName = MakePtr(PSTR, pDosHeader, pImportDesc->Name);

if (stricmp(pszModName, pszFunctionModule) == 0)

break;

pImportDesc++; // Advance to next imported module descriptor.

// Bail out if we didn't find the import module descriptor for the

// specified module, pImportDesc >Name will be nonzero if we found it.

if (pImportDes ->Name == 0)

return 0;

// Get a pointer to the found module's import address table (IAT),

pThunk = MakePtr(PIMAGE_THUNK_DATA, pDosHeader, pImportDesc->FirstThunk);

// Blast through the table of import addresses, looking for the one

// that matches the address we got back from GetProcAddress above.

while (pThunk_>ul.Function)
{

if (pThunk->ul. Function == (PDWORD)pfnOriginalProc)
{

// We found it! Overwrite the original address with the

// address of the interception function. Return the original

// address to the caller so that they can chain on to it.

pThunk ->ul.Function = (PDWORD)pfnNewProc;

return pfnOriginalProc;
}

pThunk++; // Advance to next imported function address.

return 0; // Function not found.

S e z : "

749

typedef DWORD (_ _stdcall *XPROC)(OWORD);

// Converts an HMOOULE under Win32s to a base address in memory.

DNORD GetModuleBaseFromWin32sHMod(HMODULE hmod)
{

XPROC ImteFromHModule, BaseAddrFromImte;
HMODULE hModule;

DWORD imte;

hModule = GetModuleHandle("W32SKRNL.DLL");
if(!hModule)

return 0;

ImteFromHModule = (XPROC)GetProcAddress(hModule, "_ImteFromHModule@4");
if (!ImteFromHModule)

return 0;

BaseAddrFromImte = (XPROC)GetProcAddress(hModule,

if (!BaseAddrFromImte)

return 0;

"_BaseAddrFromImte@4");

imte = ImteFromHModule((DWORD)hMod);
if (!imte)

return O;

return BaseAddrFromImte(imte);

 Figure 10 - 18

 HOOKAPI. C lets you intercept function calls from your own programs.

Your function that's called instead of the original APl function should be
prototyped exactly the same as the function you're intercepting. This allows
you to access all the function's parameters, and causes the compiler to pop
the correct number of bytes off the stack when the function returns. If you
want to pass control to the original API function as part of your handling,
call through the function pointer returned by HookImportedFunction.
Typically, you'll do this as the last thing in your handler function, and you'll
return whatever value the original API function returns to your code.

To demonstrate the use of HookImportedFunction, I've written the
SimonSez program. The program is extremely simple, and consists of inter-
cepting SimonSez's calls to MessageBox and prepending the string "Simon
Sez:" on to the message to be displayed. Since SimonSez has previously
intercepted the MessageBox function, the installed handler function

l p T e x t

750

(MyMessageBox) will be called, rather than the MessageBox in USER32.DLL.
Afterward MyMessageBox calls the original MessageBox function in
USER32.DLL. The SIMONSEZ.C program is shown in Figure 10-19.

//.. === === === ===

// SIMONSEZ Matt Pietrek 1995

// FILE: HOOKAPI.C
//::===== ==== ===: :===:=

#include <windows.h>

#include <malloc.h>

#include "hookapi.h"

// Make a typedef for the WINAPI function we're going to intercept

typedef int(__stdcall *MESSAGEBOXPROC)(HWND, LPCSTR, LPCSTR, UINT);

MESSAGEBOXPROC PfnOriginalMessageBox; // For storing original, address

//

// A special version of MessageBox that always prepends "Simon Sez:"

// to the text that will be displayed.
//

int WINAPI MyMessageBox(HWND hWnd, LPCSTR lpText,

LPCSTR lpCaption, UINT uType)

{
int retValue; // Real MessageBox return value.

PSTR lpszRevisedString; // Pointer to our modified string

// Allocate space for our revised string - add 40 bytes for new stuff.

lpszRevisedString = malloc(lstrlen(lpText) + 40);

// Now modify the original string to first say "Simon Sez: ".

if (lpszRevisedString)

{
lstrcpy(lpszRevisedString, "Simon Sez: ");

lstrcat(lpszRevisedString, lpText);
}

else // If malloc() failed, just

lpszRevisedString = (PSTR)lpText; // use the original string.

// Chain on to the original function in USER32.DLL.

retValue = PfnOriginalMessageBox(hWnd,lpszRevisedString,lpCaption,uType):

if (lpszRevisedString != lpText) // If we successfully allocated string

free(lpszRevisedString); // memory, then free it.

O -

751

return retValue; // Return whatever the real MessageBox returned.

int APIENTRY WinMain(HANDLE hInstance, HANDLE hPrevInstance,

LPSTR lpszCmdLine, int nCmdShow)
{

MessageBox(0, "MessageBox Isn't Intercepted Yet", "Test", MB_OK);

// Intercept the calls that this module (TESTHOOK) makes to

// MessageBox() in USER32.DLL. The function that intercepts the

// calls will be MyMessageBox(), above.

PfnOriginalMessageBox = (MESSAGEBOXPROC) HookImportedFunction(

GetModuleHandle(0), // Hook our own module

"USER32.DLL", // MessageBox is in. USE32.DLL

"MessageBoxA", // Function to intercept.

(PROC)MyMessageBox); // Interception function.

if (!PfnOriginalMessageBox) // Make sure the interception worked
{

MessageBox(0, "Couldn't hook function" 0, MB_OK)

return 0;

}

/ / !II!!!!!!!!?!!!!?!!!!!!! WARNING II!!..!!!!!!!!!...!!!!!!!!!!!!..!!

// When built with optimizations, the VC++ compiler loads a

// register with the address of MessageBoxA, and then makes all

// subsequent calls through it. This can cause the MessageBox call

// below to not go through the Import Address table that we just patched.

// For this reason, the .MAK file for this program does not use the

// /02 or /01 switches. This usually won't be a problem, but it

// was in this particularly simple program. ACCKK!!!!

// Call MessageBox again. However, since we've now intercepted

// MessageBox, control should first go to our own function

// (MyMessageBox), rather than the MessageBox() code in USER32.DLL.

MessageBox(0, "MessageBox Is Now Intercepted", "Test", MB_OK);

return 0;

Figure 1 O- 19
This simple SIMONSEZ. C program demonstrates the use of HooklmportedFunction.

E a c h

752

How does HookImportedFunction work? As I described earlier, when a
Win32 program calls a function imported from another module, the call
actually transfers control to a JMP DWORD PTR [XXXXXXXX] thunk.
The DWORD at memory location XXXXXXXX contains the address of
the imported function (for example, the address of MessageBox in
USER32.DLL).

All the HooklmportedFunction code does is search through the import
address table to find the particular DWORD with the address of the function
you want to intercept. Once it finds that location, HooklmportedFunction
overwrites the address of the imported function with the address of your
handler function.

The first parameter to HooklmportedFuction is an HMODULE identi-
fying the EXE or DLL that you want to intercept calls from. In Windows
NT and Windows 95, an HMODULE is nothing more than the linear
address where the module begins in memory. This address is known as the
module's base address. Since Win32 uses memory mapped files, the memory
at the module's base address is a DOS MZ header (refer to the IMAGE_DOS_
HEADER in WINNT. H). Using the value in the e_lfanew field, Hooklmported-
Function locates the address of the PE header (the IMAGE_NT_HEADERS
structure in WINNT. H). At the end of the IMAGE_NT_HEADERS struc-
ture is an array of structures that contain addresses for important areas in
the module. Of particular interest to our HooklmportedFunction routine is
the start of the import address table. This table (which typically resides in
the .idata section of the module) contains information about the functions
imported by this module. Somewhere in the import address table is the
DWORD that HooklmportedFunction needs to overwrite with the address
of your handler function.

At the beginning of the import address table is an array of IMAGE
IMPORT_DESCRIPTOR structures (again, see WINNT. H). There is one of
these structures for each DLL that this module imports functions from. The
end of the IMAGE_IMPORT_DESCRIPTOR array is indicated by an IMAGE_
IMPORT_DESCRIPTOR whose fields are all 0s. Each IMAGE_IMPORT_
DESCRIPTOR has a pointer to the name of the associated DLL, as well as a
pointer to the import address table (the array of function addresses mentioned
earlier). HooklmportedFunction walks through the IMAGE_IMPORT_
DESCRIPTORs until it finds the one whose name matches the pszFunction-
Module parameter passed to HooklmportedFunction. The routine uses the
information in the IMAGE_IMPORT_DESCRIPTOR to create a pointer to
the import address table.

t h e r e

753

Near the beginning of HookImportedFunction, the code called GetProc-
Address to get the address of the function we want to intercept calls to.
That address should be among the addresses in the import address table we
just located. The HooklmportedFunction code walks through the array of
addresses until it finds the slot with an address identical to what GetProc-
Address returned. All that remains is to copy the new function's address (the
pfnNewProc parameter) into that slot and return the original function's
address.

SUMMARY

Win32 programming provides a whole new set of challenges for programmers
from the Winl6 environment. In general, Win32 system programming is more
restrictive and complicated because of issues such as separate addresses and
multiple threads of execution. In this chapter, we've met these issues head-on
in building an API spy program and in creating a general-purpose mechanism
for intercepting APl function calls. We've also seen that, despite Microsoft's
claim that "There's just one Win32 API," there are occasional differences
when you get down to the details. However, by understanding these issues,
you can write industrial-strength programs that work across all the Win32
platforms.

THE UNDOCUMENTED

KERNEL32.DLL
IMPORT LIBRARY A

T
he first 100 entries in the Windows 95 KERNEL32.DLL
exports table are exported by ordinal only. In contrast, all

normal Win32 APl functions that Microsoft provides are exported
both by name and by ordinal. Exporting a function by name is
what allows you to pass a function name to GetProcAddress
and get back the address where the function can be called.

Clearly, since Microsoft didn't export these first 100 functions
by name, it didn't intend for you to call or use them. Put
another way, these are "undocumented" functions. As we all
know, undocumented functions can be extremely useful. In
fact, sometimes the only way you can accomplish a particular
goal is to use an undocumented function. However, since
these functions aren't exported by name, you can't just call
GetProcAddress and use them as you might expect.

Normally in a situation like this, determined hackers
wouldn't be deterred because they know that GetProcAddress
can be passed a function's export ordinal rather than its name.
Alas, as you saw in Chapter 3, Microsoft's KERNEL32 coders
also blocked off this backdoor approach. The GetProcAddress
function intentionally fails any calls that attempt to look up
addresses in KERNEL32.DLL by their ordinal value. Interestingly,
it's only KERNEL32.DLL that GetProcAddress doesn't allow
ordinal lookups on, so it's apparent that Microsoft is trying to
prevent people from using these 100 functions in KERNEL32.DLL.

756

Never fear. As you've seen elsewhere in this book, these artificial restrictions

on calling undocumented KERNEL32.DLL functions can be overcome. One
approach is to write your own GetProcAddress function. It's really not hard
to do, since the format of a loaded PE module in memory is well documented.
Chapter 3 even gives the pseudocode for GetProcAddress if you want to see

how Windows implements it.
The problem with the "roll-your-own" GetProcAddress approach is

that it's a pain to have to call GetProcAddress and then save away its return
value in a function pointer. A much simpler way to use these undocumented
functions is to use an import library that includes these functions. We all
know that Microsoft isn't going to willingly hand over such an import
library. Thus, this appendix provides you with the tools to create your own
import library for use with Visual C++ or other Microsoft compilers/linkers.

Figure A-1 shows K32LIB.DEF, which contains most of the 100 or so
exported, undocumented KERNEL32.DLL functions.

LIBRARY KERNEL32

EXPORTS

VxDCall0@0 @1

VxDCall1@8 @2

VxDCall2@12 @3

VxDCall3@16 @4

VxDCall4@20 @5

VxDCall5@24 @6

VxDCall6@28 @7

VxDCall7@32 @8

CharToOemA@8

CharToOemBuffA@12

OemToCharA@8

OemToCharBuffA@12

LoadStringA@16

wsprintfA@8

wvsprintfA@4

CommonUnimpStub@0

GetProcessDWORD@8

@10 : USER32's version calls straight here.

@11 ; USER32's version calls straight here.

@12 ; USER32's version calls straight here.

@13 ; USER32's version calls straight here.

@14 ; USER32's version calls straight here.

@15 ; USER32's version calls straight here.

@16 ; USER32's version calls straight here.

@17 ; Non implemented APIs call here.

@18

DosFileHandleToWin32Handle@4

Win32HandleToDosFileHandle@4

DisposeLZ32Handle@4

GDIReallyCares@4

GlobalAlloc16@8

GlobalLock16@4

@20
@21

@22

@23

@24

@25

757

GlobalUnlock16@4 @26

GlobalFixl6@4 @27

GlobalUnfix16@4 @28

GlobalWire16@4 @29

GlobalUnWire16@4 @30

GlobalFree16@4 @31

GlobalSize16@4 @32

HouseCleanLogicallyDeadHandles@0 @33

GetWin16DOSEnv @34

LoadLibrary16@4 @35

FreeLibrary16@4 @36

GetProcAddress16@8 @37

AllocMappedBuffer @38

FreeMappedBuffer @39

OT 32ThkLSF @40

ThunkInitLSF@20 @41

LogApiThkLSF@4 @42

ThunkInitLS@20 @43

LogApiThkSL@4 @44

Common32ThkLS @45

ThunkInitSL@20 @46

LogCBThkSL@4 @47

ReleaseThunkLock@4 @48

RestoreThunkLock@4 @49

W32S_BackTo32 @51

GetThunkBuff@0 @52

GetThunkStuff@8 @53

K32WOWCallback16@8 @54

K32WOWCallback16Ex@20 @55

K32WOWGetVDMPointer@12 @56

WOWGlobalAlloc16@8

WOWGlobalLock16@4
WOWGlobalUnlock16@4

WOWGlobalFree16@4

WOWGlobalAllocLock16@12

WOWGlobalUnlockFree16@4

WOWGlobalLockSize16@8

WOWYield16@0

WOWDirectedYield16@4

K32WOWGetVDMPointerFix@12

K32WOWGetVDMPointerUnfix@4

K32WOWGetDescriptor@8

IsThreadId@4

K32RtlLargeIntegerAdd@16

K32RtlEnlargedIntegerMultiply@8

K32RtlEnlargedUnsignedMultiply@8

@59
@60

@61

@62

@63

@64

@65

@66

@67

@68

@69

@70

@71

@72

@73

@74

758

K32RtlEnlargedUnsignedDivide@16

K32RtlExtendedLargeIntegerDivide@16

K32RtlExtendedMagicDivide@20

K32RtlExtendedIntegerMultiply@12

K32RtlLargeIntegerShiftLeft@12

K32RtlLargeIntegerShiftRight@12

K32RtlLargeIntegerArithmeticShift@12
K32RtlLargeIntegerNegate@8

K32RtlLargeIntegerSubtract@16

K32RtlConvertLongToLargeInteger@4
K32RtlConvertUlongToLargeInteger@4

@75

@76

@77

@78

@79

@80

@81

@82

@83

@84

@85

FT_PrologPrime @89

QT_ThunkPrime @90

PK16FNF@0 @91

GetPK16SysVar@0 @92

GetpWin16Lock@4 @93

_CheckNotSysLevel@4 @94

ConfirmSysLevel@4 @95

_ConfirmWin16Lock@O @96

EnterSysLevel@4 @97
LeaveSysLevel@4 @98

Returns a pointer to the Win16Mutex.

Acquire a mutex (e.g., Win16Mutex).

Release a mutex (e.g., Win16Mutex).

I Figure A-1
You can use these undocumented KERNEL32. DLL functions to create your own import

 library to use with Visual C++ or other compilers and linkers.

You've probably noticed that I haven't included prototypes for all the
undocumented functions listed in Figure A-1. Although it would be possible
to write an entire Undocumented Windows-like chapter that prototypes and
documents these functions, that task isn't the purpose of this book. No doubt
these functions will be documented and described in the future in some other
text. Note that certain of the functions, such as VxDCall0@0, are referenced
and used elsewhere in this book, and that you can easily figure out the para-
meters and actions of some of the other functions.

K32LIB.DEF and K32LIB.LIB (for Microsoft VC++) are included on the
disk that accompanies this book; you'll find them in the APPENDIX directory
in the source tree for the files. Normally, the Microsoft linker creates an import
library for a DLL when it links the DLL. However, the Microsoft LIB.EXE
program can create an import library from a .DEF file. To rebuild the import
library from K32LIB.DEF, you can use the MAKE.BAT in the same directory
as K32LIB.DEE MAKE.BAT is nothing more than the following:

lib /MACHINE:IX86 /DEF:K32LIB.DEF

759

To use K32LIB.LIB in your project, you should place it immediately after
KERNEL32.LIB in the list of import libraries. This forces the Microsoft linker
to place the code and data from K32LIB.LIB contiguous with the code
and data brought in from KERNEL32.LIB. You'll see two references to
KERNEL32.DLL in the resulting executable. Don't be too concerned,
though. You're getting two IMAGE_IMPORT_DESCRIPTOR headers
for KERNEL32.DLL, but not two copies of all the data that describes
each imported function. (To explain what the Microsoft linker is doing
at this level would be a long story, so don't ask...)

Borland C++ users can take K32LIB.DEF and run it through IMPORT. LIB
to create an import library in the proper format for TLINK. The command line
in this case is:

IMPLIB K32LIB.LIB KB2LIB.DEF

You can place K32LIB.LIB anywhere in the import library list; TLINK
doesn't care about the order in which it appears.

As you've seen in many of the other programs throughout this book,
K32LIB.LIB is invaluable for calling Windows 95 functions that Microsoft
doesn't want you to use. Of course, you should avoid using undocumented
functions if that's at all possible. One very good reason for this is that if you
do use undocumented functions, your programs won't run under Windows
NT and may break in future versions of Windows. The programs in this
book are tied to Windows 95 and are explicitly designed to show what's
really happening in Windows 95. There was no way for me to avoid using
these functions in this book's programs.

If you absolutely must use these functions in your code, put version
tests and other sanity checks in your code so that your program fails grace-
fully. To do this (while avoiding loadtime failures), you'll have to use
GetProcAddress rather than calling the functions directly. Such are the risks
of working on the fringe of the documented operating system APIs.

{} (braces), 663
: (colon), 199
$ (dollar sign), 585-586
+ (plus sign), 181,237, 467, 547

A
About dialog box, 202-203
AddAPIFunction, 713
AddAtomA, 630
AddAtomW, 630
addresses. See also address spaces

calculating, 292-294
converting, 303-305
linear, 276,278
physical, 276, 300
RVAs (Relative Virtual Addresses), 86,

295,560-561,563,573,585,587,
591,595,603,608,630

AddressOfEntryPoint, 566
AddressOfFunctions, 594, 595,596
AddressOf_i, 289
AddressOfNameOrdinals, 595-596
AddressOfNames, 594, 595,596
address space(s), 3-4, 11. See also

addresses
basic description of, 50-52, 276
design flaws and, 63
layout, 275
protected subsystems and, 7-8
of a Windows 95 Win32 process,

279-286
ADVAPI32.DLL, 38, 59, 438-439,

440, 709

Alpha, 3
alternatePID, 231
Animate control type, 59
ANSI characters, 92
anti-hacking code, 64-65
APF32CVT, 688
APFCNVRT, 636
APISPY32, 170, 705-728, 744-745
APISPY32.API, 698
APISPY32.DLL, 170, 720-724
APISPYLD.C, 730-743
APISuspendCount, 134
ASCII format, 18, 221,480, 535,551

PE files and, 563,588,597,
617-619, 620

spelunking and, 627, 630, 631,641,658
spy programs and, 687, 694, 708

ASCIlZ strings, 607-608,690
audio-system analogy, 5-6
AUTOEXEC.BAT, 18, 21
AX register, 229, 428, 537, 540, 649

B
BAR.DLL, 746
base_GDI_FSR_percentage, 204
BaseOfCode, 566
BaseOfData, 566
BasePriority, 112
base relocations, 581-582
base_USER_FSR_percentage, 204
BeginServiceTable, 678
beginthread method, 745
Beziers, 33,263

762

BLOCKDEV, 39
BlockedOnID, 456
BlockHandle, 455
_BlockOnID, 439-440
BlockState, 455
BM_GETSTATE, 29
BN_CLICKED, 228
bootup sequence, 17-23
BoundsChecker (BCKHW), 623,634, 635,640,

686, 703
BP register, 647, 651
braces ({}), 663
branch statements, 645-646
BreakEvent, 119
BreakHandlers, 119
breakpoints, 675,688
BreakSem, 119
BreakThreadlD, 119
BreakType, 119
BSEXCPT.H, 159
.bss section, 580
BuildAPIStub, 713
BUILDFSR.BAT, 209
Bunny_351,447
Button class, 233

C
Cairo, 14, 556
CALC.EXE, 75, 77, 469-471,521,532, 625-626
CalculateNewPriority, 141-142, 143
CB_SETEDITSEL, 30
cbCIsExtra, 226
cbFileName, 75
cbFileName2, 77
cbModName, 76
cbModName2, 77
cbWndExtra, 226
cClsWnds, 225
CCommonReturnPoint, 725,728
CDPSCSI, 39
cHandles, 132
ChangeBits, 220
CheckSum, 339, 567
ChecksumHeapBlock, 335, 351-352
classAtom, 231
ClassFirst, 27, 234
classNameAtom, 225
ClassNext, 27, 234
CL.EXE, 13
Client Reg_Struc, 430

CLOCK32, 744
CLOCK.EXE, 601,637-640, 667-672
cMsgs, 219
cNotTermThreads, 109
CodeView, 574, 584-585,606, 615,632, 673
COFF (common object file format}, 3, 49, 555-620

debug information, 611-613
.LIB files, basic description of, 615-620
line-number tables, 613-614
.OBJ files, PE files and, difference between,

614-616
section flags, 575-576
spelunking and, 633
symbol tables, 605-610

colon (:), 199
ComboBox class, 233
ComboLBox class, 233
COMCTL32.DLL, 60, 234
COMDLG32.DLL, 38
COMMAND.COM, 21-22
COMMCTRL.DLL, 60
COMMON.C, 610, 614-615
Common Thunk, 190-191
CommonUnimpStub, 329, 377, 378
compatibility, backward, 38, 54, 187
CONFIGMG, 39
CONFIG.SYS, 18, 21
ContinueDebugEvent(), 695-696, 735
CONTEXT_CONTROL, 150
_ContextCreate, 310-311,439-440
CONTEXT_DEBUG_REGISTERS, 150
_ContextDestroy, 310-311, 439-440
CONTEXT_FLOATINGPOINT, 150
ContextHandle, 454
CONTEXT_INTEGER, 150
CONTEXT_SEGMENTS, 150
_ContextSwitch, 306, 310-311,439-440
ContinueDebugEvent, 62
"copy on write" mechanism, 290-291,298-299
_CopyPageTable, 308
CopyTasklnformation, 545,546-547
CR 3 register, 303,304
CR command, 305
crashes

exception handling and, 56-57
modules and, 78
Win32s and, 9
in Windows NT, vs. Windows 95, 13-14

CreateDirectory, 67
CreateEvent, 46
CreateFileMapping, 51
CreateProcess, 42, 731
CREATE_PROCESS_DEBUG_EVENT, 61

CreateRemoteThread, 692
CreateSemaphores, 47
CreateThread, 44
CREATE_THREAD_DEBUG_EVENT, 61
CreateToolhelp32Snapshot, 62-63
CreateWindow, 526, 635,636, 661
CreateWindowEx, 234
CreateWindowExA, 597
CreateWindowExW, 597
cReference, 106, 128
cRing0Threads, 109
CRITICALSECTION, 46, 48, 110, 337, 369,

388, 464
criticalSection, 337, 388
crst, 110
CRTDLL.DLL, 688
.CRT section, 580
cSections, 76
CS register, 188, 278
cThreads, 109
CTRDLL.DLL, 331,420
ctrlID, 230
CurrentSS, 133
CurTDB, 217, 459, 524
cUsage, 77
CVDUMP, 632, 633

D
.data section, 579-580
Date[12], 618
DBG2MAP, 632
DbgPrint(), 631
DBWIN, 61
DDE (Dynamic Data Exchange), 622
.debug$S section, 585
.debugST section, 585
DebugContext, 130
DEBUGEVENT, 60-63
DebuggerThread, 133
debugging. See also disassembly; spelunking;

spy programs
the "copy on write" mechanism and, 290-291
the debug version of Windows and, 681-682
exception handling and, 56-57
heap functions and, 335
memory management and, 290-291,314, 327,

329, 335, 411-414
overview of, 60-63
PE/COFF formats and, 583-585,611-613
virtual functions and, 314, 327, 329

DebugLoop, 730

DEBUG_ONLYTHIS_PROCESS, 731-732
DEBUGSYS.INC, 453
DEC (Digital Equipment Corporation), 3
DecodeParamsToString, 719-720
DefaultHeap, 107
.DEF files, 78, 288, 502-503,631,687
DefWindowProc, 245,246
DefWindowProcA, 744
delete function, 330
DeleteObject, 263
delta, definition of, 603
DeltaPriority, 134, 139
DemandInfoStruc, 442
Desktop class, 233
DesktopWndProc, 244-247
development considerations, overview of, 13-14
DeviceIoControl, 40, 431
DGROUP, 26-27, 34-35, 50, 67

memory management and, 280, 294-295,298
USER/GDI subsystems and, 188, 196-200,

204, 211-212, 225,231-232, 239,
258-260, 264

DialogBox, 503-505
Dialog class, 233
.directive section, 585
dir/AH, 17-18, 20
disassembly, 622, 642-672
DisDoc, 642-643
DispatcherContext, 161
DispatchMessage, 702, 703,736
DisplatchRITInput, 216
DLLENTRYPOINT, 491
DllMain(), 693,703, 706
dollar sign ($), 585-586
DoSomething(), 653,654
DosPDBSeg, 456
DragListBoxes, 59
Dr. Watson, 158
DS register, 52, 188, 193,278,504-505,540
DTA (Disk Transfer Area), 534
DumpAuxSymbols(), 610
DUMPBIN, 558, 623-624, 626, 629-633,

643,667
DumpExportsSection, 598
DumpSecondLinkerMember, 620
dwExStyleFlags, 230
dwFlags, 230
dwMemCommitted, 207
dwSize, 336, 388
dwStyleFlags, 230
dwTotaiFree, 207
DX register, 537
DYNAPAGE, 39

764

E
EAX register, 188, 430, 434, 438, 701
.edata section, 581,598
Edit class, 233
EH_EXIT_UNWIND, 162
EH_UNWINDING, 161
EIP register, 126, 302, 434
EM_SETRECT, 30
EMF (Enhanced Metafile) support, 263,270
EmulatorData, 133
EmulatorSelector, 132
EnterCriticalSection, 48, 337
EnterSysLevel, 139, 238
EntProcAddress, 517, 519-521
entry tables, 480-481,499-501
EnumChildWindows, 237
EnumTaskWindows, 522
EnumWindows, 237
ENVIRONMENT_DATABASE, 117-122
EnvironSelector, 113
ERROR_INVALID_PARAMETER, 120
ErrorMode, 113
EstablishFrame, 161
events, as synchronization objects, 46-47
Excel, 622
Exceptl6List, 133
EXCEPTION_BREAKPOINT, 735
ExceptionCount, 456
EXCEPTION_DEBUG_EVENT, 61,696,

735,739
EXCEPTION DISPOSITION, 160-161
exception handling, structured. See SEH

(structured exception handling)
EXCEPTION_RECORD, 161
EXCPT.H, 160
Exec_PM_Int, 424, 450
EXEHDR, 503,623,624, 625,628
EXESIZE, 633
EXEUTIL, 270
EXIT_PROCESS_DEBUG_EVENT, 61, 62
EXIT_THREAD_DEBUGEVENT, 61
.EXP files, 581
Explorer, 21, 67, 204, 245,472

About dialog box, 202-203
TDB and, 530
WNDPROC and, 213

EXPLORER.EXE, 530, 593
exporting functions

definition of, 480
export address tables and, 86
PE files and, 593-598

expWinVer, 220
extralnfo, 220, 223

F
FARPROC, 540
fastcall convention, 654
fFileApisAreOem, 117
File... button, 730, 731
FileAlignment, 566
file-dumping tools, 622, 624-633
Filter... button, 467
FindClose, 450-451
FindExeFile, 506
FindExeInfo, 506, 509-510
flat memory model, 278-279
.FLT files, 467
FOO.DLL, 78, 289, 746
ForwarderChain, 587
FREE_LIST_HEADER_DEBUG, 388
FREE_LIST_HEADER_RETAIL, 336
FREECALL, 307
freelistArray[4], 336, 388
FreeRing0Callgate, 302
FSR (free system resources), 35, 67, 202-217,

244-245,331
FS register, 136-137, 191
FSR32, 209-211
FSR32.C, 210-211
function(s)

GDI, available for Win16 applications,
270-271

heap, 329-411
identifying, 646-649
importing/exporting, 86, 480, 586-598
intercepting, in your programs, 746-753
module-related, 505-521
return values, 649, 701-705
task-related, 536

G
GDI, 7-10, 12, 15, 67. See also GDI.EXE;

GDI32.DLL
32-bit heaps and, 196, 200, 201
basic description of, 33-34
free system resources and, 202-217
functions, available for Win16 applications,

270-271
modules, 260-271
objects, 263-269
subsystems, 185-272
Win16Mutex and, 31-33
Windows 95 design flaws and, 64

GDI.EXE, 10-11, 33-34, 36, 195-196, 204, 260,
264-266, 270, 488, 625-626

GDI32.DLL, 7, 10, 33-34, 38, 260, 262, 590
GetObjectType and, 266-269
memory management and, 284, 297
spy programs and, 709

GDIReallyCares, 182, 183
GetActiveWindow, 241-242, 250-252
GetATaskSomehow, 539
GetAtomNameW, 627
GetCapture, 241-242, 250-252
GetClassName, 745
GetCommandLineA, 119-120
_GetCurrentContext, 310-311, 439-440
GetCurrentDirectoryA, 163-166
GetCurrentPDB, 522, 533
GetCurrentProcess, 103-104
GetCurrentProcessID, 40, 65, 103, 104, 127, 182
GetCurrentPSP, 522
GetCurrentTask, 522, 537
GetCurrentThread, 127, 653-654
GetCurrentThreadlD, 65,105, 127, 182,

183,334
Get Cur VM, 678
Get Cur VM_Handle, 426
_GetDemandPageInfo, 415,439-440, 442-444
GetDlgCtrlID, 256-257
GetDlgltem, 255-256
GetEnvironemnt Strings, 120
GetExePtr, 504, 506, 510-514
GetE×ePtrHelper, 511, 513-514
GetExitCodeProcess, 114-115
GetExitCodeThread, 131, 177-178
GetFileInformationByHandle(), 101
GetFocus, 241-242, 250-252, 653
GetFreeSystemResources, 67, 202-217, 245
GetHeapSpaces, 207
GetLastActivePopup, 231
GetLastError, 176
GetLastErrorCode, 133, 176
GetMessage, 9, 11, 28, 32, 45, 214-215,218,

221,223, 523,577-578
GetMessageExtraInfo, 220, 251-252
GetMessagePos, 220, 251-252
GetMessageTime, 220, 223, 251-252
GetModuleBaseFromWin32sHMod, 729-730
GetModuleFileName, 75, 92-95,117, 529,

549, 719
GetModuleHandle, 75-76, 78, 80, 95-97, 117,

479, 504-510, 561,658
GetModuleUsage, 77
GetObjectType, 266-269

GetOpenFileName dialog box, 730-731
GetParent, 228, 655
GetPercentFree 16BitHeap, 207-208
GetPercentFree32BitHeap, 207-208
GetPhysica!AddressFromLinear, 300
GetPriorityClass, 145-146
GetPrivateProfileSection, 67, 461
GetPrivateProfileString, 635
GetProcAddress, 64-65, 80, 89, 164, 473, 475,

628, 687, 713-714, 729, 753
basic description of, 515-521
Winl6 modules/tasks and, 501-502,

515-521,523
GetProcessAddress, 80-85
GetProcessHeap, 54, 195,335,342, 377-378
GetQueueStatus, 29, 220, 221
GetRing0Callgate, 301-302
GetStdHandle, 121
GetSystemDefaultLanglD, 676
GetSystemMenu, 231
GetSystemTime, 427
GetTaskQueue(), 538-539
GetTextExtent, 625-626
GetThreadContext, 45, 62, 146-149, 694,

679-680
GetThreadHandle, 126
GetThreadPriority, 139-140
GetThreadSelectorEntry, 417-4 19
GetVersion(), 689, 690
Get_VMM_Version, 426
GetWindow, 228
GetWindowLong, 213,214, 638, 668-670
GetWindowRect, 655
GetWindowThreadProcessld, 229, 243-244
GetWndPtr32, 248-250, 256
GFSR_SYSTEMRESOURCES, 205
GlobalAlloc, 53-54, 76, 278, 287, 309, 329, 331,

379, 408, 479, 510-511,541
GlobalCompact, 411
GlobalFix, 410
GlobalFlags, 410
GlobalFree, 380, 409
GlobalHandle, 409
GlobalLock, 53,408, 478
GlobalMemoryStatus, 414-417, 442
GlobalNotify, 531
GlobalNukeGroup, 392
GlobalPageLock(), 35-36
GlobalReAlloc, 409
GlobalSize, 409
GlobalUnfix, 411
GlobalUniock, 409

766

GlobalUnWire, 410
GlobalWire, 410
GMEM_FIXED, 281
GMEM_SHARE, 51,286-289, 511
GP faults, 52, 56, 529, 537-538, 539, 633,642
_GPFIX, 586
GrouplD[6], 618
guard pages, 44-45
GW_HWNDNEXT, 228
GWL_WNDPROC, 213,214
GW OWNER, 228

H
HANDLE, 41-42, 45, 49, 47
HandleDebugEvent, 735
HandleException, 735-736
HandlerFunction(), 160
hBrBackground, 226
HBRUSH, 263
hcNext, 225
hCriticalSection, 337, 388
HCursor, 226
Header control type, 59
headMsg, 219
headPDB, 524
HeadTDB, 524
heap(s)

arenas, 332-342
functions, overview of, 329-411
global heap functions, 379-380, 408-411
headers, 332-342
local heap functions, 379-407
typical Win32, diagram of, 333

"Heap 32" command, 198
Heap32First, 62
Heap32ListFirst, 62
Heap32ListNext, 62
Heap32Next, 62
HeapAlloc(), 54, 73, 195,330-331,337,

343-344, 374, 379, 420, 422, 598
_HeapAllocate, 309-311,439-440
HEAP.C, 421-422
HeapCompact, 377
HeapCreate, 309, 335,337, 366-368
HeapDestroy, 55, 373-376
HeapFree, 55, 195,330, 354-356, 420
_HeapFree, 309, 310-311,331,439-440
HEAP_FREE_CHECKING_ENABLED, 366
HEAP_GENERATE_EXCEPTIONS, 343, 360
HeapHandle, 109

HeapHandleBlockList, 112
HeapLock, 66, 378
HEAP NO SERIALIZE, 360, 369, 373, 383
HeapOwnList, 112
HeapReAlloc, 55, 73,330, 360-361
_HeapReAllocate, 310-311,439-440
HEAP_REALLOC IN PLACE_ONLY, 360
HeapSetFlags, 330, 344
HeapSize, 55,352-353
HeapUnlock, 378
HeapValidate, 377
HEAPW32.H, 339
HeapWalk, 66, 262, 307, 379
HEAP_ZERO_MEMORY, 343,349, 360
"Hello World" programs, 184
HelplAbout, 67, 203
HGDIOBJ, 263,264, 266
HGLOBAL, 408
hGIobalHeap, 524
HIBYTE, 491-492
Hlcon, 226
hIconSm, 226
HIGH_PRIORITY_CLASS, 139
hlnstance, 229
HINSTANCE, 50, 76, 496, 503-505,510-511,

515-516, 529, 540, 561
HIWORD, 64
HKEY_CLASSES_ROOT, 57
HKEY_CURRENT_CONFIG, 57
HKEY_CURRENT_USER, 57
HKEY_DYN_DATA, 57-58
HKEY_LOCAL_MACHINE, 57
HKEY_USERS, 57
hMenu, 230
hMenuSystem, 231
HMODULE, 49, 50, 65, 70-71, 76

spy programs and, 708,719
Win16 modules/tasks and, 479, 487-489, 492,

496, 503-505, 510-511,515-516,522,
535-536, 547-548

HMODULE.H, 482, 496
HOOKAPI.C, 746-753
HOOKED_FUNCTION, 724-725
HookImportedFunction, 746-753
HotKey, 60
HouseCleanLogicallyDeadHandles, 383
HPAlloc, 344-351,380, 383,400, 408
hpCarve, 344-345,348-351,357
hpCommit, 369
hpFreeSub, 357-360, 369
HPInit, 345,366, 369-373
HPReAlloc, 362-365
hProcess, 40, 42, 114, 145,322

hQueue, 222, 229
hQueueSend, 221
HRGN, 200
hrgnUpdate, 229
hStdErr, 118
hStdln, 118
hStdOut, 118
hTask, 219
HTASK, 40, 512, 522, 533,534, 538-539
hThread, 45,692
hWnd, 213, 244, 644, 669
HWND, 25, 27-29, 69, 700

changes to, in Windows 95,226-233
spelunking and, 644, 655,656,668-669
USER/GDI subsystems and, 199-200,

211-212, 223-233,239-241,249, 255,
258,262

hWnd16, 231
HWND32.H, 228
hWndActive, 226
hWndCapture, 226
hWndChild, 228
hWndNext, 228
hWndOwner, 228
hWndParent, 228

IATs (import address tables), 690
IBM (International Business Machines), 12
.icon section, 579
.idata section, 581,586-593
IDLE_PRIORITY_CLASS, 139
IDTs (Interrupt Descriptor Tables}, 429
IFSMGR, 39
if statements, 659-663
IGetCurrentDirectory, 165
IGetExitCodeProcess, 114-115
IGetExitCodeThread, 177-178
IGetFreeSystemResources, 204-207
IGetModuleFileName, 92-95
IGetModuleHandle, 95-97, 505-510
IGetProcAddress, 80-85,515-521,681
IGetThreadContext, 146-149
IGetThreadSelectorEntry, 417-419
IGetWindowThreadProcessId, 243-244
IGlobalFiags, 410
IGlobalHandle, 681
IGlobalMemoryStatns, 414-417
IHeapAlloc, 343-344
IHeapDestroy, 373-376

767

IHeapFree, 354-356, 374
IHeapReAlloc, 360-361
IHeapSize, 352-353
ILoca!Alloc, 383-387
ILocalFree, 392-396
ILocalHandle, 400-404
ILocaiLock, 387-390
ILocalReAlloc, 396-400, 681
ILocalSize, 402-404, 681
IMAGE ARCHIVE_MEMBER_HEADER,

616-617, 620
ImageBase, 566
IMAGE_BASE_RELOCATION, 603-604, 605
IMAGE_DEBUG_DIRECTORY, 583-585,611
IMAGE_FILE_HEADER, 606, 611,614-615
IMAGEHLP.DLL, 567
IMAGE_IMPORT_DESCRIPTOR, 587-588,

591-592,714, 752
ImageList, 60
IMAGE_NT_HEADERS, 72, 75, 76, 559, 563
IMAGE_OPTIONAL_HEADER, 615
IMAGE_RELOCATION, 615
IMAGE_RESOURCE_DATAENTRY, 497, 600
IMAGE_RESOURCE_DIRECTORY_ENTRY,

599-602
IMAGE_SCN_MEM_SHARED, 288-289
IMAGE_SECTION_HEADER, 570-573,576, 614
IMAGE_SYMBOL, 606-610
IMAGE_THUNK_DATA, 588-593,714
IMakeProclnstance, 540-544
importing/exporting, 86, 480, 586-593
IMTEs (Internal Module Table Entries), 73-80,

108, 179
spy programs and, 729
structure of, 74-78
Win32Wlk and, 181-183

InheritConsole, 119
.INI files, 57-58, 640, 641
InitApp, 539
InitializeCritica!Section, 48,337
InitialRing0ID, 110
InitThreadReturnStack, 724
InjectSpyDll, 735-736, 739, 740
instance handles, use of the term, 561
INT 2Fh functions, 300, 428, 429
INT 3 functions, 56, 290, 735
INT 20h functions, 426-427, 678-679
INT 21h functions, 23, 113,165,424,

450-453, 531
INT 30h, 429-430, 434--435
INT 31h functions, 450, 453
INT 41h functions, 450, 453-454

768

Intel processors, 3, 14, 274, 277, 429, 603-604
80386 class, 4, 16
Pentium-optimized code and, 682-683

InterceptFunctionReturn, 725
InterceptFunctionsInModule, 714
InterruptRegister, 540, 695
INTRCPT.C, 708, 713-718
INTRCPT2.H, 714
IO.SYS, 20
ISetThreadContext, 151-164
IsGDIObject, 264-266
IsTask(), 537-538, 545
IsWindow, 239-241,248-249
IsWindow16, 239-241
IVirtualProtect, 327-328
IVirtualQuery, 323-324
IWinExec, 680

J
JP Software, 21
jump tables, 666

K
K16PDB, 456
K16TDB, 456
K209 function, 380
K211 function, 380
K32LIB.LIB, 443
K32OBJ_CHANGE, 101
K32OBJ_CONSOLE, 101
K32OBJ_CRITICAL_SECTION, 101,135
K32OBJ_DEVICE_IOCTL, 101
K32OBJ_EVENT, 101,106
K32OBJ_FILE, 101
K32OBJ_MAILSHOT, 101
K32OBJ_MEM_MAPPED_FILE, 101
K32OBJ_MUTEX, 101
K32OBJ_PIP, 101
K32OBJ_PROCESS, 101,106
K32OBJ_SCREEN_BUFFER, 101
K32OBJ_SEMAPHORE, 101
K32OBJ_SERIAL, 101
K32OBJ_SOCKET, 101
K32OBJ_THREAD, 101, 125, 128
K32OBJ_TOOLHELP_SNAPSHOT, 101
KERNEL32, 10, 42, 52, 59, 66

memory management and, 286,291,295,
312, 332-333,336,342, 345,366, 380,
383,387, 392, 396

objects, 100-102, 123
modules and, 73-76
processes and, 106
threads and, 70, 127-128, 170
Windows 95 design flaws and, 64

KERNEL32.DLL, 10-11, 37-40, 63-66, 73,
176-178, 216, 423-424, 433-441,447,
450-453,457-466, 468, 471-481

anti-hacking code and, 64-65
export section, 597, 598
memory management and, 280, 284, 297-298,

309, 311,343,380
processes and, 102-103
SEH and, 163
spelunking and, 627, 631,679-680, 682
spy programs and, 687-690, 709, 739
threads and, 125, 139
Win16 modules/tasks and, 477-481

KRNL386, 37, 52-53, 63-64, 182, 286,
294-295,298, 392, 418, 428-430

KRNL386.EXE, 10-11, 37, 40, 423-424,
457-466

spelunking and, 628-630
USER/GDI subsystems and, 201,213,217
Win16 modules/tasks and, 477, 480, 489

L
lastActive, 231
lastMsg, 219
lastMsg2, 220
LastTlsSetValueEIP, 136
LB_INSERTSTRING, 30
LDTAIias, 418
LDTPtr, 418
LDTs (local descriptor tables), 50-51, 52, 198,

300, 417-418
LeaveMustComplete, 412
LeaveSysLevel, 139, 238
LIBDUMP.C, 620
LIB.EXE, 589
.LIB files, basic description of, 615-620
LibMain, 534
Linker members, 618-619
LINK.EXE, 13
ListBox class, 233
ListView, 60

 index 769

LMEM_FIXED, 27, 54, 380-383,387-388, 390,
392, 396, 400, 402-403,405

LMEM_INVALID_HANDLE, 405
LMEM_MOVEABLE, 264, 380-383, 387, 390,

392-393,396, 400, 402-403,405
LOAD_DLL_DEBUG_EVENT, 61
LOADAPIS.C, 710
LoadLibrary, 72, 78,461,482, 569, 692-694,

703,739
LoadModule, 42, 479, 480-481
LoadProc, 496
LoadProcessForSpying, 730
LoadTDB, 524
Local32Alloc, 201
Local32Free, 201
Local32FreeQuickly, 201
Local32Info, 207
Local32ReAlloc, 201
Local32Translate, 201
LocalAlloc, 54, 55, 195,309, 331,379-387, 408
LocalCompact, 408
LocalFlags, 405-407
LocalFree, 55,382, 392-396
LocalHandle, 400-404
LocalHeap, 330
LocalHeapFreeHead, 110
Locallnit, 55
LocalLock, 53, 387-390
LocalReAI!oc, 55,396-400, 627
LocalShrink, 407
LocalSize, 55,402-404
LocalUnlock, 390-392
LOG.C, 709-710, 719, 720
LogCall, 719, 720
logo, Microsoft, 4-5, 18
LogReturn, 720
Longnames archive member section, 620
LOWORD, 64
lpl6SwitchRec, 135
IParam, 223
LPARAM, 30, 657
lpfnWndProc, 229, 236
lpIntWndClass, 235
lpMem, 354
LPRECT, 700
lpszCmdLine, 680
lpszCurDir, 164
lpszMenuName, 226
lpszPath, 92
LSTMGR.C, 102
lstrcpy, 685
LT_USER_CLASS, 234
LT_USER_PROCESS, 221

LT_USER_QMSG, 222
LT_USER_SUBSYSTEM, 222
LT_USER_VWININFO, 225
LvaToFirstLinenumber, 612
LvaToFirstSymbol, 612
LZA32.DLL, 38

M
main(), 163
MajorlmageVersion, 567
MajorOperatingSystemVersion, 567
MajorVersion, 594, 599
MakeProclnstance, 535-536, 540-544
malloc, 53,312, 330-331,420-422
MAP32, 674
.MAP files, 494, 632, 677
MAP! (Mail AP1), 15
MapViewOfFile, 51
MDIClient class, 233
MEM_COMMIT, 53,314
MEM_DECOMMIT, 319
MemMapFiles, 109
memory. See also addresses; address spaces; FSR

(free system resources); heaps; memory
management; RAM (random-access
memory)

areas of, examining, with MEM/DEBUG,
18-20

consumption below 1MB, 35-36
corruption, 9
"insufficient memory" messages, 35-36
mapped files, basic description of, 51-52,

55-56
requirements, for Windows 95 vs. Windows

NT, 4, 7, 16
sharing, 286-289, 298,473-475
VxDs and, 425-426, 473-475
windowing systems and, 25, 26

MemoryContext, 107
memory management, 52-55,273-422

"copy on write" mechanism and, 290-291,
298-299

heap functions and, 329-379
memory contexts and, 281,303-308
page-based, 274-289
selectors and, 277-278
Win32 virtual functions and, 312-379

MEMORYSTATUS, 414-4 17
MemoryWrite(), 698
MEM_RELEASE, 319

770

MEM_RESERVED, 314
MEM_TOP_DOWN, 314
MessageBox, 749-750
MessageBoxW, 257
messagePos, 223
message queue(s), 218-226

format, 218-222
per-queue system windows and, 224-226
QUEUEMSG structure and, 222-224

MessageQueue, 130, 137
messageTime, 220, 223
messaging system(s). See also message queues

changes, in the USER subsystem, 214-217
overview of, 27-29

Meyer, Brian, 157
MinorImageVersion, 567
MinorOperatingSystemVersion, 567
MinorVersion, 594, 599
MMTASK, 307
MOD, 22, 196-197, 284
MODFLAGS_APPTYPE, 484
MODFLAGS_AUTODATA 485
MODFLAGS _CALL_WEP, 484
MODFLAGS_DLL, 484, 485
MODFLAGS_IMPLICIT LOAD, 485
MODFLAGS_SELF LOADING, 484
MODFLAGS_SINGLEDATA 485
MODFLAGS_WIN32 485
MODREF, 73, 78-80, 100, 181
MODREFlist, 110
module(s)

basic description of, 49-50, 69-73
database fields, new, 492
-related functions, 505-521
Win16, overview of, 477-554

MODULE32.H, 74-79
ModuleFirst, 481
ModuleNext, 481
MPREXE.EXE, 693
MRFromHLib, 93
MSDOS.SYS, 17-18
MSGQUEUE.H, 218, 221,223,225
MSGSRV32, 217
MSGSRV32.EXE, 530
MsgWaitForMuitipleObjects, 47
mtelndex, 80, 108
multitasking, 11,458

cooperative, 523
snapshots and, 63
synchronization and, 45

multithreading, 9, 44
MustCompleteCount, 455
mutexes, 46, 48
MyDialog, 600

N
NE (New Executable) format, 34, 49, 479,

491-503,525
basic description of, 479-480
GDI.EXE and, 262
PE/COFF formats and, 570, 576,581,584,

599, 603
spelunking and, 625, 635

NegStackBase, 133
new (function), 53,312,330-331,420-422
nextBlock, 336, 388
nextHeap, 337, 388
nextQueue, 218
nextQueueMsg, 223
NFY_STARTTASK, 695
NORMAL_PRIORITY_CLASS, 138-139
NotifyRegister, 61,540, 695,696
npNext, 222, 225
npPerQueue, 219
npProcess, 219
npQMsg, 225
NtCreateProcess(), 631
NTDLL.DLL, 40, 627, 630-631
NtQuerySystemInformation(), 631
NTSD (NT system debugger), 606
NumberOfAuxSymbols, 609
NumberOfFunctions, 594
NumberOfldEntries, 599
NumberOfLinenumbers, 574, 612
NumberOfMembers, 619
NumberOfNamedEntries, 599
NumberOfNames, 594, 596
NumberOfRelocations, 574
NumberOfRvaAndSizes, 569
NumberOfSymbols, 612, 618-619
nWndFocus, 226

O
OBJ2ASM, 633
object, use of the term, 561
OBJ_METAFILE, 266
Obsfucator values, 65,105, 127
OEM characters, 92, 95
OFSTRUCT, 483
OFSTRUCTEX, 483-484
OpenEvent, 46
OpenFile, 746
OpenLogFile, 719
OpenProcess, 42, 115-117

OriginalCodePage, 739
OS/2, 4, 7, 12, 23, 490, 547

LX format, 576
SEH and, 157, 158, 159

OutputDebugString, 61
OUTPUT_DEBUG_STRING_EVENT, 61

P
_PageAttach, 308, 310-311,439-440
_PageChangePager, 439-440
_PageCommit, 310-311,314, 349, 439-440
_PageDecommit, 310-311,319, 357, 439-440
page directories, 303-306
PAGEFILE, 39
_PageFlush, 310-311, 439-440
_PageFree, 310-311, 319, 374, 439-440
_PageModify, 306
_PageModifyPermissions, 306, 310-311,315,

439-440
_PageQuery, 439-440
_PageRegister, 310-311
_PageReserve, 310-311,312,314, 332, 366,

439-440
_PagerQuery, 310-311, 439-440
_PagerRegister, 439-440
page tables, 302-305,308
parameter(s), 650-654

information coding, 699-701
validation, 163-164, 680-681

Parameter profiler (Microsoft), 640
ParentPDB, 110
PARMTYPE.H, 709
Pascal, 489, 645-646, 650-652
pConsole, 111
pConsoleProvider, 113
pCreateData16, 134
pCurrentPriority, 130, 137
PDB (Process Database), 102-103,585

basic description of, 106-114
Win16 modules/tasks and, 533, 534

PDBToPID, 103, 127
PE (Portable Executable) format, 3, 34, 50, 55

COFF .OBJ file format and, difference
between, 614-616

concepts, basic, 559-562
.data section, 579-580
file exports, 593-598

file imports, 586-593
header, 562-569
.icon section, 579
modules and, 71, 72, 479, 497-498
overall layout of, diagram of, 562
overview of, 555-620
section tables and, 570-586
spelunking and, 624, 631
.text section, 577-579

PEDUMP, 12, 257, 295, 558-559, 570, 581,584,
586, 591,597-598, 601-602, 605-606,
610, 613-614, 620, 626, 631,633

PeekMessage, 9, 11, 28, 45,214-215,218, 221,
223, 523, 736

Pentium-optimized code, 682-683
PERQUEUEDATA, 225, 241,250
pExeMODREF, 111
pfdwOldProtect, 327
pGlobalHeap, 524
PGTPTR (Page Table Pointer) values, 308
PHANDLE_TABLE, 110
pHandleTable, 110, 181
PHYS, 287-288, 291-302, 308
PHYS (command), 305
PHYS.EXE, 292-299
PID, 182, 183
PidToPDB, 104-105
Plug and Play, 15
plus sign (+), 181,237, 467, 547
pModuleTableArray, 73-74, 80, 93, 182
pNextModRef, 79
pNTHdr, 75
PointerToLinenumbers, 574
PointerToRawData, 574
PointerToRelocations, 574
PopupMenu class, 233
portability, 3-4, 7-8, 16
POSIX, 7
PostAppMessage, 522
PostMessage, 537
ppCurrentProcess, 103
ppdb, 80, 454
pPMPSPSelector, 456
pProcess, 128
pProcess2, 130
PPROCESS_DATABASE, 110-111, 114, 116,

128, 130, 143, 145
"Press any key..." prompt, 295
prev_structure, 159
printf(), 12, 573

771

772

PROCDB.H, 117
procedures, identifying, 646-649
process(es), 69-71. See also PDB (Process Database)

16-bit representations of, reasons for, 478
basic description of, 102-103
handles, 103-106, 122-123
IDs, 40, 42, 45, 103-106, 116-117
injecting DLLs into, 692-694
list, in Win32Wlk, 179-181,182
management, overview of, 40-43
synchronization, 4.5-49

Process32First, 62, 106
Process32Next, 62, 106
PROCESS_DATABASE, 80, 117, 122-123,460
ProcessDWORD, 111
PROCESSENTRY32, 106
ProcessGroup, 111
Property Sheets control type, 60
protected mode, 427-430, 446-453
pSomeCritSectl, 135
pSomeCritSect2, 135
pSomeEvent, 106, 128
pSomeHeapPtr, 112
PSP (Program Segment Prefix), 43, 69, 106, 108,

460, 511,522
PSPSelector, 108
pStartuplnfo, 118
pszCmdLine, 118
pszCurrDirectory, 118
pszEnvironment, 118
pszFileName, 75
pszFileName2, 77
pszModName, 75, 76
pszModName2, 77
ptdb, 454
pTDBX, 132
pTIB, 129, 137
pTLSArray, 130, 137
PulseEvent, 46
pvExcept, 128, 137
PVIEW, 66
pvTLSArray, 137
PWALK, 321-322
pWinl6Mutex, 135
pWin32Mutex, 135

Q
QEMMFIX, 39
QS_ALLINPUT, 221
QT_Thunk, 191-195,208-210

QueuedSyncFuncs, 456
QUEUEMSG, 220, 222-224
QUEUEPROCESSDATA, 219, 221-222, 243

R
RAM (random-access memory), 44, 52, 56

memory management and, 53,274-278, 280,
282-283,290, 292, 295,299-300, 303,
313,329, 414, 416

VxDs and, 443
Win16 modules and, 494, 498

Raymond, Eric S., 621
.RC files, 632
.rdata section, 583-585
ReadProcessMemory, 62,116, 411-414, 688
realloc, 330
REALTIME_PRIORITY_CLASS, 139
REBASE.EXE, 284
RECT, 655
rectClient, 229
rectWindow, 228
_RegCloseKey, 439-440
_RegCreateKey, 439-440
_RegDeleteKey, 439-440
_RegDeleteValue, 439-440
REGEDIT, 57
_RegEnumKey, 439-440
_RegFlushKey, 439-440
RegisterClass, 234
registry, basic description of, 57-58
RegLoadKey, 439-440
_RegOpenKey, 439-440
_RegQueryMultipleValues, 439-440
_RegQueryValueEx, 439-440
_RegRemapPreDefKey, 439-440
_RegReplaceKey, 439-440
_RegSaveKey, 439-440
_RegSetValue, 439-440
_RegSetValueEx, 439-440
_RegUnLoadKey, 439-440
ReleaseSemaphore, 47
.reloc section, 581-582
Reschedule function, 536
RESFMT.TXT, 602
resident/nonresident names tables, 501-503
resource tables, 480-481,495-499
ResumeThread, 156-157
RETURN.C, 719, 724, 725-727
ReturnFailureCode, 166
RichEdit, 60

 Index 773

Richter, Jeffrey, 124, 157, 692
RING0.EXE, 300
RIPEVENT, 61
ripString, 136
RITs (Raw Input Threads), 28, 215-216
robustness, 3, 7-8, 13-14, 25
.rsrc section, 580-581
RSW {readable, writeable, shared), 474
RtlHeapFree, 598
RtlUnwind, 159, 166
RVAs (Relative Virtual Addresses), 86, 295,

560-561,563, 573,585,587, 591,595,
603,608, 630

RvaToFirstByteOfCode, 612, 613
RvaToLastByteOfCode, 612, 613

S
Scheduler {Windows), 536
Schmidt, Alex, 300
Schulman, Andrew, 10-11,207, 216-217
SC_TASKLIST, 245
section(s)

.bss section, 580

.CRT section, 580

.data section, 579-580

.debug$S section, 585

.debug$T section, 585

.directive section, 585

.edata section, 581,598

.icon section, 579

.idata section, 581,586-593

.rdata section, 583-585

.reloc section, 581-582

.rsrc section, 580-581
tables, 570-586
.text section, 577-579
.tls section, 582-583
use of the term, 561

SectionAlignment, 566
SectionNumber, 608
security, 3, 16, 64
segment tables, 480-481,492-495
SEH (structured exception handling), 44-45, 53,

56-57, 680
overview of, 157-168
parameter validation and, 163-164
TIB and, 69

SelectObject, 263
SelmanList, 129, 137
SelTableLen, 524

SelTableStart, 525
semaphores, 46, 47-48
SEM_FAILCRITICALERRORS, 113
SEM_NOALIGNMENTFAULTEXCEPT, 113
SEM_NOGPFAULTERRORBOX, 113
SEM_NOOPENFILEERRORBOX, 113
SendMessage, 213-214, 252-254, 523
SetActiveWindow, 224
SetDeskWallPaper, 625
SetErrorMode, 528-529
SetEvent, 46, 47
SetFileApisToANSI, 92
SetFileApisToOEM, 92, 117
SetFocus, 28, 189-191,208, 224
SetLastError, 176, 177, 412, 636
SetMenu(), 639
SetMessageQueue, 222-223
SetPixel, 488, 502
SetPriorityClass, 42, 138, 143-145
SetResourceHandler, 496
SetSigHandler, 530
SetStdHandle, 121
SetTaskSignalProc, 530
SetThreadContext, 62, 151-164, 675,694,

739, 740
SetThreadPriority, 140
SetUnhandledExceptionFiher, 115
SetWindowLong, 233,638-639, 668-670
SetWindowPos(), 639, 668-669
SetWindowsHookEx(), 692
SetWindowText, 745
SetWindowWord(), 639
SHELL, 39
SHELL32.DLL, 38, 204, 208, 472
ShortName, 607
SHOW16, 478, 481-482, 496, 507, 525-526,

532, 547-554
SHOW16.EXE, 50, 70
ShowPhysicalPages, 292-294
ShowScrollBar, 69
SHOWSEH.C, 162-163
ShowWindow(), 668-669
SHOWWND, 196, 218, 221,223, 225,228,234,

237-239
SHOWWND.C, 226, 238
ShutDownAPISpy32, 706
ShutdownThreadReturnStack, 707, 724
sig2, 221
sig[3], 219
_SignalID, 439-440
SignalProc, 530
SimonSez, 749-752

774

SizeOfBlock, 603
SizeOfCode, 565
SizeOfHeaders, 567
SizeOfHeapCommit, 569
SizeOfHeapReserve, 569
SizeOfImage, 567
SizeOfIntializedData, 565
SizeOfRawData, 573
SizeOfStackCommit, 568
SizeOfStackReserve, 568
SizeOfUninitializedData, 585
snapshots, 63
SoftIce/W, 14, 125,729

32-bit heaps and, 196-199
Addr command, 306-307, 308
CR command, 305
"Heap 32" command, 198
LDT command, 198
memory management and, 284-286, 291,

305-308,334
MOD command, 196-197, 284
QT_Thunk and, 191
spelunking and, 632, 673-675
THREAD command, 334
USER/GDI subsystems and, 191,196-199
VxDs and, 284-286, 429, 432-433, 438-440,

445,453, 459
some32BitHandle, 230
somehQueuel, 225
somehQueue2, 225
SOUNDREC.EXE, 633
Sourcer, 623, 642
SpellCheck(), 628
SPELL.DLL, 627-628
SpellInit(), 628
SpellTerminate(), 628
SpellVer(), 628
spelunking, 621-683

advanced tips for, 672-683
using disassembly, 622, 642-672
with file-dumping tools, 622, 624-633
overview of, 623-624
with spying tools, 622, 634-641

spy programs, 466-475,685-753
building stubs and, 697-699
controlling target processes and, 695-697
function return values and, 701-705
injecting DLLs into other processes and,

692-694
intercepting functions and, 687-692
parameter information coding and, 699-701
spelunking with, 622, 634-641

SS register, 52, 188, 193, 504-505
SSTable, 134
StackBase, 132
StackLow, 129
StackSelector16, 129, 137
Start button, 467
Static class, 233
STATUS_BREAKPOINT, 696
StatusWindow, 60
STILL_ACTIVE, 177
StorageClass, 609
string literals

adding in, 645
identifying, 658-659

StringTable, 619-620
stubs

building, 697-699, 713-718
definition of, 697

SuspendCount, 455
SuspendHandle, 455
SuspendThread, 154-155,156
switch statements, 663-666
.SYM files, 632, 644, 677
symbol(s)

: (colon), 199
{} (braces), 663
$ (dollar sign), 585-586
+ (plus sign), 181,237, 467, 547

SymbolTableIndex, 614
synchronization, 45-49, 70, 124, 440
SyncWaitCount, 456
SystemDefaultLanglD, 676
SYSTEM.INI, 22
SystemParametersInfo, 625
system resource cleanup, 34-35
system resources, free. See FSR

(free system resources)
SzCmdLine, 731

T

TabControl, 60
tailMsg, 219
TAIPEI.EXE, 632
TAPI (Telephony APl), 15
task(s). See also TDB (Task Database)

16-bit, basic description of, 521-525
common misconceptions about, 525-526
definition of, 40, 521
-related functions, 536

TASKENTRY, 545
TaskFindHandle(), 544-547
TaskFirst, 523,525
TaskNext, 523,525
TDB (Task Database), 40, 43, 125,468,

510-511,522-523
basic description of, 526-554
SHOW16 and, 548-549

TDB.H, 526
TDBX, 454-457, 459-460
TDUMP, 503,558, 623,625-626, 632
TDUMP.EXE, 624
TerminateProcess, 42
TerminationStack, 132
TerminationStatus, 107, 131, 177
Test Cur VM Handle, 426-427
TEST instruction, 661
TextOut, 7
.text section, 577-579
THCBs (Thread Control Blocks), 125, 132, 454
THHOOK, 523
Thielen, Dave, 425
thread(s), 9, 11-12, 69-71. See also TIB

(Thread Information Block)
basic description of, 3-4, 43, 124-126
contexts, 146-149
databases, 128-136
execution control, 146-157
functions, miscellaneous, 176-178
handles, 126-128
heap functions and, 334
IDs, 45, 126-128, 169
list, in Win32Wlk, 179-181,182
management, overview of, 43-45
per-thread message queues and, 218-226
priorities, 138-146
processes and, relationship of, 102
register sets, 45
RITs (Raw Input Threads), 28,215-216
synchronization and, 45-49, 70
TLS (thread local storage) and, 169-176,454,

582-585
Thread32First, 62
THREADB.H, 128
ThreadContext, 133
THREAD_DATABASE, 183,457, 460, 533
threadld, 220
ThreadList, 110
THREAD_PRIORITY_LEVEL, 138
ThreadSwitchCallback, 458-460
thunk(s), 9-10, 36

definition of, 9, 697
USER32 and, 189-195

ThunkConnect, 133
THUNK.EXE, 191,208, 491
ThunkToUserl6_One _Param, I90
TIB (Thread Information Block), 69, 128-130,

179, 181-183,533
basic description of, 136-138
USER and, 191

TIBFlags, 130, 137
TIB.H, 137
TIBSelector, 131
TimeDateStamp, 587, 594, 599
TimeOutHandle, 454
TIMER.DRV, 507
timeslicing, 43-44
TLHELP32.H, 62, 66, 71
TLINK32, 586, 593
TLS (thread local storage), 169-176, 454,

582-585
.tls section, 582-583
TlsAlloc, 169, 170-172, 174, 582-583,703
TLSArray, 134
TlsFree, 169, 174-176
TlsGetValue, 169, 170, 173-174, 583
tlslnUseBitsl, 111
tlslnUseBits2, 111
TisSetValne, 169, 170, 172-174, 583,703
ToolBar control type, 60
TOOLHELP, 27, 43, 50, 56, 60, 158

16-bit tasks and, 523
spelunking and, 634, 635, 637
spy programs and, 695,698
USER/GDI subsystems and, 207, 234
Winl6 modules/tasks and, 478,481,523,540,

544-545, 547
TOOLHELP32, 62-63, 66, 70-72, 106,

181-182, 339-340, 377, 379
Toolhelp32ReadProcessMemory, 62
TOOLHELP.DLL, 27, 56, 62-63, 70, 525,531
TOOLHELP.H, 222, 225,263
TopOfStack, 129, 137
topPDB, 524
TraceCallBack, 456
TraceEventHandle, 456
TraceOutLastCS, 456
TraceRefData, 456
TrackBar, 60
TreeView, 60
Turbo Debugger, 291,673
TVIEW, 635
TypeOffset, 603

776

U
Unicode, 6, 16, 257-260
UNIX, 16, 23, 280, 290, 622. See also COFF

(common object file format)
unknown1[2], 337
unknown1[14], 339
unknown2, 338, 339
unknown3, 339
UNLOAD_DLL_DEBUG_EVENT, 61
UpdateModuleList, 549
UpDown, 60
USER, 7, 10, 12, 15, 27-30, 34-38, 67

additions to, 59-60, 195-201
changes to HWNDs and, 226-233
free system resources and, 202-217
messaging system changes in, 214-217
subsystems, overview of, 185-272
Win16Mutex and, 31-33
windowing systems and, 25, 226-236
Windows 95 design flaws and, 64

USER32, 10, 36, 189-195,248-256
USER32.DLL, 38, 186-190, 208, 243, 248, 297

GetDlgCtrlID in, 256
SendMessage in, 252-254
spelunking and, 626-627
spy programs and, 688,709, 750

userAPCList, 456
USER.EXE, 10-11, 25-38, 76, 186-190, 195,

204, 208, 212-218, 233, 262
16-bit functions in, 239-247, 250-252
free system resources and, 204
new controls and, 60
resource tables and, 495-496
spelunking and, 628, 636
spy programs and, 745
threads and, 137
UserSeeUserDo in, 258-260
Winl6 modules, 480, 516

UserlD[6], 618
UserPointer, 129, 137
UserSeeUserDo, 201,258-260
UTSL (Use The Source Luke), 621
UTState, 113

V
V86 mode, 23, 113,428, 430, 431,435,444
ValidateCodePtr, 540, 542
ValidateHInstance, 540, 541-542

VAR2MAP, 676-677, 681
variables

identifying global, 656-657
identifying local, 654-656

VCACHE, 39
VCDFSD, 39
VCOMM, 39
VCOND, 39
VDD, 39
VDDVGA, 39
VDEF, 39
VERSION.DLL, 38
VFAT, 39
VFBACKUP, 39
VFD, 39
VFLATD, 39
VirtualAddress, 573,603, 614
VirtualAUoc, 53, 56, 277, 309, 312-318, 319,

325,421
VirtualCommit, 421
VirtualFree, 277, 309, 319-321
VirtualLock, 328, 378
VirtualProtect, 309, 312, 318, 327-328
VirtualProtectEx, 318, 325-332
VirtualQuery, 297, 323-324
VirtualQueryEx, 116, 321-323
VirtualSize, 573
VirtualUnlock, 328
Visual C++, 13, 65,163,642

memory management and, 291,331
PE/COFF formats and, 556-557, 559,

578,585
VKD (Virtual Keyboard Device), 425
VMM (Virtual Machine Manager), 10, 38-40,

275,306, 309-379, 412
heap functions and, 331-332
registry functions and, 57-59
threads and, 125, 138-139, 143, 145

VMM32, 21, 31
VMM32.VXD, 23, 37-40, 52, 275
VMM_AllocateThreadDataSlot, 454
VMM.H, 58, 426
VMM.HLP, 440
VMM.INC, 318, 678-679
VMM_PageAttach, 472
VMM.VXD, 40, 58, 125,415,424-426, 430,

432, 435-440, 458
VMOUSE, 39
VNETBIOS, 39
VPD, 39
VSHARE, 39
VTDAPI, 39

 Index 777

VWIN_CreateThread, 454
VWIN32, 39-40, 48, 52, 412, 417, 322,

477-478
VWIN32_EXIT_TIME, 447
VWIN32.H, 424, 445
VWIN32.INC, 445,446-453
VWIN32_Int21Dispatch, 450-451,468
VWIN32_MAKE_IDLE_SYS, 447
VWIN32_SetEvent, 468
VWIN32_sleep, 432
VWIN32_SuspendThread, 154-155
VWIN32.VXD, 40, 101, 140, 154-156, 286,

423-425,428-430, 433, 444-466
VxDCall, 432-438, 440, 443-444, 472-473,

475-476, 679
VXDLDR, 39
VxDs (Virtual Device Drivers}, 3-4, 8, 10, 38-40

calling, from other VxDs, 426-427
calling, from Win32 code, 427-438
crash course in, 425-430
debugging and, 673-675
DOS functions and, 23
.dot commands, 676
heap functions and, 331-332
how the Windows 95 kernels communicate

and, 457-466
memory management and, 300, 306,

309-312, 331-332, 415
new, in VMM32.VXD, 39
overview of, 423-476
registry code and, 57-59
removed from VMM32.VXD, 39
services, basic description of, 426-427
services, calling, on your own, 441-444
services, finding, 438-440
services, identifying, 678-680
service spy (W32SVSPY), 424, 466-475
from Windows 3.1, which are found in

Windows 95, 22

W
W16LOCK, 217, 238-239
W16TDB, 109, 129, 137
W32SPDLL.DLL, 473-475
W32SRVDB.C, 467
W32SSUPP. C, 708, 729-730
W32SVSPY, 424, 466-475

placing, into shared memory, 473-475
sample session, 469-472
writing, technical challenges in, 472-475

WaitExFlags, 455
WaitForDebugEvent, 48-49, 60-62, 695-696,

735, 736
WaitForMultipleObjects, 47-49
WaitForSingleObject, 42, 46-49
WaitMessage, 523
WaitNodeList, 132
WakeBits, 221
WakeMask, 221
WakeParam, 455
WALKHEAP, 339-342, 369, 394
WALKHEAP. C, 339
WALKHP2.EXE, 339
WDCTRL, 39
WDEB386, 125, 291,429, 673, 676
WideCharToMultiByte(), 602
Win16Mutex, 11-12, 64, 250, 412, 461,464

basic description of, 31-33
messaging systems and, 27-28, 215,216-217
QT_Thunk and, 192
USER/GDI subsystems and, 192, 215-217,

251-255
Win16MutexCount, 130, 137
Win2Asm, 623,632, 642
Win32s

basic description of, 3-4, 8-12
memory management and, 273
PE/COFF formats and, 590-591
problems with, 3-4, 11
spy programs and, 686,703, 729-730
USER and, 187
Win32c subset and, 4

Win32SDK, 262
WIN32WLK, 70-71, 74-75, 79, 137

basic description of, 178-184
processes, 105-106, 123
threads and, 128

WIN386, 53, 39
WIN386.EXE, 23, 38
WIN95MEM, 441-444
WIN95UNI.C, 257-260
WINBASE.H, 139, 145,424, 735
WINBUG, 67
WIN.COM, 20-21
WINCON.H, 424
WINDEEH, 655
window classes, changes to, 233-236
windowing systems, 32, 37-38, 211-213

changes to, 226-233
overview of, 24-29
threads and, 137
Z-order and, 226-227, 639-640

778

WINDOWS.H, 67, 230, 232, 423, 483-484,
597, 638, 669

WINERROR.H, 176
WinExec, 42, 680
WINGDI.H, 267
WINHELP, 73
WINICE, 22
WIN.INI, 464, 532
WinMain, 40, 730, 731
WINMINE, 307
WINMINE.EXE, 640-641
WINMINE.INI, 640
WINNT. H, 72, 123, 146, 150, 161,558, 605,

609, 615-616, 752
WinScope, 623, 634, 635,640, 687
WINSERV.DLL, 7
WinSight, 623,634
WinSpector, 158
WinSwitch class, 233
WINUSER.H, 220, 230, 232-233, 744
WM_CANCELMODE, 245
WM_CLOSE, 731, 745
WM_COMMAND, 638, 731
WM_ERASEBKGND, 245
WM_INITDIALOG, 731
WM_LBUTTONDBLCLK, 245
WMM.INC, 306
WM_PALETTECHANGED, 246
WM_ QUEUENEWPALETTE, 246
WM_SETTEXT, 745
WM_SYSCOMMAND, 245
WM_USER, 29, 30, 204-205,245
WND, 26, 196-197, 212, 226-236, 243,

245, 258
WNDCLASS, 198,229
WNDCLASS.H, 234
WNDPROC, 29, 204, 212-214, 229, 253
WOW (Windows on Windows), 8, 37, 36, 50
WOWChain, 135
wParam, 213
WPARAM, 30-31,223, 244, 638, 657
wParamHigh, 223
wParamLow, 223
WPERF. EXE, 631
WritePrivateProfileSection32A, 461
WriteProcessMemory, 62, 291,292, 298-299,

411-414, 694, 740
WS_CHILD, 226, 228, 230
WS_EX_ CLIENTEDGE, 59
WS_EX_ LEFTSCROLLBAR, 59
WS EX MDICHILD, 59
WS_ EX_ RIGHT, 59

WS_EX_ TOOLWINDOW, 59
WS_EX_XXX, 59, 233
WS_OVERLAPPED, 226, 227, 228
WS_POPUP, 226, 227
WSHELL, 39
wStackBottom, 545
wStackMinimum, 545
wStackTop, 545

X
x_ConvertHandleToK32Object, 114, 121
x_FindAddressFromExportName, 89-92
x_FindAddressFromExportOrdinal, 86-89
x_GetHModuleFromMODREF, 96, 99-100
x_GetMODREFFromFilename, 96, 98-100
x_HeapFree, 354
x_invalid_param_2_params, 164
x_invalid_param_handler, 166-168
XOR, 65, 105, 136, 182-183,351
x_ThreadContext_CopyRegs, 147, 150-152
xxx_Priority_CLASS, 145

Z
Zen, 643-646
ZF (Zero Flag), 659-661,665
Z-order, 226-227, 639
ZSER.DLL, 635-636

IDG BOOKS

LICENCE AGREEMENT

Important - - read carefully before opening the software packet. This is a legal
agreement between you (either an individual or an entity} and IDG Books
Worldwide, Inc. (IDG). By opening the accompanying sealed packet containing
the software disc, you acknowledge that you have read and accept the following
IDG License Agreement. If you do not agree and do not want to be bound by the
terms of this Agreement, promptly return the book and the unopened software
packet(s} to the place you obtained them for a full refund.

1. License. This License Agreement (Agreement) permits you to use one copy
of the enclosed Software program(s) on a single computer. The Software is
in "use" on a computer when it is loaded into temporary memory (i.e.,
RAM) or installed into permanent memory (e.g., hard disk, CD-ROM, or
other storage).

2. Copyright. The entire contents of this disc and the compilation of the
Software are copyrighted and protected by both United States copyright
laws and international treaty provisions. You may only (a) make one copy
of the Software for backup or archival purposes, or (b) transfer the
Software to a single hard disk, provided that you keep the original for
backup or archival purposes. The individual programs on the disc are copy-
righted by the authors of each program respectively. Each program has its
own use permissions and limitations. To use each program, you must fol-
low the individual requirements and restrictions detailed in this book. Do
not use a program if you do not want to follow its Licensing Agreement.
None of the material on this disc or listed in this Book may ever be distrib-
uted, in original or modified form, for commercial purposes.

 WORLDWIDE

780

3. Other Restrictions. You may not rent or lease the Software. You may transfer the Software
and user documentation on a permanent basis provided you retain no copies and the recipi-
ent agrees to the terms of this Agreement. You may not reverse engineer, decompile, or disas-
semble the Software except to the extent that the foregoing restriction is expressly prohibited
by applicable law. If the Software is an update or has been updated, any transfer must include
the most recent update and all prior versions. Each shareware program has its own use per-
missions and limitations. These limitations are contained in the individual license agreements
that are on the software discs. The restrictions include a requirement that after using the pro-
gram for a period of time specified in its text, the user must pay a registration fee or discon-
tinue use. By opening the package which contains the software disc, you will be agreeing to
abide by the licenses and restrictions for these programs. Do not open the software package
unless you agree to be bound by the license agreements.

4. Limited Warranty. IDG Warrants that the Software and disc are free from defects in mate-
rials and workmanship for a period of sixty (60) days from the date of purchase of this
Book. If IDG receives notification within the warranty period of defects in material or
workmanship, IDG will replace the defective disc. IDG's entire liability and your exclusive
remedy shall be limited to replacement of the Software, which is returned to IDG with a
copy of your receipt. This Limited Warranty is void if failure of the Software has
resulted from accident, abuse, or misapplication. Any replacement Software will be war-
ranted for the remainder of the original warranty period or thirty (30) days, whichever is
longer.

5. No Other Warranties. To the maximum extent permitted by applicable law, IDG and the
author disclaim all other warranties, express or implied, including but not limited to
implied warranties of merchantability and fitness for a particular purpose, with respect to
the Software, the programs, the source code contained therein and/or the techniques
described in this Book. This limited warranty gives you specific legal rights. You may
have others which vary from state/jurisdiction to state/jurisdiction.

6. No Liability. For Consequential Dama egs. To the extent permitted by applicable law, in
no event shall IDG or the author be liable for any damages whatsoever (including without
limitation, damages for loss of business profits, business interruption, loss of business
information, or any other pecuniary loss) arising out of the use of or inability to use the
Book or the Software, even if IDG has been advised of the possibility of such damages.
Because some states/jurisdictions do not allow the exclusion or limitation of liability for
consequential or incidental damages, the above limitation may not apply to you.

7. U.S.Government Restricted Rigths. Use, duplication, or disclosure of the Software by the
U.S. Government is subject to restrictions stated in paragraph (c) (1) (ii) of the Rights in
Technical Data and Computer Software clause of DFARS 252.227-7013, and in subpara-
graphs (a) through (d) of the Commercial Computer--Restricted Rights clause at FAR
52.227-19, and in similar clauses in the NASA FAR supplement, when applicable.

