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INTRODUCTION ...ttt e eeenns

CHAPTER 1: PUTTINGWINDOWS 95 IN PERSPECTME. ... ..

Brush up on the historical background of the Win32 operating
systems, Windows NT, Win32s, and Windows 95. You can read
about the relative strengths and weaknesses of each system, as well
as aternative Win32 environments such as OS2 Warp and the
Phar Lap TNT DOS extender.

CHAPTER 2: WHAT'S NEW INWINDOWS 95 ... ... ...

In this chapter, you'll receive a broad architectural overview of
Windows 95, and learn why Windows 95 evolved from
Windows 3.1, rather than having been written from scratch.
High-level issues such as memory management, thread synchro-
nization, and improvements to the windowing system are also
described.

CHAPTER 3: MODULES, PROCESSES, AND THREADS. ... ... ..

By examining Windows 95's modules, processes, and threads, you
can unravel the data structures that KERNEL 32 uses to implement
them. Augmenting this chapter the pseudocode for the Win32
functions that rely on these data structures. In addition, you can
read about thread local storage and structured exception handling.

GHAPTER4: USER AND GDI SUBSYSTEMS ...

Microsoft reworked the windowing, messaging, and graphics sub-
systems of Windows 3.1 for Windows 95. To better understand
what this means, learn all about the 32-bit USER and GDI heaps,
and the effect that the new data structures in the 16-bit USER
heap have on the free system resources.

CHAPTER 5: MEMORY MANAGEMENT ...

Thirty-two-bit memory management in Windows 95 is a compli-
cated area. In this hefty chapter, you can explore the topic in
detail by delving into paged-based virtual memory, separate
address spaces, and shared memory. Each Win32 memory man-
agement AP is aso described using pseudocode,
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CHAPTER 6:VWINKERNEL32386 ...

In Windows 95, there are three essentia kernel components. the 16-bit
KRNL 386, the 32-bit KERNEL 32, and the ring 0 VWIN32.VXD.
(If you put them al together, you get VWINKERNEL32386.) As
you examine the relationship between these kernels, you'll discover
many useful -- albeit undocumented -- functions along the way.

CHAPTER7 :WIN16 MODULESAND TASKS .....ccciviviiiiiiiinnee.

Not to be overlooked, the 16-bit KERNEL data structures of
Windows 95 deserve a good bit of explanation. Although
Windows 95 is a 32-bit operating system, much of the system's
state is reflected in data structures also present in Windows 3.1.
These data structures include the task database and the 16-bit
module database, and go a long way toward explaining the intri-
cacies of the Windows 95 architecture.

CHAPTER 8: THE PORTABLE EXECUTABLE AND
COFF OBJ FORMALTS ...t

To fully understand Windows 95, you need to understand the
Portable Executable file format, which is the native executable
format for both Windows 95 and Windows NT. In this chapter, you
can also learn more about the COFF format OBJ and LIB files that
linkers use to create PE files.

CHAPTER 9: SPELUNKING ON YOUR OWN ...

If you want to realy get into the nuts and bolts of Windows 95,
Chapter 9 gives you the means to do so. You'll learn to use file-
dumping tools and AP spying programs, as well as how to examine
assembler listings to find things such aslocal variables, parameters, if
statements, and so forth. The chapter concludes with a collection of
helpful hints.

CHAPTER 10: WRITING A WIN32 APl SPY

Building on the information presented in earlier chapters, this chapter
shows you how to create a user-extendable APl function spying
tool. This spy program can log AP function calls as well as their
parameter values.
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FORWORD

indows 95 System Programming SECRETS is M att

Pietrek's third major work on how to truly understand
Microsoft Windows. Matt has been mucking about with this
Windows stuff for quite sometime. His life as techno-guru
began when he graduated in 1988 from the University of
Santa Cruz with adegree in physics but only two computer
courses under his belt. After joining the tech support depart-
ment at Borland, he quickly distinguished himself by tying for
the lowest score in an evaluation that gauged "employee sym-
pathy for the customer."

Lifewasrosier in Borland's R& D division. There Matt wrote
TDUMP and WinSpector, and even admits to having worked on
the OS/2 Turbo Debugger. He was richly rewarded for his efforts
by being laid off during one of Borland's many staff pogroms.
Matt finally came into his own at NuMega, where today heis
chief architect for the Bounds-Checker family of products.

| first met Matt at the spring Software Development con-
ferencein 1991, an event where we Windows advocates were
gill a minority. Charles Petzold and | were panelists for a
Windows versus OS/2 debate. We were soundly trounced by
the other panelists, and heckled by the audience for predicting
that the dominant PC OS of the very near future was going to
be Windows.
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It seemsasif Matt, Charles and | were proven right -- in fact, Windows
has now transcended the realm of technology and become a part of pop cul-
ture. During its opening weekend, Windows 95 grossed more than Jurassic
Park. Thankfully, when you look beyond all the hype, there is plenty of steak
to go with the sizzle. An end-user migration from Windows 3.x to Windows
95 finally rids us of the memory model agitation we've experienced for years,
and enables us to live out our lives entirely in 32 bits.

If Windows is a big labyrinthian cave, then this book is for those of us
who want to venture farther into the cave than the Win32 APl will take us.
Matt isthe foremost guide to the innermost caverns of Windows 95. (In fact,
the working title to this book was Spelunking Windows.) Many of the other
"current” Windows 95 developer books (including the first edition of the
"unauthorized" one) promise to show you all the dark chambers, but were
in fact written ayear or more ago. In an effort to be first, the authors of
some of those books jumped the gun, exploring Chicago no further than its
May 1994 beta 1 release. Some of those works are now riddled with obsolete
information and misleading supposition.

Matt, on the other hand, scrutinized all the iterations of Chicago - -
including the retail release of Windows 95 -- to bring you the up-to-date
information contained here. So strap on your safety helmet, light that lamp,
and start spelunking.

EricJ. Maffei
Editor-in-Chief

Microsoft Systems Journal
New York, September 1995
ericm@microsoft.com




f late, Microsoft has been asking, "Where do you want to
O go today?' The company hasn't been shy about promoting
Windows 95 as the means by which we'll reach our destination.
What we as programmers need to know iswhether Windows 95
is the appropriate vehicle for getting there. Almost everybody
will agree that Windows NT is a Cadillac (or Mercedes Benz, if
you prefer)--it's well built and loaded with options. The ques-
tion is IsWindows 95 a Chevrolet or a go-cart? The only way to
find out isto pop the hood and look for yoursdlf. That's the pur-
pose of the book you're now holding. Only by examining the
fundamentals of an operating system such as Windows 95 is it
possible to tell whether it's composed of tail fins and chrome, or
serious safety and comfort features.

You might be wondering why programmers like me keep
taking apart the fundamental pieces of operating systems such
as Windows 95. Wouldn't it be better to focus our efforts on
new technologieslike OLE, MFC, or the latest graphics or mul-
timedia APIs? Although some programmers prefer to learn just
enough to get by, other programmers have an insatiable need to
understand all the layers of code down to the bare metal.
Maybe we just don't want to trust our codeto run atop the
unexamined code of others. Whatever the reason, Windows 95
System Programming SECRETS is a book for these program-
mers. Knowledge is power, and the more knowledge you have
about a system like Windows 95, the more control you have
over it.



Windows 95 System Programming SECRETS is by no means an author-
itative look at al aspects of the Windows 95 architecture and implementation.
Rather, | self-indulgently chose to concentrate on the areas that I'm partic-
ularly interested in. | hope that somewhere within the contents of this tome,
you'll find something of particular interest or use to you in your own
Windows 95 programming.

ASSUMPTIONS ABOUT YOU, THE READER

To cover any significant ground in this book, | needed to make certain
assumptions about my reading audience. In a nutshell, my main assumption
is that the reader of this book is a competent Windows programmer who's
done at least some Windows 3.x programming. This book isn't a "How do |
write a program for Windows 957" book. There are already plenty of books
available for programmers who want to learn the basics of Windows 95
programming.

Rather, Windows 95 System Programming SECRETS assumes that
you know how to program in Windows 3.1 or Windows 95, and that you
now want to go on to the next step: understanding why Windows 95
works as it does.

By knowing what goes on inside the theoretical black box of Windows
95, you'll be ableto make sense of the rituals you perform to accomplish
tasks in Windows 95--rituals that you might otherwise perform blindly.
Likewise, when (heaven forbid) you find a bug in your program, the debug-
ging process goes much faster if you understand how Windows 95 works.
How's this? If you grasp what Windows is doing (or should be doing), you
can usualy identify where your program goes off-track much earlier in the
debugging process.

The examples in this book are written in C, with a bit of assembler
mixed in. The pseudocode | present for various Windows 95 functions is
also based on the C language. Therefore, to get the maximum benefit from
this book, you should know C/C++. You can probably squeak by if you
program in some other compiled language such as Borland Pascal/Delphi.
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THE PSEUDOCODE

Since the goal of this book is first and foremost to show how Windows 95
works, | provide pseudocode for various functions in the system DLLs. This
pseudocode usually resembles compilable C code. However, when it makes
sense to break the rules of strict C syntax for the sake of clarity, | do. The
pseudocode is based on the debug version of Windows 95, which provides
many helpful diagnostics strings and other tidbits that make it easier to see
exactly what Windows is doing. If you're not running the debug version of
Windows 95, you really should be. The debugging DLLs for Windows 95
give very useful information when something goes wrong. If you resist the
debug version and try stepping through the retail build, be prepared for
discrepancies between what you see in your debugger and the pseudocode
from this book.

THE SAMPLE PROGRAMS

Windows 95 System Programming SECRETS includes quite a few programs
for exploring Windows 95 on your own. All these programs (both the .EXEs
and the source files) are included on the disk that accompanies this book. |
absolutely despise books that take up (pad) 30 pages at a time with source
code listings. For this reason, amost none of the source code for these programs
appears here. The one exception is the APISPY 32 program in Chapter 10.
The focus of Chapter 10 is building a Win32 AP spy, and a close examina-
tion of the source code is necessary to demonstrate the concepts involved.

If you read Microsoft Systems Journal or PC Magazine, you may have seen
some of the programs from this book in their earlier incarnations. In fact,
several of the chapters in this book were excerpted in the aforementioned
magazines. However, if you've read these articles, don't skip over the corre-
sponding sections in this book.The programs have evolved since they originally
appeared in magazine form. And, there are reams of materia that didn't make
it into the magazine articles for space reasons.

For example, the PEDUMP program from Chapter 8 has almost doubled
its amount of functionality sinceit first appeared in Microsoft Systems Journal.
Likewise, the APISPY 32 program that appeared in Microsoft Systems Journal
worked with beta 2 of Windows 95, but broke in later builds. The APISPY 32
program from this book works with the shipping Windows 95, aswell aswith
.EXEsthat use the extensions introduced in NT 3.51.



PUTTING
WINDOWS 95 IN

PERSPECTIVE
A WIN32 OVERVIEW

sl writethis, Microsoft is madly churning out copies of

Windows 95, in the wake of its August debut.

Windows NT, on the other hand, has been available for
two years -- and in many people's minds has flopped. The per-
ception isthat NT isslow and a resource hog. (Windows NT
3.5 was a substantial improvement over the first NT release,
however, and many of the initial complaints were dealt with. |
quite enjoy developing in Windows NT now.) The Win32s
libraries, which run atop Windows 3.1 and which were
released at the sametime as Windows NT 3.1, are widdly
regarded as being incredibly buggy and ultimately not worth
the effort of working with.

Things just haven't looked too bright for the future of 32-bit
Windows programming until the release of Windows 95. Now,
likeit or not, you'll have to comeface to face with Win32 pro-
gramming if you want to stay in the Microsoft camp and keep
up with the latest technologies. Microsoft is putting al itseggsin
the Win32 basket. Even though 16-bit Windows 3.x applications
will continue to be supported in future Microsoft operating sys
tems, 16-bit programs won't be able to take advantage of many
new features. Given that Win32 is the future (according to
Microsoft, anyway), the big question is "Where should you be
focusing your programming efforts?"



While the primary focus of this book is on the architecture and implemen-
tation of Windows 95, this operating system is the newcomer to the Win32
playing field. Even though Windows NT and Win32s have been shipping for
quite sometime, many of you probably didn't pay much attention to Win32
programming until Windows 95 came along. Microsoft's master strategy for
the Win32 application programming interface (APl) and the scaleability of its
operating systemshavebeen with us for three yearsnow. It would be foolish
to pretend that Windows 95 is brand new, and without a history. In addition,
although Windows 95 iscurrently getting dl the press, in the halls of Microsoft,
it'sthe NT team that's building Microsoft's operating system of the future.
Microsoft intends Windows NT and Windows 95 to merge in the future, and
the resultwill be based more on WindowsNT technology than on Windows 95.
Therefore, before digging into the nitty-gritty technical details of Windows 95,
I'll use this chapter to provide a sense of Microsoft's Win32 strategy over the
past severa years and to show how Windows 95 fitsinto the picture. Bdieve
me, the remainder of the book will be chock-full of information about
Windows 95 and how it'simplemented. But this first chapter is important to
put Windows 95 into the larger context of Win32 programming and the
Win32 (AP).

No doubt Microsoft won't like some of what I'll say here, sinceits mantra
has long been "There's just one Win32 API. Write one program and have it
run on all our systems." Although this sounds like aniceidea, it breaks down
in practice.

Probably the best way to start thisdiscussion isto define the term Win32.
Used properly, Win32 defines a set of operating-system functions (an AF)
that application programs can use to carry out their work. This set of func-
tions is called the Win32 AP1. When Microsoft first introduced Windows
NT, many programmers were confused about the difference between the
terms "Win32" and "Windows NT." Windows NT isjust one implementa-
tion of the Win32 API. However, since it was the first announced Win32
implementation, some programmers had a hard time differentiating between
the operating system (Windows NT) and its AP (Win32).

Since one of Microsoft's major goals with respect to Win32 isto provide
easy porting to the Win32 API, the Win32 AP functions are very similar to
the Windows 3.x APl in those areas covered by Windows 3.x (for instance,
in window management and display output).

If Microsoft had limited the use of the Win32 AP to just Windows NT,
Windows 95 would have turned out very different than it did. However,
Microsoft committed to implementing the Win32 AP on severa operating



systems. Each operating system is optimized for a specific situation and hard-
ware environment. For powerful high-end machines where robustness and
security are of primary importance, Windows NT isthe implementation of
choice. For low-end 386 machines that are still running Windows 3.1 with
limited memory, the Win32s libraries were the optimal Win32 solution until
Windows 95 arrived on the scene. The important point from Microsoft's
perspective is that by writing your programs using the Win32 API, the
same executable can presumably run on any Win32 implementation.

Intheory, the Win32 AP implementation in each operating system should
glossover any underlying differences in hardware or low-level operating sys-
tem design. Thisrelates to Microsoft's " Scaleable Architecture" campaign,
promoted around the time of the first Win32 devel oper's conference in July of
1992. Asthe name Win32 implies, one of the key advantages of switchingto
the Win32 APl from the Windows 3.x AP is 32-bit code. In defining the
Win32 AP, Microsoft also outlined a new 32-bit executablefileformat. This
format is known as the PE (Portable Executable) format and isderived from
the UNIX System common object file format V (COFF). TheWin32 AP and
the PE format are a matched set. All Win32 operating system implementations
(even on non-Intel platforms) use the PE format as their primary executable
format. By using the sameexecutable format for all Win32 operating systems,
Microsoft hopesto guarantee that a properly written Win32 program will run
on dl Win32 implementations. Of course, portability only goes so far. While
the executable format is portable, you still can't run a program compiled for
the DEC Alphaon a computer with an Intel CPU (at least, not without very
complex emulation software).

Shortly after Windows NT was put into the public arena, Microsoft
announced another implementation of the Win32 AP called Win32s. The
idea behind Win32s is that a collection of DLLs and virtual device drivers
(VxDs) provided by Microsoft could be added to an existing Windows 3.1
machine to enable it to run Win32 programs. Unfortunately, some of the
desirable features that Windows NT brings to the party weren't achievable
under the architecture imposed by running atop Windows 3.1. Thus was
born the concept of the Win32s subset. The Win32s libraries provide some,
but not all, of the AP functions that Windows NT and Windows 95 have.
In fact, the sin Win32s stands for subset (or, depending on your experience
with Win32s, a variety of other less flattering words). The major downfall
of Win32s isthat it doesn't support many features of modern operating sys-
tems, such as threads and separate address spaces. Threads are a feature of
advanced operating systems that allow more than one portion of a program
to execute at once (or at least appear to operate this way). A classic use of



threads isto use one thread to handle printing, while another thread contin-
ues to respond to user input. Win32s isalso hamstrung by some of the limita-
tions of Windows 3.x. (More on thisin "The Win32simplementation” section
later in the chapter.)

Like Win32s, Windows 95 provides only a subset of the full Win32 AP
as defined by Windows NT. Microsoft originally dubbed this subset Win32c
(the ¢ stands for Chicago, which was the original code name for Windows
95). The Win32c APl subset includes all the functions in Win32s, and adds
a significant number from the full NT APl set. Hopes are high for the suc-
cess of Windows 95, because even though its AF is a subset of Windows
NT's, Windows 95 contains most of the features programmers find desirable
in an advanced operating system -- for example, threads and separate
address spaces (both features that Win32s lacks). Programmersgenerally love
separate address spaces becausethis feature preventsbuggy programs from
overwriting another program's data or, more importantly, from overwriting
the operating system itself. Windows 95 also requires less memory than
Windows NT, making it a more suitable choicefor the average desktop PC.

Unlike the Windows NT team, the Windows 95 team didn't consider
portability to other processors to be a mgjor goal. That's because the Intel
market is large enough to enable Microsoft to have two mostly separate
Win32 development efforts. The Windows NT group produces a portable
Win32 implementation, but one that isn't optimal for any given platform.
The Windows 95 group produces aWin32 implementation that is optimized
for the Intel 80386 class of CPUs. If Microsoft didn't have aversion optimized
for the Intel platform, it would likely lose ground to operating systemsthat do,
such as OS/2Warp. In fact, many peoplethink OS2 and Windows 95 are very
similar and that Windows 95 isan "OS/2 killer."

A while ago, Microsoft ditched the term "Win32c" because it seemed
to highlight the differences between Windows NT and Windows 95 and
was confusing programmers. In place of the term "Win32c,” Microsoft
started claiming that there is just one Win32 AP, and that a program
written for the Win32 APl will run on all the Win32 implementations.
The redlity, however, isthat programmers still have to consider the functions
that Windows 95 implements as a proper subset of the Windows NT
(Win32) API. Microsoft's concern seemed to be that programmers might
be holding off on writing to the Win32 AP sincethey didn't know which
subset to target. Later on, Microsoft tried to further enforce this "Just
one Win32 API" mindset by making support for both Windows NT and
Windows 95 arequirement to use the Microsoft Win32 Logo on a product.



Of course, trying to feather over the differences among APl subsets is
complete nonsense. There are differences between the subsets, and they do
matter. For example, developers discovered that it was difficult for them to
obtain Microsoft's Win32 Logo program because the differences between
the Windows NT and Windows 95 Win32 implementations made it next
to impossible to meet Microsoft's requirement that its products support
both implementations. (Eventually, enough whining by developers caused
Microsoft to revise its logo requirements.) And, as a second example, it's
clear that a program that relies on multiple threads to do its job can't run
on Win32s since Win32s doesn't support multithreading. The result of
these differences is that, in order to program effectively, programmers will
have to pay attention to the Win32 subsets and understand the underlying
operating system.

POSITIONING THE WIN32 OPERATING SYSTEMS

To clarify the underlying architecture of the current Win32 platforms, I've
come up with an audio-system analogy (see Figure 1-1) that nicely illustrates
the relationships between the platforms. For the sake of this discussion, pre-
tend that audio compact disks don't exist and that cassette tapes are the best
available form of recorded music.
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Figure 1-
TL% audio-system analogy clarifies the underlying architecture of the current Win32
platiorms and shows how they are related to each other.



In my analogy, Win32 programs are like cassette tapes, and 16-bit
Windows 3.x programs are like the older, clunkier 8-track tapes. Similarly,
a Win32 operating system is like a cassette tape player that can play and
record cassette tapes, and Windows 3.x is like an 8-track player and is
limited to 8-track tapes.

Giventhis scenario, if you were an audiophile and wanted top-of-the-line
stereo components, you'd purchase a high-quality cassette deck with al the
bellsand whistles -- that is, you'd purchase Windows NT. On the other hand,
if you're strapped for cash and wanted to play cassette tapes, but had only an
8-track player, what would you do? Y ou might decide to get an adapter for
your 8-track player that will permit you to listen to cassettes. In Windows
programming, Win32s isthe equivalent of this cassette-to-8-track adapter.
You plug Win32 programs into the Win32s adapter, which in turn plugsinto
Windows 3.1 (the 8-track tape player). When using these tape adapters, you're
limited in what you can do. For instance, you can't use an 8-track adapter to
record onto a cassette tape. Also, the sound qudlity isn't anywhere near as
good as playing the cassette on a cassette deck would be (since there's an extra
layer of electronics and tape heads between the 8-track tape and the cassette
deck tape head). Likewise, Win32s haslimits on what it can do: The full
Win32 AP isn't supported, nor are features such as threads available.

Where does Windows 95 fit in? Windows 95 would be the equivaent of
a basic-model cassette deck, with some of its components scrounged from an
8-track player (and a pretty new face plate). Windows 95 has a lot of new
32-hit code, but also borrows heavily from the Windows 3.1 code base for
features such as window management. For the most part, the Windows 95
cassette deck does everything that the Windows NT premium-quality cassette
deck does, but it lacks some high-end features -- for example, it doesn't sup-
port security or double-byte character sets (a.k.a. Unicode) like NT does. On
the positive side, however, theWindows 95 basic-model cassette deck doesn't
require anywhere near the amount of fancy, sophisticated electronicsinside,
0 it's cheaper to produce. In other words, Windows 95 won't have nearly as
much code as NT, so it will take up lessroom in memory and run faster.

With this rather corny analogy safely tucked away in the attic of your
mind, let'szoom in and examine each of Microsoft's Win32 implementations
to see how they relate to one another.




The Windows NT implementation

The primary goals of Windows NT are robustness and portability to other
platforms. Much of the code is written in portable C or C++ rather than in
hand-optimized assembler for the target platform. The emphasison stability
makes NT an ideal development platform, even if you're targeting Windows
95, Win32s, Windows 3.x, or DOS. On the other hand, portability and
stability come at acost. All the C/C++ code in NT adds up to alarge footprint
in memory just to get the system booted. A minimum usable Windows NT
development machine is a 486 with 16MB of memory. Even with that hard-
ware, NT won't be as fast as a system running OS/2 or Windows 95. (In
defense of Windows NT, however, the 3.5 version was significantly better
than NT 3.1, which is the version many programmers based their first
impressions on.)

One of the primary reasonsfor NT's robustness isits protected subsystem
architecture. In the protected subsystem, the operating-system code that imple-
mentsthe AP functionsruns in adifferent address space and process than that
of the calling program. The most important subsystem in Windows NT isthe
Win32 subsystem. The Win32 subsystem is its own process, with most of the
USER and GDI codeplaced in aDLL called WINSERV.DLL. When your pro-
gram makes acall to an AP function such as TextOut, you're not making a
direct call to thereal TextOut code. Instead, a stub in NT's GDI32.DLL copies
your parameters into aregion of memory accessible by both your process and
the Win32 subsystem process. Y our thread then signals the Win32 subsystem
process that there's a function request waiting for it and then goesto deep.
When the Win32 subsystem process sees the signal that there's work to do,
it processes the request (doing things such as putting a text string to the
screen) and then informs the calling process's thread that the function has
completed. This subsystem client/server model al so appliesto other operating
system "flavors' that NT supports, such as OS/2 1.x and POSIX.

The advantage of protected subsystems is that their address space is
better protected against memory overwrites and other bugs in application
program code. In operating systems without this subsystem model (such
as Windows 3.x and Windows 95), the operating-system code and data is
mapped into the address spaces of all processes, making it possible for a
buggy program to overwrite and crash the operating system. The disad-
vantage to the subsystem model is increased execution time. Every call to



an operating-system function theoretically causes a process switch and
memory context change. This is expensive, clock~cycle-wise, with estimates
of 2000-3000 clock cycles for the average call. For this reason, the NT
developers optimized some heavily used routines so that they wouldn't
require a process switch. In addition, certain GDI calls can be batched so
there doesn't have to be a process switch for each call.

All thisimproved robustness for Win32 applicationsisgreat, but what
about existing 16-bit applicationsthat are run under NT? Sixteen-bit Windows
programs run under a cooperatively multitasking model, and expect to be able
to access memory belonging to other tasks. NT keegps 16-bit tasks at arm's
length by running them in a separate process known as WOW (Windows On
Windows). By default, 16-bit Windows applications run in asingle "WOW
box," which isessentially a multithreaded DOS box.

The WOW box isaWindows 3.I-like "sandbox" inside of which ! 6-bit
applications can do anything they want; their actions don't corrupt anything
outside the box.

The WOW subsystem communicates with the Win32 subsystem code
to perform display output, alowing 16- and 32-bit windows programs to
interact on the same screen. Windows NT 3.5 introduced the ability to run
each Winl6 application in its own WOW box, increasing stability among
several applications running Winl6 at the expense of additional memory.

I'm introducing the WOW subsystem in this section because it's an
important architectural difference between Windows NT and Windows 95.
(Windows 95 runs Winl6 applications in the same address space as the cur-
rent Win32 application.) The only real downside to the WOW subsystem in
NT isthat 16-bit Windows applications run slower than they would under
Windows 3.1 running on the same machine.

The Win32s implementation

In contrast to Windows NT, Win32s is yet another layer on the already
shaky DOS and Windows house of cards. Win32s isn't an operating system
in and of itself; rather, it's a set of extension libraries for Windows 3.1.
Likewise, Windows 3.x isn't atrue operating system by itself, either. Instead, it
restsrather dicily on the unprotected real mode operations of DOS. The code
for implementing the Win32 APl with Win32s adds another precariously bal-
anced layer because it relies on the VxDsand system DLLs from Windows 3.1.
With few exceptions (such as memory mapped files), if a particular

piece of functionality isn't in Windows 3.1, the equivalent Win32 function



isn't in the Win32s subset. A good chunk of the Win32scode is nothing more
than thunks to go from your 32-bit program down to the 16-bit Windows 3.1
code that doesthe actual work. Thunks are the programming equivalent of
patching things together with chewing gum, string, and bailingwire. Thunks
inWin32s and Windows 95 are small chunks of code that handle the transitions
between 16- and 32-bit code.

The limitations of Win32s are numerous. First and foremost, it doesn't
support multithreading. 'Nuff said on that point. A second Win32s flaw is
its singleaddress space for all Winl6 and Win32 programs. Since Windows
95 and NT have separate address spaces for Win32 programs, this relegates
Win32s to the "abandon as soon as you can" category. Win32 programs
running under Win32s can see the memory of other Win32 programs, as
well as the memory of 16-bit programs, making memory corruption a very
real possbility.

A third mark against Win32s isthe lack of per-process DLL data. In NT
and Windows 95, the data area of a DLL is instanced on a per-process basis
(by default). In simpler terms, this means that you can safely use global vari-
ablesin DLLs without worrying that another process will call the DLL and
overwrite the variable with another value. Since DLLs under Win32s share
the same data area between al usersof the DLL (just like under Windows 3.1),
you can run into nasty bugs. Typicaly, your program and its DLLswill work
fineunder NT or Windows 95, but crash in Win32s/Windows 3.1. Thisis
yet another reason to forget that Win32s ever existed, now that Windows 95
ishere.

Another group of Win32 problems that don't exist in Windows NT and
Windows 95 relates to process scheduling and the messaging system. In
Windows NT and Windows 95, threads are switched pre-emptively. In
addition, Windows NT and Windows 95 give each thread its own message
queue, and a separate input system thread assigns mouse and keyboard
events to the appropriate queue. These two design factors allow one thread
to be as unresponsive and take as much time as it wants without affecting
other programs. In contrast, Win32s is stuck with the hopelessly problem-
prone Windows 3.1 cooperative multitasking model. In order for one task
to run, another task has to yield the CPU by calling a function such as
GetMessage or PeekMessage. If atask doesn't retrieve its messages and yidd
the CPU in atimely manner, the user can't switch to or use other programs.

The bottom line? Win32s has a reputation of being cranky and prone to
crashes or other strange behavior. If you're getting the feeling that | don't think
Win32s isn't worth the trouble, you're right. Thank goodnessWindows 95 is
findly here to take its place.
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The Windows 95 implementation

The best way to describe the Windows 95 Win32 implementation isto say
that it's Win32s done properly. Another way to think of Windows 95 is to
conceive of it as incorporating the best features of Windows NT implemented
in the Win32s style. Windows 95 contains just the right amount of advanced
operating-system features without going overboard in terms of code size and
speed. In fact, the Window 95 memory footprint is roughly the same as
Windows 3.1 with Win32s installed, making Windows 95 an ideal replacement
for Win32s.

Under the hood, Windows 95 has a stronger resemblanceto Windows 3.1
and Win32s than it does to Windows NT. Like Windows 3.1, the lowest
layer of Windows 95 isring 0 system code consisting of the Virtual Machine
Manager (VMM) and assorted VxDs. The code running at CPU ring level O
is theoretically the most stable and trusted code, so it has more accessto the
hardware and operating-system data than the application-level code running
at ring level 3 of the CPU. Also, asin Windows 3.1, there is one virtual
machine set up for running Windows programs and a separate virtual
machine for each DOS session you start. In the system virtual machine
that's used by Windows programs, you'll find the familiar ring 3 system
DLLs: USER, KERNEL, and GDI, along with their 32-bit equivalents:
KERNEL 32, USER32, and GDI32.

Like Win32s, Windows 95 implements a big chunk of its code in the
16-bit system DL L s and uses thunks to transfer from 32-bit programs down
to the 16-bit code. Almost al of the windowing and messaging system code
residesin the 16-bit USER.EXE, just as in Windows 3.1. Trying to convert the
massively complex windowing system code in USER.EXE to 32 bitswould
haveled to alarge sizeincrease and incompatibilities with existing 16-bit pro-
grams. Neither of these problems was acceptable to Microsoft, since backward
compatibility with existing hardware and software was not up for debate.
Therefore, the windowing and messaging system in Windows 95 is essentidly
an updated version of the Windows 3.1 code. The updates are primarily to
allow the 16-bit components to interface with the 32-bit components, as well
as to add whatever functionality was needed to i mplement the Win32 functions
that Windows 95 supports.

The implementation of the 32-bit GDI APl in Windows 95 is split
between existing code in the 16-bit GDI.EXE and new codein GDI32.DLL.
Wherever possible and reasonable, the Windows 95 GDI32 functions thunk
down to the existing 16-bit GDI code. With regard to the KERNEL APIs,
Microsoft's statements have indicated that the 32-bit KERNEL32.DLL
doesn't thunk down to the 16-bit KRNL386.EXE. However, Andrew Schulman



proved conclusively in Unauthorized Windows 95 that KERNEL 32 doesin
fact call down to KRNL386.EXE. WEelIl also be scrutinizing Microsoft's
statements on thistopic later on in the book, especialy in Chapter 3.

In the previous section | described some of the problems with Win32s: no
threading support, a single address space, the lack of per-process DLL data,
and cooperative multitasking. For the most part, Windows 95 corrects these
issues; that is, it works like NT. Windows 95 32-bit programs can havethreads
(although 16-bit tasks cannot), and data in DLLs is per-process. However,
some corners have been cut. For example, each process in Windows 95 gets
its own address space, but al loaded systemDLLs are visble to aWindows 95
process, not just the DLLsthat the process has loaded itsdlf. In addition, the
memory of al Winl6 tasks and some of the DOS memory below 1IMB isvisible
to the currently running Win32 process. In other words, parts of DOS, Winl16
programs, and the current Win32 process dl intermingle in the same address
space, unlike in Windows NT. As Chapter 5 shows, memory corruption isstill a
possibility in Windows 95, but the likelihood of a 32-bit programming
bashing memory that it doesn't own is much less than under Win32s.

One of the hot topics about Windows 95 is its not-very-smooth multi-
tasking behavior in the presence of 16-bit programs. Windows 95 really
does have preemptive multitasking, but a badly behaved 16-bit program
can cause other threads to jam up at the entrance to 16-bit DLLs such as
USER.EXE and GDI.EXE. The problem is that the 16-bit system DLLs are
nonreentrant. That is, they don't expect to be switched away from while
they're in the middle of doing something. Since many of the Win32 AF
functions thunk down to the system DL LS, some method to prevent a thread
switch at an inopportune moment is necessary. Many solutionswere discussed
and hotly debated during the early design period of Windows 95.

The solution that was finally decided on as the most palatable of numerous
bad options is known as the Winl6Mutex. The Winl6Mutex is essentially
amutual exclusion semaphore that needs to be acquired upon entry to the
16-bit system DL Lssuch as USER.EXE and GDI.EXE. The Win16M utex
means that only one thread can be executing at a time through the 16-bit
systemcode. Thisin itself wouldn't be so bad, but to prevent other problems,
the Winl6Mutex is "owned" whenever a 16-bit application is executing. The
unfortunate ramification isthat a 16-bit program that doesn't yield properly
by calling GetM essage or PeekM essage can prevent the user interface threads
of 32-bit applications from executing.

The implications of the Winl6Mutex are twofold. First, the sooner you
move your application to 32 bits, the better. If a system isn't running any
badly behaved 16-bit programs, the Win1l6Mutex will almost never be a
source of trouble. (As pointed out in Unauthorized Windows 95, no
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Windows 95 system is completely free of Winl6 tasks, since the system
itself uses one or two 16-bit tasks. However, these system tasks are good
about yielding control to other tasks, and thereby are good about
releasing the Winl6Mutex.)

The second implication of the Win 16Mutex involves threading. If you're
doing time-critical work, you'll probably want to split your application into
multiple threads (for instance, a user interface thread and one or more worker
threads). The Winl6Mutex doesn't affect threads that aren't thunking down
to 16-bit code like USER or GDI. These threads will continue to be pre-
emptively scheduled and executed, even if the entire user interface is tied
up with an ill-behaved 16-bit program that's not yielding. The most likely
way to get hung up in your Win32 application while waiting for the
Winl6Mutex is by callingUSER and GDI functions. With advance planning,
you can avoid calls that might block in your time-sensitive threads.

Win32 implementations outside Microsoft

The previous three sections have focused on the Win32 platforms provided
by Microsoft. However, the Win32 AR is sufficiently well defined and full
featured enough to enable other companies to implement it. The example
most people are aware of isOS/2Warp. With the advent of dl these Win32
operating systems from Microsoft, IBM saw the writing on the wall. Even
though the Win32 APl competes directly with the native OS/2 API, IBM's
more recent versions of OS/2 have support for a subset of the Win32 API.
At the time of this writing, the Win32 subset supported by OS/2 is Win32s,
although no doubt IBM islooking at supporting the Windows 95 subset in
the future.

Nearer and dearer to my heart isWin32 for DOS. Even though | primarily
run either Windows 95 or Windows NT, | still boot DOS and Windows 3.1
frequently. When | do this, | hate not having all my programming utilities
available that | wrote using theWin32 API. Luckily, | don't haveto forego my
tools when operating in a nonnative Win32 supporting environment. Both
Phar Lap and Borland make DOS extenders that support enough of the Win32
AP to allow console mode programs to run under DOS or Windows 3.1. If
you use any graphics or windowing system functions, these DOS extenders
won't fill thebill, but often aconsolemode program (likemy PEDUMP from
Chapter 8) isall you need.

Phar Lap's DOS extender iscalled TNT; Borland's DOS extender comes
with the Borland DOS Power Pack. Using these extenders, you can write
generic C/C++ programs that use functions such as printf and fread with-



out concern for whether your program will be running under Windows
NT, Windows 95, or DOS.

Using the Phar Lap or Borland DOS extenders can be as simple as
changing aline or two in your linker options. You can continue to use your
existing Win32 compiler without any changes. The idea behind these DOS
extenders isthat you use the specia program supplied with the DOS extender
asthe DOS stub program in your Win32 executable. If you run the EXE
under Windows 95 or NT, the operating systemignores the stub program. If
you run the program from DOS, the stub program loads the DOS extender
and bringsin the code that provides the Win32 APl subset under DOS.

Interestingly, Microsoft itself used the TNT DOS extender in its first
release of Visual C++ 32-bit edition. Since there were programmers who
wanted to develop for Win32s but didn't have an NT machine, Microsoft
couldn't make Windows NT arequirement for running the compiler (CL.EXE)
and linker (LINK.EXE). By usingthe TNT extender, the Microsoft tools run
as native Win32 console mode applications for programmers developing on
NT and as DOS extended applications for Win32s developers. The majority
of Borland's command-line tools are also Win32 applications and continue
to use the Borland Power Pack DOS extender to this day.

DEVELOPMENT CONSIDERATIONS

If you decide that your next great project isgoingto run on both Windows 95
and Windows NT (and heaven help us, maybe even Win32s}, the sdection of
your primary development platform iscritical. If you get your program to
work correctly on Windows 95, and don't use features specific to Windows 95,
there's a pretty good chance that the codewill run unmodified on Windows
NT. On the other hand, Windows 95 isn't as robust as Windows NT. You
may spend quite a bit moretime rebooting in Windows 95 than you do under
WindowsNT (at least | do). This point lends credence to the argument that
NT istheideal Win32 development platform.

The choice of whether to develop on Windows NT or Windows 95 seems
to beintensely personal. Some devel opers abhor the Windows 3.1-style shell of
NT 3.5 and would much rather work in Windows 95. It's likely that those
same people aren't doing the kind of development work that tendsto put the
system in an unstable state. Others, like me, routinely put the system at risk by
doing things such as writing debuggers and poking around at the operating
system and therefore enjoy the incredible robustness of Windows NT. In al
my work, I've crashed Windows NT only once or twice over a period of two

13
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years, whereas | routinely crash Windows 95. (Thisisn't because Windows 95
isinherently unstable, it's just that the design of NT makes it more resistant to
hard system crashes.) But despite the robustness of Windows NT, | still find
myself developing quite a bit on Windows 95 because there are tools such
as Softlce/W available for it that aren't yet available for Windows NT. In
short, there is no good answer to this question. Both Windows NT and
Windows 95 have merits as your Win32 devel opment platform or choice.

THE RUTURE OF WIN32

About the time this book was published, Microsoft was working on the next
major revision of NT, code-named Cairo. Cairo will use the Win32 API, and
is supposed to be extremely object oriented, even down to itsfile system.
Cairo should also sport Microsoft's post-Windows 95 thoughts on user
interface design. Since Cairo will be arevision of the NT code base, its plat-
form independence may be achieved at the cost of increased code size and
slower performance. Perhaps Microsoft is betting that the average machine's
performance and available memory will have increased significantly by the
time Cairo arrives.

Although Windows 95 is not the end of Microsoft's 32-bit Intel-specific
operating-system line, the Windows 95 architecture may only live on for a
few more years. If hardware prices and capabilities are conducive to run-
ning Cairo and its successors on average desktop systems, Microsoft may
discontinue developing two Win32 operating systemsin parallel. On the
other hand, if the majority of user's hardware won't support running the
portable Cairo code base, Microsoft will certainly continue to develop an
Intel-specific Win32 platform that allows them to keep their market share.

SUMMARY

This concludes my whirlwind rendition of how Windows 95 relates to other
Win32 implementations and the Win32 story to date. In Chapter 2, the
focuswill be entirely on Windows 95. Specificaly, it will provide an
overview of what's new in Windows 95 relative to Windows 3.1. The
remainder of the book will then dig down into the dirty details of what is
sure to be the most widely studied and supported Win32 platform ever.



WHATS NEW
IN WINDOWS 957

or nearly two years, people have been speculating about

what Windows 95 is. Some have described Windows 95
as NT Lite - - but Windows 95 isn't just a "light" version of
NT. Others have described Windows 95 as Win32s on
steroids-- and although there are some striking similarities
between the two operating systems, that description isn't really
right either. Windows 95 is much more than a bulked up
Win32s.

This chapter provides an overview of Windows 95 from a
programming and architectural point of view. Since most users
will be converting to Windows 95 from Windows 3.1, | used
Windows 3.1 as the baseline for the various comparisons | make.

The portions of the architecture | describe are those that
almost every Windows application deas with. The majority of
the topics | discussfall into the traditional KERNEL, USER, and
GDI troika. The view of Windows 95 given here is by no means
complete. There are many topics - - such as OLE 2.0, Plug and
Play, MAPI (Mail APl), and TAPI (Telelphony API) -- that are
beyond the scope of what | can hope to describe in this book.

Throughout this chapter, | describe some Windows 95
features and architectural concepts that are technicaly Win32
features and concepts rather than Windows 95-specific. These
features have existed in NT for quite some time. However,



16

Windows 95 will be the first real exposure to Win32 programming for many
programmers. Since this book is first and foremost about Windows 95, | say
Windows 95 in many places where it would be more technically correct to
say "Win32" or "NT and Windows 95."

As | seeit, Windows 95 has two fundamental, if sometimes conflicting,
requirements:

*  Provide an implementation of the Win32 APl with al the goodies of
Windows NT (threads, separate address spaces, virtual memory, and so
on), without the space-eating features such as security and support for
the Unicode standard.

* Run existing MS-DOS and 16-bit Windows applications on a 4MB
machine as well or better than Windows 3.1 would on the same
machine.

The first requirement represents Microsoft's admission that not every
computer has the processing power or memory needed to run Windows NT.
Although NT isagreat "No Compromises’ operating system, its resource
requirements exceed that of the average 4MB desktop PC. Windows 95
brings a respectable subset of NT's capabilities to users who don't have NT-
capable hardware but also don't need all the overhead of a bulletproof
operating system like NT or UNIX. Since there are tens of millions of
non-NT-capable machines, Microsoft gave up NT's portability to get a
powerful Win32 implementation that runs on the average desktop PC.
While the Win32 AP layers are very similar between NT and Windows 95,
Windows 95's implementation tiesit to the 80386 class of Intel CPUs. The
capability to bring Win32 to a vast number of machines made it worth the
expense of maintaining two operating systems.

The second requirement for Windows 95 needsto be specified very clearly.
Note that Microsoft doesn't claim you can run a couple of large applications
smoothly on a 4AMB Windows 95 machine. Instead, Windows 95's target is
this. On machines with 4MB or more, Windows 95 will run no worse than
Windows 3.1, given equivalent program loads. | think applications that run
better on a 4AMB machine than on Windows 3.1 will be the rarity. However,
it's reasonable to expect that applicationswill run aswell on Windows 95 as
they did on Windows 3.1. (Bear in mind that almost everyone considers SMB
to be a usable minimum for Windows 3.1, so running "as well as" isn't the
same thing as "running well.") Since Windows 95 can't give up Windows
3.1 features, it'sclear that the Win32 support needs to be shoehorned into
space freed by tightening and tuning the Windows 3.1 code. This is where most
of the Windows 95 design compromises come into play.
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I've divided this chapter into four main sections:

How Windows 95 is the same as Windows 3.1

How Windows 95 has improved on already-existing Windows 3.1 features
New features introduced in Windows 95

"Dirty little secrets’ about Windows 95

This chapter provides a high-level view of the changes and additions to
Windows 95 and defers the in-depth discussion to subsequent chapters.
Where appropriate, I'll give pointers to other chapters in the book where
you can find more information.

SIMILARITIES TO WINDOWS 3.1

Microsoft has gone to great lengths to convince people that Windows 95
is a brand new operating system, built from the ground up. However, you
shouldn't believe everything you're told. If you make a few small changes
(which I'll describe next), you can make a persuasive argument that a
Windows 95 system is actually running Windows 3.1. That's because under
the hood, Windows 95 is primarily an evolution of the DOS and Windows
3.1 code base. Sure, there are many great new features in Windows 95;
I'll be describing them here and throughout the book. For the purpose of
truly understanding what Windows 95 is, however, it's important to set
aside the hype and take an honest ook at the foundations

of Windows 95.

I've just now asserted that Windows 95 has evolved from the combination
of DOS and Windows 3.1. It'stimefor meto put up or shut up. For our first
experiment, let'stake alook at what happenswhen you turn on the machine.
(I'm assuming you have Windows 95 installed already.) Before rebooting your
machine though, let's make a small change. In your boot drive's root directory
isahidden systemfilecalled MSDOS.SYS. If you run the dir/AH command,
you'll seeit:

C:\> dir /ah MSDOS. SYS

Volume in drive Cis MS DOS 5

Volume Serial Number is 1CDE 9CF5

Directory of C\

MSDOS SYS 1,641 07 17 95 9:40p MSDOS. SYS
1 file(s) 1,641 bytes
0 dir(s) 71,696,384 bytes free



Now, this fileis no big surprise if you've been using PCs for awhile.
However, in Windows 95, the file has changed quite abit. In fact, it'snow an
ASCII text file. Let'schange the attributes to make it accessibleto a text editor:

C\> ATTRIB -r -h s MSDOS.SYS
RHSA. > A C:\MSDGS. SYS

Bringing up MSDOS.SYS in an editor will show you something likethis:

[ Pat hs]

W nDi r =C: \ W NDOWS

W nBoot Di r: C: \ W NDOWS
Host W nBoot Drv=C

[ Opti ons]
Boot Mul ti =1
Boot GUI =1
Net wor k=0

;The following lines are required for conpatibility with other prograns.
;D0 not renove them (MSDCS.SYS needs to be >1024 bytes.)

XXX XXX KKK XXX KKK XXX XXX
rest of fileomitted...

Your filemay differ dightly, but you get the point. Now, let's add aline
("Logo=0Q") to the [Options] section:

[ Opti ons]
Logo=0
Boot Mul ti =1

Next, save the file. While you're at it, you might want to change the
attributes back to the way they were before (+r +h +s). Now reboot.
Assuming you still have a CONFIG.SYS or AUTOEXEC.BAT files after
installing Windows 95, you should see the contents of these files being
processed before the Windows 95 user interface comes up. What's missing
from the equation isthe logo that Windows 95 usually displays during your
bootup sequence. It's pretty obvious that the logo is primarily an attempt to
hide those messy technical details involved in booting up the computer --
the kind of details that can confuse end users. What they don't see can't
concern them, right? With a singleline, we just dismissed a big part of the
Windows 95 "user friendliness."

It certainly looks like DOS may still be involved here somewhere. To
check this out, | deleted my CONFIG.SYS and AUTOEXEC.BAT file and
rebooted. Perhaps the DOS-like behavior we just saw is for backward com-
patibility. After booting without CONFIG.SYS or AUTOEXEC.BAT, | ran
the MEM/DEBUG command to see what's in memory below 1MB. The
abbreviated output is as follows:
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Conventional Menmory Detail:

Segrrent Tot al Nane Type
00000 1,024 (1K Interrupt Vector
00040 256 (X ROM Conmuni cation Area
00050 512 (1K) DOS Comnmuni cation Area
00070 1, 344 (1K 10 System Dat a
CON System Device Driver
AUX System Device Driver
PRN System Device Driver
CLOCKS System Device Driver
A -D System Device Driver
comt System Device Driver
LPT1 System Device Driver
LPT2 System Device Driver
LPT3 System Device Driver
CONFI G$ System Device Driver
cowe System Device Driver
covs System Device Driver
COVH4 System Device Driver
000C4 5,072 (5K)  MSDOS System Data
00201 11,584 (11K 10 System Data
1,152 (1K) XMBXXXX0  Install ed Device=HI MEM
2,848 (3K) IFS$HLP$  Install ed Device=I FSHLP
688 (1K) SETVERXX  Install ed Devi ce=SETVER
544 (1K) Sector buffer
400 (0K) Bl ock device tables
1,488 (1K) FI LES=30
256 (0K) FB S
512 (1K) BUFFERS- 24
448 (OK) LASTDRI VE=E
3,072 (3K) STACKS- 9, 256
004D5 80 (&)  MsDOs System Program
004DA 192 () WN Envi r onment
004E6 3, 312 (3K WN Program
005B5 32 (0§ vmmB2 Dat a
005B7 16 (0§  MDOS - Free-
005B8 1,152 (¥ vimB2 Program
00600 208 (§  COMMAND Dat a
0060D 5,728 (69 COWAND Program
00773 1,312 (¥  COMMAND Envi r onment
007C5 240 (0K)  MEM Envi ronment
007D4 90,400  (88K) MEM Program
OLDE6 532,896 (520K)  MSDOS - Free -
Figure 2-1

The MEM/DEBUG command shows these fragments of DOS (even though DOS is
supposedly gone in Windows 95).
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If Windows 95 really does away with DOS, we shouldn't be seeing any
vestiges of DOS. Yet two lines from the output in Figure 2-1 stick out:

0o00c4 5,072 (5K)  MsDOS System Data
00201 11,584 (1K 10 System Data

Hmm... There's a 5K area labeled as MSDOS, and an 11K area with
the name 10. Perhaps this is somehow related to the 10.SYS file from the
days when we ran DOS and Windows 3.1 rather than the integrated
Windows 95. Let's check this out. Another dir/AH command in the root
directory confirms this:

C\> dir /AH 10 SYS

Volume in drive C is MS DOS 5
Volume Serial Number is 1CDE 9CF5
Directory of C\

10 SYS 223,148 07-11 95 9:50a 10 SYS
1 file(s) 223,148 bytes
0 dir(s) 71,688,192 bytes free

Yes indeed, 10.SYS is a big file. Although it's close to 220K, when loaded
on my system it takes up only the 11K of DOS memory we saw earlier. While
11K isn't much memory these days, it's still pretty good proof that there’s at
least some DOS-like code residing on every Windows 95 system.

Here are a couple of other interesting lines from the MEM/DEBUG
output in Figure 2-1:

004DA 192 (K)  WN Envi ronment
004E6 3,312 (3K}  WN Program

These two lines sure make it look like a program called WIN was loaded
into memory. Hey, wait a minute! When | started Windows 3.1 from my DOS
prompt, didn't I type WIN, which invoked WIN.COM? Let's go have a look
and see if WIN.COM is still hanging around in Windows 95:

C\>dir c:\w ndows\win.com
Volume in drive C is MS DOS 5
Volume Serial Number is 1CDE 9CF5
Directory of C:\W NDOWS
W N com 22,487 03-14-95 6:44p WN. COM
1 file(s) 22,487 bytes
dir(s) 68,542,464 bytes free
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Sure enough. It looks like WIN.COM isstill there in Windows 95. Seeing
as how the next thing in memory after the WIN program is something called
vmma32, it looks like WIN.COM playsthe samerolein Windows 95 that it
did in Windows 3.1. Namely, WIN.COM iswhat kicks off the whole process
that takes the machine from real (or Virtual 8086) mode into the protected
mode Windows environment.

Let'sdo one final experiment in this DOS area to confirm that theory.

In the CONFIG.SY Sfile, let's change the DOS command processor
(COMMAND.COM) to something ese. | happen to prefer 4DOS, which is
a COMMAND.COM -compatible replacement from JP Software that offers
features above and beyond COMMAND.COM. To switch to 4DOS (assum-
ing you have a copy), add the following lineto your CONFIG.SY Sfile

SHELL=C: \ 4DCS. COM

When | did this, | rebooted and found myself sitting at a 4DOS prompt
rather than in the nice, cozy Windows 95 Explorer environment. It seems
that my version of 4ADOS.COM didn't know to invoke WIN.COM at the
end of itsprocessing of the AUTOEXEC.BAT file. Yet the COMMAND.COM
that comes with Windows 95 does. Oops! It looks like another part of this
seamless integration just fell away. The transparent boot straight into
Windows 95 that most end users experience turns out to be nothing more
than the moral equivalent of putting the following as the last line of your
AUTOEXEC.BAT file

WN

Sincewe're at a 4DOS prompt (which presumably knows nothing about
Windows), let's ask it what version of DOS we're running:

C.\>ver
4DCS 5.0 DCS 7.00

DOS 7, eh? | guess this shouldn't be a surprise. The previous version of
DOS was 6.x, right? If you fire up the Windows 95 COMMAND.COM
and ask it the same question, you'll get the following response:

M crosoft(R) Wndows 95

(C) Copyright Mcrosoft Corp 1981 1995.
C.\>ver
Wndows 95. [Version 4.00.950]
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That's strange, there's no mention of DOS anywhere. Microsoft really
doesn’t want the nontechnical end user to know that DOS is mixed in with
Windows 95.

I could go on and present other examples and technical demonstrations
that show the existence of DOS-like code in Windows 95. However,
Unauthorized Windows 95 covered this topic in much greater detail. If
you have further interest in this particular subject, check out Unauthorized
Windows 95.

Now let's look at what happens after Windows 95 begins firing up. If you
were to load Windows 95 under versions of WINICE that were written for
Windows 3.1, you could pop into WINICE and see much that would lead you
to believe you were looking at Windows 3.1. For example, Windows 95 (like
Windows 3.x) is still based heavily on VxDs. Many of the familiar VxDs are
still there in Windows 95: VMM, VPICD, VTD, VDMAD, V86 MMGR, and
so on. (There are also many new VxDs, but we'll talk about those later.) In
addition, you can continue to load your own VxDs via the [386enh] section
of the SYSTEM.INI files. (However, Microsoft would prefer you to add VxDs
through the registry, something I'll describe later.)

Doing a MOD command in WINICE would also take you back to the
days of Windows 3.1:

:mod

hvod  PEHeader Mdul e Name .EXE File Nane

0117 KERNEL C:. \ W NDOWS\ SYSTEM KRNL386. EXE
01c7 SYSTEM C: \ W NDOWS\ SYSTEM system drv
01BF KEYBOARD C: \ W NDOWS\ SYSTEM keyboard. drv
01CF MOUSE C: \ W NDOWS\ SYSTEM nouse. drv
01E7 DI SPLAY C: \ W NDOWS\ SYSTEM at i n82. drv
036F DI BENG C:. \ W NDOWS\ SYSTEM DI BENG. DLL
023F SOUND C: \ W NDOWS\ SYSTEM msound. drv
02EF COWM C: \ W NDOWS\ SYSTEM conmm dr v
042F Q@ C: \ W NDOWS\ SYSTEM gdi . exe
17FF FONTS C: \ W NDOWS\ f ont s\ vgasys. f on
1807 FI XFONTS c:\ W NDOWS\ f ont s\ vgafi x. fon
17F7 OEMFONTS C: \ W NDOWS\ f ont s\ vgaoem f on
17CF USER C. \ W NDOWS\ SYSTEM user . exe

All these DLLs were present in Windows 3.1 and continue to serve
active roles in Windows 95. Likewise, a WINICE HEAP command would
show you that the 16-bit global heap hasn't changed either. Again, | could
continue with examples in which | show that vast portions of Windows 95
look and work identically to the way things worked in Windows 3.1. The
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fact that Windows 95 has evolved from Windows 3.1 is indisputable. Yes,
the evolution was dramatic in some cases. The fact remains, though, that if
you understand Windows 3.1, you've got a good head start on understand-
ing Windows 95. Chapter 7 describesin more detail how the Winl6 com-
ponents of Windows 95 are similar but not identical to the Windows 3.1
components.

Let me clarify something I've said in this section. | think Microsoft
made the right choice in evolving Windows 95 rather than starting from
scratch. Backward compatibility was ail absolute requirement. Although
Windows 95 won't be 100-percent compatible with Windows 3.1, it will be
significantly more compatible than Windows NT or OS/2 Warp can ever be.
Starting from afresh code base for Windows 95 would have been a night-
mare for compatibility. Likewise, afresh code base would have bloated the
code, and amass market operating system that doesn't run on the average
PC doesn't make sense. You have to give Microsoft credit for facing the
harsh reality that most end-user systems are limited when compared to the
souped-up hardware most devel opers work on.

If you're an operating-system purist who turns your nose up at the com-
promises of Windows 95, do something about it. Run Windows NT, OS/2, or
UNIX. Just don't complain when some program that you really need to run
doesn't work on those platforms. To be honest, I'm guilty of doing my share
of complaining about the Windows 95 architecture. However, | also run
Windows NT regularly as a matter of course. My point is, both Windows 95
and Windows NT are valid operating-system platforms. You have to decide
what's more important to you (memory consumption and compatibility or
robustness and security), and choose the appropriate platform.

My philosophy is that both Windows 95 and Windows NT will be very
important over the next several years. As such, | devote my efforts to both
platforms. So why is this book about Windows 95? Because | feel that the
programming market for Windows 95 will be larger than that for Windows

NT in the near term.

NMPROVEVENTSOVERWINDOWS 3.1

Evenif you don't care about the new features in Windows 95 (pre-emptive
multithreading, protected process address spaces, and so on), it's worth
upgrading from Windows 3.1 to Windows 95 just for the improvements it
offers. In this section, I'll go over what these improvements are in broad
strokes, deferring more detailed descriptions to subsequent chapters.
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DOS is dead (almost)

Although you might never notice it, the biggest improvement in Windows 95
over the DOS/Windows 3.1 combination might be the placement of what we
used to call DOS into VxDs. In Windows 3.x, the Virtual Machine Manager
(VMM) acted as a DOS extender. When a program called DOS to do some-
thing, such as read from afile, the INT 21h was first bounced up to the ring
0 WIN386, which then reflected the interrupt down to the 16-bit DOS run-
ning underneath Windows. In Windows 95, once VMM32.V XD isup and
running, amost al callsto DOS functions are handled entirely in VMM 32
with al new 32-bit code. (VMM 32 isthe master collection of VxDs that
comprise the ring 0 component of Windows 95. VMM 32 is equivalent to
WIN386.EXE in Windows 3.1.)

One of the most marked benefits of putting code formerly found in DOS
into VxDs is that file I/0 can be handled entirely in 32-bit ring O code,
dramatically improving performance. When | say DOS, I'm not limiting
the scope of the improvements to just DOS programs. A Windows program
that calls _|read eventually ends up in the same VxD code for doing file 1/0
that a DOS program calling INT 21h would.

For backward compatibility with old hardware devices and drivers,
Windows 95 continues to reflect certain critical interrupts to the small bit of
real mode (actually V86 mode) DOS code that sits underneath Windows 95.
(Thisisthe DOS code | described in the previous section.) For example, when
VMM 32 seesthat a DOS device driver is expecting to be used, it can fall back
to the old behavior of reflecting interrupts down to a 16-bit DOS virtual
machine so that the device driver can do its thing. Other interrupts, such as
the DOS Get Time function (INT 21h, fn. 2Ch), are always reflected to the
real mode (V86 mode) DOS code. The important thing to remember is that
the majority of DOS's functionality has been moved to 32-bit code residing
in Windows itself. With alittle work, Microsoft could make Windows 95
entirely rid itself of the real mode DOS code. Although this might appeal to
some operating-system purists, it would come at the expense of compatibility
with existing software. If you want that, run Windows NT.

The windowing system

For some programmers, the biggest relief provided by Windows 95 is the
introduction of 32-bit heaps to the windowing and graphics components.
In Windows 3.0 and earlier, all windows and related data structures were
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crammed into the USER DGROUP, which was limited to a maximum of
64K. In Windows 3.1, some of the windowing system's data was moved
out into other 64K segments, but this aleviated only certain limitations. In
Windows 95, the windowing code in USER knows about and uses two
separate 32-bit heaps to store items like the HWND data structures. Asa
result, you're no longer limited to a maximum of a couple hundred windows
or to only 8160 entries in a listbox. (Having a listbox with eight thousand
entries is usually not an example of good program design. However, if you
really need that many entries for some reason, Windows 95 will be an
improvement over Windows 3.1.)

Although the Windows 95 windowing system uses 32-bit data, you
shouldn't confuse this with 32-bit code. All the windows in Windows 95
(yes, even windows created by 32-bit applications) are managed by the 16-bit
USER.EXE that you've come to know and love. In contrast, the Windows NT
team had the opportunity to write their USER components in brand new
Win32 code. (Compatibility isn't nearly as important as robustness in NT.)
There's been quite a bit of debate among programmers about whether the
Windows 95 team made a wise decision in updating with the existing 16-bit
USER code. However, there are two important factors that make this
approach the only logical choice. | discussed this issue in Chapter | but the
following paragraphs recap my main points.

The first reason for keeping the windowing system code in the 16-bit
USER.EXE isthe size issue. Having two copies of the windowing system
code, one 16-bit and the other 32-bit, would add several hundred kilobytes to
the memory footprint of Windows 95. Given Microsoft's goal of running on a
4MB system, this was unacceptable. Remember, Windows 95 isn't intended
only for developers with moderate- to high-end hardware. Windows 95
needs to run on al those ancient 386s in companies that just recently took
the plunge and upgraded them to 4MB. Y ou might be thinking, so why
doesn't Windows 95 put the windowing system code in a 32-bit DLL and
cal up into it?

That leads me to the second reason: To put things bluntly, the 16-bit
USER.EXE is not tremendously portable. Important sections are written in
optimized assembly language. In addition, USER.EXE is legacy code -- it's
been modified, tinkered with, and otherwise tweaked for close to a decade.
It no doubt contains peculiarities that applications have come to rely on as
normal behavior. It's unlikely that one person can keep an entire working
model of USER and all its assumptions and quirks in his or her head. If
USER's code was ported to completely 32-bit code, existing applications
would break.
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In addition to the size constraints, Windows 95 has its hands further
tied by the need to be 99.44 percent backward compatible. The windowing
system in NT is 32 bit, and was written to be as compatible as reasonably
possible with its 16-bit predecessor. Still, Microsoft doesn't claim 100 percent
backward compatibility with Win16. Windows 95 is being held to a higher
standard of backward compatibility. In this light, the decision to keep the
windowing system in 16-bit code makes sense.

Having dispensed with the high-level philosophizing, let's get down to the
details of how the windowing system has changed to accommodate 32-bit
applications. I've already mentioned that USER uses two different 32-bit
heaps, but that's only part of the story. Windows 95's USER actually uses a
combination of 16- and 32-bit heaps in a somewhat unusual memory layout.
As in Windows 3.1, the 16-bit USER.EXE continues to have a 16-bit
DGROUP segment with alocal heap within it. Stored inside the local heap
are items such as atoms, windows classes, and properties. All the normal
things you'd expect in USER's 16-bit DGROUP. Conspicuously absent,
however, are windows (or more accurately, WND structures). Where the
heck did they go? At this point, 32-bit heaps come into play. Ahhh...
USER must have created a special 32-bit heap for holding windows, right?
Right. But that's not the end of the story.

If you look closely at the selector assigned to USER's DGROUP, you'll
find that its limit isn't even close to 64K in length. Its limit is much greater
that 64K. In Windows 95, the USER DGROUP selector's limit is 2MB+128K.
The 32-bit window heap in Windows 95 actually encompasses the USER
DGROUP segment at its low end. Consider the ramifications of this. All
the various data structures that USER uses can be accessed with one selec-
tor. The USER code that deals with items still in the normal DGROUP local
heap can continue to use 16-bit offsets asit did in Windows 3.1. Only the
code that manipulates items in the 32-bit heap, such as the WND data struc-
tures, needs to be changed to use 32-bit offsets. Remember, though, that
these 32-bit offsets as relative to the start of USER's data segment, not to
32-bit linear addresses.

In addition to the new 32-bit heap used to store windows, Windows
95's 16-bit USER has another 32-bit heap to store menus and their strings.
Unlike the 32-window heap, there isn't a 16-bit local heap sitting in the bottom
64K of the menu heap. Incidentally, the idea of breaking out menu-related
items into a separate heap isn't new to Windows 95. Windows 3.1 had a
separate menu heap, albeit only 16 bits. Chapter 4 describes the 32-bit
heaps in Windows 95 in more detail.



One immediate result of Windows 95's shift to a 32-bit window heap
relates to window handles (HWNDs). In Windows 3.x, an HWND was a
local heap handle of a block in USER's DGROUP. Sincethe WND structures
were stored in LMEM_FIXED blocks, the local handle was nothing more
than an offset. Therefore, by combining the selector of USER's DGROUP
with an HWND, a program could get a far pointer to a WND structure
and peek and poke at it directly. In Windows 95, this no longer works.
Windows 95 HWNDs are small values like 0x80, 0x84, and 0x8C. These
values aren't offsets. Instead, they're handles for blocks in the 32-bit window
heap. Internally, USER can convert from one of these handles to a 32-bit offset
and back again. Chapter 4 describes how HWNDs can be converted from
their 16-bit HWND form to a 32-bit pointer, and back again.

As part of the move toward each application knowing only about itself,
USER has changed the way it maintains the list of window classes. In
Windows 3.1, al window classes were stored in a linked list. You could
walk through the list and obtain the class names and owning module with
the TOOLHELP ClassFirst and ClassNext functions. In Windows 95,
ClassFirst and ClassNext still work, but they return information only about
the standard system classes (such as buttons) that USER registers at startup
time. Classesthat are registered by applications are kept in a private list. At
least part of the information for each of these private classes is kept in
USER's 16-bit DGROUP, but again, TOOLHELP.DLL knows nothing of
them. Chapter 4 covers the changes to window classes in Windows 95.

Changes to the messaging system

In Windows 95, Microsoft has finally stopped the insanity and provided
separate input message queues for each process. Actually, there are separate
message queues for each thread, but the important thing is that there's no
longer a single system input queue shared by al tasks in the system. Why is
a single input queue so bad? The short answer is that forcing all tasks to get
their user input (for example, mouse and keyboard messages) from a single
source leaves them vulnerable to a badly written task that doesn't yield.
When a given task is active, it effectively has alock on the user input system.
Until it yields, no other task can retrieve input messages.

Windows 95 (like Windows NT) throws away this antiquated model
and allows messages to be delivered immediately to the input queue of the
appropriate task. Unfortunately, the controversial Win1l6Mutex (described
later in "The Winl6Mutex" section) causes Windows 95 to continue to act
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like Windows 3.1 if a 16-bit task doesn't yield by calling GetM essage or
PeekMessage in a timely manner. Win32 processes don't have this problem
and can dawdle in their message processing without affecting other processes.

Windows 95's method of delivering input messages to programs is an
extension to the Windows 3.1 model. The raw mouse and keyboard messages
are delivered to a single system queue by the interrupt handler code in the
mouse and keyboard drivers. In Windows 3.x, al programs read their input
from this single queue, and one program could lock out other programs from
reading from the queue. In Windows 95, a dedicated thread, the Raw Input
Thread (RIT) monitors the queue and as input messages come in, delivers
them to a separate input queue for the appropriate thread. Thus, even if one
program doesn't yield, other programs can continue to get input messages
intended for them. Of course, there still remains the problem of the
Winl6Mutex and 16-bit programs. The benefits of this separate input
system thread are primarily for 32-bit pre-emptively scheduled programs.

Along with separate input queues for each thread, the Win32 philosophy
dictates that a process shouldn't be able to change values or states that another
process is using. In Windows 3.1, USER maintained many windowing system
states as systemwide values. A prime example of this is the focus window. In
Windows 3.1, USER had a single global variable caled HWndFocus. Any task
could call SetFocus whenever it felt like it, thereby taking away the focus from
another application (and causing the HWndFocus variable to change}. The
same was true for the window capture and other windowing system states.
This is unacceptable in the Win32 model. In Windows 95, every thread (not
just every process) has its own set of windowing system state variables. When
you cal an API function like SetFocus, you're acting on the current thread's
state, not on a single global state. Beneath the surface, USER takes care of the
onscreen representation so that everything looks kosher. The states that are
definitely stored on a per-queue basis are the capture window, the focus win-
dow, the active window, and the cursor. Chapter 4 describes the per-queue
windowing system states in detail.

Besides just storing windowing states on a per-thread basis, Windows 95's
USER generally doesn't allow onethread to modify the windowing states of
other threads. For instance, if you call SetFocus, passing it an HWND that's
owned by a different thread/queue, you'll receive a warning message from the
debug version of USER, and the operation won't succeed. From the HWND
passed to SetFocus, USER can obtain the queue that owns the window. By
comparing the current queue to the handle of the queue that owns the HWND
passed to SetFocus, USER can tell if an inter-thread focus change is being
attempted. Judging from other messages that appear in the debug version of
USER.EXE, inter-queue window activations aren't allowed either.
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Speaking of message queues and such, when someone posts a message
to a window in Windows 95, that message doesn't immediately appear in
the queue associated with the target window. Instead, the messaging system
saves up alist of messages and distributes them to the appropriate queues
only when their presence might affect a decision that USER makes. For
example, whenever atask enters the 16-bit scheduler (via GetMessage,
PeekMessage, Yield, and so on), Windows 95 first distributes the messages in
the saved-up list to the appropriate thread's message queue. If the scheduler
didn't do this, the scheduler wouldn't see that the task had a message, so it
wouldn't choose it to run next. Likewise, calling GetQueueStatus forces
USER to flush the temporary message list since the messages must be in the
destination queue in order for GetQueueStatus to return an accurate set of
flags. From an application programming level, you don't have to worry
about this beneath the surface change in messaging behavior. USER assumes
the responsibility of making sure that things look consistent and act just as

they do in Windows 3.1.

The interaction between 16- and
32-blt processes

An area where the windowing system implementation of Windows 95 gets
interesting is the interaction of windows from 16- and 32-bit applications.
Even though the window procedure for a 32-bit program's window is written
in 32-bit code, existing 16-bit applications don't know or care about this.
These programs expect any window, regardless of its bit size, to act just asit
would in Windows 3.x. Now, consider something like window subclassing.
Imagine that a 16-bit program gets hold of an HWND for a 32-bit program's
window. The 16-bit program then subclasses the 32-bit program's window
by saving its original WNDPRC address and dropping in a new 16-bit
WNDPROC address. If Windows 95 had originally stored a 32-bit linear
address in the 32-bit windows WND structure, things would go up in smoke
rather quickly. To prevent problem scenarios such as this, Windows 95 goes
to great lengths to make al windows behave as if they were 16-bit windows.
Another area where USER does extra work behind the scenes is with mes-
sage numbers. In Winl16, the message numbers for private control messages
start at WM_USER and go up. Additionally, some of these private message
numbers overlap with message numbers for other controls. For instance, in
Winl6, the BM GETSTATE message is defined as WM_USER+2, which is
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the same as EM_SETRECT, LB_INSERTSTRING, and CB_SETEDITSEL. In
these cases, a message number by itself is meaningless unless you know what
type of control it's being used with. Perhaps in an attempt to make things more
consistent, the Win32 implementors reassigned the message numbers for cer-
tain controls so that they fal below WM_USER and don't overlap with other
private message numbers. The remapped message groups are as follows:

Message qroup Use Wn32 starting nessage
EM_ Edit controls 0x00B0
SBM_ Scroll  bars 0x00EQ
BM_ But t ons 0x00F0
CB_ Conbo boxes 0x0140
SM Static controls 0x0170
LB_ List boxes 0x0180

If the same message has a different value in Winl6 and Win32 programs,
how are 16- and 32-bit windows able to communicate? Inside the thunking
layer between 16- and 32-bit code, USER converts these messages to the
appropriate value for the target window of the message. Messages sent
between 16-bit programs don't incur the overhead of determining whether
the message needs to be remapped.

The complexity involved in making 16- and 32-bit windows work together
seamlessly doesn't stop at simple message translation, however. Many mes-
sages use the WPARAM and LPARAM parameters to convey additional infor-
mation. Often the LPARAM of aWinl6 message contains afar pointer to
some data or a buffer to fill in. What happens when a 16-bit program sends a
message to a 32- bit program and passes a far 16:16 pointer in the LPARAM?
Again, the USER thunking layer needs to step in and make the message usable
by the code in the 32-bit window procedures. In this example, the thunk layers
convert the 16:16 far pointer into the equivalent 32-bit linear address that it
passes to the 32-bit window procedure. In the opposite case, where a 32-bit
process sends a message to a 16-bit window, a 32-bit linear address must be
converted to a 16:16 far pointer. In this situation, USER keeps a selector
around for this very purpose; it changes the base address of the selector to
match the 32-bit linear address. The limit of this selector is set to OxFFFF
bytes.

Beyond the additional work with 16-bit far pointers versus 32-bit linear
addresses, Windows 95's windowing system also needs to do parameter
conversions when messages are exchanged between 16- and 32-bit applica-
tions. Earlier | mentioned that certain messages needed to be translated
between Win16 and Win32 programs. The WPARAM parameter in ames
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sage also needs conversion. In Win32, the WPARAM parameter is 32 bits,
while in Win16 it's 16 bits. In the general case, when converting a 16-bit
message to be usable by a 32-bit window, USER puts a 0 in the high word
of the 32-bit WPARAM. When going in the opposite direction (a 32-bit
message converted for a 16-bit window), USER throws away the top WORD
of the 32-bit WPARAM. There are a few exceptions to these rules, but we
don't need to go into them in this overview chapter.

The Win 16Mutex

Although the Windows 95 thread scheduler is pre-emptive, scheduling in
Windows 95 is still affected by the single threaded, one at a time, 16-bit
code in modules like USER.EXE. A Win32 process can create threads that
don't cal GetMessage or otherwise deal with user input. An example would
be a thread that calculates the value of pi (3.14159265 . .. ) to 50 places.
These 32-bit threads that don't do user-interface activities are governed only
by the 32-bit thread scheduler in VMM32. The thread scheduler continues
to pre-emptively switch between these threads, even if things are jammed up
and not moving because of clogged user-interface threads. Unfortunately,
16-bit tasks can't spawn additional threads, so they can't partake in the
pre-emptive multitasking.

A second ago, | mentioned jammed up user-interface threads. Just what
was | talking about? Aren't threads pre-emptively switched? The answer to
this question leads to the infamous and unpopular Winl6Mutex. At this
point, the fact that Windows 95 is a mixture of old 16-bit and new 32-bit
code is probably pounded into your head. The problem that resulted in the
Winl6Mutex solution isthat the 16-bit USER and GDI code isn't written
with pre-emptive multitasking in mind. The code assumes that it won't be
interrupted for any reason, and that switches to other tasks will occur at a
few well-defined places. There are also numerous global variables through-
out the USER and GDI code. If Windows 95 ignored the problem entirely, a
thread could be switched away from while it's in the middle of a USER or
GDI call. Since the old 16-bit code isn't expecting this, the system would
crash in very short order.

The problem of existing 16-bit code not being ready for pre-emptive
multitasking isn't limited to the code in Windows. There are thousands of
third-party DLLs that were also written without pre-emption in mind. Even
if Microsoft came up with a magic bullet solution for the USER and GDI
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code, those other DLLs would still make the system vulnerable to athread
switch at an inopportune time.

One solution to this problem of pre-emptive switching would be to
identify all the vulnerable areas in USER and GDI and protect them with
synchronization mechanisms such as critical sections. Doing this in some-
thing as large and complex as USER.EXE would be error prone and time-
consuming. More importantly, spreading synchronization code throughout
USER and GDI would bloat the size of these modules. Code size ("4 megs
or bust") was one of the mantras of the Windows 95 development team, so
adding critical sections or mutexes throughout the code wasn't an acceptable
solution. In NT, where resource requirements aren't so tough, the windowing
and graphics systems are protected with critical sections, so they are re-entrant.

Microsoft's solution to the pre-emptive thread problem is known as the
Win 16Mutex. The Winl6Mutex is essentially a mutual exclusion semaphore
that covers all 16-bit areas of the system that would have trouble if they were
executing when athread switch occurred. The Winl6Mutex covers all 16-bit
code. Since much of the 32-bit windowing and graphics systems are imple-
mented as callsto their 16-bit counterparts, even Win32 threads are affected
when they perform user-interface-related actions or otherwise thunk down to
16-bit code. When 32-bit programs aren't doing any user-interface-related
actions or thunking to 16-bit land, they don't own the Winl6Mutex and
they continue to be pre-emptively scheduled.

Whenever athread is executing in 16-bit code, it owns the Winl6M utex.
The Winl6Mutex prevents other threads from entering code like the 16-bit
USER and GDI code until the lock has been released. The 16-bit thread
releases the Winl6Mutex when the thread yields to another thread by call-
ing ayielding function such as GetMessage. The thread that was yielded to
then grabs the Winl6Mutex and continues execution. The important thing
to remember isthat a 16-bit thread owns the Winl6Mutex for the entire
time that it's actively executing, not just while it has called into the operating
system.

While Win32 threads own the Winl6Mutex only when they call into cer-
tain operating-system functions, al Winl 6 programs own the Win16M utex
the entire time they're running. (Even if they're calculating pi to 50 places} As
aresult, a 16-bit task that doesn't yield the Winl6Mutex will prevent other
threads from being able to acquire the Winl6Mutex. These other threads,
regardless of whether they belong to a 16- or 32-bit process, will effectively
be hung until the thread holding the Winl6Mutex gives it up. Thus, a 16-bit
program that doesn't yield can lock out other programs, both 16- and 32-bit,
from executing.
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The basic situation of an application that doesn't promptly process mes-
sages and yield in a timely manner has always been a problem in Windows.
What's new in Windows 95 isthat there is finally pre-emptive multitasking.
However, the Winl6Mutex acts as a bottleneck for any code that has to exe-
cute through old 16-bit code like USER.EXE. The fact that a badly written
16-bit task can adversely affect 32-bit programs has made the Win16M utex
an incredibly unpopular design decision among those users who don't have
to implement Windows 95 themselves.

While obnoxious, nonyielding 16-bit programs can bring the user input
system to a halt, the Win1l6Mutex is almost never a problem for a system
containing only 32-bit programs. (Granted, Windows 95 always has one or
two 16-bit programs running, but they're background processes and don't
grab the Winl6Mutex and hang onto it.) Threads for a 32-bit program
will need to acquire the Win1l6Mutex, but only when they thunk down to
16-bit code such as USER or GDI to perform user-interface actions. The
USER and GDI code will theoretically execute quickly and then release the
Winl6Mutex. In general, no 32-bit thread will ever hold and hog the
Winl6Mutex for any significant period of time (of course, you can always
concoct perverse exceptions to this rule). If you're worried about the
Winl6Mutex affecting your Win32 program, you can create additional
threads that don't call down to 16-bit code such as USER and GDI. These
threads will continue to be scheduled and run regardless of whether a 16-bit
thread is hogging the Win16Mutex.

The Winl6Mutex's effect on the system is simple to describe. If there are
16-bit applications running, the multitasking of application user interfaces in
Windows 95 will continue to be similar to that of Windows 3.1. If there are
no (nonsystem) 16-bit programs running, the user interface should multitask
smoothly, like NT. The moral here should be obvious: Write al new programs
as Win32 programs and port existing 16-bit applications to Win32 as soon as
possible. Just say No to 16-bit code and Hello to smooth multitasking.

The Windows 95 GDI

The Windows 95 graphics system (GDI) is a hybrid of the Windows 3.1 16-bit
GDI and new graphics functions implemented in the 32-bit GDI32.DLL. In
general, if agiven GDI function existed in Windows 3.1, it has remained in
GDI.EXE in Windows 95. New functions like Beziers, paths, and enhanced
metafile support were added to the existing GDI.EXE. Other new functions
like the TrueType font rasterizer and the printing subsystem arein GDI32.DLL.
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Like USER.EXE, the Windows 95 GDI has 16-bit code that uses a 32-bit
heap immediately above it. The Windows 95 GDI uses the 32-bit heap to
store regions and fonts. Also like USER.EXE, the 32-bit GDI heap contains the
16-bit GDI DGROUP within its first 64K. GDI objects other than regions are
gtill held in the 16-bit GDI DGROUP, meaning that you can't go hog wild
and create tons of GDI objects.

One of the most well-known limitations of Windows 3.x was that there
was a limit of five screen device contexts (DCs) available systemwide. If a
buggy application grabbed those five DCs, other applications couldn't do
their painting, and the system often became unstable. In Windows 95, the
limitation on screen DCs appears to have been lifted.

Since a large portion of Windows 95's GDI remains in 16-bit code,
Windows 95's GDI coordinate system is till limited to 16 bits. Even though
the Win32 APl and NT specify that 32-bit coordinates are the norm, the
Windows 95 GDI pays attention to only the bottom 16 bits of any coordinates
passed in to it.

Another place where the Windows 95 GDI sticks to its 16 bit past is
with device drivers. When it comes time for the GDI to display something
on the screen or some other device, the GDI calls into a 16-bit device driver
DLL. Although all new portions of Windows 95 expect 32-bit Portable
Executable (PE) drivers, the GDI must remain backward compatible with
existing 16-bit display and printer drivers. This isn't to say that all 16-bit
device drivers confine themselves to 16 bits. Many high-performance drivers
use 32-bit instructions even though the driver remains a 16-bit New
Executable (NE) format DLL.

System resource cleanup

Windows 95 implements each 16-bit task as a separate process. One reason
for this is resource cleanup. For whatever odd reason (space considerations,
probably), prior versions of Windows didn't tag their USER objects such as
icons with an owner. When atask terminated, USER didn't have any idea
what owned the resource, so it couldn't clean up after the task. Repeatedly
running a program that was sloppy about freeing its resources could cause
the system to run out of room in its heaps; the result was that subsequent
programs were unable to run. This problem has been an Achilles' heel for
Windows and is one of the main reasons Windows hasn't gained acceptance
in certain areas of the market. Windows 95 takes a major step forward
(albeit along overdue step) and associates each resource with the process that
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dlocated it. When a process terminates, Windows 95 iterates through the
resources and frees up those that the terminated process didn't release itself.

There's one twist to this improved model for resource usage. In
Windows 3.1, one task could allocate a resource and pass the resource
handle to another task to use. Even if the allocating task exited, the second
task could continue to use the resource. The new Windows 95 method of
freeing up resources when the allocating process exits could backfire in this
situation. To retain backward compatibility, when Windows 95 is about to
free a resource that belonged to a terminated process, it checks to see what
kind of process it is. If the process was a 16-bit task and wasn't marked as
being Windows 4.0-compatible, Windows 95 doesn't delete the resource until
there are no more running 16-bit applications. This eliminates the possibility
that Windows 95 will yank a resource out from under a 16-bit task that is
using the resource.

If Windows 95 is much better about cleaning up after sloppy programs,
how does this affect the infamous Free System Resources? In Windows 3.1,
the magical System Resources number reported in About boxes was found
by looking at the free space in four heaps: three 16-bit USER heaps and the
16-bit GDI heap. Of these four heaps, the heap with the lowest percentage
free is what USER reports as the free system resources. Since Windows 95
has 32-bit heaps (such as the heap used to store WNDs), the calculation needs
to change. In most cases, the reported free system resources isn't changed by
the presence of 32-bit heaps, since these heaps almost invariably have a higher
percentage free than the 16-bit USER or GDI DGROUPs. However, by
moving certain space-consuming objects out of the 16-bit USER and GDI
DGROUPs, Windows 95 makes the available system resources decrease at a
slower rate. Chapter 4 contains a more complete discussion of exactly how
free system resources are computed in Windows 95.

Decreased memory consumption below 1MB

Finaly, we come to the infamous "insufficient memory to load this pro-
gram" message. The good news isthat the Microsoft coders have fixed the
"below 1MB" problem! In Windows 3.x, FIXED segments in DLLs and
Global Pagel ock()'d segments ended up at the low end of the heap. Often
this meant that they ended up below 1IMB. These segments could eat up all
the memory below 1MB, thus preventing Windows from starting additional
tasks (each task needs at least 512 bytes below 1MB for its task database).
See my Questions & Answers column in the May 1995 Microsoft Systems
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Journal for a more detailed description of the problem. In Windows 95,
FIXED and GlobalPagel ock'd segments still come from the low end of
memory, but they stop short of going below 1MB. Whileit'sstill possible
in perverse casesto create a scenario where applications can't run because
of insufficient memory below 1MB, | think thiswill rarely be the case in
normal use.

BRAND-NEW HEATURES

Up to this point, I've been discussing the ways in which Windows 95 is
either the same as Windows 3.1 or improves on Windows 3.1 features.
Now it'stime to examine the Windows 95 features that are completely new.
Of course, many of these areas are very similar to Windows NT. However,
for the mgjority of programmers and end users, Windows 95 is the first
exposure to these topics.

The Windows 95 Win32 implementation

From a programming perspective, the biggest news about Windows 95 isthe
addition of the Win32 API. It's Microsoft's hope that the Win32 AP will
enable applications to be written in a portable manner. Theoreticaly, an
application written to theWin32 AP can run unmodified on different oper-
ating systems (for example, Windows NT), aslong as they al so support the
Win32 AP and the underlying CPU is the same. A properly written Win32
application can also ssimply be recompiled and run on other CPUs -- again,
as long as they're running an operating system that supports the Win32 AP.
How effective the Win32 AR isin glossing over operating-system differences
will be the subject of discussion for years to come.

When | first heard of the Win32 support in Windows 95, the big question
inmy mind was,"Is it implemented like N T or likeWin32s?" After working
with it for over two years, my conclusion is that the best description of
Windows 95 is "Win32s done properly."” LikeWin32s, Windows 95 has
32-bit system DL L sthat thunk down to the equivalent 16-bit DLLs. Most
cdls to the Win32 windowing and messaging AP functions go through thunks
down to the 16-bitUSER.EXE. Likewise, many callsto Win32 graphicsfunc-
tionsthunk down to the 16-bit GDI.EXE. In contrast, Windows NT has fully
32-bit USER and GDI modules. 16-bit applicationsrun under NT and have
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Windows (WOW)layer.

While Windows 95 is closer to Win32s than to NT in its implementa-
tion, Windows 95 islight years beyond Win32s. The implementors of
Win32s were constrained by the necessity of building it atop the existing
Windows 3.1 code. The Win32s developers couldn't make changes to
Windows 3.1 since Windows 3.1 was already installed on millions of
machines. Upgrading them to a newer version of Windows just for Win32
support was not an option. As such, Win32s is severely limited relative to
Windows 95 or Windows NT.

The Windows 95 developers, on the other hand, had the luxury of
being able to modify and adapt the underlying foundation in order to best
implement the Win32 AP on top of it. Starting from the Windows 3.1 code
base, both the ring 0 components (the Virtual Machine Manager and VxDs
in VMM32.VXD) and the ring 3 components (such as KRNL386, USER,
and GDI) have been extensively modified to support the Win32 system
DLLs (for example, KERNEL32.DLL, USER32.DLL, and GDI32.DLL). In
essence, Windows 95 has most of NT's feature set but uses an implementa-
tion much closer to Win32s. For the average user, Windows 95 provides the
best tradeoffs between speed, memory usage, features, and system stability.

Just because there are still 16-bit components in Windows 95 doesn't
mean that they're unaware of the new 32-bit additions. For instance,
KRNL386.EXE makes many callsup into KERNEL32.DLL, primarily for
things like 32-bit heap and process management on behalf of the 16-bit
USER and GDI. Chapter 6 contains more information about this.

The Windows 95 Win32 system DLLs

The Windows 95's Win32 AP layer is implemented using a mixed collection
of 16- and 32-bit DLLs. Table 2-1 lists some common Win32 APl DLLsand
how they're implemented. In the table, the pattern that emergesisthat, wher-
ever reasonable, Microsoft tried to reuse existing 16-bit code by thunking to it.

This approach has two benefits. First, 16-bit code is smaller on average
than the 32-bit equivalent. Second, the 16-bit Windows 3.x code has already
been shaken out and tested in the real world. A rewritten 32-bit version of a
system DLL like USER would need to undergo much more extensive bug fix-
ing and testing, possibly delaying the release of Windows 95. The windowing
system implemented in the 16-bit USER.EXE is mature and most of its quirks
arewell understood. If Microsoft had recoded the windowing system in 32-bit
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code, it would have had to reproduce all the subtle behaviors of the 16-bit
version, including bug fixes and workarounds.

The NT developers chose to write a 32-bit version of USER, sacrificing
some compatibility with existing 16-bit applications. The NT design criteria
dlowed this. Windows 95's doesn't. Backward compatibility is essentia in

Windows 95.

Table 2-1

The implementation of selected Windows 95 32-bit system DLLs

Name of DLL
KERNEL32.DLL

USER32DLL

GDI32.DLL

ADVAPI32.DLL

OLE32DLL
COMDLG32.DLL

SHELL32DLL

LZ32DLL
VERSION.DLL
WINMM.DLL

Purpose of DLL

Win32/Windows 95
kernel services

Window Manager
functions

Graphics functions

Windows registry

OLE 2.0 bBase DL

Common Windows
dialogs

Windows 95 shell
(32-bit) Jibrary

LZA file decompression
Version-stampinglibrary
Multimedia functions

How DLL is implemented

Mostly Win32 code, but makes many
calls into VxDs, and some calls down to
KRNL386.EXE.

Mostly thunks to 16-bit USEREXE, but
some functions are implemented in
USER32DLL.

Mostly thunks down to 16-bit GDI.EXE.
However, TrueType rasterizer- and
printing-related code are in GDI32.DLL.

Mostly Win32 code, but calls into
VMM.VXD for registry functions.

All 32 bit code.

Mostly 32-bit code, but does same
thunks.

Mostly 32-bit code, but does some
thunks to 16-hit code.

Thunks to 16-bit code.
Thunksto 16-bit code.
Mix of 16-and 32-bit code.

The ring 0 components of Windows 95

Moving down to the level below the system DLLs, we encounter the ring O
components of Windows 95. These are the Virtual Machine Manager and
virtual device drivers (VxDs). In Windows 3.x, these components were all
lumped into the WIN386.EXE file. In Windows 95, these components are
still lumped together, but thefileis now called VMM32.VXD. Tables 2-2
and 2-3 show the changes to the standard VxDsin VMM32.VXD as
compared to WIN386.EXE.
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New VxDs in Windows 95's VMM32.VXD file

Name of VXD

CONFIGMG
DYNAPAGE
IFSMCGR
IoS

PR

SHL
SPOOLER
VCACHE
VCDFSD
VCOMM
VCOND
VDD

VDEF

VFAT
VFBACKUP
VAATD
VMM
VMOUSE
VD
VSHARE
VIDAPI
VWIN32
VXDLDR

Table 2-3

Purpose of VXD

Configuration manager (Plug&Play)
Paging manager

Installable File System Manager
I/0 Supenvisor (replaces BLOCKDEV)
Configuration/status info

Shell support

Local spooler

Disk cache

CD file system

COMM device driver

Console device

Display device

(Unknown)

File Allocation Table helper

For backup apps

Flat Memory device

Virtual Manager Manager
Mouse device

Printer device

File SHARE support

Virtual Timer Device AP
Win32 device

VXD loader

VxDs removed from Windows 95's VMM32.VXD file

Name of VXD

BLOCKDEV
CDPSCSI
PAGEFLE
QEMMFIX
VDDVGA
VD
VNETBIOS
WDCTRL
WIN386
WSHELL

Purpose of VXD

Block device (replaced by 10S)

SCSI CD device

Pagefile device (replaced by DYNAPAGE
Fix for QEMM

VGA display device

Floppy device

Netbios device

Western Digital fastdisk

Replaced by VMM

Old shell device
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The most interesting addition to the VMM 32 collection of VxDs isthe
VWIN32 device. Actuadly, VWIN32 isn't really a device. Instead, it'sring O
code that the 16-bit KRNL386.EXE and 32-bit KERNEL32.DLL use to
perform certain low-level primitives. The closest equivalent to VWIN32 in
Windows NT is NTDLL.DLL, which isn't documented, but obviously
contains a lot of the low-level operating-system goodies.

Both VWIN32.VXD and VMM.VXD (aong with a few other VxDs)
provide ring-3-callable functions that are known as Win32 VxD services.
Much of KERNEL32's operations rely heavily on Win32 VxD service calls
to VWIN32, and to a lesser extent, to VMM. These calls include operating-
system primitives like thread creation, blocking on a synchronization object,
creating a new memory context, and so on. I'll be describing VWIN32 and
Win32 VxD services in Chapter 6.

One way the Windows 95 developers helped kegp memory consumption
down was through advances in the VxD architecture. Windows 95 supports
dynamically loadable VxDs. In Windows 3.x, a VXD had to be loaded when
Windows booted, and it remained in the system for the entire session.
Windows 95 programs can load and unload VxDs only when they're
needed, much like existing programs load printer drivers only when printing.
The new VXD architecture also supports pageable VxDs. Portions of your
VxD that aren't used often can be made pageable so that they're only
loaded into memory when they're needed.

A porting issue for those of you with existing Winl16 code concerns
interrupts and interrupt handlers. Win32 programs under Windows 95
aren't allowed to install interrupt handlers in their code. Nor can they use
interrupts to communicate with other code, even if it's an interrupt handler
in aWinl6 DLL. Most code that uses interrupts is for communicating with
hardware devices. Microsoft recommends that you write a VXD to implement
the interrupt code. Your program can communicate with the VxD through the
DeviceloControl function. If you need to call certain interrupt functions (such
as INT 21h or INT 31h) the VWIN32 VXD provides routines for invoking
those interrupts.

Process managementf

In Winl6, an executing program is known as atask. At any given point in
time, atask is executing at only one spot in its code. (This may seem obvious
until you understand the notion of threads, which I'll describe next.) The
Windows 16-bit KERNEL keeps information about each Winl6 task in a
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segment called a Task Database (or TDB). The selector of atask database is
known as an HTASK and can be passed as an argument to APIs that need
to know which task you're referring to.

How does all this change for 32-bit programs in Windows 957 For
starters, a running program is known as a process rather than a task. Each
process runs in its own address space, which can have serious implications
for programmers who are bringing existing Winl6 code to the Win32
environment. I'll describe the ramifications of separate address spaces in
"The Windows 95 address space" section. For now, it's sufficient to think
of processes as being unaware of the existence of any other processes. They
can see their own memory and operating-system resources, but they can't
see other processes or the memory of other processes. The underlying reason
for keeping processes apart from each other is so that a buggy or malicious
process can't have an adverse effect on other processes.

This separation of processes isso complete that, in Win32 programs, the
hPrevinstance parameter to WinMain is always 0, even if other copies of the
program are running. In general, a process can consider itself to be the only
running program in the system. Of course, if you really need to communicate
with or manipulate another process, there are facilities to do so. However,
you need to specificaly plan ahead when writing your code to do this.

Each Windows 95 process is associated with a unique value in the system;
this value is informally known as a process ID. A program can obtain its
own process ID via the GetCurrentProcessld function. The process ID is the
closest thing to a Winl6 HTASK. In NT, process IDs definitely do not map
to system data structures, since typical process ID values are numbers like
74, 77, 84, and so on. In Windows 95, process |IDs have much higher values
that are seemingly random. However, as you'll see in Chapter 3, a process
ID can be put through a magical transformation to get a pointer to the
actual process database structure that KERNEL32.DLL uses to keep track
of the process.

When working with Windows 95 processes, you usually don't use a
process ID. Instead, most process-related APl functions expect aHANDLE
parameter, informally known as an hProcess. An hProcess has no direct cor-
relation to something like a Winl6 task database. Unlike process IDs, there
can be multiple distinct hProcess values, each of which refers to the same
process.



KERNEL32 object handles

Handles permeate the Win32 API. A
handle is a magic value that you obtain
from the operating system and pass back
to APl functions when you need something
done. Theoreticall, a HANDLE value is
meaningless to the application program.
Only the operating system knows how to
interpret it. (However, as you Winl6 pro-
grammers probably know, almost all the
handle values in Winl6 programs can be
interpreted as selector values or near
pointers.)

When working with the KERNEL32
APIs, most handles you work with belong
to a small group of handles that | call
KERNEL32 handles. KERNEL32 handles
have special attributes, such as being

able to be passed to functions like
WaitForSingleObject. KERNEL32 object
handles include process and thread han-
dles, file handles, mutex handles, and
many more. Chapter 3 describes the vari-
ous KERNEL32 handle types.

A KERNEL32 HANDLE is valid only
within the process that owns it. Attempting
to use a HANDLE from one process in
another process is meaningless. Although
handles are theoretically opaque, with
enough underlying knowledge of the
process-related data structures, it's possi-
ble for an application program to convert
a handle into a usable object pointer.
Chapter 3 shows how you can convert a
KERNEL3?2 handle into a usable pointer.

The most fundamental process function in Windows 95 is CreateProcess,
which is analogous to the Winl6 WinExec and LoadModule functions.
WinExec and LoadModule still exist in Windows 95, but under the surface
they're a wrapper around a call to CreateProcess. If you need to query or
manipulate the spawned process later, you'll want to use CreateProcess
because it returns an hProcess HANDLE to you.

Since WinExec and LoadModule have no notion of an hProcess
HANDLE, they can't return an hProcess. In fact, after these two functions
call CreateProcess, they immediately close the hProcess that CreateProcess
returned. They do thisto prevent system resources allocated for that process
from being tied up unnecessarily. It's important to remember that closing a
handle doesn't mean that you're terminating the process. Rather, you're giv-
ing up access to the process via that particular handle. The operating system
takes care of cleaning up its process-related resources when the process termi-
nates and all outstanding handles to the process have been closed.

Besides creating a process, another way to get an hProcess is to call
OpenProcess with a valid process ID. With an hProcess in hand from either
method, you can do some basic process querying and manipulation. Under
the category of process control, a program can terminate another process
with TerminateProcess and affect the execution priority of other processes
with SetPriorityClass.
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It's interesting to learn that Windows mirrors certain KERNEL objects
like tasks and modules on both the 16- and 32-bit side of the fence. In the
area of processes and tasks, each Win32 process has a 16-bit task database
(TDB) that's linked into the TDB chain. If you walk the task list with
TOOLHELP, you'll seethat in addition to the 16-bit tasks, there's also a
TDB for each Win32 program that's running. You may recall that a TDB
has 8 bytes near the end that stores the module name of the file that created
the task.

In addition to TDBs for 16- or 32-bit processes, there's also a PSP for
all TDBs in Windows 95, including TDBs for Win32 processes. Unlike
Windows 3.x, the PSP in aWindows 95 TDB does not necessarily immedi-
ately follow the TDB in memory. Between the 100h-byte-long TDB and the
PSP is aregion that holds the current directory. This area is sufficiently
large to hold a directory using the long filename and pathnames that
Windows 95 supports. In Windows 3.x, the current directory was stored in an
area only 65 bytes long inside the TDB. Chapter 7 describes this in more detail.

Thread management

Threads are an exciting new feature that Windows 95 brings to the party. A
thread is an instance of execution through program code. In simpler terms,
threads allow a program to be executing in more than one place in its code
simultaneously. It's like having multiple CPUs, each executing a different
part of the program. On a single-processor system (Windows 95 supports
only uniprocessor systems), threads only appear to execute simultaneously.
Under the hood, the Windows 95 scheduler switches the CPU between all
the various threads in the system. Thisis known as timeslicing, since the
hardware's built-in timer notifies the operating system at regular intervals,
whereupon the operating system may choose to schedule a different thread.
Incidentally, although 16-bit programs show up as a thread in the list of
system threads, only Win32 applications can create additional threads in
their process.

A thread can be switched away from for two reasons. The first reason is
that the thread might do something that needs another thread to execute first.
In this case the thread yields the CPU to another thread. (This happens trans-
parently clown inside the system DLLs, so you don't need to worry about it.)
The second reason occurs when a thread has executed long enough and it's
time to give other threads a chance. The Windows 95 thread scheduler uses a
sophisticated algorithm that gives the most CPU time to the threads that need
it the most. The CPU uses the hardware clock to interrupt the operating system
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at periodic intervals. Inside the hardware timer interrupt handler, the scheduler
decides if another thread should run; if so, it switches to the other thread. In
Windows 95, the timedice is 20 milliseconds, meaning the scheduler code
could theoretically switch between 50 threads in one second. This is close
enough to simultaneous for most people.

Every thread is associated with a process. When the operating system
creates a new process, it also sets up an initial thread for it. Threads execute
in the memory context of the process they're associated with. All threads in
a process share the process's resources. For the remainder of this discussion,
I'll use the word "resource" to mean something provided by the operating
system rather than the much narrower definition of resource as a dialog, a
cursor, and the like. Process resources include a memory context, file han-
dles, and acurrent directory.

Processes generally don't alter or use the resources of another process.
However, multiple threads within a process can conflict in their use of a
process resource. Thus, resource sharing can be a mixed blessing. For
example, your program may have a code sequence that modifies several
global variables. If a thread is switched away from in the middle of the
sequence, the next thread would be using those global variables while
they're in an inconsistent state. Doing multithreaded programming success-
fully requires you to identify al the resources within a process that could get
messed up if athread switch occurred while in the middle of manipulating
them. These resources need to be guarded by synchronization mechanisms
such as critical sections to make sure they aren't corrupted by an ill-timed
thread switch. Critical sections and other thread synchronization mechanisms
are discussed in the following section.

Although threads share process resources, each thread also has certain
resources that are private to itself. The most important of these is a stack.
No, each thread doesn't have its own SSregister and stack segment. Instead,
each thread has a dedicated region of address space within the address space
of the process that owns the thread. By default, each thread is assigned 1MB
of address space for its stack. This size can be overridden either in the exe-
cutable file's .DEF file STACK line or by specifying a nonzero stack sizewhen
the thread is created by a call to CreateThread. | mentioned earlier that
Windows 95 doesn't actually use up a whole megabyte of RAM for each
thread stack. Instead, Windows 95 uses a mechanism known as a "guard
page" to know when to commit additional memory in the stack's address
range. Guard pages are an example of structured exception handling, which is
discussed later in this chapter in the "Structured exception handling” section.



Another vital per-thread resource is the thread's register set. Whenever
the scheduler switches away from athread, the operating system saves a
copy of the thread's register values at the time of the interruption. The use-
ful but little known GetThreadContext APl allows you to retrieve and
modify athread's registers. While normal programs usually don't need to
do this, reading and modifying registers is the lifeblood of debuggers.

Inside the operating system, each thread has a unique value known as a
thread 1D. As with process IDs, Windows 95 thread IDs have relatively high
values but definitely aren't 32-bit linear addresses. However, most thread AP
functions don't work with thread IDs. Instead, these functions expect a HAN-
DLE, commonly known as an hThread. An hThread is meaningful only within
the process that owns the thread. There can be multiple hThread values, each
of which refers to the same thread. The same thread can be referred to by mul-
tiple hThread handles; some of these handles are valid in that thread's process,
whereas others are valid in the context of a different process.

If you're starting to notice a parallel between threads and processes, that's
good. Remember: Process and thread IDs are unique values within the system.
No two threads or processes can have the same ID value. Handles are a differ-
ent story. Each process and thread can be referred to by multiple hProcess or
hThread handles. The handles might refer to a different process or a thread
within in a different process. Or, the handle might be self-referential, and
refer to its own process or thread.

Process and thread synchronization

One aspect of Win32 programming that will be new to programmers coming
from DOS or Win16 programming is process and thread synchronization.
Synchronization is the means by which a program prevents problems that
would occur if the program were switched away from at an inopportune
time. Although Winl16 had multitasking, there were no real synchronization
primitives since the multitasking was cooperative multitasking. A Win16
program will not be switched away from until it gives up control voluntarily.
It does this by calling API functions such as GetMessage and PeekMessage. If
aprogram cals GetMessage or PeekMessage, it's implicitly saying, "I'm now
in an interruptable state."

Win32 programs, on the other hand, don't have the luxury (or the
curse, depending on how you look at it) of cooperative multitasking. They
must expect and prepare for the CPU to be switched away from at the worst
possible moment. In arelated vein, a proper Win32 program shouldn't burn
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up CPU time by spinning in a polling loop, waiting for some expected event
to happen. The Win32 APl has four main synchronization objects that
allow for both of these needs to be met:

*  Events
*  Semaphores
*  Mutexes

* Critical sections

With the exception of critical sections, the synchronization objects are
system global objects and will work with threads that are in different
processes, as well as within the same process. Thus, these synchronization
mechanisms can also be used to synchronize the actions of separate
processes, in addition to threads within the same process.

Events

The first type of synchronization object is an event. Events, as their name
implies, are centered around some specific action occurring in another
process or thread. You use an event when you want your thread to block
until the desired action occurs. The term block means to suspend execution
of the thread until some specified condition or conditions are met. Blocking
is efficient because the scheduler doesn't waste any CPU cycles on threads
that are blocked.

A program obtains a handle to an event object with CreateEvent or
OpenEvent. The program then calls WaitForSingleObject, passing it the
event handle and an optional timeout period. The thread will then block
until some other thread in the current process or another process signals
that the event has occurred. The other thread indicates that the desired
actions have occurred by calling SetEvent or PulseEvent. After the event has
been signaled, the thread that is blocked wakes up and continues execution.

You might want to use an event, for example, when one thread will be
using the results of a sort being performed by another thread. A bad way to
implement thiswould be to have the sorting thread set a global variable flag
when the sort completes. The other thread spins in a loop, constantly check-
ing the flag to seeiif it's been set yet. This wastes a lot of CPU cycles in the
polling thread. Doing the same thing using events is simple. The sorting
thread creates an event to represent when the sort is finished. The other
thread calls WaitForSingleObject, passing it the event handle created earlier.



This causes the thread to block and not waste any CPU cycles. When the
sorting thread completes the sort, it calls SetEvent, causing the other thread
to wake up and resume execution. Not only has the CPU been used efficiently,
we've avoided concurrency problems by preventing athread from using data
that may not be sorted yet.

This example used the simplest cases of the synchronization APIs. Besides
WaitForSingleObject, there's also WaitForMultipleObjects, which allows a
thread to block until alist of event handles has been signaled. In calling
WaitForMultipleObjects, athread can block until either any event in the
list has been signaled or all the events have been signaled. Getting even
more elaborate, athread can use MsgWaitForMultipleObjects, which
blocks until either the event conditions have been satisfied or there's a
waiting window message. Other functions block until the blocking conditions
are satisfied or afile I/O operation has completed. No doubt about it, there's
alot of flexibility here.

Semaphores

The second type of synchronization object is the semaphore. Semaphores
are useful when you want to restrict access to a particular resource or restrict
a section of code to a certain number of threads. A good analogy for a
semaphore is the hall pass that most of us remember from school. At any
given time there can only be a few students in the hall. If you want to go
somewhere and al the hall passes are in use, you have to wait until one of
the outstanding hall passes comes back. Then you can acquire the hall pass
and leave. In Win32 programming, acquiring a semaphore is like taking
control of one of the hall passes.

To use a semaphore, one thread calls CreateSemaphore to get aHANDLE
to the semaphore. The call to CreateSemaphore includes a count of how many
threads can be using the resource or code simultaneoudly. If the semaphore will
be used within only one process, other threads can get at the HANDLE via
aglobal variable. If the other threads are in another process, they'll call
OpenSemaphore to get a HANDLE they can use. When athread needs access
to the shared resource, it passes the resource to WaitForSingleObject (or one of
its variations such as WaitForMultipleObject). If the semaphore hasn't been
claimed by the maximum number of threads already, the wait function simply
bumps up the usage count of the semaphore and the thread continues. On the
other hand, if the semaphore is already maxed out, the thread that called the
wait function will block until some other thread releases its claim to the sema-
phore. A thread indicates that it's done using a semaphore by passing its handle
to ReleaseSemaphore.

47
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Mutexes

The third type of synchronization object is the mutex. The term "mutex” is
a contraction of the term "mutual exclusion." A program or set of pro-
grams uses a mutex when it wants only one thread at a time to access a
resource or section of code. If one thread is using the resource, other threads
are excluded from that same resource. One way to view a mutex isas a
semaphore with a usage count of one. Using a mutex is very similar to using
a semaphore. Each of the create, open, and release semaphore functions has
mutex counterparts. When a thread needs to acquire a mutex, it calls one of
the functions in the WaitForXXX family.

Critical sections

The fourth type of Win32 synchronization objects are critical sections. Unlike
the other types of synchronization objects, critical sections can be used only by
threads within the same process. Critical sections are for preventing multi-
ple threads from executing through the same section of code simultaneously.
Relative to the other synchronization mechanisms, critical sections are rela
tively cheap and easy to use. A critical section can be thought of as a light-
weight mutex that's only valid within a single process. To use a critical
section, a program either allocates or declares a global variable of type
CRITICAL_SECTION. Before a critical section can be used for the first
time, its fields need to be initialized by calling InitializeCritical Section. After-
wards, a thread enters the critical section by calling EnterCritical Section. A call
to LeaveCritical Section tells the operating systems that it's okay for another
thread to enter the critical section.

As | just mentioned, critical sections are relatively cheap to use. In
Windows 95, if athread cals EnterCritical Section while no other threads
are in it, EnterCriticalSection only needs to adjust and set some fields in the
CRITICAL_SECTION structure. Only if another thread is already in the
critical section will EnterCritical Section call up into the VWIN32 VxD to
cause the thread to block.

The WaitForXXX Functions

Now that I've covered the four primary methods of thread and process syn-
chronization, | want to mention a few other ways to synchronize threads.
Besides event, semaphore, and mutex handles, the WaitForXXX family of
functions will accept severa other handles. (These handles are the KERNEL 32
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handles described in the "KERNEL 32 object handles" sidebar.) Passing a
process HANDLE to one of the WaitForXXX functions causes the thread to
block until the process specified by the HANDLE terminates. If the process has
already terminated, the Wait function returns immediately. Likewise, passing a
thread HANDLE to aWaitForXXX function suspends the thread until the
HANDLE's thread terminates.

Another HANDLE that the WaitForXXX functions can block on is the
file change notification HANDLE. A file change HANDLE can be used to
determine when a specified change is made to a given directory and, optionally,
in its subdirectories. Yet another HANDLE that the WaitForXXX functions
accept is afile HANDLE for the console input device. Once there is unread
input in the console input buffer, the Wait function returns and the calling

thread resumes execution.

Module management

After processes and threads, the remaining key KERNEL concept that I'll
mention isthe module. A module is the in-memory version of the code,
data, and resources of an executable file or DLL. Each process has a module
for the EXE file. Every DLL used by a process is also a separate module. If
two or more processes use the same DLL, they share the same DLL module.
Likewise, if two copies of a process are running, both copies share the same
EXE module.

In Winl6, each task is created from the code and data in a New
Executable/NE) format executablefile. Winl 6 keeps a copy of the exe-
cutable's header in a segment known as a module database. The selector of
this segment is called an HMODULE. Each Winl6 DLL aso has a module
database because Winl6 executables and DLLs share the same file format.
Winl6 programs pass HMODULEs to APl functions that need to know
which particular executable or DLL fileyou're referring to.

Windows 95 creates 32-bit processes from a Portable Executable (PE)
file. The PE format is an updated version of the old UNIX Common Object
File Format (COFF) format. Chapter 8 goes over the PE format in exquisite
detail, so I'll skip a detailed discussion here.

The closest equivalent to a Winl6 module database in Windows 95 is
the header portion of a program or DLL's PE file. The header of each EXE
or DLL appears in memory because Windows 95 uses memory mapped files
to load the program's code and data. | discuss memory mapped files in the
"Memory mapped files" section later in this chapter. For now, think of a
memory mapped file as a place in memory where the operating system has
read in portions of afile (or possibly an entire file).
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A Windows 95 HMODULE value is nothing more than the linear
memory address to where the loader memory mapped thefile. Given an
HMODULE and a smal amount of calculation, you can convert the
HMODULE into a pointer to the PE header. With a pointer to the header
address, a program can do some additional lookups to find the address of
the code, data, and resources for that module in memory.

Winl6 is somewhat sloppy about the difference between an HMODULE
and an HINSTANCE, although they redly are different. A Winl6 HIN-
STANCE is the sdlector value of a task's or DLL's DGROUP segment.
However, in Winl6, an HINSTANCE is aso frequently used to differentiate
between two different tasks. In 32-bit Windows 95 processes, an HMODULE
and an HINSTANCE are the same thing -- the base address of the module
in memory.

AswithWin32 processes and Winl 6 tasks, Windows 95 stores information
about a module on both sides of the 16- and 32-bit fence. Each 32-bit process
module has a corresponding 16-bit NE module database. However, the 16-bit
representation of these modulesisminimal. Not al fieldsin these specid 16-bit
HMODULE segment arefilledin. | call these minimal HMODUL Es "pseudo-
HMODULEs." Pseudo-HMODUL Esdon't appear in the normal linked list of
16-bit modules. If you walk thelist of modules with TOOLHEL P, the pseudo-
HMODULEs don't show up. The SHOW16.EXE program from Chapter 7
shows how to find the 16-bit module databases for Win32 EXEsand DLLs

The Windows 95 address space

A major architectural difference between Windows 95 and NT isthat in
Windows 95, 16- and 32-bit applications play in the same virtual machine
and address space. To increase system stability, NT runs 16-bit Windows
applications in a separate virtua machine caled Windows on Windows
(known informaly asWOW). (NT 3.5 and later can also run each 16-bit
Windows program in its own distinct virtual machine if desired.) The down-
sideto NT's implementation isthat it separates 32-bit processes from 16-bit
processes, address-space-wise. This makes it harder to thunk between 32-
and 16-bit code. In an ideal world you wouldn't need to use thunks.
Unfortunately, the redlity isthat alot of useful 16-bit Windows DLLswon't
be immediately available in a 32-bit version.

From the perspective of a 16-bit application, the address space is
unchanged from Windows 3.1. All 16-bit applications continue to use ring
3 16-bit selectors from a common local descriptor table (LDT). These pro-
grams can continue to access and share memory with other 16-bit applications
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through selector values. This works because all addresses used by 16-bit
programs are within regions of the address space shared by all programs.
One 16-bit task can always see the memory of another 16-hit task, assuming it
has a valid selector that points to the other task's memory. A page of memory
might be marked not present by the virtual memory manager, but touching that
memory will bring it back in transparently to the task that touches it. Although
Microsoft recommends allocating memory with GMEM_SHARE when you
intend to share it between tasks, Windows 3.x programs habitually ignored this
advice; 16-bit programs under Windows 95 can continue to do so.

The address space story for 32-bit processes is vastly different. Asin
Windows NT, the private memory of each 32-bit Windows 95 process isin
the CPU's page mapping tables only when that process is the current process.
When the scheduler switches to another 32-bit process, the private memory
of the first process is no longer accessible to any other process. Doing this
makes it almost impossible for one task to scribble on another task's memory,
either accidentally or intentionally.

Because Win16 tasks allocate their code and data in the shared memory
region, at any given time the current 32-bit Windows 95 process can see all
the memory in use by 16-bit programs. However, a 32-bit process can't see
the memory of other 32-bit processes. There's only one process memory con-
text mapped in at one time. Looking through the opposite end of the telescope,
16-bit code can see all of the shared system memory, as well as the memory of
the current Win32 process. (It would be rather difficult to thunk between 16-
and 32-bit code if this weren't the case.)

Protecting processes from one other is generally a good idea, but some-
times you really do need shared memory. The primary way to share memory
between processes iswith memory mapped files. The name memory mapped
files is somewhat of a misnomer since you can use them without involving
any disk files. An interesting architectural difference between NT and
Windows 95 involves the visibility of file mappings. In NT, a memory
mapped file is accessible only to processes that have called
CreateFileMapping and MapViewOfFile for that particular file. In addition,
the fileés memory region can be based at different virtual addresses in differ-
ent processes. In Windows 95, once a program creates a memory mapped
file, that memory region is accessible to all programs. Thus, a Windows 95
memory mapped file is always at the same virtual address in all processes.
This no doubt simplifies the virtual memory management code in Windows
95. I'll talk more about memory mapped files later, in the section titled
(would you believe?) "Memory mapped files."
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Native Windows 95 applications dispense with the use of selectors in
application code. Windows 95 initializes all 32-bit programs with the same
code and data selectors at startup. The application itself never needs to
change the segment registers. (The Windows 95 system DL Ls change the
segment registers temporarily during thunks down to 16-bit code.) For
instance, when | run Win32 applications, each program usesaring 3LDT
code selector with a value of 0x013F. This selector has a base address of 0
and a limit of OXFFFFFFFF (4GB). The data selector that all Windows 95
applications have in the DS, ES, and SSregisters is somewhat unusual. It's
an expand-down selector with a limit of lessthan 1 MB.

Until Windows 95, expand-down selectors were rarely encountered, so
a bit of explanation isin order. The limit of an expand-down selector (or
descriptor) isthe lowest offset that a program can use with that selector.
The highest usable offset is the end of memory addressable with that selec-
tor. In Windows 95, the data segment selector is a 32-bit LDT selector with
a base address of 0. This means that the valid address range when using that
selector is between a value lessthan 1 MB and 4GB. Windows 95 makes the
lowest addresses in 4K of a virtual machine inaccessible because it causes
programs with NULL pointer errors to GP fault rather than silently over-
write memory.

The use of the same selectors for all 32-bit processes often confuses
programmers coming from a 16-bit background. How can you use the same
code selector with two different programs? As| mentioned previously,
Windows 95 uses the CPU's page mapping features to map physical RAM
to linear addresses. Each process has its own set of page mapping tables.
Whenever Windows 95 switches tasks, it changes the CPU's page mapping
tables to reflect the new process's memory layout. Thus, even though two
programs have the same selector, they will have entirely different code at
the same linear address. That's why an address by itself is useless without
knowing which process it refers to.

Windows memory management

In most regards, Windows 95's 32-bit memory management architecture is
very similar to NT's on the surface. Under the hood, KERNEL32 relies
heavily on services provided by VMM32.VXD to implement the Win32
memory management APIs. On the 16-bit side of the fence, KRNL386 now
also calls directly into the VWIN32 VxD in VMM 32 for low-level services



53

such as allocating large memory regions and pagelocking. In Windows 3.1,
KRNL386 used DPMI functions from WIN386 for many (but not all) of the
same services.

At the level where most programmers work every day, the big news
in Win32 and Windows 95 is no more segments! By moving to 32-bit
programming, you can finally forget all about near and far pointers. Y ou can
also forget about GlobalLock, Localock, and anything related to memory
models. Everything in a Windows 95 32-bit program issmall model. That
is the 32-bit small model. Of course, if you want to perform tricks with the
memory manager, the Win32 APl and Windows 95 have a whole new set of
functions to delight the low-level hacker.

In Windows 95, the lowest level of memory manipulation is provided
by the Virtual XXX functions, which are described in detail in Chapter 5.
VirtualAlloc lets you allocate large chunks of address space with 4K granu-
larity (the size of an 80386 page). Although there are important differences,
the closest equivalent to VirtualAlloc in Windows 3.1 programming is
GlobaAlloc. Both functions are intended for allocating large blocks of
memory. Also, the granularity of both functions makes their system over-
head relatively high. You probably wouldn't want to use either function in
place of malloc or new.

At the same time you allocate address space with VirtualAlloc, you
can optionally bind that address space to physicad RAM by using the
MEM COMMIT flag. Why wouldn't you want an address space allocation
to be backed up by memory immediately? Sparse memory isthe main reason
you wouldn't want to do this. For example, your program might need a
great deal of memory for storage (on the order of megabytes). You don't
know how much memory you need beforehand. In this situation, you could
VirtualAlloc a chunk of address space large enough to be confident you
won't need more memory. As your program uses up more and more of the
address range, you can commit memory as needed by making additional
calsto VirtualAlloc. Seethe "Structured exception handling" section later
in this chapter for more details on automating this procedure. Incidentally,
this commit-only-when-needed algorithm is precisely how Windows 95
implementslarge program stacks while not wasting memory on pages that
are never touched.

Higher-level Windows 95 memory management comes in the form of
heap functions (which are described in Chapter 5). When Windows 95 creates
anew 32-bit process, it creates a heap default for it within its address space.
The 32-bit heap is roughly equivalent to a 16-bit Windows local heap, since
every process has one. However, the 32-bit heap certainly isn't limited to
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64K! Windows 95 supports multiple heaps, so you need to pass a handle to
the heap function when you want to allocate, free, or otherwise manipulate
a heap memory block. A program retrieves the handle to its default process
heap with the GetProcessHeap API. This heap handle is nothing more than
the starting address of the heap.

Unlike the Virtual XXX functions, allocations from the Win32 heap
functions have a much smaller granularity (4 bytes in the retail build rather
than 4KB). The overhead for each allocation appears to be only 4 bytes as
well. This makes the HeapAlloc function a suitable replacement for malloc (or
a quick way to implement your own malloc). The 4-byte overhead comes
from aDWORD immediately preceding the address returned by HeapAlloc().
Ignoring the bottom 2 bits, this DWORD holds the size of the block imme-
diately following it.

While Win32 presses forward, there are till issues of backward com-
patibility. Thousands of 16-bit programs use GlobalAlloc and LocalAlloc.
Can they be ported easily? Yes! Microsoft kept most of the important global
and local heap functions in the Win32 API so that calls to those functions
wouldn't need to be changed in the transition to 32 bits. However, the
meaning of the APIs and their underlying implementation has changed. First
and foremost, the global and local heap functions are essentially identical.
You can use GlobalAlloc to allocate a block of memory and use LocalFree
to release it. Second, the global and local heap functions are implemented
using the 32-bit process heaps | mentioned earlier. Because of this, calling

HeapAl l oc( GetProcessHeap(), /I Heap Handle
0, Il Flags
0x100 ); Il bytes requested

should return the same pointer as if you had called

Loc>al Alloc( LMEMFIXED, 0x100 );

HeapAlloc always returns a usable pointer when successful, so all blocks
allocated with HeapAlloc are equivalent to LMEM_FIXED. Fixed heap blocks
can sometimes lead to fragmentation. Asin Win16, you need to call LocalLock
with a moveable block handle to get a usable pointer. It's a little-known fact
that in Winl16, moveable block handles always have bit 1 set, so their handle
values always end in 2, 6, OXA, or OXE. Also, if you treat a moveable handle as
a pointer to a pointer, you can dereference it to get the current address of the
block associated with the handle. Microsoft's commitment to backward com-
patibility can be seen here because these same rules apply to the 32-bit heaps.
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The mappings between the local heap functions and the new Win32
HeapX X X functions are very simple. HeapAlloc and HeapFree replace
LocalAlloc and LocalFree. Likewise, HeapReAlloc and HeapSize take over
from LocalReAlloc and LocalSize. HeapCreate corresponds roughly to using
GlobalAlloc to grab a global heap block, followed by a call to Locallnit to
set up a heap inside that block. There is no direct Winl16 equivalent to
HeapDestroy. In Winl6, if you're done with a heap you created, you'd likely
just get rid of the heap segment with GlobalFree. Chapter 5 describes memory
management in much more detail.

Memory mapped files

One of the coolest features in Win32 and Windows 95 is memory mapped
files. There isno Winl6 equivalent to memory mapped files, and 16-bit
tasks under Windows 95 can't use them. Memory mapped files have three
main usesin Windows 95. The first and most obvious useisto enable you
to use pointers to easily read and write data from a disk file. The file map-
ping assigns a section (or al) of afile on disk to a range of memory in the
virtual address space. When you read or write to a memory address within
that address space region, the operating system reads or writes the equivalent
byte within the disk file.

The second use of memory mapped filesis as away to share memory
between different Win32 processes. A process can set up a file mapping for
aNULL fileto reserve a block of address space without assigning it to a
particular disk file. Other processes can then open up their own view of this
file mapping. The physical memory that's connected to the mapping's range
of addresses can be made visible to other processes. A process that wants to
share memory with the first process merely needs to request a view into the
same file mapping. No disk files need be involved for this memory sharing
toccur.

The third use of memory mapped filesis for module loading. When the
Windows 95 32-bit loader needs to load an executable or DLL, it uses mem-
ory mapped files to map regions of the executable into the processs address
space. Since memory mapped files can be made visible in other processes, it's
relatively easy and efficient for Windows 95 to share an EXE or DLL's code,
data, and resources between two or more processes. Working from values
stored in the PE file, the Windows loader maps various sections of the
executable to specific starting addresses in memory. Chapter 8 describes this
in more detail.
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Structured exception handling

One of the most useful but misunderstood components of the Win32 and
Windows 95 architecture is structured exception handling. Before
Windows 3.1, there was no formal mechanism in the Windows API for a
program to handle interrupts. Windows 3.1 introduced TOOLHELP.DLL,
which was a great step forward, but calling it structured is a bit of a stretch.
TOOLHELP. DLL intercepts a small but useful set of interrupts such as the
breakpoint interrupt (INT 3) and the GP fault (exception 13 (0dh)). When
an exception occurs, TOOLHELP's internal handler gets control. The handler
sets up aconsistent stack frame and then calls handler functions installed by
tasks that want an interrupt callback.

While TOOLHELP.DLL allows a lot of flexibility, it also leaves a lot
of room for problems. Each task with an interrupt callback can see al the
interrupts and exceptions that come through TOOLHELP. The callback
function can indicate to TOOLHELP whether TOOLHELP should call the
other interrupt callback functions that come later in the list. Thus, one task
can prevent another task from seeing interrupts that it might be depending
on. In addition, if the interrupt callback handler is buggy, it can cause
nested GP faults and other system-crashing behavior. For 32-bit processes,
Windows 95 replaces this "every task for itself" way of doing things with a
much more well-defined way for a process to handle exceptions.

Other than debuggers, why would a process want to handle exceptions?
One example is a process that needs to do an operation that might cause a
GP fault or a division by zero. If the process knows how to recover from
that situation, it shouldn't be terminated by the operating system. Another
example is a process using sparse memory. A program might need to use a
large amount of memory, but not know exactly how much memory before-
hand. Using the VirtualAlloc function, the program can reserve a large
enough range of virtual address space. When the process accesses a page of
memory in that range that isn't backed up by physical RAM, the CPU gen-
erates a page fault. Using structured exception handling, a Win32 process
can handle the page fault by assigning RAM to that page of memory, and
then telling the operating system to restart the faulting instruction.

Technically, structured exception handling is built in to the operating
system and is independent of any particular language. However, structured
exception at the operating-system leve is very messy and complex. In fact,
at the time of this writing, 1'm not aware of any formal documentation on
this topic that's generally available. For these reasons, most programmers let
their compiler and its runtime libraries put a pretty face over structured
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exception handling. For more information about the details of the
Windows 95 implementation of structured exception handling here, see
Chapter 3.

When a process doesn't handle an exception in any of its handlers, the
exception gets passed to a default operating-system handler. This handler's
action isto terminate the program and clean up unfreed resources and open
handles. In a move to improve robustness, Windows 95 implements this
sequence using a separate thread. The idea is that when athread has unex-
pectedly blown up (with an access violation, for instance), the thread's con-
text might be in an unstable state. By doing the cleanup in a separate thread
with a known good context, the Windows 95 developers hope to cut down
on the number of hard system crashes.

The registry

Before Windows NT, both the system and programs stored their persistent
information in a morass of .INI files. (Remember those huge WIN.INI files?
Remember having no idea how most of those entries got there?) Windows
95 uses a registry to take a big step toward moving this mass of information
into a central location.

In Windows 95, information that you would have put into an .INI file
in Windows 3.1 should instead be stored in the registry. The registry isa
hierarchical database of information. (The Windows 95 REGEDIT program,
in Figure 2-2, shows the registry hierarchy.) The top level has a small set of
predefined "key" nodes; each key node has named subkeys below it. At any
point in the hierarchy, a subkey can have one or more values (text or binary
data) or additional subkeys. There's an extensive set of APIs (for example,
RegCreateKeyEx, RegQueryValue, and so on) for adding, deleting, modifying,
and searching the registry.

The six predefined, top-level keysin Windows 95 are as follows:

* HKEY_CLASSES ROOT

* HKEY_CURRENT_USER
* HKEY_LOCAL_MACHINE
* HKEY_USERS

* HKEY_CURRENT_CONFIG
* HKEY_DYN_DATA
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[Default) [value not set)
HKEY_CURRENT_USER abl Description "The percent of processor time that is not spent idle.
HKEY_LOCAL_MACHINE ab] Differentiate "FALSE"

"Processor Usage %"

-3 SOFTWARE
Sypstem
(3 CurentControlSet
{3 control
#-{23 ComputerName
@ (2] FileSystem
{1 IDConfigDB
{23 tnstalledFiles
i {2 keyboard layouts
-] MediaProperties
{23 MediaResources
] 2] NetworkProvider
& Nis
£1-{2] PerfStats
¢ B Enum
£-{23 KERNEL
3 PR
{£]) Threads
) WMs

Figure 2-2
The Windows 95 REGEDIT program shows the registry hierarchy.

Of particular interest isthe HKEY_DYN_DATA key (see Figure 2-2).
Chasing this key down severa nodes leads to quite a bit of useful information.
For example, the subkey HKEY_DYN_DATA\PerfStats\StartStat\ leads you to
a value with the name KERNEL\CPUUsage. Another value under that same
key is VFAT\ReadsSec.

Note that the registry is actually implemented in VMM.VXD. By putting
the registry code in the first VxD that's loaded (VMM.VXD), the information
in the registry can be accessed and used by VxDs themselves. Y ou can see this
for yourself by looking in the VMM .H file from the Windows 95 DDK. In
the file, you'll find that the following VXD services are available for use by
other VxDs:

Il Registry APIs for VxDs
| * NACRCS* /

VW Service (_RegOpenkey)
VW Service (_Regd oseKey)
VW Service (_RegCreat ekey)
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VW Service (_RegDel et eKey)
VW Service (_RegEnunKey)

VW Service (_RegQueryVal ue)
VW Service (_RegSetVal ue)

VW Service (_RegDel et eVal ue)
VW Service (_RegEnunval ue)
VMM Servi ce RegQuer yVal ueEx)

(-
VW Service (_RegSet Val ueEx)

At the Win32 API level, the registry functions are implemented in
ADVAPI32DLL. In Windows 95, that file is relatively small. Digging
under the covers to find out why, you'll see that all the registry functions
are just wrappers around calsto the VMM registry functions. Of course,
since ADVAPI32.DLL isinring 3 code, it can't call the VMM functions
directly. Instead, it uses the same Win32 VxD services (described earlier)
that KERNEL 32 uses for other purposes. (These VXD services are described
in Chapter 6.)

Additions to USER

What's new in the windowing system in Windows 95? For starters, there are
now numerous new extended window styles that give Windows 95 programs
that sculpted, three-dimensional look. Some of the new styles include

Syle Purpose

WS EX MDICHILD Creates an MDI child window.
WS_EX_TOOLWINDOW For toolbar windows.

WS_EX _CLIENTEDGE Window has a sunken edge.
WS_EX_RIGHT Window text is aligned on the right.
WS_EX _|_ EFTSCROLLBAR The scrollbar is on the |€ft.

Another exciting new addition for many developers is a new set of con-
trois. The new control types are as follows:

Control type Purpose
Animate Displays .AVI files
DragListBoxes Drags listbox items between lists

Header Header bar
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Control type

Purpose

HotKey HotKey control

ImageL ist List of images

ListView List view

Progress Progress gauge

Property Sheets Edit item properties

RichEdit Rich format text

StatusWindow Status window

TabControl Tabbed dialog

ToolBar Customizable bitmap-button toolbar
Tooltips Balloon-style help

TrackBar Customizable column-width tracking
TreeView Tree view

UpDown Up and Down arrow increment/decrement

Unlike the standard controls (that is, those that existed in Windows 3.1),
these new controls aren't implemented in USER.EXE. Instead, they're
implemented in COMCTL32.DLL and COMMCTRL.DLL. As a result,
these new controls are available only to 32-bit processes, leaving 16-bit
programs excluded from the party.

System information and debugging

The Win32 debugging AP that Windows 95 implements is much more formal
than what's available for Winl6. A 16-bit debugger under Windows 3.1 or
Windows 95 will typically use TOOLHELP to install interrupt and notification
callbacks. By watching the interrupt and notification streams, the debugger can
sense what the debuggee is doing. However, the debugger's callbacks need to
filter out events that were for other processes or that aren't of interest to a
debugger. In addition, when the debuggee hits a breakpoint or causes an
exception, the debugger's exception handler needs to spin in some sort of loop
until the debugger wants the child to resume execution again. In short, 16-bit
debuggers are messy.

The Windows 95 debug AP is centered around the WaitForDebugEvent
function. After creating or attaching to a process, the debugger calls
WaitForDebugEvent, passing in a pointer to a DEBUG_EVENT structure.
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This function blocks until something occurs in the debuggee that the debug-
ger cares about. The debug events that WaitForDebugEvent can return are

shown in Table 2-4.

Table 2-4

Debug events that WaitForDebugEvent can return
Debug event Description
EXCEPTION_DEBUG_EVENT Tells the debugger of breakpoints, access

violations, and other exceptions.

CREATE_THREAD_DEBUG_EVENT Enable the debugger to keep track of the
and EXIT THREAD DEBUG EVENT debuggee's threads.
LOAD_DLL_DEBUG_EVENT and Keep the debugger informed of which DLLs
UNLOAD DLL DEBUG_EVENT the child is using. A debugger can use these

notifications to load and unload symbol tables
for the DLLs on the fly.

OUTPUT _DEBUGSTRING_EVENT Enables you to see your OutputDebugString
messages. (In fact, it's the only way to see

these messages.)

For more details, refer to the discussion of

OUTPUT_DEBUG_STRING_EVENT and the
WaitForDebugEvent function in this section.

CREATE_PROCESS_DEBUG_EVENT Tells the debugger that the program being

and EXIT_PROCESS_DEBUG_EVENT debugged has spawned another process,
or has terminated.

RIPEVENT This message doesn't appear to ever be
generated.

Associated with each debug event is a structure containing detailed
information about the event. A debugger can use these notifications to
do things such as load and unload symbol tables for the DLLs on the fly.
The OUTPUT_DEBUG_STRING_EVENT should be of interest to more
than just debugger developers. Under Win32, this is the only way to see
your OutputDebugString messages. Put another way, you must be running
your program under a debugger (or something similar) that uses the
WaitForDebugEvent function. In Winl6, any program could see all the
OutputDebugString messages in the system by simply tapping in to the
TOOLHELP NotifyRegister stream. That's al that the Win1l6 DBWIN
program does.
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Whenever WaitForDebugEvent returns to the debugger with an event, all
activity in the child process is frozen. The debugger doesn't need to worry
about suspending all the child's threads. Instead, it does whatever processing
it needs to with the event and eventually calls the ContinueDebugEvent func-
tion, which lets the debuggee process resume execution. The heart of a Win32
debugger isaloop that calls WaitForDebugEvent and ContinueDebugEvent in
aloop until the debugger receives an EXIT_PROCESS DEBUG_EVENT.

In addition to knowing about events in the debuggee, the debugger
also needs a way to poke and prod at the debuggee's registers and memory.
The ReadProcessMemory and WriteProcessMemory functions (see
Chapter 5) fill the bill for accessing the debuggee's memory. Likewise,
GetThreadContext and SetThreadContext (see Chapter 3) let the debugger
read or write the register set of a particular thread in the debuggee.

Besides providing information about interrupt and system events, the
Windows 3.1 TOOLHELP.DLL aso provided a convenient way to iterate
through various system data structures, such as modules, tasks, and heaps.
In Windows 95, these data structures have changed significantly for 32-bit
programs. To its credit, Microsoft implemented a 32-bit version of
TOOLHELP. These TOOLHELP32 functions are defined in TLHELP32.H,
and are listed here:

CreateToolhel p32Snapshot
Heap32ListFirst
Heap32ListNext
Heap32First

Heap32Next
Toolhelp32ReadProcessM emory
Process32First
Process32Next
Thread32First
Thread32Next
Module32First

M odule32Next

These API functions are similar, but certainly not identical, to the
Winl16 TOOLHELP.DLL functions. Therefore, if your 16-bit code uses
these TOOLHELP functions, you'll have a bit of porting to do. Also,
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unlike the Winl6 TOOLHELP.DLL, which is separate from KRNL 386,
the TOOLHEL P32 functions are implemented in KERNEL32.DLL,
which is where they belong.

One problem with implementing these system information functions in
Windows 95 isthat Windows 95's pre-emptive multitasking will screw things
up unless specia care istaken. For example, in the middle of walking through
the thread list, the enumerating thread might get switched away from. Before
that thread gets back control, the thread list may have changed. To prevent
this and similar problems, the TOOLHEL P32 functions have the concept of
asnapshot. When you want to walk through a list (such as the process list),
you first create a snapshot by calling CreateToolhelp32Snapshot, which fills
in a buffer with a completely consistent set of information about the system
state. You then pass the snapshot handle to the TOOLHEL P32 enumeration
functions, which extract the relevant information from the buffer filled by
CreateToolhelp32SnapShot.

Noticeably missing from the TOOLHEL P32 functions (when compared
to the Winl6 TOOLHELP.DLL) are functions for walking the window
classes, obtaining information on system heap usage, and performing a
stack trace for another process. However, there are other ways of doing
these things in Windows 95. My article on the new TOOLHELP32 func-
tions in the September 1995 Microsoft Systems Journal describes the
TOOLHELP32 functions in more detail and suggests other ways of
accomplishing things that the TOOLHEL P32 functions don't provide.

"DIRTY LUTTLE SECRETS" ABOUT WINDOWS 95

Before finishing this chapter, | thought I'd throw in alist of bad design
decisions and embarrassing information that Microsoft probably won't
be publicizing anytime soon.

Many issues that | could talk about in this section have already been
discussed elsewhere in this chapter or in other books or articles. Into this
category, | put things like the following:

+ Remnants of real mode DOS code are still being used.

= The shared memory address spaces (below 4MB, above 2GB) are almost
completely unprotected. Both Winl16 and Win32 applications can scribble
al over sensitive system data areas.
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*

The Winl6Mutex in conjunction with badly behaved 16-bit tasks can
affect the overall system multitasking.

Despite claims to the contrary, KERNEL 32 does call KRNL386.
(However, the magnitude of the number of calls down to KRNL386 is
worth noting and is discussed in Chapter 6.)

Instead of talking about these topics again, I'd like to focus on some
other interesting issues in Windows 95 - -issues that until now have gone
largely unnoticed. The following list gives you a brief preview of each topic
discussed in this section:

*

New anti-hacking code tries to prevent you from accessing undocumented
KERNEL32 functions.

The lack of cooperation and communication between the Windows NT
and Windows 95 teams results in fewer Win32 functions in both NT
and Windows 95.

The free system resources calculation changed to make it look like
Windows 95 has dramatically more USER and GDI heap space, even
though it doesn't.

Additions to 16-bit code were quietly made even though Microsoft
publicly states that 32-bit code is the way to go.

Anti-hacking code

Unauthorized Windows 95 made extensive use of undocumented functions
in KERNEL32.DLL. Although there obviously weren't header files for these
functions, the functions appeared in the import library for KERNEL32.DLL.
Calling these functions was as simple as providing a prototype and linking
with KERNEL32.LIB.

In subsequent builds of Windows 95--after Unauthorized Windows 95
came out--these functions disappeared from the import library for
KERNEL32.DLL. (Surprise! Surprise!) At the same time, these function
names disappeared from the exported names of KERNEL32.DLL. These
undocumented functions were still exported, however. The difference is
that they were exported by ordinal only.

Now, normally this would have been only a small nuisance to work
around. You should be able to simply call GetProcAddress and pass in the
desired function ordinal as the function name (0 in the HIWORD, the
ordinal inthe LOWORD) and get back the address. In a hormal, sane world,
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this would work. However, at some point during the beta, Microsoft added
code to GetProcAddress to see if it's being called with the ordinal form of the
function. If so, and if the HMODULE passed to GetProcAddress is that of
KERNEL32.DLL, GetProcAddress falsthe call. In the debugging version of
KERNEL32.DLL, the code emits atrace diagnostic: "GetProcAddress:
kernel32 by id not supported.”

Now, let's think about this. Since the undocumented functions aren't
exported by name, you can't pass the name of a KERNEL 32 function to
GetProcAddress to get its entry point. And GetProcAddress specifically
refuses to let you pass it an ordinal value. The Microsoft coder responsible
for this abomination really didn't want people calling these undocumented
KERNEL32 functions. Apparently, the only way you can call these functions
is if you have the magic KERNEL32 import library, which Microsoft isn't
supplying with the Win32 SDK. (Instead a stripped version of the library is
being included.)

Never fear. Asyou'll see later in the book, | make extensive use of the
KERNEL 32 undocumented functions (for good, not evil). With a little bit
of work, | was able to coerce the Visual C++ tools to create a KERNEL 32
import library that contains these "documentation-challenged" functions.
Appendix A contains information about these functions and an import
library for them.

Another instance of anti-hacking code put into Windows 95 isthe
Obsfucator flag. In early versions of Windows 95, GetCurrentProcessld and
GetCurrentThreadld returned pointers to the relevant process and thread
database structures, which are described in Chapter 3. Shortly after
Unauthorized Windows 95 came out, these functions started returning val-
ues that most definitely weren't pointers. A bit of investigative work
revealed that the return value was the original pointer value, but XOR'ed
with a seemingly random value. Where does this random value come from?
Each time the system boots up, it uses the system clock to compute a ran-
dom value. Interestingly, in the debug build of KERNEL32.DLL, this ran-
dom value is named "Obsfucator." Seeing as how the KERNEL 32 coders
misspelled "obfuscator" as "obsfucator,” it's doubtful whether the KER-
NEL 32 sources were subjected to a spell check.

Aswith the GetProcAddress code, there's no reason for this XOR trick
in GetCurrentThreadld and GetCurrentProcessld, other than to attempt to
prevent people from getting at system data structures. While Microsoft is
certainly allowed to try and hide these things, they shouldn't complain when
users who really need this information go in and dig it out anyway. Chapter
3 describes a technique for calculating the Obsfucator value at runtime so
you can access the thread and process database structures.
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The Win32 API farce

While Microsoft would like you to believe that there's one big happy Win32
AP, internally the NT and Windows 95 teams don't communicate too well.
One result of thislack of coordination is that the number of Win32 functions
available both in NT and Windows 95 suffered needlessly. The following
three "exhibits" serveto prove my point.

Exhibit | consists of the new Toolhelp32 functions. I've heard from
many sources that the NT management team has vowed never to implement
them. Yet if you look closely at the TOOLHELP32 functions, you'd find
there's just a handful of functions. Of primary interest are the process and
thread enumeration functions. This information can be extracted from the
Windows NT registry, as the PVIEW program from the Win32 SDK plainly
shows. The question in my mind is Why didn't the Windows 95 team simply
implement the same registry keys that NT provides so that PVIEW could
work on both? Or, why couldn't the NT team write a layer on top of the
registry functions and put the Toolhelp32 functions on Windows NT? If
either sidereally wanted to, it could come up with a portable Win32 APl way
to do system information enumeration. As I'm finishing this book, I've
heard rumblings from a member of the NT team that the TOOLHEL P32
functions might appear in a future version of Windows NT.

Exhibit 2 consists of the heap functions. There are several Win32 heap
functions that Windows 95 |eft unimplemented, although implementing them
probably wouldn't have been more than an hour's worth of work. The prime
example isthe HegpWalk function from Windows NT. This function isn't
implemented in Windows 95. Y, if you look in TLHELP32.H, you'll find
two functions that do exactly the samething: Heap32First and Heap32Next.
Rather than simply implementing an existing Win32 API, the Windows 95
coders went off and implemented two entirely new functions. The NT team
will no doubt say that they're not going to support those functions. Lunacy!

Exhibit 3 consists of the HeapL ock function. In Windows NT, this
function smply acquires the mutex of a specified Win32 heap. Asyou'll
see in Chapter 5, Windows 95 has a function that does exactly that.
However, the KERNEL 32 development team didn't export that function.
Thus, the most likely reason the HeaplL ock function isn't implemented in
Windows 95 is because somebody didn't feel like renaming the existing
function to HeaplL ock and exporting it from KERNEL32.DLL.

The point is, while Microsoft is trying to convince everybody to write
to the standard Win32 API, two teams at Microsoft are implementing only
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what they fed like. This will only hurt Microsoft in the long run. I've filed
my share of WINBUG reports and sent numerous e-mails. It's now up to the
market to see what happens to the supposedly unified Win32 API.

Free system resource fudging

If, after booting Windows 95, you immediately bring up the Windows 95
Explorer and then go to the HelplAbout Windows 95 dialog box, you'll see
a free system resources value that's quite high; a typical value is 95 percent.
This is a much higher value than you'd see under Windows 3.1. Did
Windows 95 suddenly gain a whole bunch of free memory in the 16-bit
USER and GDI heaps from which the free system resources are calculated?
No! In fact, many new items were added to USER's DGROUP segment. If
anything, the free system resources should have gone down or stayed about
the same in Windows 95.

So what's the story? As | describe in Chapter 4, during the Windows 95
startup sequence, the Explorer causes the desktop window to calculate correct,
Windows 3.1-like values for the free system resources. All future cals to
GetFreeSystemResources are then biased by these initial values. Thus, when
the Explorer saysthat there's 95 percent of the system resources available, it
means 95 percent of the resources after the Explorer and other programs
have started. This change in the way free system resources are calculated is
a blatant attempt to make Windows 95 look better than Windows 3.1 in
the eyes of the nontechnical user.

Win 16 isn't dead

Although Microsoft is strongly pushing everybody to move to Win32, much
of the underlying support for the Win32 APIsisin 16-bit code. That's no
secret and not worth bringing up again. However, Microsoft isn't making
much noise about &l the new API functions that were added to the 16-bit
DLLs. In many cases, these functions are 16-bit equivalents to documented
Win32 APIs. I'm talking about useful functions like CreateDirectory and
GetPrivateProfileSection. In some cases, these functions were silently added
to the 16-bit WINDOWS.H without fanfare. In other cases, the functions
are exported from the 16-bit DLL, but no prototype isgiven in the appro-
priate .H file. In these cases, the Win32 documentation and some common
sense can usually get you through.
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If Microsoft isn't publicizing these 16-bit additions, just who's supposed to
be using them? If everyone should be writing Win32 code, why is Microsoft
adding new Winl16 APIs? It certainly looks like Microsoft knows that Winl6
will continue to have afairly long life even after Windows 95 ships. Yetit's
telling developers that Winl6 is a dead end and that Win32 isthe only way to
go. Personadly, | agree that users should focus on Win32 programming if possi-
ble. But trying to force them toward Win32 programming in this manner
seems like a bad way to go.

UMVARY

Windows 95 is most definitely its own operating system. While alarge part of
Windows 95's code is derived from the Windows 3.1 code base, Windows 95's
16-bit code has been reworked to remove many 16-bit restrictions as well asto
handle the demands of Win32 multithreading. Windows 95 is not Win32s,
either. Windows 95 has threads and multiple address spaces and is much more
architecturally sound than Win32s. Nor is Windows 95 an NT Lite. Windows
95's code is optimized for performance and minima memory consumption on
the Intel X86 CPUs. NT's focus is on portability and robustness. Although the
Windows 95 and NT architectures differ by quite a bit in some key areas,
they're both equally important in Microsoft's operating system strategy - -and
they'll continue to be important for severa yearsto come.



MODULES
PROCESSES AND

THREADS

st people have a favorite color. Call me sick, but | have a

avorite data structure. Actually, to be more precise, | have
a favorite collection of three tightly connected data structures that
make up the very core of ring 3 Windows 95. The structures I'm
referring to are the module, the process, and the thread. When
these structures are taken as a whole, it's hard to find any signifi-
cant Windows API function that doesn't come into contact with
them. Don't believe me? Take the ShowScrollBar function. The
first parameter isthe HWND of the window with the scrollbar.
Every HWND is associated with a specific message queue. And,
as you'll seelater, in Windows 95, every message queue is associ-
ated with a thread. Thus, at some point during the ShowScrollBar
code, the information in athread data structure will be needed.

In this chapter, we'll be going over the core data structures
of modules, threads, and processes. Aswe look at these struc-
tures, we'll often encounter auxiliary data structures that bear
further investigation. For example, each process contains a
pointer to a handle table (much like the handle table in a DOS
Program Segment Prefix [PSP]). While looking at handle tables,
we'll come across the all-important KERNEL 32 object. Likewise,
when looking at threads, it's hard to ignore the presence of the
Thread Information Block (TIB). The TIB turns out to play a vital
part in structured exception handling.
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This chapter is just brimming with information: Besides describing the
three key data structures, | also throw in pseudocode for various Win32
functions that directly relate to the data structures. This will give you an
opportunity to see these data structures in action, as well as to see how
KERNEL 32 deals with issues like thread synchronization. Asa final bonus,
| provide a discussion of the WIN32WLK program at the end of this chapter.
WIN32WLK, which is a program | wrote to help me study the key data
structures in a live situation, allows you to easily browse through al the
processes, threads, and modules in the system and examine the individual
data fields. Plus, wherever reasonable, WIN32WLK also lets you follow
references. For instance, athread database contains a pointer to its owning
process. Double-clicking on that field updates the display to show the
fields of the owning process database.

If you're aWindows 3.x programmer, you're probably already familiar
with the concepts of modules and tasks. In Win32, the concept of atask
has been broken up into two components, the process and the thread. Other
than that, the concepts of Winl16 and Win32 modules and tasks/processes
seem very similar on the surface. Under the hood, though, they're quite dif-
ferent. A Win32 module database has no resemblance to a Win16 module
database, and a Win16 task structure doesn't look anything like a Win32
thread or process data structure.

An interesting part of the Windows 95 architecture not found in Windows
NT isthe "mirroring" of information on both sides of the Win16/Win32 fence.
In Windows 95, every program that starts up (beit 16- or 32-bit) shows up as
both a Win16 task and a Win32 process. That's right, you can walk the task
list with the Win16 TOOLHELP.DLL and see Win32 programs in the list.
Likewise, you can walk the process list with the Win32 TOOLHLP32 func-
tions and see Win16 programs in the list. Besides the task/process mirroring,
Windows 95 also maintains Win16 module information for every EXE or
DLL loaded, regardless of whether it's 16- or 32-bit. Unfortunately, the Win16
TOOLHELP. DLL is unable to "see" the Winl6 module databases that
Windows 95 creates for Win32 modules. However, the SHOW16.EXE pro-
gram in Chapter 7 is able to find them. While this chapter and WIN32WLK
concentrate on the Win32 side of things, Chapter 7 and SHOW16.EXE give
the perspective from the Win16 side.

Before plunging into the details of modules, processes, and threads, I'm
obligated to point out that this information isn't sanctioned by Microsoft.
Microsoft would prefer that you not embed information about these data
structures in your own code. Their solution for applications that simply
must deal with modules, threads, and processes isthe TOOLHEL P32 API
defined in TLHELP32.H.
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The TOOLHEL P32 functions provide limited accessto certain fields of
information within the module, thread, and process data structures that
Microsoft has deemed it "safe" for you to know. It's important to stress that
the accessis read-only access. Asis often the case, what Microsoft deems to
be "safe" is sufficiently less than what system-level programmers like me
need to know. For example, TOOLHEL P32 provides no way to enumerate
through a processes handle table. If you need that level of detail, you'll have
to go in and get the information directly, as the WIN32LWLK programs
does. Still, if it's at all possible for you to use TOOLHEL P32 instead of
grabbing the data directly, do so. Remember, partying on system data
structures is something that should be left to trained chimpanzees (urn...

| mean professionals!).

WIN32 MODULES

Asin Winl6, a Win32 module represents the code, data, and resources for
an EXE or DLL that's been loaded by the Win32 loader. Thus, every module
in memory directly correlates to afile somewhere on disk. An EXE or DLL
by itself isn't a module. Rather, the loader reads the information from afile
into memory and creates the module from that information. One of the nice
features of Win32 Portable Executable (PE) filesis that loading them into
memory is relatively smple. The loader creates a module by using memory
mapped filesto map selected regions of the PE file into linear memory.
(Important point: Despite popular belief, the loader doesn't smply map the
entire PE fileinto memory in one big chunk.) The operating system keeps all
the top-level information about a loaded module in a structure that | call a
module database. Chapter 8 describesthe PE header and the module data-
basein great detail.

When referring to loaded modules, applications use HMODULEs (handles
to modules). In Winl6, an HMODULE isjust the globa heap handle of the
segment containing a 16-bit module database. (Chapter 7 describes the
Winl1l6 modules in detail.) In Win32, there are no segments (at least not that
the program knows about), so some other way of referring to a loaded mod-
uleis needed. The scheme that Microsoft usesis to make an HMODULE one
and the same as the starting linear address in memory where the Win32 loader
memory mapped the PE file. For example, most EXE programs are loaded at
address 0x400000 (4MB) by the Win32 loader, so their HMODULE is
0x400000. Y es, this does mean that multiple EXEs can have the same
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HMODULE when running at the same time. This situation isn't a problem,
however, because Windows 95 and NT maintain separate address spaces for
each process. A Win32 HMODULE isvalid only in the process context in
which the module isloaded. (Chapter 5 will discuss process contexts in detail.)

A module database falls very near the beginning of where the EXE or DLL
was loaded into memory, and contains information such as where the code and
data sections in the file were loaded into memory. The code and data in a
module are more than just what a compiler generates from your program
code. Other data areas in the module are the imports table, the exports table,
and the resource directory. The imports table (usualy the .idata section) tells
the loader not only which DLLs the module needs to load, but also which
individual functions should be imported. The exports table is the inverse of
the imports table, and tells the operating system the addresses (and possibly
the names) of the functions that the module exports. The resource section
contains a directory-like hierarchy that the system uses to quickly find where a
specific resource can be found in memory. The module database contains the
information for finding these tables, as well as the required version of the
operating system, whether it's a console mode application, and so forth.

Putting on our eye shields and firing up the acetylene torches, let's cut into
the module database and see what Microsoft istrying to hide from us. Surprise,
surprise! The format of a module database turns out to be documented, and
right under our nose.

In Win32, a module database is nothing more than the PE header from an
EXE or DLL. Looking in WINNT.H, you'll find the IMAGE_NT_HEADERS
structure, which is composed of a DWORD and two substructures. The
information in an IMAGE_NT_HEADERS struct is exactly what Windows
95 uses internally to find the code, data, and resources in aloaded EXE or
DLL file.

While | could spill out the details of every fieldin an IMAGE_NT_HEADERS
struct for several pages, |'m not going to. Why not? Because the details of
the IMAGE_NT_HEADERS struct and PE files are sufficiently important to
warrant their own chapter. (If you've already read the table of contents and
decided to skip over Chapter 8, the PE format chapter, you might think again.
| didn't include that chapter simply because | like dissecting file formats.)

The Win32 philosophy dictates that each process has its own list of
modules. If a process hasn't implicitly linked to DLL or loaded the DLL
viathe LoadLibrary, then the process is unable to see the DLL module in
memory, even if another process has loaded it. This is quite a difference
from Winl6, where a loaded module is visible to al tasks, even if they
don't have any references to the DLL. Although the idea of each Win32
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process having its own list of modules is good in terms of security and
robustness, it isn't practical from the standpoint of attempting to save
space with shared code and resources. After al, if you have three instances
of WINHELP running, the WINHELP code shouldn't be loaded three
times, right?

KERNEL 32 isfaced with atough choice. From the application's perspec-
tive, each process is supposed to have its own module list. From KERNEL32's
point of view, it's easier to share code and data by maintaining a single global
list of modules (likeWinl16 does). Whenever a new process starts up, or a new
DLL isrequested to be loaded, KERNEL 32 can quickly check the single global
list and seeif the EXE or DLL has aready been loaded. If so, KERNEL32 can
simply implement the module's reference count. If not, KERNEL 32 needs to
create a new module in memory.

Two data structures provide the solution that KERNEL 32 usesto maintain
a global list of modules while making it appear that each process has its own
module list. The first data structure, the IMTE (Internal Module Table Entry),
is used by the KERNEL 32 code that needs to treat the module list as a global
list. The other data structure, the MODREF, is used by the KERNEL 32 code
that deals with each process having its own module list. MODREFs are
discussed in "The MODREF structure" section a bit later in the chapter.

IMTEs (Internal Module Table Entries [?])

As shown in Figure 3-1, the global KERNEL32 module list is really nothing
more than an array of pointers to IMTESs. In the pseudocode that comes later
in the chapter, I've given the name pModuleTableArray to this array of pointers
to IMTEs. The block of memory holding the pointer array is allocated from
the KERNEL 32 heap, which is a regular HeapAlloc style heap (as| describe
in Chapter 5). As new modules are loaded or unloaded from the memory,
KERNEL32 dynamically grows or shrinks the block of memory holding
pModuleTableArray viathe HeapReAlloc function. When KERNEL 32
creates anew IMTE, it looks for a free element in pModuleTableArray. If
KERNEL 32 finds one, it sticks the pointer to the IMTE into that free element.
The index of that array element becomes important later, when we look at
MODREFs. The first element in pModuleTableArray (array index 0O) isfor
the KERNEL32.DLL module.
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Module Table IMTEs
KERNEL32.DLL

Y

pModuleTableArray »

Y

USER32.DLL

» GDI32.DLL

—> MYEXE.EXE

> FOO.DLL

Y

BAR.DLL

Figure 3-1

The global module list is an array of pointers to IMTEs.

To quickly recap, each nonzero element in the pModuleTableArray rep-
resents a loaded EXE or DLL in the system. Each of these nonzero elements
isa pointer to an IMTE (or a PIMTE, as I'll use throughout the pseudocode).
While the format of an actual module database is documented (it's just an
IMAGE_NT_HEADERS struct), the format of an IMTE isn't (at least not
until now).

The IMTE structure

The MODULE32.H file from the WIN32WLK sources contains a C-style
definition for an IMTE struct. Each IMTE has the following fields:

00h DWORD unl
This field appears to hold some sort of flags.



04h PIMAGE NT_HEADERS  pNTHdr

This pointer points to an IMAGE_NT_HEADERS structure in memory.
However, the structure it points to is simply a copy of the IMAGE_NT_
HEADERS structure that appears just above the module's base address in
memory. The memory for the structure pointed to by this field is allocated
from the KERNEL 32 heap, so it's aways visible in the contexts of al
processes. In contrast, the primary IMAGE_NT_HEADERS that's located
near the module's base address may be below 2GB, so it's accessible only
to processes that have loaded that module. By making a copy of the
IMAGE_NT_HEADERS that's accessiblein al contexts, KERNEL 32 can
easily locate the information for any loaded module without calling up into
ring O to switch memory contexts.

08h DWORD un2
The meaning of this WORD is unknown. It appears to always be set to -1.

0Ch PSTR pszFileName

The pszFileNamefield contains a pointer to the complete filename for the EXE
or DLL the module was created from. For example, the string C:\WINDOWS\
SYSTEM\KERNEL32.DLL is returned by the GetModuleFileName function.
The GetModuleHandle function compares this string to the search string
passed to it as a parameter. The memory holding this filename string is
alocated out of the KERNEL 32 heap.

10h PSTR pszModName

This PSTR points to a string with the module's module name. In Win32, a
module name is just the name of the EXE or DLL with any path information
stripped off. For example, the module name for the C:\WINDOWS\CALC.EXE
program when loaded into memory is CALC.EXE. The GetModuleHandle
function also compares this string to its parameter string. This pszM odName
PSTR actually points inside the pszFileName string (see offset OCh). For
instance, in the previous example, it would point to the CALC.EXE after
the second \.

14h WORD cbFileName

ThisWORD isthe number of charactersin the pszFileName string from offset
OCh. It's used inside GetModuleHandle to quickly see if the pszFileName
string could match the input search string.
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16h WORD cbModName

This WORD is the number of characters in the pszM odName string from
offset 10h. It's also used inside GetModuleHandle to quickly see if the
pszFileName string could match the input search string.

18h DWORD un3
The meaning of this DWORD is unknown.

1Ch DWORD cSections

This field is the number of sections (.text, .idata, and so on) that this module
contains. This value can also be extracted from the IMAGE_NT_HEADERS
structure pointed to by offset 04h (described previoudly in thislist of fieds).

20h  DWORD un5
The meaning of this field is unknown. It's usually O, but in one instance
(COMCTL32.DLL), it contains a pointer to a block in the KERNEL 32 heap.

24h DWCRD baseAddress/Module Handle

The baseAddress DWORD contains the base address where the module
was loaded. In Win32, the base address for a module is the same as its
HMODULE and HINSTANCE, 0 this field can also be interpreted as the
module's HMODULE or HINSTANCE. For EXEs, the base address is
amost always 0x400000. For system DLLs, the base address is above 2GB,
in the shared memory region. See Chapter 8 for a detailed description on
base addresses and locating the module database from them.

28h  WORD hModulel6

This WORD contains a selector whose linear address points to a Win1l6 NE
module database. (The format of an NE module database is described in
Chapter 7.) The NE module database for Win32 applications contains
important information about where the resources can be found in the
Win32 module in memory. This is most likely necessary because the
resource manipulation code isin the Win1l6 KRNL386 and USER.EXE.
It's important to note that the hModulel6 selector was not allocated via
Winl6 GlobalAlloc functions, so this selector won't appear like a Winl16
global memory handle. For this and other reasons, the Win16 TOOLHELP
is unable to see the NE modules created to mirror each Win32 module.
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2Ah  WORD dUsace

Thisfield contains the reference for the module count. For instance, the

module database for CALC.EXE would contain the value 3 if there were
three copies running.

If there were a GetModuleUsage function in Win32, it almost certainly
would report the value of this field. However, here's what the Win32 SDK
documentation has to say about this topic:

The GetModuleUsage function is obsolete. It is provided to simplify porting
of 16-bit Windows-based applications. Each Win32-based application runs in
its own address space.

Which are you gonna believe? The documentation, or what KERNEL 32
really does?

2Ch DWORD un7
The meaning of this DWORD is unknown. However, it typically contains a
valid pointer to a KERNEL 32 heap block.

30h PSTR pszFileName2

This PSTR (and the following three fields) are somewhat of a mystery. They
appear to serve the same function as do offsets OCh through 16h. This field
(pszFileName?) points to a different copy of the complete path for the asso-
ciated EXE or DLL. The strings pointed to by pszFileName (offset OCh) and
pszFileName2 appear to always be the same.

34h WORD cbFileName2
This field contains the length of the string pointed to by pszFileName2. It
should always have the same value as cbFileName (offset 14h).

36h DWORD pszModName?2
This field points to the module name (that is, the base filename) portion of
the pszFileName2 string. This field is the equivalent of the pszM odName

field (offset 10h).

3Ah WORD cbModName2

This field contains the length of the string pointed to by pszModName?2. It
should always have the same value as cbModName (offset 16h).
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The fact that an IMTE maintains two separate pointers to the module's
filename and module name is strange. |'m not sure what purpose this serves.
Still, there is a bit of good news in the area of module names. In Winl6, an
EXE or DLL's module name is the first entry in the resident names table,
and is set in the linker .DEFfile. Even here, though, there's a problem
because the Winl6 loader assumes that the module name is the same as the
base filename when determining if a module is already loaded. An EXE or
DLL whose module name differs from its EXE or DLL filename can screw
up the Winl16 loader and cause strange problems such as module name
space collisions, in which two or more completely unrelated DLL s have the
same module name. For example, if you have two DLLs with the same
name, but in different directories, the Win16 loader will load only one of
them. An attempt to load the other DLL causes the loader to merely incre-
ment the reference count of the first module. Bad movel!!! Since the Winl6
loader can't distinguish between like-named DLLsin different directories,
this situation can cause strange crashes -- most often on a poor, unsuspecting
end-user's machine.

Luckily, in Win32, the module name problem is mostly gone. A Winl6
module name that you would pass to GetModuleHandle is one and the
same as the EXE or DLL'sfilename. Thus, program A can load FOO.DLL
from the\BAR directory, while program B can load its FOO.DLL from the
\BAZ directory.

One situation Microsoft hasn't addressed, however, occurs when a program
attempts to use two different DLLswith the same name at the same time. For
example, program A implicitly links to FOO.DLL, and the loader finds
FOO.DLL inthekBARdirectory. Later, the program does a LoadLibrary on
C\BAZ\FOO.DLL. Does C:\BAZ\FOO.DLL get loaded, or does the reference
count for C:\BAR\FOO.DLL go up? Microsoft's documentation doesn't say.
However, in discussions I've had with the coder of the Windows 95 loader, he
claimsthat two distinct copies of FOO.DLL are loaded in memory. I've seen
this behavior myself while browsing the module list in Softlce/\W.

The MODREF structure

Now that you've seen how KERNEL32 maintains a global array of modules
(pointers to IMTES), we can bring the rest of the puzzle together. Earlier, |
described how each process has its own list of modules and is unaware of
other modules loaded by other processes. The glue that connects the per-
process module lists to the global module table isthe MODREF structure.



The per-process module list isjust a linked list of MODREF structures. The
MODREF list for each process (with the exception of the strange KERNEL 32
process) contains a MODREF for the processs EXE, as well as MODREFs
for each Win32 DLL used by the process. The memory for eech MODREF
comes from the KERNEL 32 heap, which isin the shared memory area above
2GB. Thus, even though MODREFs enforce the notion that the module list
is per-process, the MODREF lists themselves are actually globally accessible.
The fact that the WIN32WLK program can walk the module list for each
processis proof of this.

The head of the MODREF list is kept in the process database (which
we'll discuss later). Each MODREF structure contains an index into the
pModuleTableArray table. Figure 3-2 shows the relationship between
MODREFs and IMTEs.

MO Module Table IMTEs
DREF list
Process (EXE uses l pModuleTableArray |——-> 0 KERNEL32.DLL ]
Database KERNEL32
for and BAR.DLL 4 _'r—l
MYEXE.EXE ) USER32.DLL
l-—
0 (Index into 2 —>| GDI32.DLL |
Module Table) 3
4 —>| MYEXE.EXE I
4 (Index into 5
Module Table) 5
7 ‘—I FOO.DLL |
9 {Index into 8
Module Table)
9 —>| BAR.DLL |

Figure 3-2
Per-process MODREFs and the global IMTE table.

The MODULE32.H filefrom the WIN32WLK source includes a C
structure definition for the known fields of a MODREF structure. The
following fields are known:

0ch PMODREF pNextModRef

This pointer points to the next MODREF structure in the current processslist
of MODREFs. The end of thelistisindicated by a NULL pointer in this field.
Enumerating the list of modules that a process knows about is as simple as
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getting the heead MODREF node from the process database and then walking
through thelist. The WIN32WLK program on the disk that accompanies this
book shows an example of how to do this.

16h WORD mtelndex

This WORD is a zero-based index into the globa array of pointers to
IMTEs. (In the pseudocode in this chapter, this array is referred to as
pModuleTableArray.)

18h PVOID ppdb

This pointer isa PPROCESS DATABASE (a pointer to a PROCESS
DATABASE struct). It provides a "back link" from a MODREF to the
process that owns the MODREE We'll look at PROCESS DATABASES
later in the chapter.

Since Windows 95 has to make it look like each process has its own
unique module list, the module-related APIslike GetM oduleHandle don't
immediately start with the global module table (pModuleTableArray). |nstead,
they work only with those global module table entries that are referenced in
the processsM ODREF list. For example, the GetProcAddress function looks
only at modules that are in the MODREF list of the current process. Evenif
the module was already |loaded by another process, GetProcAddress won't
attempt to locate the function in that module unlessthat module isalso in the
MODREF list of the current process.

MODULERELATED APl FUNCTIONS

Now that you've seen how KERNEL 32 manages a global list of loaded
modules while still keeping a per-process module list, let's look at a few
Win32 functions that involve module databases.

GetProcAddress and IGetProcAddress

GetProcAddress is a key function in Win32 programming because it's the
method by which you dynamically hook up to DLLsloaded on the fly

(as opposed to DL Lslinked-to implicitly). Given a module identifier (an
HMODULE) and a function identifier (either its name or export ordinal),
GetProcAddress returns the entry point address for that function. To do this,



GetProcAddress must first locate the specified module database in memory
and then walk through the exported function table to find the address.

The actual GetProcAddress code is nothing more than a parameter vali-
dation layer. It verifies that the IpszProc parameter is either a string or an
import ordinal. The code distinguishes between the two types of function
specifiers by looking at the high WORD of the IpszProc parameter. If the
high word is 0, then the low WORD is the export ordinal and no further
validation can be done. If the high WORD is nonzero, the IpszProc is
assumed to be a PSTR and the code scans the string, looking for a NULL
terminator. If the PSTR is bad, an exception occurs during this scanning,
and a structured exception handler catches the exception and returns O
(failure) to the caller. (Well look at structured exception handling later in
this chapter, in the discussion of threads.) If the execution successfully
makes it through the tests, control jumps to the |GetProcAddress routine,
which is where the real meat of the GetProcAddress code resides.

Pseudocode for GetProcAddress

/| Paraneters:
/1 HVODULE ~ hMbdul e
/1 LPCSTR | pszProc

Set up structured exception handling franme.

if ( IpszProc > 0x10000 ) /I Values < 0x10000 contain ordinals in the

{ /I low WORD, so they aren't valid LPSTRs.
AL : 0
ED = IpszProc /I Touch all the bytes in the IpszProc routine
REPNE SCASB /I up to a NULL. If it faults, the exception

} /1 handler will catch it and return FALSE

Remove structured exception handling frane.

goto | Get ProcAddress

|GetProcAddress directs the steps of finding an exported function at a
high level, leaving the grunge work to two lower-level functions I'll describe
next. |GetProcAddress first does some thread synchronization to make sure
the current thread won't get interrupted at an inopportune moment. Next,
the routine calls MRFromHLib to get back a pointer to a MODREE
MRFromHLib isa KERNEL32 internal routine that scans through the
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processs list of MODREFs, looking for a module with an HMODULE
matching what was passed to MRFromHL ib. |GetProcAddress then usesthe
module table index in the MODREF structure to look up the IMTE of the
associated module.

Phase two of 1GetProcAddress is where KERNEL 32 looks up the
desired function address. Since |GetProcAddress can be passed either an
export ordinal (in the low WORD) or a string pointer, it determines which
form was passed and calls the appropriate lower-level routine to look up
the function. If an export ordinal was passed, |GetProcAddress calls
x_FindAddressFromExportOrdinal; if a string pointer was passed, it calls
x_FindAddressFromExportName. In either case, if the lower-level functions
don't find the specified function, | GetProcAddress spits out an error diagnostic
and returns 0.

Up until the beta 3 of Windows 95, 1GetProcAddress didn't make any
special exceptions to looking up functions in a module. In beta 3 (a.k.a. the
"Windows Preview Program" release), |GetProcAddress acquired a truly
distasteful snippet of code. The new code can't be construed as anything
other than anti-hacking code.

Specifically, |GetProcAddress won't allow you to obtain a function's
address by its export ordinal ifand only if you're looking for a KERNEL32.DLL
function. Why would Microsoft do such a ghastly thing? In KERNEL32.DL L
there are a good many undocumented functions that are exported by ordinal
only (see Appendix A for some of their names). Since these function names
aren't in KERNEL32.DLL, they won't be in the KERNEL 32 import library.
Thus, applications can't call these supposedly Microsoft-reserved functions
directly. In Unauthorized Windows 95, Schulman wrote several programs
that called undocumented KERNEL 32 functions -- in later builds of
Windows 95, those programs broke. Was this breakage intentional on
Microsoft's part? You decide for yourself.

Since beta 3, the direct approach to calling undocumented KERNEL 32
functions no longer works. However, there are lots of smart programmers
out there. They know that you can get a function's address with
GetProcAddress and call it through the returned function pointer. If you
know the export ordinal of the undocumented function, you're set, right?
Nope! The horrible section of code in 1GetProcAddress blocks attempts to
use undocumented KERNEL 32 functions by disallowing GetProcAddress
to be used with a KERNEL32.DLL export ordinal. Thus, even if Schulman
were to try to use GetProcAddress to fix his broken programs, he wouldn't
get far. The plot thickens...



Personally, | think this munged-up |GetProcAddress is childish. Any
Windows 95 system programmers worth their salt could write their own
version of GetProcAddress, given the information on the PE module format
in Chapter 8. An alternative approach | took was to use a .DEF file with the
Visual C++ LIB.EXE to create a KERNEL32 import library with the undocu-
mented functions. The WIN32WLK program later in the chapter uses this
import library. Appendix A describes my Windows 95 undocumented
KERNEL32 functions import library.

Let's return to a discussion of the rational code in 1GetProcAddress.
After successfully finding the specified function address, you'd think that
| GetProcAddress would be done. Not so fast. For some odd reason, when a
process is loaded for debugging under Windows 95, callsto system DLLs
(those DLLs loaded above 2GB) first go through special code stubs that the
loader builds on the fly. The purpose of these stubs is to prevent application
debuggers from stepping into ring 3 system DLLs. For functions that are
implicitly linked to, the loader handles everything behind the scenes. However,
aprogram that calls GetProcAddress and then calls through the pointer would
ordinarily bypass these stubs. Therefore, GetProcAddress checks to see if the
program is being debugged; if the address that 1GetProcAddress would ordi-
narily return is above 2GB, | GetProcAddress looks up the corresponding stub
address and returns that address instead.

The final bit of IGetProcAddress checks to see if the specified function
was found. If not, it sets the error value that GetLastError returns to
ERROR_PROC_NOT_FOUND. Finaly, |GetProcAddress leaves the critical
section that it entered at the beginning of the function.

Pseudocode for 1GetProcAddress

/] Parameters:
Il HMODULE  hModul e
1 LPCSTR | pszProc

/1 Locals:
Il PTHREAD DATABASE ptdb
11 FARPROC pfnProc // Return value
11 PMODREF pMbdRef
11 PI MTE pinte
pfnProc = Q /1 Initial return value

/1" Synchronization stuff
_EnterSysLevel ( ppCurrentProcesslid ->crst ):
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/I CGet a pointer to the MODREF that represents the module

/I specified by the hMvdule param MRFronHLib() just scans

/I through the MODREF list, looking for a MODULE whose HMODULE
/I matches the HVODULE passed in.

pModRef = MRFromHLi b( hModule );

if ( !pMbdRef ) // If the MODREF wasn't found, bail out.
{

Internal Set LastError(  ERROR_I NVALI D_HANDLE );

_DebugQut ( SLE_M NORERROR, "Get ProcAddress: % not a Modul e handle",
hhbdul e );

if ( x_LoaderDiagnosticsLevel > 2 )
dprintf("On ..\peldr.c Failure Path line %\n", [inenunber);

goto done; }

/I Cet a pointer to the IME fop the specified module by Iooking
/I it up in the pMbdul eTabl eArray.
pinte = pMdul eTabl eArray[ pModRef->nmtelndex ];

if ( IpszProc < 0x10000 ) /I Looking for a specified export ordinal.

if ( hMbdule == hModul eKERNEL32 )

{
Internal SetLastError(  ERROR_NOT_SUPPORTED ) ;

_DebugQut ( "GetProcAddress: kernel32 by id not supported",
SLE_M NORERROR );

if ( x_LoaderDiagnosticsLevel > 2)
dprintf( "On ..\peldr.c Failure Path line %l\n", line hum );

goto done;

/I Scan through the modul e database, looking for the function
/I with the specified export ordinal.
pfnProc = x_FindAddressFromExportOrdinal ( pinte->pNTHdr, |pszProc );

if ( !pfnProc ) // Function not found? Spit out an error message.

{
pModRef = MRFromHLib( hModule, |pszProc )



_DebugQut ( SLE_M NORERRCR,
"Get ProcAddress(%, %) not found"
pModul eTabl eAr r ay[ pModRef - >nt el ndex] - >pszMbdNane,
| pszProc );

]
el se /I Looking for a specified function nane.
[
/I Scan through the nodule database, looking for the function
[l with the specified nane.
pfnProc = x_FindAddressFromExport Name( pint e->pNTHdr, Q |pszProc );

if ( !pfnProc ) // Function not found? Spit out an error message.

{
pModRef = MRFromHLib( hMbdule, [pszProc )

_DebugQut ( SLE_M NORERRCR,
"GetProcAddress(%, %) not found"
pModul eTabl eArray[ pModRef ->ntel ndex] - >pszMbdNane,
| pszProc );

/I 1f the function is in a shared, system DLL (i.e., it's above 2GB),
/I *AND* if the process is being debugged, change the returned

/I function address to point to the bizarre pre APl stubs that

/I KERNEL32 sets up. These stubs sit between the call to the

/I APl and the actual APl code.

if ( (pfnProc >= 0x80000000) && (pfnProc != é&DebugBreak) )

{
if ( ptdb ->pProcess2 ->WAitEventList
&& !'ppCurrent TDBX ->Mist Conpl eteCount )

{
pfnProc = DEBCreateDl|( ppCurrentTDBX ->TopOfStack, pfnProc )

[l If the function is going to return a failure, set the GetlastError code.
if ( pfnProc == 0)
Internal SetLastError(  ERROR PROC NOT FOUND );

done:
/1 Undo the synchronization stuff.

LeaveSysLevel ( ppCurrent Processld ->crst );

return ESI;
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X_FindAddressFromExportQOrdinal

The x_FindAddressFromExportOrdinal function (my name, not Microsoft's)
is one of the core routines of KERNEL32. Not only isit called from
GetProcAddress, but it's also called by the PE loader when fixing up callsto
functions in implicitly loaded DLLs. Simply put, this routine is the one-stop
shop for looking up exported function addresses in KERNEL32.DLL.

The x_FindAddressFromExportOrdinal function relies heavily on infor-
mation found inthe IMAGE_NT_HEADERSs and .edata section of the PE
file that was mapped into memory to make the module. (Again, I'll stress
that this iswhy Chapter 8 on PE filesis very important reading, even if you
don't intend to directly work with PE files.)

Although there's a fair amount of code in x_FindAddressFromExport-
Ordinal, the function is conceptually pretty simple. In the export table (the
.edata section) of a module, you'll find an array of RVAs (relative virtual
addresses) for the exported functions in the module. This array is known as
the export address table. The first element in the array contains the RVA for
export ordinal 1, the second element contains the address for export ordinal
2, and so on. The only thing x_FindAddressFromExportOrdinal should
have to do isindex into the array to get an RVA, then add the module's load
address to make the RVA into a usable linear address. There are two twists
to the above scenario, however.

The first (and unobvious) twist isthat x_FindAddressFromExportOrdinal
needs to account for the ordinal base. In PE files, the export ordinal with
the lowest number is used as a base value. This alows the export address
table to be smaller than it would ordinarily be. For example, let's say a DLL
exports functions with ordinal 100 through 109. In a simple implementa-
tion, there would be 110 entries in the export address table, but only the
last 10 would be used. To save space in the above scenario, the linker sets
the ordinal base to 100, so it can create an export address table with only
10 elements. When looking up an exported function, x_FindAddressFrom-
ExportOrdinal has to remember to bias the export ordinal value by the
ordinal baseto get atrue array index.

The other twist in x_FindAddressFromExportOrdinal has to do with
forwarded functions. Forwarded functions are explained in more detail in
Chapter 8. For now, it's sufficient to know that a forwarded function is a
sort of alias for an exported function in another DLL. For example, in
Windows NT, the HeapAlloc function in KERNEL32.DLL is forwarded to
RtlAllocateHeap in NTDLL.DLL. The address that the export address table
contains for a forwarded function is aways inside the .edata section. The



address isn't that of the exported function. Rather, the address points to a
string such as NTDLL.RTLAIllocateHeap. If x_FindAddressFromExportOrdinal
sees this happen, it breaks the string into its module name and function
name components and calls GetProcAddress with those values. In case
you're wondering, yes, this does make GetProcAddress recursive if called
to search for a forwarded function.

Pseudocode for x_FindAddressFromExportOrdinal

/| Paraneters:

Il Pl MAGE_NT_HEADERS pNTHdr

1l DWORD ordi nal

/I Locals:

Il char szForwardedModul e[ MAX PATH ] /1 0x260
1l PI MAGE EXPORT DI RECTORY pExpDir;

11 PDWORD pFunctionArray;

11 DWORD i mgebase;

Il DWORD ret Addr;

1 DWORD exportDirSize

Il Get the size of the export table out of the NI header.
exportDirSize =
pNTHd r - >Opt i onal Header .
Dat aDi rectory[ | MAGE_DI RECTORY_ENTRY_EXPORT] . Si ze

/I If no functions are exported, bail out imediately.
if ( exportDirSize == 0)

Internal SetLastError(  ERROR_MOD_NOT_FOUND );

if ( x_LoaderDiagnosticsLevel > 2)

{ : .
dprintf("On ..\peldr.c Failure Path line 9\n" !ine number );

return 0;

Il Get the address where the module is loaded in memory
i mgebase = pNTHdr ->QOptional Header. |mageBase;

/I Get a pointer to the export table.
pExpDir = pNTHdr ->Optional Header.
Dat aDi rect ory[ | MAGE_DI RECTORY_ENTRY_EXPORT] - Virtual Address
+ imgebase;



/I CGet a pointer to the array of exported function addresses.
pFunctionArray = imagebase + pExpDir->AddressOf Functions

/I If the ordinal requested is greater than the number of exported
/1l functions, bail out. Mike sure to take the ordinal base into account.
if ( pExpDir ->NumberOf Functions <= (ordinal - pExpDi r->Base) )

return 0;

/I Read RVA of the exported entry out of the array (again, taking
/I the ordinal base into account).
ret Addr = pFunctionArray[ ordinal pExpDir ->base ];

/| Bias the RVA extracted from the table by the image base to convert the
/' RVA into a usable linear address.
if ( retAddr )

ret Addr += imagebase;

Il See if the found address is within the export directory. |If so,
/I it's a forwarded DLL, and the address is a pointer to the nane
Il of the function that it's forwarded to.

I

/I 1f the address isn't within the export directory, we're done, Return
/I the found address to the caller.

if ( (retAddr < pExpDir) || (retAddr >= (pExpDir + exportDirSize) )

{

PSTR pszForwardedFuncti onName
HMODULE hFor war dedMod;

Copy the DLL name pointed at by retAddr into the szForwardedModul e
local variable, stopping when a '.' is reached. Point
pszForwardedFunctionName at the character after the '.’

hForwardedMod = | Get Modul eHandl eA(  szForwardedModul e )
if ( !hForwardedMVod )
{
_DebugQut ( SLE_M NORERROR, "Unable to find forwarded DLL %",
szForwardedModul e );
retAddr = Q
goto done;

Il Call GetProcAddress to get the real address of the forwarded

/1l function in the DLL that contains it. Yes, this does nake

/| GetProcAddress recursive if it's a forwarded function.

retAddr = |GetProcAddress( hForwardedMod, pszForwardedFunctionName );
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if ( !retAddr ) // Oops! Didn't find the forwarded function.

_DebugQut ( SLE_M NORERROR, "Unable to find forwarded export 9s.%",
szForwar dedMbdul e, pszForwardedFunctionNase);

}done:
return retAddr;

X_FindAddressFromExportName

The x_FindAddressFromExportName function is a companion to the
x_FindAddressFromExportOrdinal  function. The primary difference
between the two functions is that x_FindAddressFromExportName starts
with a function name rather than with its import ordinal. The first part
of the routine is similar to the x_FindAddressFromExportName code
because both functions need to set up the same pointers to various
locations in memory.

The meat of the x_FindAddressFromExportName code is where it searches
through the array of exported names, looking for a match with IpszProc para-
meter. If the function finds a matching string, the code uses the AddressOf-
NameOrdinals array to convert the string array index to an export address
table index. At this point, x_FindAddressFromExportName could simply go
and look up the RVA of the exported function and return it to the caler.
However, doing this would cause it to skip over the special-case code in the
x_FindAddressFromExportOrdinal  function (that is, the code that handles
the ordinal base and the debugging stubs). Therefore, the routine passes the
export ordinal it found to the x_FindAddressFromExportOrdinal function to
let it do itsthing. Whatever x_FindAddressFromExportOrdinal returns is
what x_FindAddressFromExportName returns.

To put al thisin simpler terms, a function address can be looked up either
by name or by ordinal value. However, under the hood, the address always
ends up being located using the export ordinal. When you pass a string name
to GetProcAddress, or import a function by name, KERNEL 32 merely injects
an extra step to convert the string name to its export ordinal.



Pseudocode for x_FindAddressFromExportNarne

// Parameters:

1 PI MAGE_NT_HEADERS  pNTHdr

1 DWORD hi nt Namer di nal

1 PSTR | pszProc

Il Local s

11 PI MAGE EXPORT DI RECTORY pExpDir;

11 DWORD i mgebase;

1 PDWORD pNanesArr ay;

11 PWORD pNameOr di nal sArray;

11 DVWORD cbPr ocName

11 DVWORD numNamesM nusl|

1 DWORD nane(r di nal

11 DWORD cur Test i ngNane(r di nal
if ( hintNameOrdinal != some number ) { [/ ???

CheckDI I ();

/1 1f no functions are exported, bail out
if ( == pNTHdr ->Optional Header.
Dat aDi rect ory[ | MAGE_DI RECTORY_ENTRY_EXPORT] . Si ze )

i mredi ately.

if ( x_LoaderDi agnosticsLevel > 2 )

{
dprintf("On ..\peldr.c Failure Path line %l\n",

I'ine nunber);

!
error_return:
I nternal Set Last Error ( ERROR_MOD_NOT_FOUND );
if ( x_LoaderDiagnostiesLevel > 2 )
dprintf("On ..\peldr.c Failure Path line %l\n", I|ine nunber);

}
return 0;

/I CGet the address where the nodule is loaded in menory.
i mgebase = pNTHdr ->QOptional Header. | mageBase;
/I Get a pointer to the export table.
pExpDir = pNTHdr ->Optional Header.
Dat aDi rect ory[ | MAGE_DI RECTORY_ENTRY_EXPORT] . Vi rt ual Addr ess
+ imgebase;



/I Get a pointer to the array of PSTRs for the exported function nanmes.

pNamesArray = inmngebase + pExpDir ->AddressCf Names;

/| Get a pointer to the array that correlates names array indices
/I to indices in the export address table.
pNameOr di nal s = imgebase + pExpDir->AddressOf NameOrdinals;

/I 1f no names were exported, bail out.
if ( pExpDir->Number Of Names == )
{
if ( x LoaderDiagnosticsLevel > 2 )
{
dprintf("On ..\peldr.c Failure Path line %l\n", line nunber):

return 0;

/I Calculate how many nanes are exported.
numNamesM nus1l = pExpDi r->Nunber Of Nanes - 1

cur TestingNameOrdi nal = 0;
cbProcname = strlen( |pszProc )

/I It appears that the function can be passed a "hint" ordinal
/I that may or may not be the ordinal of the actual function
Il we're looking for. Check to see if the name of the function that
Il corresponds to the hint ordinal is the same string as was passed
/I in the |pszProc paraneter. |f so, we know the ordinal, and we
/I can skip the linear search through all the function names that comes
/1 later.
if ( numNamesM nusl >= hintNameOrdinal )
{
/1 Uses CompareStringA() with SystemDefaultlLanglD as the LCID to
/I see if the strings mtch.
if (!GlorifiedStringConmpare(i mgeBase + pNamesArray[hintNameCrdinal]))

ordinal = hintNameOrdinal;
goto FoundCrdinal }

if ( numNamesM nusl < 0 )
goto error return:
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/1 Scan through the array of function names PSTRs, looking for a
Il string that mtches the passed-in |pszProc paraneter.

A nasty little piece of code iterates through the entries in the
"AddressCf Nanes" array. Each entry is conpared (REP CWPSB) with the
| pszProc string.

if a mtch is found

{
set nameOrdinal to the index of the matching string in the
Addr essOf Names array

goto to FoundOrdinal
J

if a mtch isn't found
goto error return:

FoundOr di nal :

return x FindAddressFromExport Ordinal (
pNTHdr, pNameOrdi nal sArray[nameOrdinal] + pExpDir ->Base );

GetModuleFileName and IGetModuleFileName

The GetModuleFileName function takes an HMODULE as input, and returns
the complete path to the EXE or DLL that the module was created from. The
GetModuleFileNameA code itself isvery small, and isjust a parameter valida-
tion stub. After verifying that the |pszPath parameter (where the file name will
be returned) isvalid, GetModuleFileName jumps to |GetModuleFileName.
IGetM oduleFileName would be simpler if it didn't have to concern
itself with ANSI versus OEM filenames. The SetFileApisTOANS! and
SetFileApisTOOEM functions in KERNEL 32 let the caller specify whether
the filenames should use ANSI characters or OEM characters. Internaly,
Windows 95 stores all the filenames in their ANSI form, and converts
them to and from the OEM character set as needed. The meat of the
IGetModuleFileName function is flanked by code that doesthis conversion.
Aside from the issue of filenames, the core of | GetM oduleFileName is
fairly simple. All it needs to do is copy the complete filename from the cor-
rect IMTE into the output buffer. However, because each process thinks it
has its own module list, |GetModuleFileName can't smply go search the



pModuleTableArray to find the module it's looking for. Instead, 1GetModule-
FileName uses the MRFromHLib function to find the MODREF for the
module. (I briefly described the MRFromHLib function earlier in the dis-
cussion of GetProcAddress.) With the MODREF for the desired module,
IGetModuleFileName uses the MODREF's mtelndex field to index into the
pModuleTableArray and get the IMTE pointer. Once it has the IMTE
pointer, all that remains is to copy the string pointed to by the IMTE's
pszFileName field into the buffer passed to GetModuleFileName.

Pseudocode for GetModuleFileNameA

|| Paraneters:

I HMODULE  hi nst Modul e
I LPTSTR | pszPath
I DWORD cchPath

Set up structured exception handling frame

*| pszPath += 0; /I Harmessly write to IpszPath. |If a fault occurs,
/1 the exception handler wll catch us and return
/1 failure.

Remove structured exception handling frame

goto | Get Modul eFi | eNameA

Pseudocode for 1GetModuleFileNameA

/] Paraneters:

I HMODULE  hi nst Modul e
11 LPTSTR | pszPath
I DWORD cchPath
Il Locals:
/1 DWORD fOem
I DWORD retVal ue
/1 PMODREF  pModRef
retValue = 0;
Enter SysLevel ( ppCurrentProcessld ->crst );

I/ Deal with CEM stuff (if SetFileApisToOEM is somehow involved).
f Oem= x_AreFil eApi sOEM):
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ifo(

{

it

it
{

el se

it
{

el se

foem )

11

Calls

SomeFunction(

cchPath )

*| pszPath

k32Char ToOemA and some other
I pszPath, 1 );

things.

Il Null out the return path string.

= 0

hinst Module == 0 )

pModRef

11
11

Scan
with

pModRef

pModRef

I/ The HMODULE was 0.

= ppCurrentProcessld ->pExeMODREF}

through

an

Il We were passed a specific

the process's MODREF list, [|ooking

We want the EXE's nane.

HMODULE to |ook for.

for a module

HMODULE that matches the hlnstModule parameter.

MRFr omHLi b(

I nternal SetLast Error (

if

{

hinst Module ):

) Il Oops! Didn't find the module.

ERROR | NVALI D_PARAMETER );

( x_LoaderDi agnosticsLevel > 2 )

dprintf("On

..\peldr.c Failure Path

/I We found the module.

PIMTE pinte;

11
11

Get

a pointer to t

table array.

pinte =

if

he IMIE by I|ooking

pModul eTabl eArray[ pModRef->mtel

( echPath ) /I Ar

line %d\n",

l'ine nunber); }

it up in the global module

ndex 1;

e we supposed to write anything out?

retvalue = pimte->cbFi]eName;

if

11

( retvalue >=
Value = cchPath - 1;

ret

Copy

the path

memmove( | pszPath,

| pszPat h[

cchPath )

name to the output

buffer.

pi nte->pszFil eName, retValue

retvalue ] = 0; /1 Null

)

termnate it.
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if ( fCem ) // If fOEMing, convert the output buffer to OEM

ppCurrentProcesslid ->flags &= ~fOKToSet ThreadOem; /1" Turn off flag.

if ( cchPath )

Il Al'so calls k32CharToOemA and some other things.
SomeOt her Function(  IpszPath, 1)

J

LeaveSysLevel ( ppCurrent Processld->crst )

return retValue;

GetModuleHandle and IGetModuleHandle

The GetModuleHandle function performs the inverse operation of the
GetModuleFileName function. Given a module name, the function returns
the HMODULE (or base address, if you prefer) of that module. Unfortunately,
the Microsoft documentation is somewhat vague about what the module name
consists of. However, the pseudocode that follows will clear that problem all
up. In a nutshell, the module name can be either a base filename or a complete
path name to the EXE or DLL file. Also, in either case, the name can option-
ally omit the extension it: the file's extension is.DLL. Thus, the following are
all valid module names for C:\WINDOWS\SY STEM\USER32.DLL:

USER32

USER32.DLL

C:\WINDOWS\SY STEM\USER32
C:\WINDOWS\SY STEM\USER32.DL L

The actual GetModuleHandle code isvery short; it just validates the
IpszModule parameter to make sure it's avalid string pointer. If itis,
GetModuleHandle jumpsto |IGetModuleHandle. Like |GetModuleFileName,
the core of | GetModuleHandl e is bracketed by code that performs the ANSI
to OEM string conversions (if necessary). The core portion of the code first
uppercases the module name that was passed to it so that the code can do
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faster case-sensitive compares later on. Next, 1GetModuleHandle checks to
see if the filename has a file extension (for example, .EXE or .DLL). If not, the
code tacks on a .DLL extension.

The remaining core code consists of calls to two helper functions:
X_GetMODREFFromFilename and x_GetHMODULEFromMODREE
First, x_GetMODREFFromFilename scans through the list of MODREFs
for this process until it finds one with a matching file name, and then
returns a pointer to that MODREE Next, x_GetHMODULEFrom-
MODREF takes the PMODREF and returns the associated HMODULE for
it. These helper functions are described in the following two sections.

Pseudocode for GetModuleHandleA

/] Paraneters:
Il LPCTSTR | pszModul e;

Set up structured exception handling frame
it ( Ipszhbdule ) /I Read each byte of the name to
REPNE SCASB till a zero is found /I make sure it's valid. The
/I exception handler wll catch
/I us if something's wrong.

Remove structured exception handling frame

goto | Get Modul eHandl eA

Pseudocode for 1GetModuleHandleA

/| Parameters:

/1 LPCTSTR | pszModul e;
/'l Locals:

1 DWORD  nyLocal

Il BOOL fCem

/1 DWORD ret Val ue

Il char szBuf f er[260]
Il PMODREF pModRef

pszFil eExtension = 0;
fOem = x_AreFil eApi sOEM() ;

if ( foem)



it
{

J

else

{

/1 Calls k320emToCharA and some other things.

IpszProc = SomeFunction( IpszHodule, 0 );

| pszModule == 0 )

/1 Asking for the EXE

retValue = x_Get HModul eFr omMODREF( ppCurrentProcessid

/1 Caller specif

ied a module nane.

strcpy( szBuffer, IpszModule );

x_Upper casePat hName(

szBuffer, &pszFileExtension ):

- >pExeMODREF );

if ( pszFileExtension == 0 ) /1 1f no extension found, tack

{

/1 on ".DLL".

strcat( szBuffer, ".DLL" )

}
else
{
if ( *pszFileExt

*(pszFileExtension 1)

ension ==

n o
4

/1 present.

pModRef = x_Get MOOREFFromFi | ename( szBuffer );

retvalue = x_Get HMODULEFr omMODREF( pModRef );

if ( retvalue == 0)
I nternal Set Last Error ( ERROR_MOD_NOT_FOUND );

if ( fOem)

{

ppCurrent Processld

Il Also calls k32Ch

SomeOt her Function(

return retValue

/I Strip off a trailing "' if

->flags & ~f OKToSet ThreadOem; [I" Turn off flag.

arToOemA and some other things.

| pszPath, 0 );
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X_OetiMIODREFFromFilename

The x_GetM ODREFFromFilename function (my name) scans through the
linked list of MODREFs for a process, comparing the filename of each
module to the IpszM odName parameter passed to the function. If a match
is found, x_GetMODREFFromFilename returns a PMODREE Otherwise, it
returns NULL.

It's interesting to discover that x_GetM ODREFFromFilename can do
not just one, not just two, but up to four string comparisons between the
input string and the MODREF's filenames. In the first comparison,

X_GetM ODREF-FromFilename compares the input string to just the base
filename for the MODREF (for example, to KERNEL32.DLL). If that fails,
X_GetM ODREF-FromFilename compares the input string to the complete
path pointed at by the MODREE If that fails, the function will do up to two
more comparisons: the third to the secondary copy of the base filename, and
the fourth to the secondary copy of the complete path nhame stored in the
MODREE If any of these comparisons succeed, the function returns a
pointer to the matching MODREF.

To speed up the comparisons, x_GetM ODREFFromFilename first
calculates the length of the input string. Because the lengths of the strings
pointed at by the MODREF struct are also stored in the MODREF,

x GetMODREFFromFilename first compares the input string length to
the MODREF string length. If they don't match, the function doesn't have
to bother doing a string comparison for that particular MODREF string.

Pseudocode for x_ GetMODREFFromFilename

/I Paraneters:

11 PSTR | pszModName
Il PMODREF pModRef :

/1 PI MTE pi nt e;

/11 DWORD namelen;
nameLen = strlen( |pszModName );
pModRef = ppCurrentProcessld ->MODREFIist;

if ( !pModRef )
return 0;

while ( pModRef )
{
pinmte = pModul eTabl eArray[ pMdRef ->ntelndex ]
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if namelen == pime ->cbMdName )

{
if (0 == strcmp(lpszModName, pime ->pszModName) )

break; /1 Found itl!!
!
if ( namelen == pime ->cbFileName )
{
“f (0 == strcmp(lpszMedName, pinmte ->pszFileName) )
break; Il Found it]l!
J
if ( nameLen == pime ->cbMdName2 )
{
if (0 == strcmp(lpszModName, pinmte ->pszMdName2) )
break; /1 Found it!!!
}
if ( nameLen == pime ->cbFileName2 /

{

if (0 == strcmp(lpszModName, pime ->pszFileName2) )

break; /1l Found it!!!

/I We didn't find it in any of the above conparisons. Try

/I the next module in the Ilist.
pModRef = pModRef ->pNextMdRef;

/1 When we get here, we've either found a PMODREF with the right name,

Il or pModRef == 0;

return pModRef;

X_GetHModuleFromMODREF

The x_GetHModuleFromMODREF function takes a PMODREF as an input
parameter, and returns the HM ODULE (or base address) of the correspond-
ing module. The work required to do this is minimal. From the MODREF
structure it was passed, the function extracts a pointer to the module data-
base (an IMAGE_NT_HEADERS struct). One of the fieldsin an IMAGE _NT_
HEADERS is the base |load address of the module, which, as we now know,-
is the same as the HMODULE.
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Pseudocode for x_GetHModuleFromMODREF

/I Parameters:
11l PMODREF pModRef

/1 Locals:
/1 Pl MAGE_NT_HEADERS pNTHdr
/1l PI MTE pinte;

if ( pModRef == 0 )
return 0;

pime = pModul eTabl eArray[ pMdRef ->ntelndex ][;
pNTHdrs = pinte ->pNTHdr

return pNTHdr ->l nageBase; /1 The load address (image base) is
/1 the same as the HMODULE.

KERNEL32 OBICTS

At thispoint I'd like to jump headfirst into the discussion about processes and
threads, but | can't do that until | explain the concept of objects. I'm talking
about what | call KERNEL 32 objects (or K32 objects for short). Although
just about anything for which KERNEL 32 allocates memory from its heap
could be considered "an object," | have a specific definition in mind here.

K32 objects are key system data structures that come from KERNEL 32's
heap. There are numerous types of K32 objects, and they dl start with a
common header. One way to determine whether or not something is a K32
object isto ask, "Do applications have handles to these objects?' For
example, applications can have file handles or event handles, so filesand
events are K32 objects. On the other hand, I've seen no evidence that
application code ever has handles to things like MODREFs or IMTEs.
Thus, MODREFs and IMTEs aren't K32 objects.

Every K32 object starts out with a common header that has the

following format:

00h
The type of the object. This value determines how subsequent members of

the structure should be interpreted.
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oh DWORD
The reference count of the object. This value determines how many times
other code is referencing an object. For example, when you call GetFile-
InformationByHandle(), the reference count of the file object that you're
asking about goes up by one upon entry to the function. Before the function
returns, it decrements the file object's reference count.

By now, you're probably dying to know what type of K32 objects there
are. So, without further adieu, here's the list:

K320BJ SEMAPHORE (0xl)

K320BJ EVENT (0x2)

K320BJ MUTEX (0x3)

K320BJ CRITICAL_SECTION (0x4)

K320BJ PROCESS (0x5)

K320BJ THREAD (0x6)

K320BJ FILE (0x7)

K320BJ CHANGE (0x8; see FindFirstChangeNotification)
K320BJ CONSOLE (0x9)

K320BJ SCREEN_BUFFER (0xA)

K320BJ MEM_MAPPED_FILE (0xB; see CreateFileMapping()
K320BJ SERIAL (0xC)

K320BJ DEVICE IOCTL (0xD; see DeviceloControl)
K320BJ_PIPE (OXE)

K320BJ MAILSLOT (0OxF)

K320BJ TOOLHELP_SNAPSHOT (OxIO; see
CreateT ool hel p32Snapshot)

K320BJ SOCKET (0x11)

For the remainder of this chapter, our primary focusis on the process and
thread objects (IDs5 and 6). A process database isjust a K32 _PROCESS
object, and athread database isjust a K32_THREAD object. Asyou'll seein
the "What's a Process Handle? What's a Process ID?" section, a process
handle table is smply an array of pointers to various K32 objects of the types
shown above. Throughout KERNEL 32 and VWIN32.V XD, the code checks
the first DWORD of a supposed object to make sure that it's really deding
with an object of the type it thinks it's dealing with.



If you're familiar with the Winl16 kernel, you might notice that unlike
Winl6 tasks and modules, the 8-byte Win32 object headers don't have any
fields for storing linked list pointers. In Winl16, once you find the first task
or module in the list, you have everything you need to walk the rest of the
list. In Windows 95, KERNEL32 has its own section of code (LSTMGR.C)
that maintains lists of K32 objects.

WINDOWS 95 PROCESSES

At this point in the book, it'stime to drag out the usual hackneyed definition
of what a process is, so let's get it over with. A process isa unit of ownership.
That is, processes own things. A process owns memory (actualy, it owns a
memory context). A process owns file handles that the application code can
use to read and write files. Processes own threads (which Itl define fully in the
"Threads" section later in this chapter). Processes own a list of DLL modules
that have been loaded into the process's memory context. | could go on, but |
think you get the idea.

Note that a process does not represent execution (threads represent the
execution of code), and a process is not an EXE file. Before it's loaded, an
EXE file on disk isjust a program. Only when it's loaded into memory does
Windows 95 create a process. On the other hand, every process is associated
with a disk file (although there is the strange case of the KERNEL32.DLL
process, which you'll seein the WIN32WLK section at the end of this chapter).

When Windows 95 creates a new process, it also creates a new memory
context for the process's threads to execute in. In addition, Windows 95
creates an initial thread of execution for the process. If needed, the process
can create additional threads. The system also creates a file handle table in
which the process can keep a list of open handles. Finaly, and most impor-
tantly for the discussion in the next couple of paragraphs, Windows 95
creates a process database to represent the process.

A process database is a K32 object that contains a vast quantity of
information about the process. (Well look at the fields in "The Windows 95
Process Database (PDB)" section.) The process database memory is allocated
out of KERNEL 32's heap, so all process databases are visible to all tasks
(assuming they know where to look; that's the tricky part that I'll show how
to do in the WIN32WLK source).

Process database highlights include a list of threads, alist of loaded
modules, the heap handle of the default process heap, a pointer to the



process handle table, and a pointer to the memory context that the process
runs in (see Chapter 5). And those are just a few of the highlights; there are
many, many more. In fact, if you buy now, we'll also throw in a list of mem-
ory mapped files, a pointer to the parent process, a list of available thread
local storage slots, and a pointer to the environment block. Just send $49.95
to KERNEL32.DLL at 1 Microsoft Way...

WHAT'S A PROCESS HANDLE?
WHAT'S A PROCESS ID?

Before | go one step further, | want to clear up the widespread confusion
regarding process handles versus process |IDs. Two similar sounding Win32
routines -- GetCurrentProcess and GetCurrentProcessld - -tend to confuse
afair number of programmers. The difference between the two functions is
actually rather simple, once you understand what's going on.

A process handle is essentially the same thing as afile handle. It's an
"opaque" value with no significance as a pointer to anything. Internally, the
system uses K32 object handles (such as process or file handles) as an index
into the process handle table. The value returned by indexing into the process
handle table array is an actual pointer to a K32 object. However, since appli-
cations aren't given direct access to their handle tables, a process handle is
useless, except as a magic cookie to pass to certain routines that expect it.

Remember that since each application has its own handle table, it's entirely
possible that different processes will have the same process handle within their
own process context. For example, normally each process has a process handle
open for itsef, and that handle value is 1. The implication that should be
drawn isthat a process handle isnot a way to differentiate between different
processes. Another example: If an application opens another process handle
for its own process, it would then have two different handle values that both
identified the same process.

Further proof that a process handle is not suitable for identifying which
process you're working with can be found in the GetCurrentProcess code:

Pseudocode for GetCurrentProcess

/1 Normally this function does nothing. It appears to be there
/I for the benefit of the KERNEL32 devel opers.
x_LogSonmeKer nel Function( function number for GetCurrentProcess );

return OX7FFFFFFF;
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That's it! Ignoring the call to the logging function, GetCurrentProcess
does nothing more than return a fixed value (Ox7FFFFFFF). No matter
what process calls GetCurrentProcess, it'll always get back Ox7FFFFFFF.
The value OX7FFFFFFF isa "magic" value that KERNEL 32 interprets to
mean "use the current process." In routines where KERNEL 32 expects a
process handle, it checks for the value Ox7FFFFFFF and substitutes what-
ever the current process is. Need any more proof that process handles are
useless except when used within their own context? | didn't think so.

Let's now turn to the process|Ds. As noted in Unauthorized Windows 95,
early versions of Windows 95 up through beta 1 used the address of the
process database as a process ID. Since process databases are kept in shared
memory accessible by all processes, the address of a process database is guar-
anteed to be a unique value throughout the system. Unauthorized Windows
95 made extensive use of the GetCurrentProcessld function to get a pointer
to the current processes database, from which it then extracted key fields.
Unfortunately, the Microsoft KERNEL 32 coders crashed that particular
party as we can see in a more recent version of GetCurrentProcesslid:

Pseudocode for GetCurrentProcessld

x_LogSomeKer nel Function( function number for GetcurrentProcesslid );

return PDBToPid( ppCurrentProcess );

Again, ignoring the logging function, GetCurrentProcessld boils down
to passing a global variable (ppCurrentProcess) to the PDBToPID function.
Let's stop and examine this point closdly, since it's extremely important for
understanding the rest of the chapter. The ppCurrentProcess global variable
is a pointer to a pointer to the current process database. Put in C notation,
this means that **ppCurrentProcess points to the current process database.

The reason you have to indirect through this pointer twice is one of the
fascinating things you'll find out in Chapter 6. For now, just remember that
the ppCurrentProcess pointer is a global variable in KERNEL32.DLL that
allows KERNEL 32 to find the process database of the current process. (To
keep things simple, when | show the ppCurrentProcess variable being used
in the pseudocode, | pretend that it's just a pointer to the process database,
not a pointer to a pointer.)

So, if KERNEL 32 has a pointer to the current process database handy,
why doesn't GetCurrentProcessld just return it? For an answer, let's look at
the PidToPDB function:



Pseudocode for PDBToPid

// Paraneters:
11 PROCESS DATABASE * ppdb

if ( Obsfucator DWORD == FALSE
{

_DebugQut ( "PDBToPid() Called too early! Obsfucator not yet"
“initialized!" );
return 0;
!
if ( ppdb & 1)

{
_DebugOut( "PDBToPid: This PDB looks like a PID (0% xh) Do a"

"stack trace BEFORE reporting as bug," );
!

// Here's the key! XOR the obsfucator DWORD with the process database
// pointer to make the PID value.

return ppdb ~ Obsfucator DWORD;

Oh redly? Yes. The term "Obsfucator" comes straight from the Microsoft
binaries (and yes, "Obsfucator" is misspelling; it should be "Obfuscator").
Other than checking to make sure that a valid process database pointer was
passed, the only essential thing PDBToPID does is XOR the current process
database pointer with the ObsfucatorDWORD. This isan obvious attempt
on Microsoft's part to keep hackers from prying into the internals of system
data structures. However, as H1 show in the WIN32WLK code at the end of
this chapter, this is only a small, temporary obstacle (hint: think about the
transitive properties of a binary XOR).

Incidentally, if you're wondering where the ObsfucatorDWORD value
comes from, you'll be dismayed to know that it's calculated at runtime each
time the system starts up. This prevents a simple attack on the problem of
getting a real pointer to a process database. To compound matters, not only
are process databases "guarded" by this obsfucator DWORD, but so are
thread databases. I'll show you later how the GetCurrentThreadld function
is uncannily similar to the GetCurrentThreadld function.

To sum up, a process handle is like a file handle. It's opague, and mean-
ingless outside the process context in which it's defined. A process ID, on the
other hand, is a unique value across all processes. It's essentially a pointer to
a process database structure, even though Microsoft has taken steps to
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"obsfucate" that fact (their choice of words, not ming}. The WIN32WLK
program at the end of the chapter shows the magic trandation formula to
convert a process ID into a usable pointer.

If you've seen the TOOLHEL P32 Process32First and Process32Next
functions, you may have noticed the th32ProcessID fields in the
PROCESSENTRY 32 structure. Arethese related in any way to the values
returned by GetCurrentProcessld? Fortunately, the answer isyes! The
WIN32WLK program takes advantage of thisto let TOOLHEL P32 handle
some of the dirty work of iterating through the system's processes and threads.

THE WINDOWS 95 PROCESS DATABASE (PDB)

In Windows 95, each process database is a block of memory alocated from
the KERNEL 32 shared memory heap. KERNEL 32 often uses the acronym
PDB instead of the longer term "process database." Unfortunately, in Winl6,
PDB is a synonym for the DOS PSP that dl programs have. Is this confusing?
Yed For the purposes of this chapter, I'll use PDB in the KERNEL 32 sense of
the term. Each PDB is considered to be a KERNEL 32 object as evidenced by
the value 5 (K320BJ PROCESS) in the first DWORD of the structure. The
PROCDB.H file from the WIN32WLK program gives a C-style view of the
PDB structure. Let'slook at the fieldsin detail:

00h DWORD Type
This DWORD contains 5, the KERNEL 32 object type for a process.

04h DWORD cReference

This DWORD is the reference count for the process. This is the number of
things that are currently using the process structure for something (for
example, they have an open handle for the process).

08h DWORD unl
The meaning of this DWORD is unknown. It may be a standard part of a
KERNEL 32 object header. It appears to always be O.

oCh DWORD pSomeE et

This DWORD is a pointer to an event object (K320BJ EVENT). Event
objects are passed to functions like WaitForSingleObject. It appears that this
event iswhat is actually waited on when you pass a process handle to one
of the WaitForSingleEvent family of functions.



10h DWORD TerminationStatus

This DWORD is the value that would be returned by calling
GetExitCodeProcess. The process exit code is the value returned from the
main or WinMain functions. Alternatively, it can be specified when a
processcalls ExitProcess or TerminateProcess. While a process is still
actively running, its exit code is 0x103 (STILLACTIVE).

14h DWORD un2
The meaning of this DWORD is unknown. It appears to always be O.

18h DWORD DefaultHeap
ThisDWORD contains the address of the default process heap.
GetProcessHeap returns this value for the current process.

1Cb DWORD MemoryContext

This DWORD is a pointer to the processs memory context. A memory
context contains the page directory mappings necessary to provide a process
with its own private region in the 4GB address space. Chapter 5 describes
memory contexts in more detail.

20h DWORD flags

These flags are described in the following table:
Flag name and bit value Description (when available)
tDebugSingle Set if process is being debugged.
0x00000001
fCreateProcesstvent Set in debugged processes affer starting.
0x00000002
fExitProcessEvent Might be set in debugged processes at exit fime.
0x00000004
fwin16Process A 16bit program.
0x00000008
fDosProcess A DOS program.
0x00000010
fConscleProcess A console [text mode) Win32 process.
0x00000020
frileApisAreOem See SetfileApisToOOEM) in the APl documentation.
0x00000040

fNukeProcess

0x00000080
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Flag name and bit value Description (when available)

fServiceProcess For example, MSGSRV32EXE.
0x00000100

fLoginScriptHack Might be a Novell network login process.
0x00000800

fSendDLLNotifications

0x00200000

fDebugEventPending For example, stopped in a debugger.
0x00400000

fNearlyTerminating

0x00800000

fraulted

0x08000000

fTerminating

Ox 10000000

fTerrninated

0x20000000

flnitError

0x40000000

fSignaled
0x80000000

24h DWORD PSP

This DWORD holds the linear address of the DOS PSP created for this
process. This field is set for both Winl16 and Win32 processes. The linear
addresses in this field are always below 1MB (the maximum address that
real mode DOS code can reach). See also field 28h.

28h WORD PSPSelecior
This WORD is a selector that points to the DOS PSP for this process. Both
Winl6 and Win32 applications have DOS PSPs. See also field 24h.

2Ah  WORD MTEIndex

This WORD contains an index into the global module table (pModuleTable-
Array). The IMTE referenced by indexing into the module table isthe IMTE
for this module. IMTEs and the global module table were discussed earlier
in the chapter.
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2Ch WORD cThreads
Thisfield is the number of threads belonging to this process.

2Eh  WORD cNotTermThreads
This field holds the number of threads for this process that haven't yet been
terminated. In al instances seen to date, this WORD aways has the same

value as field 2Ch.

30h WORD un3
The meaning of this WORD is unknown. It appears to always be O.
32h WORD cRingOThreads

ThisWORD holds the number of ring O threads as managed by VMM .V XD.
For normal applications, this value isthe samefield 2Ch (cThreads). However,
in the case of the special KERNEL32.DLL process, thisfield is one more than

the cThreads fidd.

34h HANDLE HeapHandle

This DWORD holds the handle of the HEAP that handle tables (and possi-
bly other things) belonging to this process should be allocated from. This
field appears to always contain the KERNEL 32 shared heap handle.

38h HTASK W16TDB
This DWORD holds the Winl16 Task Database (TDB) selector associated
with this process. Both Winl16 and Win32 applications have Task Database

selectors and maintain valid task databases.

3Ch DWORD MemMapkiles
A pointer to the head node in the list of memory mapped filesin use by this
process. Each memory mapped fileis represented by a node in the list. The

format of each node is:

DWORD Base address of the memory mapped region
DWORD Pointer to next node, or O
40h  PENVIRONMENT_DATABASE pEDB

ThisDWORD is a pointer to the environment database The environment
database containsthe current directory, the environment, the process com-
mand line, the "standard" handles (for example, stdin), and other items. I'll
describe the format of the environment in "The Environment Database"

section later in this chapter.
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44h PHANDLE_TABLE pHandleTable
This field is a pointer to a process handle table. All handles (be they file
handles, event handles, process handles, or so on) go into the handle table.
The DOS/Winl6 equivalent of a Win32 handle table isthe DOS System File
Table (SFT). (See Schulman et al.'s Undocumented DOS, 2nd ed.)
However, the DOS SFT applies to the entire system, whereas a Win32
process handle table applies only to its owning process. The Win32 handle
table layout is described in the "Process Handle Tables" section.

48h PPROCESS DATABASE ParentPDB

This DWORD is a pointer to the PROCESS DATABASE for the process
that created this process. Typically the parent process is EXPLORER for
applications launched via the GUI. MSGSRV 32 is the parent of the initial
"service" processes and EXPLORER.EXE.

4Ch PMODREF MODREFIist

This field points to the head of the process's module list. This is the linked
list of MODREFs described earlier in "The MODREF structure" section.

50h DWORD ThreadList

A pointer to the list of threads owned by this process. This list isa ligmgr.c-style
list. (The exact format of this type of list is unknown to me))

54h DWORD DebuggeeCB
This DWORD appears to be a debuggee context block. When a process is

being debugged, this field points to a block of memory above 2GB. This
block includes a pointer to the debuggee's process database.

58h DWORD LocalHeapFreeHead
This DWORD points to the head of the free list in the default heap for the
process. Chapter 5 describes the format of process heaps and the free list.

5Cbh DWORD InitialRing0ID
The meaning of this DWORD is unknown. It appears to always be 0.

60h CRITICAL_SECTION crst

This field isa CRITICAL_SECTION used by various API functions for syn-
chronizing threads within the same process. Much of the pseudocode you'll
see later on shows this critical section in action.



78n  DWORD urd[3]
These three DWORDS appear to aways be set to 0, and their meaning is
currently unknown.

8h DWORD pConsole
If this process uses the console (that is, if it's a text mode process), this DWORD
points to the console object (K320BJ CONSOLE) used for output.

8h DWORD tsinUseBits1

These 32 bits represent the status of the lowest 32 TLS (Thread Loca Storage)
indexes. If abit is set, the TLS index is in use. Each successive TLS index is
represented by successively greater bit values; for example:

TLSindex:0 = 0x00000001
TLSindex:l] = 0x00000002
TLSindex:2 = 0x00000004

Thread local storage is discussed in detail in the "Thread Local Storage"
section later in this chapter.

8Ch DWORD tsinUseBits2
This DWORD represents the status of TLS indices 32 through 63. Seethe
previous field description (88h) for more information.

9%0h DWORD ProcessDWORD
The meaning of this field is currently unknown, although there is an
undocumented APl (GetProcessDword) that retrieves its value.

Ab PPROCESS DATABASE  ProcessGroup

This field is either O or points to the master process in a process group.
Process groups are collections of processes that belong together. When the
group is destroyed, al processes in that group are destroyed. Normally, each
process is considered to bein its own group, and this field points to the
processs own PDB (a circular reference). If a process is being debugged, it
belongs to the debugger's process group.

9%8h DWORD PEEMODREF

This field points to EXE's MODREF (module list entry). MODREFs were
described earlier. Typically, the EXE's MODREF is the head MODREF in
the list, so this field usually matches field 4Ch unless the process has loaded
additional DLLsvia LoadLibrary or LoadModule.
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oCh DWORD TopExcHilter

This DWORD holds the "Top Exception Filter" for the process. This isthe
routine that will be called if no other exception handlers choose to handle
an exception. This value is set via the SetUnhandledExceptionFilter func-
tion. Structured exception handling is discussed later in the chapter.

ACh DWORD

This DWORD holds the scheduling priority for this process. Windows 95
supports 32 priority levels, grouped into four classes. The following priority
classes are supported in Windows 95, shown with the normal priority level
for that class:

Idle

Normal 8
High 13
Realtime 18

Within each class, the priority can vary both below and above the default
priority level. Priority levels are described in more detail later in this chapter.

Adh  DWORD HeapOwnList

This field points to the head of the linked list of heaps for the process. By
default, each process has a single heap; the handle for that heap is retrieved
by calling GetProcessHeap. However, a process can create additional heaps
by calling HeapCreate. These heaps are put into the linked list of heaps for
the process when they're created. Chapter 5 discusses this topic in much
more detail.

A8h DAMORD HeapHandleBlockL.ist

Moveable memory blocks in the process heap are managed via moveable
handle tables embedded within the heap. This field is a pointer to the head
of the moveable handle table list within the default process heap. Chapter 5
describes moveable handle tables in detail.

ACh DWORD pSomeHeapPtr

The exact meaning of this field is unknown. It's normally 0, but when not,
it's a pointer to a moveable handle table block in the default process heap.
See also field A8h.



Boh DWORD pConsoleProvider

This field is either O, or a pointer to a KERNEL32 console object
(K320BJ_CONSOLE). It appearsto always be 0 for console mode Win32
processes but is nonzero for the WINOLDAP process. WINOLDAP isthe
Windows process for managing DOS programs within Windows.

B4 WORD EnvironSelector

This WORD holds a selector that points to the process's environment.
This selector's base address is the same value as the linear address in the
pszEnvironment field in the Environment Database (seefield 40h).

B6h WORD ErroriVioce

This field contains the value st by the SetErrorMode function. SetErrorMode
in KERNEL 32 thunks down to KRNL386's SetErrorMode, so this field
merely reflects the Winl6 error mode value for the process. The documented
error mode values are;

SEM_FAILCRITICALERRORS
SEM_NOALIGNMENTFAULTEXCEPT
SEM_NOGPFAULTERRORBOX
SEM_NOOPENFILEERRORBOX

Ba&h DWORD pevi_oadFinished
This DWORD points to a KERNEL 32 Event object (K320BJ_EVENT). It
appears that this event is signaled when the process has finished loading.

BDh WORD UTSiate
The meaning of this field is unknown, but based on the name, it probably
has something to do with Universal Thunks. It's usually set to O.

Of special note in dl these process database fields is the number of
DOS-related fields. There's both a PSP selector and a linear address for the
DOS PSP (which just happens to always be below 1MB). Given the number
of occasions that windows reflects INT 21hs down into Virtual 86 mode
DOS- style code, this isn't entirely surprising. (See Unauthorized Windows 95,
Chapter 8, for a thorough proof that dispatching INT 21hs to DOS isn't
entirely surprising.) It's unlikely that the Windows NT process database
equivalent contains PSP information for al processes. It sure looks like DOS
just won't die, at least not on platforms evolved from Windows 1.x code.
Now that we've seen what a process database |ooks like, let's ook at some
pseudocode for some process-related functions.
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GetExitCodeProcess and 1GetExitCodeProcess

GetExitCodeProcess retrieves the termination status of the process specified
by the hProcess handle passed in. The main function is just a validation
layer that verifies that a valid pointer was passed as the second parameter.
The real code is 1GetExitCodeProcess. After some standard thread synchro-
nization and logging code germane to many process-related functions, the
code takes the hProcess parameter and looks up the associated pointer to a
PROCESSDATABASE. Since hProcess is a handle, this means indexing into
the process's handle table and retrieving the process pointer, x_Convert-
HandleToK320Object handles this chore along with incrementing the usage
count of the process database.

With a PPROCESS_DATABASE pointer in hand, the function extracts
the value of the TerminationStatus field and stores it to the caller-specified
buffer. To clean up, 1GetExitCodeProcess decrements the usage count of the
process object and leaves the "must complete™ state it entered previously.

Pseudocode for GetExitCodeProcess

/I Paranmeters
/1l HANDLE hProcess;
11l LPDWORD | pdwEXxi t Code:

Set up structured exception handling frame

if ( |pdwExitCode ) /1 If a non null pointer was passed, verify
EAX = *| pdwExit Code; // that the DWORD it points to can be witten.

Remove structured exception handling frame

goto | GetExitCodeProcess;

Pseudocode for 1GetExitCodeProcess

/I Paranmeters

/1l HANDLE hProcess;

11l LPDWORD | pdwEXxi t Code;

/1 Locals:

11 PPROCESS_DATABASE ppdb;

/1l BOOL r et Val ue;
retValue = TRUE Il Assume successful return.
x_EnterMust Conplete() ; // Prevent us from being interrupted.

/1 Increnents ptdbx ->Mist ConpleteCount.



x_LogSomeKer nel Function( function number for GetExitCodeProcess);

/| Get a pointer to the PROCESS_DATABASE struct
ppdb = x_ConvertHandl eToK320bj ect( hProcess, 0x80000010, O );

if ( ppdb )
{

/| Save away exit status.
*| pdwExi t Code = ppdb->Term nationStatus;
X_UnuseObj ect W apper( ppdb ); I/ Decrement usage count.

else.... Il Opps! No process database.
retValue = FALSE;
/I Call the APl logging function again (???).
x_LogSomeKer nel Function( function number for GCetExitCodeProcess);
LeaveMust Conpl ete(); /I Decrements ptdbx ->MistConpleteCount.

return retVal ue;

SetUnhandledExceptionFilter

SetUnhandledExceptionFilter sets the address of the function that KERNEL32's
UnhandledExceptionFilter function calls when no other exception filters
have elected to handle an exception (what a mouthful!). The function
stashes away the current value of the TopExcFilter field in the process data-
base, then replaces that value with the value of the parameter passed in. The
function returns the previous value of TopExcFilter.

Pseudocode for SetUnbandledExceptionFilter

/| Parameters:

11 LPTOP_LEVEL_EXCEPTI ON_FI LTER | pTopLevel ExceptionFilter
/1 Locals:
11 LPTOP_LEVEL_EXCEPTI ON_FI LTER prevVal ue;

// Save old value.
prevValue = ppCurrentProcess ->TopExcFilter;

/1 Stuff in new val ue.
ppCurrent Process ->TopExcFilter = |pToplLevel ExceptionFilter;

return prevVval ue; /' Return old value,
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OpenProcess

OpenProcess takes a process |D and returns a handle that refers to that process.
This handle can then be passed to functions like ReadProcessMemory and
VirtualQueryEx. When you combine this function with TOOLHELP32's
ability to give you a process ID for any process in the system, you have a
potent combination. It's somewhat strange that Windows 95 allows you to
open a process handle but not a thread handle. Perhaps Microsoft thought
that the havoc that could be created with athread handle was just too great
to allow.

OpenProcess first converts the process ID parameter to a PPROCESS _
DATABASE. Because the algorithm for converting a process ID to a process
pointer isidentical to converting a thread ID to athread pointer, OpenProcess
checks to make sure it has a PPROCESS DATABASE pointer. (Some knuckle-
head might otherwise pass in athread ID and screw things up.) The next
part of OpenProcess is where the flags parameter is tweaked to ensure that
it has only legal and/or required flags set. Finally, OpenProcess calls an
internal function that allocates a slot in the current process's handle table
and places the PPROCESS DATABASE pointer into that slot.

Pseudocode for OpenProcess

—

| Paraneters:

/1l DWORD f dwAccess;
/1l BOOL flnherit;
/1l DWORD | DPr ocess;

/1 Locals:
/1 PPROCESS_DATABASE ppdb;
/1l DWORD flags;

x_LogSonmeKer nel Function( function number for OpenProcess );

I/ Convert the process ID to a ?PROCESS_DATABASE.
ppdb = PidToPDB( |DProcess )

if ( !ppdb )

return 0;
if ( ppdb ->Type != K320BJ_PROCESS ){ // Make sure thread ID not passed.

Internal SetLastError(  ERROR | NVALID PARAMETER );
return 0;
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flags = fdAccess & OxOOLFFFBF: /I Turn off all non-allowed flags.
Il Flags |ike PROCESS_QUERY_| NFORMATI ON
/1 and PROCESS_VM WRITE are allowed.
if ( flnherit )
flags |= 0x80000000;

flags |= PROCESS_DUP_HANDLE; /' Al'ways pass. PROCESS_DUP_HANDLE

/I Allocates a new slot in the handle table of the current
/1 The slot contains the ppdb pointer.
return x_OpenHandl e(  ppCurrentProcess, ppdb, flags );

process.

SetFileApisToOOEM

The SetFileApisTOOEM function changes the way the file-related KERNEL 32
functions interpret filenames. By default, KERNEL 32 uses ANSI strings

for the filenames. By calling SetFileApisTOOEM, a program can change
this to use OEM character strings. For an example of this in action, see
the GetModuleFileName and GetModuleHandle functions earlier in this
chapter.

Internally, the function couldn't be much simpler. It grabs a pointer to the
process database for the current process and turns on the fFileApisAreOem
flag in the flags field.

Pseudocode for SetFileApisToOEM

x_LogKernel Function( function number fOr SetFileApisToOEM )

ppCurrent Process->flags |= fFileApisAreCem

THE ENVIRONMENT DATABASE

At offset 40h in the process database is a pointer to a vital data structure
that also contains process-related information. The name that KERNEL 32
uses internally for this pointer is pEDB, which | interpret to mean "pointer
to Environment Database." Aswith the PROCESS DATABASE structure,
I've given the layout of an ENVIRONMENT_DATABASE in the PROCDB.H
file. Let's look at these fields now:
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00h  PSTR pszEnvironment

This field points to the process environment. The environment is the standard
DOS-style environment (string=value, with semicolons between multiple items,
asin string=value;string=value). The process environment isin a block of mem-
ory in the per-process data area, and usually resides just above where the EXE
module loads.

04h DWORD unl
The meaning of this DWORD is currently unknown. It appears to always
have a value of 0.

08b PSTR pszCmdLine

This field points to the command line passed to CreateProcess to start this
process. In most cases, the command line isjust the complete filename for the
process's EXE. In several cases, though, it's a pointer to an empty string (\0).

0Ch PSTR pszCurrDirectory
This field is a pointer to the current directory of the process.

10h LPSTARTUPINFOA pStartuplinfo

This pointer points to the process's STARTUPINFOA structure, which
is defined in WINBASE.H. A STARTUPINFOA structure is passed to
CreateProcess to specify the process's window size, title, standard file
handles, and so forth. This field points to a copy of that structure.

14h HANDLE hStdin

This is the file handle the process uses for the standard input device. If not
used (for instance, if thisis a GUI application), the handle value is -1.

18h HANDLE hStdOut

This is the file handle the process uses for the standard output device. If not
used (for instance, if thisis a GUI application), the handle value is -1.

1Ch HANDLE bStdErr
This is the file handle the process uses for the standard error device. If not
used (for instance, if this isa GUI application), the handle value is -1.

20h DWORD un2
The meaning of this field is unknown. It seemsto aways be 1.
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24h DWORD InberitConsole

Presumably this field indicates whether the process is inheriting the console
from its parent process (as opposed to getting its own console). See the
CREATE_NEW_CONSOLE flagto the CreateProcess function. In my
observations, this field was always 0.

28h DWORD BreakType

This field most likely indicates how console events (CTRL+C, and so on.)
should be handled. In the programs | ran, it was usually O, but it's occasionally
set to OxA.

2Ch DWORD BreakSem
Normally this field is O, but if an application calls SetConsoleCtrIHandler, this
DWORD points to a KERNEL 32 semaphore object (K320BJ_SEMAPHORE).

30h DWORD BreakEvent

Normally this field is O, but if an application calls SetConsoleCtrIHandler,
this DWORD points to a KERNEL32 EVENT object (K320BJ_EVENT).

34b DWORD BreakThreadlD

Normally this field is 0. However, if an application calls
SetConsoleCtrIHandler, this DWORD points to the thread object
(K320BJ_THREAD) of the thread that installed the handler.

38h DWORD BreakHandlers
Normally this field is 0. However, if an application calls
SetConsoleCtrIHandler, this DWORD points to a data structure allocated from
the KERNEL 32 shared heap. This data structure is a list of the installed con-
sole control handlers.

Let's now look at some more pseudocode for a few process functions,
this time related to the ENVIRONMENT_DATABASE we've just looked at.

GetCommandLineA

There's really not much to comment on in the GetCommandLineA code. The
function returns the command-line pointer that's stored in the environment
database.

Pseudooock for GatCommandLineA

return ppCurrent Process ->pEDB. pszOniLine
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GetEnvironmentStrings

There's not much to say about GetEnvironmentStrings, either. Like
GetCommandLineA, it just returns the relevant pointer from the environ-
ment database. However, it's interesting to note that the actual implemen-
tation and the SDK documentation say two different things. The SDK
documentation says:

When GetEnvironmentStrings is called, it allocates memory for a block of
environment strings. When the block is no longer needed, it should be called
FreeEnvironmentStrings.

Although this may be the case for Windows NT, it's certainly incorrect
for Windows 95.

Pseudocode for GetEnvironmentStrings

return ppCurrentProcess->pEDB. pszEnvi ronnent

FreeEnvironmentStringsA

The FreeEnvironmentStringsA function is a bit more interesting. Since
GetEnvironmentStrings doesn't really allocate any memory, there's nothing
that FreeEnvironmentStringsA has to do. However, just for sport, the func-
tion checks the input parameter string to see if it matches the pointer to
the environment from the environment database. If they don't match,
FreeEnvironmentStringsA  sets the LastError value to ERROR_INVALID
PARAMETER.

Pseudocode for FreeEnvironmentStringsA

|| Paraneters:
// LPSTR | pszEnvironnment Bl ock;

x_LogSoneKer nel Function( function nunber for FreeEnvironnmentStringsA );

i f( ppCurrentProcess->pEDB. pszEnvironment != |pszEnvironmentBl ock )
{

I nternal SetLastError( ERROR_I NVALI D_PARAMETER );

return FALSE;
}

return TRUE;
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GetStdHandle

GetStdHandle is just as straightforward as you probably imagine it to be.
Given a device ID to look for (stdin, stdout, or stderr), the function retrieves
the associated file handle from the environment database. If a bogus device
ID was passed, the function fails and sets the last error code.

Pseudocode for GetStdHandle

/1 Parameters:

Il DWORD f dwDevi ce
Il Locals:
/1 PENVI RONMENT_DATABASE pEDB;

pEDB = ppCurrent Process- >pEDB;

if ( fdwDevice = STD_INPUT_HANDLE )
return pEDB->hStdln;

else if ( fdwDevice == STD_OUTPUT_HANDLE )
return pEDB->hStdQut;

else if ( fdwDevice == STD_ERROR_HANDLE )
return pEDB->hStdErr;

Internal Set Last Error( ERROR_I NVALI D_FUNCTION );

return OxFFFFFFFF:

SetStdHandle

SetStdHandle is just a tad more interesting than GetStdHandle. The code first
verifies that the handle is a valid KERNEL32 object handle. How does it do this?
By calling x_ConvertHandleToK320bject, which returns a pointer to the associ-
ated KERNEL32 object if the handle is a valid handle. SetStdHandle never uses
the K32 object pointer, though - -a simple test for a NULL value is all that's
required. After verifying the hHandle parameter, the remaining code stuffs the
hHandle into the appropriate field in the environment database structure.



Pseudocode for SetStdHandle

// Paraneters:

11 DWORD | DSt dHandl e
11 HANDLE  hHandl e
Il Locals:
11 PVOl D pK320bj ect ;
I PENVI RONMENT_DATABASE pEDB;
if ( hHandle == STD_I NPUT_HANDLE )
{
pK320bj ect =

x_Convert Handl eToK320bj ect ( hHandl e, 0x00002140, 0x00000020 );
}
else if ((hHandle == STD OUTPUT_HANOLE) || (hHandle == STD ERROR HANDLE))

pK320bj ect =
x_Convert Handl eToK320bj ect ( hHandl e, 0x00002140, 0x00000110 );

el sef

I nternal SetLastError ( ERROR_I NVALI D_FUNCTI ON );
return FALSE}

if [ pK320bject )
{
pEDB = ppCurrent Process- >pEDB;

if ( 1DStdHandl e == STD_I NPUT_HANDLE )
pEDB- >hStdln = hHandl e;

else if ( IDStdHandl e == STD_OUTPUT_HANDLE )
pEDB- >hSt dOut = hHandl e;

el se

pEDB- >hSt dErr = hHandl e;

redwrn TRUE;

PROCESS HANDLE TABLES

At offset 44h in a PROCESS DATABASE is a pointer to the handle table for
that process. In this section, | use the term handle to indicate things that can
be referenced via the process handle table. Besides file handles, Windows 95
also creates handles to other system objects. Processes, threads, events, and



mutexes are just a few examples. In fact, there can be handles for any of the
KERNEL32 objects listed in the "KERNEL32 Objects" section earlier in
this chapter.

A handle value is theoretically "opaque." That is, the handle value can't
tell you anything about what it's referring to. For instance, given the handle
value 5, you can't tell whether it's a file handle or a mutex handle. However,
once you understand process handle tables in Windows 95, you can easily
correlate a handle value to what it's referring to.

A handle table for a Windows 95 process is quite simple. The first
DWORD of the table is the maximum number of handle table entries in the
current table. The default at process startup is 0x30 (48) handles. This doesn't
mean, however, that a process is limited to 48 open handles. When a process
opens more handles than will fit in the current handle table, KERNEL32.DL L
reall ocates the handle block of memory so the handle table can be grown. The
increments appear to be in multiples of 0x10. For example, after outgrowing
the initial Ox30 handle entries, the reallocated handle table has 0x40 entries.
There doesn't appear to be a significant upper limit on the number of handles.
| wrote a small program to open file handles in aloop, and it allocated well
over 255 handles (the old DOS limit) before | stopped it.

Immediately following the first DWORD of the handle table is an array
of 8-byte structures. Each structure consist of two DWORDS:

DWORD flags
DWORD pK320bject

The second field (pK320bject) isa pointer to one of the 17 possible types
of KERNEL 32 objects that | described earlier in the "KERNEL 32 Objects"
section. The first DWORD is access control flags for that object. The meaning
of the flags depends on what type of object the entry points to. For instance,
if the entry points to a process object (K320BJ_PROCESS), the flags are
the PROCESS_ xxx flags from WINNT.H (PROCESS TERMNATE,
PROCESS VM_READ, and so forth).

At this point, you might be suspecting what a handle value represents. If
you're guessing that the value of a handle is an index into the process handle
table, you're right. Once you know that, you can easily match up a handle
value with the type of KERNEL32 object that it refers to. An unused handle
table entry is filled with Osin both DWORDs. When allocating a new handle,
KERNEL 32 uses the index of the first empty slot in the table. Although
browsing through a process handle table isn't suggested programming
practice, the WIN32WLK program provides this capability. When using
Win32WIk, note the number and type of handles used by KERNEL 32.

123
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THREADS

Now that you've seen modules and processes, we can complete our tour of
fundamental KERNEL 32 data structures by looking at threads. Although
processes primarily represent ownership of things like file handles, an address
space, and so on, threads represent the execution of code through modules.
You see how all the pieces are interrelated? It's hard to isolate just one and not
drag in the others. For example, in the earlier description of processes, | had
to have forward references to threads and synchronization objects.

At an abstract level, threads are a convenient way to keep various portions
of your program running while other portions are waiting for some external
action to occur. By splitting up the various tasks that a process performs into
threads, you can usually eliminate things like polling loops. Polling loops waste
much of the CPU's time executing the same code repeatedly while waiting for
some event (like a key press) to occur.

At any given time, a thread is in one of three basic states. The first state
is when the thread is actually running. The actual CPU registers are where
the thread's registers are kept. When a thread isin the running state, all
other threads in the system are suspended.

The second state isthe "ready to run" state. In this state, there's no reason
why the thread couldn't be running -- except that some other thread is
currently using the CPU. In due time, the ready-to-run thread will get
control of the CPU.

The third state is the blocked state. When a thread is blocked, it's wait-
ing for something to happen. Until that thing happens, the scheduler won't
allow the thread to execute. The things that a thread blocks on are called
synchronization objects. The Windows 95 synchronization objects are critical
sections, mutexes, events, and semaphores.

| described the basic functionality of the Windows 95 synchronization
objects in Chapter 2, so | won't repeat myself here. In this book, | don't give
the same full treatment to the inner workings of synchronization objects that
| give to processes, threads, and modules. There are many good books, such
as Jeffrey Richter's Advanced Windows, that go over the details of using
synchronization objects; consult them if you'd like more information on this
topic. Inthis book, however, you'll just have to assume that synchronization
objects exist and that they work as described.

Initially, every process starts out with one thread. If the process wants, it
can create additional threads so that the CPU can execute through different
sections of the process's code at the same time. The standard example that's
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wheeled out at this point is that of aword processor. When it comes time
for aword processor to print, the program spins off another thread that
handles al the printing chores. This allows the primary thread to continue
interacting with the user, so he or she can continue working while the
printing takes place in the background.

Of course, if you're familiar with basic CPU architecture, you know
that a machine with just one CPU can't really execute in more than one
location at the same time. The illusion of multiple threads running simulta-
neoudly is provided by the VMM scheduler, which uses a hardware timer
and a complex set of rules to very quickly switch between different threads.

Microsoft claims that Windows 95 uses a timeslice of 20 milliseconds for
scheduling. That is, in the absence of other factors (like thread priorities),
each thread will run for 20 milliseconds before the system suspends it and
starts up a different thread. I'll talk a little bit more about thread scheduling
in the "Thread Priorities" section. However, I'll state up front that this book
doesn't provide an in-depth discussion of thread scheduling and the VMM
scheduler. Aswith synchronization objects, thisis a topic for another book
and another time.

Like processes, every thread is represented internally in KERNEL32.DLL
by a block of memory allocated from the shared KERNEL32 heap. This
memory block holds all the information KERNEL 32 needs to maintain for a
thread. (Actualy, the block contains a few pointers to information outside the
block, but you get the idea) This memory block is called a thread database
(TDB) in this book. (Note that, at different times, Microsoft has used TDB to
mean Task Database and Thread Database.) Aswith process databases, a
thread database isa KERNEL 32 object. Its first DWORD contains the value
6, branding the block as a K320BJ THREAD object.

If you're an advanced programmer who's poked around in the DDK or
used WDEB386 or Softlce/\W, you may have encountered another thread-
related data structure called a THCB (Thread Control Block). THCBs are
the ring O representation of threads. In Windows 95, threads are represented
by separate ring 0 and ring 3 data structures. The ring O components, such as
VMM.VXD, work with threads primarily via thread control blocks. The ring
3 components, such as KERNEL32.DLL, primarily use the thread database
that I'll discuss in the upcoming section called "The Thread Database." This
chapter describes ring 3 thread behavior and mechanics, and doesn't attempt
to cover the ring O side of threads.

Although processes are the primary K32 object that owns things, threads
also own (or are associated with) certain items. The first thing that springs
to mind when asked, "What would a thread own?" is a register set. As|
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mentioned earlier, at any given time athread is either executing or not exe-
cuting (pretty obvious, huh?). When athread is executing, its register set is
stored in the CPU's registers. That is, the thread's EIP value isthe value in the
EIP register. When a thread isn't executing, its registers need to be stored off
into memory somewhere. Therefore, each thread has a pointer to a memory
buffer where the thread's register values are stored when it's not executing.
Another thing every thread is associated with is a process. All the threads
in a process share access to the things that a process owns. For instance, a
process owns a memory context and has a private address space. All the
threads in the process run in the same address space. A process also has a
handle table for referring to files, events, consoles, memory mapped files,
and so on. All threads in the process share the same handle vaues. For
example, if handle value 3 refers to a memory mapped file, any thread in
the process can use handle value 3 to refer to that memory mapped file.
Threads also own many other things. Each thread has its own stack area,
its own window message queue, its own set of Thread Loca Storage values,
and its own structured exception handling chain. (In case you don't know
what the latter two items are, I'll be describing them shortly.) In addition, a
thread aso acquires and releases ownership of the various synchronization
objects that the thread uses during its execution. We'll go through all the things
athread owns when we look at the layout of athread database a bit later.

WHAT'S A THREAD HANDLE?
WHAT'S A THREAD ID?

Earlier in the chapter, | described the difference between a process handle and
aprocess ID. It turns out that the description | gave could easily be repeated
for thread and handles and thread IDs. Just replace the word "process" with
the word "thread" and you're al set. If you're at all unsure about the differ-
ence between a process handle and a process ID, go back and reread the
"What's a Process Handle? What's a Process ID?" section, since I'm going to
give just the summarized version for threads here.

The GetThreadHandle function returns a constant value (a "pseudohandle"
in Microsoft-speak) that can be used wherever atrue thread handle can
be used:
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Pseudocode for GetCurrentThread

x_LogSonmeKer nel Function( function nunmber for GetCurrentThread );

return OxFFFFFFFE;

Like GetCurrentProcessld, the GetCurrentThreadld would return a
pointer to the current thread database, except that the KERNEL32 coders
intentionally obfuscate (or obsfucate, which is the Microsoft misspelling)
the return value:

Pseudocode for GetCurrentThreadld

return TDBToTid( ppCurrentThread );

How does KERNEL 32 obfuscate the thread return value? Let's look:

Pseudocode for TDBToTid

/] Parameters:
/1 THREAD DATABASE * ptdb

if ( Obsfucator DWORD == FALSE |

DebugQut (" TDBToTi d() Called too early! Obsfucator not yet"
"initialized!" );
return 0}

if ( ptdb &1 )

{
_DebugOut ( "TDBToTid: This TDB looks like a TID (0% xh) Do a"

"stack trace BEFORE reporting as bug," );

/I Here's the key! XOR the obsfucator DWORD with the thread database
I/ pointer to make the TID value.

return ptdb ~ Obsfucat or DWORD;

If this looks amazingly similar to the PDBToPID function earlier in the
chapter, you're right. KERNEL 32 uses a single ObsfucatorDWORD to
"convert" process and thread database pointers into IDs. Once you figure
out what the ObsfucatorDWORD value is (and keep in mind that Microsoft



misspelled it), you can use it to convert either process or thread IDs into
useful pointers. Again, this isn't recommended programming practice, but
for the purpose of understanding how the system works, there's not much
of an alternative.

THE THREAD DATABASE

The thread database is a KERNEL 32 object (type K320BJ THREAD) that's
allocated from the KERNEL 32 shared heap. Like process databases, the
thread databases aren't directly linked together in a linked-list fashion. The
THREADB.H file from the WIN32WLK sources has a C-style structure defi-
nition for athread database. The format of a thread database is as follows:

0Oh DWORD Type
This DWORD contains 6, the KERNEL32 object type for a thread.

04h DWORD cReference

This DWORD contains the reference count for the thread. This isthe num-
ber of things that are currently using the thread structure for something (for
example, they have an open handle for the thread).

08h PPROCESS DATABASE pProcess
ThisPROCESS DATABASE isa pointer to the processthisthread belongsto.

0Ch DWORD pSomeEvent

This DWORD is a pointer to an event object (K320BJ_EVENT). Event
objects are passed to functions like WaitForSingleObject. It appears that this
event iswhat's actually waited on when you pass a thread handle to one of the
WaitForSingleEvent family of functions.

10h DWORD twExcept

This DWORD is a pointer to the head of the structured exception handling
chain. (Structured exception handling is awhole topic unto itself, so I'll defer
adiscussion of it until later in the chapter.) Note that this field also marks
the beginning of a TIB (thread information block) structure nested within the
task database. The TIB structure is also described later in this chapter.



14h DWORD TopOfStack

This DWORD holds the maximum (topmost) address in the stack area allo-
cated for this thread. The typical amount of address space reserved for each
thread's stack is 1MB.

18h DWORD StacklLow

This DWORD holds the lowest page aligned address in the stack area that
this thread's stack isusing. In a sense, this field is alow water mark -- by
subtracting this field from the TopOfStack field, you can get a sense of how
much stack the thread uses.

1Cch WORD WI16TDB

This WORD holds the Winl16 global memory handle (essentially, a selector)
for the Winl6 task database. As Chapter 7 explains, each process (be it
Winl6 or Win32) has both a 16-bit task database segment and a Win32
process database.

1Eh WORD StackSelector16

Win32 code needs to switch to a 16-bit stack before it can thunk down to
16-bit code. This WORD in the thread database holds the selector that
KERNEL 32 sets up as the 16-bit stack selector when thunking down to
16-bit code.

20h DWORD SelmanList

A pointer to the SelmanList for this thread. (Selman is short for "Selector
Manager.") The Selman component of KERNEL 32 seemsto be responsible
for managing lists of selectors that threads can allocate for various uses (for
instance, thunking between 16- and 32-bit code).

24h DWORD UserPointer

The precise meaning of this DWORD is unclear. However, the documentation
for the TIB structure says this field is available for use by application programs.
Remember, the TIB structure is nested within the thread database structure.

28h PTIB pTIB

This field points to the thread information block (TIB) for this thread. In
Windows 95, the TIB is within the thread database, so this pointer points
to another field in this thread database (the pvExcept field at offset 10h,
to be exact).

129
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2Ch WORD TIBHags
This WORD contains flags for this TIB. These flags are known:

Flag name and bit value Description
TIBF_WIN32 This thread is from a Win32 application.
0x0001
TIBF_TRAP Some sort of exception handling.
0x0002

2Eh  WORD Win 16MutexCount

This field is somehow related to the Win16Mutex (which is also known as
the Winl16Lock). Normally, this field is-1 for Win32 threads and O for
Winl16 threads.

30h DWORD DebugContext

If the process associated with this thread is being debugged, this field points
to a debug context structure. The format of this structure is unknown, but it
appears to have register values for the debuggee process in it. If the process
isn't being debugged, this DWORD is 0.

34h PDWORD pCurrentPriority

This field points to a DWORD that contains the current priority level of the
thread. The DWORD that this field points to is above address 0xC0000000,
which places it squarely in VxD land.

38h DWORD MessageQueue
The low WORD of this DWORD holds a Win16 global heap handle for the

thread's message queue. Message queues are how window messages move
through the system; they are described in Chapter 4. This field is closely
related to the W16TDB field at offset 1Ch.

3Ch PDWORD p TLSArray

This pointer points to the thread's TLS array. The entries in this array are
used by the TIsSetVaue family of functions. TLS is described later in this
chapter. The actual memory for the TLS array comes a bit later in the
thread database.

40h PPROCESS DATABASE  pProcess2

This DWORD contains a pointer to the process that this thread is associated
with. It seems to always be a duplicate of the pointer at offset 08h in the
thread database.
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44h DWORD Flags
This DWORD holds various flags for the thread. The following values
are known:

Flag name and bit value Description

fCreateThreadEvent Set if the thread is being debugged.
0x00000001

fCancelExceptionAbort

0x00000002

fOnTempStack

0x00000004

fGrowaUeStack

0x00000008

fDelaySingleStep

0x00000010

fOpenExeAslmmovableFile

0x00000020

fCreateSuspended CREATE_SUSPENDED flag to CreateProcess.
0x00000040

fStackOverflow

0x00000080

fNestedCleanAPCs APC = Asynchronous Procedure Call
0x00000100

fWasOemNowAnsi ANSI/0EM file functions
0x00000200

fOKToSetThreadOem ANSI/0EMfiJe functions
0x00000400

48h DWORD TerminationStatus

This isthe value that would be returned by calling GetExitCodeThread. The
thread exit code is the value returned from the function where thread execu-
tion begins. Alternatively, it can be specified when a thread calls ExitThread
or TerminateThread. While athread is still actively running, its exit code is

0x103 (STILL_ACTIVE).

4Ch WORD TIBSelector

This WORD isan extremely important field. It contains a selector that refer-
ences the current thread's TIB (thread information block). The TIB contains
vital information, such as the head of the exception handler chain for the
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thread. AsWindows 95 switches between threads, it updates the FSregister
to contain this value. By doing this, the current thread can always look up
information about itself by using the memory pointed at by the FS register.

4Eh WORD EmulatorSelector

This WORD might be a selector that points to a block of memory with
information about the current 80387 emulator state for the thread. This
data area probably includes an FSAVE-gtyle structure. On machines using
a math coprocessor, this field is always 0.

50h DWORD cHandles
The meaning of this DWORD is unknown. It appears to always be 0.

5h DWORD WaitNodeL ist

If the thread is waiting for one or more events to be signaled, this field
points to a linked list of event nodes stored up in VxD land. Each node
holds a pointer to an event object and a pointer to the thread that's
waiting on the event.

58h DWORD ud
The meaning of this DWORD is unknown. It's typically either O or 2.

5Ch DWORD RingOThreed
This DWORD holds a pointer to the ring O Thread Control Block (THCB)
for this thread.

6h PTDBX pTDBX

Thisfield points to a TDBX structure. The TDBX structure isVWIN32.VXD's
representation of athread. The TDBX structure is described in more detail in
Chapter 6.

64h DWORD StackBase

For Win32 threads, this DWORD holds the lowest possible address that the
thread's stack can use. By subtracting this value from the maximum stack
address (offset 14h), you can calculate how much address space has been
reserved for the stack. For Winl16 threads, this field is 0.

68h DWORD TerminationStack

Based on its name, this field contains the ESP value that the thread's termi-
nation should initially use. For Win32 threads, this value is the same as the
TopOfStack value (offset 14h). For Winl6 threads, this field holds an
address just below the shared KERNEL 32 heap.
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6Ch DWORD EmulatorData
Presumably, this field isa 32-bit linear address for the thread's 80387 emula-
tor data. If so, this field is related to the EmulatorSelector field (offset 4Eh).

70h  DWORD GetlastErnrorCode
This DWORD holds the value that GetL astError returns for the current
thread. This value can be set by calling Setl astError.

74h DWORD DebuggerCB
If athread is acting as a debugger thread (that is, if it's calling WaitFor-

DebugEvent), this field contains a pointer to a block of information used by
the debugger. The information in this field includes pointers to the debugger's
process database, thread database, and the debuggee's thread database.

78h DWORD DebuggerThread
If this thread is being debugged, this field contains a non-NULL value. The
meaning of the value isn't known because it's too low to be a valid pointer.

7Ch PCONTEXT TbreadContext

This pointer points to an Intel CONTEXT structure as defined in WINNT.H.
This structure holds the register values for the thread when the thread isn't
the currently running thread. This structure is read from and written to with
the GetThreadContext and SetThreadContext functions. This field is only
non-zero when the process is being debugged.

80h DWORD Exceptl16List

The exact meaning of this DWORD is unknown, although from the name,
it would appear to have something to do with exception handling. In my
tests, it was always 0.

8h DWORD ThunkConnect
The exact meaning of this DWORD is aso unknown. From the name, you
might think it has something to do with thunking. In my tests, it was always O.

8h DWORD NegStackBase
If you add the value of this field to the StackBase field (offset 64h), you'll

get FFEF9000. Don't ask me why.

8Ch DWORD CurrentSS

This DWORD holds a 16-bit stack selector for thunking from 32-bit code
down to 16-bit code. This field appears to be related to the very similar
StackSelector16 field (offset 1Eh). The difference in usage between the two
fields is currently unknown.
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9%h DWORD SSTable

This field is a pointer to a memory block containing information about the
16-bit stack to be used when thunking down to 16-bit code.

94h DWORD ThunkSS16

ThisDWORD contains yet another selector value used for thunking. In some
threads, it matches the value in the StackSelectorl6 field (offset 1Eh), while
in other threads it has the same value as the CurrentSS field (offset 8Ch).

9%8h DWORD TLSArray[64]
The TLSArray field is an array of 64 DWORDs. Each DWORD holds the
vaue that TLSGetVaue returns for a given TLS ID. For instance, the first

DWORD in the array is returned by TLSGetValue(0). The second DWORD
is returned by TLSGetVaue(l), and so on. TLSis described in a subsequent
section of this chapter.

198h DWORD DeltaPriority
This DWORD holds the difference in priority of this thread as compared to
the priority class of the owning process. Typical values for this field would be:

THREAD_PRIORITY_LOWEST

-2
THREAD_PRIORITY_BELOW_NORMAL -
THREAD_PRIORITY_NORMAL
THREAD_PRIORITY_HIGHEST 1
THREAD_PRIORITY_ABOVE_NORMAL 2

19Ch DWORD ung[7]
This stretch of DWORDs appears to dways be 0. The meanings are unknown.

1B8h DWORD pCreateDatal6
If nonzero, this field points to a structure with two 32-bit pointers:

00h pProcessinfo -- a PPROCESS_INFORMATION
04h pStartuplnfo -- a PSTARTUPINFO

In al my testing, however, the pCreateDatal6 pointer was aways O.

1BCh DWORD AHSuspendCount
This field is incremented each time SuspendThread is called and decremented
each time ResumeThread is invoked.
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1COh DWORD un6
The meaning of this DWORD field is unknown.

1C4h DWORD WOWChain

This field presumably has something to do with WOW (Windows On
Windows) support in Windows 95. WOW is the method by which
Windows NT runs 16-bit applications in their own protected address
space, which keeps them from potentially crashing 32-bit applications.
The field was always O during testing.

1C8h WORD WSSBig
Based on the name, this field contains a flat 32-bit selector for use as a stack
segment. However, the field was always 0 during testing.

1CAh WORD un’/
The meaning of this WORD is unknown. It may be just filler to keep the
subsequent fields DWORD aligned.

1CCh DWORD Ip16SwitchRec
The meaning of this DWORD is unknown, but based on the name, it probably
has some connection to Win16 thunking.

1D0h DWORD un8|[5]
These five DWORDS appear to always be 0. Their meaning is unknown.

1E4h DWORD pSomeCritSectl;

This field points to a critical section object (K320BJ CRITICAL_SECTION).
The critical section is different for each process. The purpose of this particular
critical section is unknown. This field seemsto always have the same value as
pSomeCritSect?2 (described below).

1E8h DWORD pwWinl6Mutex;
This pointer points to the Win16Mutex in KRNL386.EXE.

1ECh DWORD pWIN32Mutex;
This pointer points to the Krn32Mutex in KERNEL32.DLL.

1FOh DWORD pSomeCritSect2;

This field points to a critical section object (K320BJ CRITICAL_SECTION).
The critical section isdifferent for each process. This field seems to aways
have the same value as pSomeCritSect! (described earlier in the structure).



1F4h DWORD un9

This DWORD's meaning is currently unknown. It appears to aways be
set to 0.

1F8h DWORD ripString

From the name, you might think this field isa PSTR for a string that will be
used during a Fatal AppExit RIP. However, in almost dl cases, this field is 0,
and when nonzero, it doesn't point to a character string.

200h DWORD LastTIsSetValueEIP[64]

This array of 64 DWORDs is a parallel array to the primary TLS array at
offset 98h in the thread database. Each DWORD in this array corresponds
to a TLS index value, and each contains the EIP where the corresponding
TLS indexed value was last set from. The EIP value is retrieved from the
stack frame set up by TIsSetVaue.

A final note on the thread database: There's more than one way to get a
pointer to athread database. Besidesthe XOR'ing trick | alluded to earlier,
each Winl6 task database also contains a pointer to a thread database. At
offset 54h in a Winl6 task database isthe linear address of the thread database
for the task/process's first thread.

THE THREAD INFORMATION BLOCK (TIB)

Within the thread database, certain fields are immensely useful to running
programs. In fact, they're so useful that the Win32 architecture makes them
immediately accessible without looking them up in the thread database
structure. These fields are encompassed in a structure called the Thread
Information Block (or TIB, as KERNEL 32 refersto it). The fields of a
Windows 95 TIB encompass offsets 10h through 3Ch in a thread database.

How does application code accessthe TIB? If you've looked at much
assembly language output for compiled Win32 code, you've probably
noticed that the FS segment register is used quite a bit. Wait a minute! Isn't
Win32 supposed to remove segments from the programming picture?
Although the answer isyes, under the hood the Win32 architecture
(Windows NT, Windows 95, and Windows Win32s) dedicates the FS
register to pointing at the thread information block for the current thread.
Asit turns out, Win32 wasn't the first operating system to do this. 0S/2 2.0
did it long before Win32 arrived on the scene. Asyou might suspect, when
Windows 95 switches threads, the scheduler has to update the FSregister to
contain the selector that points to the new thread's TIB.



The primary use of the FS register and the TIB isto add entries to the
structured exception handling chain (which I'll describe later in the chapter).
The head of the structured exception handling chain is at offset O in the TIB,
s0 when you see assembler code using FS:[0], you know it's doing something
related to structured exception handling.

Two other fields in the Windows 95 TIB that are used quite extensively
are the pvQueue and pvTLSArray fields (offsets 28h and 2Ch, respectively).
The pvQueue field contains the queue handle for the current thread's message
queue. This field is used frequently by USER.EXE's windowing system code,
because in Windows 95 things like the focus window are stored on a per-thread
basis. The pvTLSArray field points to the thread local storage array in the
thread databases. The compiler vendors use it in conjunction with the .tls
section in the executable fileto provide transparent per-thread global variables.

Although the layout of the TIB structure can be inferred from the thread
database structure, it bears a brief summarization here. A C structure
definition can be found in TIB.H from the WIN32WLK sources. A formal
Microsoft definition for the first couple of items isin the NTDDK.H file
from the Windows NT 3.5 DDK (aong with a stern warning that the fields
must be compatible with OS2 2.0). This is apparently a remnant from the
early days of NT, when Microsoft was still trying to give the impression that
it cared about OS/2. (See Z. Pascal Zachary's book Showstopper for some
interesting stories on this particular topic.)

The TIB fields in Windows 95 are as follows:

00h DWORD pvExcept

04h DWORD TopOfStack

08h DWORD StackLow

0Ch WORD W16TDB

OEh WORD StackSelector16
10h DWORD SelmanList

14h DWORD UserPointer

18h PTIB pTIB

1Ch WORD TIBFlags

1Eh WORD Win16M utexCount
20h DWORD DebugContext
24h PDWORD pCurrentPriority
28h DWORD M essageQueue

2Ch PDWORD pTLSArray
30h DWORD pProcess (process database pointer)
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For a description of each of the fields, add 10h to the offset and look up
that offset in "The Thread Database" section earlier in the chapter. Note
that only some of these fields are common across al Win32 platforms.

THREAD PRIORITIES

The core scheduler in the Windows 95 Virtual Machine Manager (VMM)
has no real knowledge of processes. Instead, it concentrates on scheduling
the threads with the highest priority, without regard to what process they're
in. Put another way, processes don't reaIIy have a priority. Still, to the end-
user of these thread scheduling services (that is, to the application program-
mer), it's a useful abstraction to think of processes as having a priority. The
SetPriorityClass and SetPriorityClass functions act as interpreters between
the two views of process/thread priorities.

At any given time, the thread with the highest priority that isn't wait-
ing on something is the thread that's going to be run. To ensure a smoothly
running system and prevent many problems, the system changes the
priority of threads on the fly. For instance, a thread's priority may be
temporarily boosted when an 1/O operation it's waiting for completes.
Going into thread scheduling in any more detail than this could easily
require a large chapter of its own. Therefore, 1'm going to put off a
detailed discussion of thread priorities for another book (or perhaps a
future magazine article).

Within the Windows 95 VMM scheduler, there are 32 distinct priority
levels. These 32 levels are broken into four groups, known as priority
classes. Each priority class is associated with a specific priority level that is
the default priority for threads of that priority class. Within the priority
class, threads can vary from two below the default priority to two above.
(There are also some special cases such as THREAD_PRIORITY _LEVEL,
where a thread's priority can be bounced entirely out of its priority class.)
Unless specifically instructed to do otherwise, when the operating system
creates a process, the new process is given the
NORMAL_PRIORITY_CLASS.

The four priority classes, their default priority values, and their range of
priority values are as follows:
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Priority Default value Range of priority level
IDLE_PRIORITY_CLASS 4 2-6
NORMAL_PRIORITY_CLASS 9or7 6 - 10

(9 if foreground process;

7 otherwise)
HIGH_PRIORITY_CLASS 13 11 - 15
REALTIME_PRIORITY_CLASS 24 16 - 31

The thread priority of 1 isa special case. Threads that are nominally
of the IDLE_PRIORITY_CLASS, NORMAL_PRIORITY_CLASS, or
HIGH_PRIORITY_CLASS can be set to priority level | via the
SetPriorityClass function.

As a side note on Windows 95 priority levels, the 32 levels in the
Windows 95 scheduler don't correspond numerically to the values for the pri-
ority classesin WINBASE.H. For example, NORMAL_PRIORITY_CLASS is
0x20 in WINBASE.H. Windows 95's KERNEL32.DLL maps these values to
the appropriate Windows 95 thread scheduler priority vaue.

GetThreadPriority

GetThreadPriority is a simple function. Given a thread handle (which can
be for any thread in any process), the code converts the handle into a
pointer to the process database for that thread. Assuming the handle con-
version went smoothly, GetThreadPriority returns the value of the
DeltaPriority field (offset 198h) in the thread database. All this code is
wrapped by an EnterSysl evel and LeaveSysl evel to prevent problems with
an inopportune thread switch.

Pseudocode for GetThreadPnonty

Il Parameters:

1l HANDLE  hThread:
Il Locals:
Il PTHREAD_DATABASE pt db;

11 DWORD ret Val ue;
x_LogSomeKer nel Function( function number for GetThreadPriority );

_EnterSysLevel ( pKrn32Mutex );
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retValue = Ox7FFFFFFF;
ptdb = x_ConvertHandl eToK320bject( hThread, 0x20. 0);

if (ptdb )
retValue = ptdb->DeltaPriority;

LeaveSysLevel (  pKrn32Mutex );

SetThreadPriority

The SetThreadPriority code is broken up into four parts. First, the function
converts the thread handle into a thread database pointer. Second,
SetThreadPriority validates the passed-in new priority to seeif it's within the
allowable range. Third, the code uses the internal CalculateNewPriority func-
tion to convert the input priority parameter into one of the 32 thread priori-
ties used by the Windows 95 scheduler. We'll look at CalculateNewPriority
in the next section.

Finally, SetThreadPriority cals VWIN32.V XD to inform the ring O
components of the new priority. The mechanism by which KERNEL 32
calsinto ring 0 isthe VxDCall functions (for example, VxDCall0). Ring 3
components invoke Win32 VxD services by using VxDCall. In this case,
VWIN32.VXD provides aring 3 callable service to set athread's priority.
Win32 VxD services are new in Windows 95 and play a key part in the ring
0-ring 3 interactions. In fact, the new Windows 95 Win32 VxD services
are so important that much of Chapter 6 is devoted to describing them.
Because Win32 VxD services will be covered thoroughly a bit later in the
book, 1 won't dwell on the actual mechanics of VxDCall in this chapter.

Pseudocode for SetThreadPriority

/1 Parameters:

Il HANDLE  hThread

11 int nPriority;

/1 Locals:

/1 PTHREAB DATABASE pt db;
/1l DWDRD ret Val ue;

x_LogSomeKer nel Function( function nunber for SetThreadPriority );

EnterSysLevel ( pKrn32Mutex );



ptdb = x_ConvertHandl eToK320bj ect( hThread, 0x20, 0 );
if ( ptdb )
{

it (nPriority < THREAD BASE PRI ORI TY_M N)
& (nPriority > THREAD_BASE PRI ORI TY_MAX) )

if( (nPriority != THREAD BASE_PRI ORI TY_LOWRT)
& (nPriority != THREAD BASE_PRI ORI TY I DLE) )

Internal SetLastError(  ERROR_I NVALID_PRIORITY );
goto error;

ptdb->DeltaPriority = nPriority;
if ( ptdb->RingQOThread )
DWORD newAbsPriority = Calcul ateNewPriority(ptdb, ptdb->pProcess2);
/I Call into VWN32 to do the real work.
/1 Set_Thread_Wn32_Pri == OxO02A0021
VxDCal | O(Set Thread_Wn32_Pri, ptdb->RingOThread, newAbsPriority)
retValue = TRUE;
el se
error:
retValue = FALSE;
_LeaveSysLevel ( pKrn32Mutex ):

return retVal ue;

CalculateNewPriority

The CalculateNewPriority function encapsulates the rules for thread priorities
in the Windows 95 scheduler. Given a process and a thread, it calculates the
priority level (within the range of 1 - 31) that the thread should have. From
the process database, the function extracts the priority class for the thread
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(normal, idle, high, or realtime). To this base priority, it adds the thread's
delta priority. The delta priority is typically in the range of +- 2. After adding
the priority class priority to the thread's delta priority, the code makes sure the
new priority is within the expected bounds. It's worth noting that realtime pri-
ority threads get special handling here; that's because the range of realtime
priority levels is greater than the ranges of the other priority classes.

Pseudocode for CalculateNewPriority

// Paraneters:
/1" PTHREAD_DATABASE pt db;
/" PPROCESS_DATABASE ppdb;

/I Locals:
Il DWORD baseProcPri
11 DWORD sum
11 DWORD upperLimit, lowerLimt
baseProcPri = ppdb->BasePriority;
it ({baseProcPri 1= 4) &&
(baseProcPri 1= 8) &&
(baseProcPri 1= 13) &&
(baseProcPri 1= 24))
{
X_Assertion2(" ..\priority.c" );

sum = ptdb->DeltaPriority + ppdb->BasePriority;

if ( ppdb->BasePriority == 24 ) // Real time class thread?
{
upperLimt = 31
lowerLimt = 16
}
el se /1 Other priority class.
{
upperLimt = 15
lowerLimt =1

if ( upperLimt >= sum)
upperLimt = sum

if ( lowerLimt <= upperLimt )
return upperLimt;

el se
return lowerLimt;
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SetPriorityClass

The SetPriorityClass function lets the caller change the priority class for all the
threads of a process. The function starts by converting its hProcess parameter
into a PPROCESS DATABASE pointer. Using the pointer, the function deter-
mines the process's current priority class. If it's the same as the new priority
class, the function bails out because there's nothing to be done.

If the new priority class is different from the previous class, SetPriorityClass
plugs the default value for the new priority class into the BasePriority field of
the process database. But wait, there's more! Earlier, | mentioned that the
notion of process priority classes isjust an illusion, since the VMM scheduler
concerns itself only with threads, and not with processes. To bridge the two
views of priority levels, SetPriorityClass loops through each of the threads in
the process and calls into VWIN32.V XD to set the new priority for each
thread.

There's one slight twist to note here. Threads can have priorities that
differ slightly from the default class priority. This difference is kept in the
"DeltaPriority” field of the thread database (we'll look at this field later).
SetPriorityClass has to take into account each thread's priority delta when
calculating the new priority value for the thread. The CalculateNewPriority
function (just described) does this calculation.

Pseudocode for SetPriorityClass

/1l Paranmeters:

I HANDLE  hProcess

I DWORD fdwPriority

/1 Locals:

I BOOL retVal ue

/1 PPROCESS_DATABASE ppdb;

/1 PTHREAD_DATABASE pt db;

I DWORD newPriority

1 PK320BJECTLI STENTRY pKB20bj ect ;

x_LogSonmeKer nel Function( function nunmber for SetPriorityClass );
_EnterSysLevel ( pKrn32Mutex );

ppdb = x_ConvertHandl eToK320bj ect( hProcess, 0x10, 0 );

if ( ppdb )

{
retValue = TRUE;
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if ( fdwPriority == NORMAL_PRI ORI TY_CLASS )
goto Set Normal ;

if ( fdwPriority == IDLE_PRIORITY_CLASS )
goto Setldle;

if ( fdwPriority == REALTI ME_PRI ORI TY_CLASS )
goto Set High;

if ( fdwPriority == HI GH_PRIORITY_CLASS )
goto SetReal Ti ne;

/1 None of the allowable priorities was specified, so bonb
retValue = FALSE;

I nternal Set Last Error ( ERROR_I NVALI D_PRI ORI TY );

goto done;

Set Nor mal :

Setldle:

Set Hi gh:

if ( ppdb_>BasePriority == ) /I No change from previous
goto done;

ppdb->BasePriority = 8

goto Setlt;

if ( ppdb->BasePriority == 4 ) // No change from previous
goto done;

ppdb- >BasePriority = 4

goto Setlt;

if ( ppdb->BasePriority == 13 ) // No change from previous
goto done;

ppdb->BasePriority = 13;

goto Setlt;

Set Real Ti ne:

Setlt:

if ( ppdb->BasePriority == 24 ) // No change from previous
goto done;
ppdb- >BasePriority = 24

/1 Start looping through all the threads for this process.
pK320bj ect = x_Get Next Obj ectInList( ppdb->ThreadList, 0 );

while ( pK320bject )

{
ptdb = pK320bj ect->pObject;

out.

state?

state?

state?

state?



if ( ptdb->RingOThread )

I
/1 Calculate the new priority , taking into account the
/1 process's base priority and the thread's relative priority
newPriority = Cal cul ateNewPriority ( ptdb , ppdb ) ;

// Call into VWN32 to do the Dirty Deed (Done Dirt Cheap).

/1 VvxDCall 1D == 0x002A0021
VxDCal | 0( Set _Thread_W n32_Pri, ptdb->RingSThread, newPriority);

pK320bj ect = x_Get Next Obj ectInList( ppdb->ThreadList, 1 );

el se

retValue = FALSE;

done:

_LeaveSysLevel ( pKrn32Mitex );

return retVal ue;

GetPriorityClass

The GetPriorityClass function returns the priority class for the specified
process. After changing the hProcess parameter into a PPROCESS _
DATABASE, the function retrieves the priority class from the process
database. This priority level should be in the range of 1 - 31, which is
different from the xxx_PRIORITY_CLASS #define's in WINBASE.H.
Therefore, GetPriorityClass converts the VMM scheduler priority level
into the corresponding xxx_PRIORITY_CLASS flag.

Pseudocode for GetPnontyClass

11
11
11
11

Par anet ers:

HANDLE  hProcess
Local s:

DWORD r et Val ue;

x_LogSonmeKer nel Function( function number for GCetPriorityClass );
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retvalue = 0;
Enter SysLevel ( pKrn32Mutex );
ppdb = x_ConvertHandl eToK320bj ect( hProcess, 0x10, 0 );

if ( ppdb )
{
if ( ppdb_>BasePriority == 4 )
retValue = |DLE_PRI ORI TY_CLASS;
else if ( ppdb->BasePriority == 8 )
retValue = NORMAL_PRI ORI TY_CLASS;
else if ( ppdb->BasePriority == 13 )
retValue = HI GH_PRI ORI TY_CLASS;
else if ( ppdb->BasePriority == 24)
retValue = REALTI ME_PRI ORI TY_CLASS;

_LeaveSysLevel ( pKrn32Mutex );

return retVal ue;

THREAD EXECUTION CONTROL

The Win32 API provides a small set of APIs for modifying and querying the
execution status of other threads. At a low level, one thread can read and
write the registers of another thread (assuming the first thread has a valid
handle for the other thread). On a broader level, there are Win32 functions
that let you freeze and thaw the execution of other threads. Let's look at
these thread control functions now.

GetThreadContext and 1GetThreadContext

GetThreadContext enables one thread to obtain a copy of the register values
of another thread. At any given time, a thread is either executing or is sus-
pended. While a thread is in the suspended state, its register values are kept
in a data structure known as a thread context. The GetThreadContext func-
tion lets you read the values in a suspended thread's thread context structure.
As input, SetThreadContext takes a copy of a thread context structure (a
CONTEXT in WINNT.H).



The actual GetThreadContext isjust a parameter validation layer. It verifies
that the pointer passed in points to memory of sufficient size to hold a
CONTEXT structure. If so, the code jumps to the internal 1GetThreadContext
routine.

|GetThreadContext is a convoluted routine. It starts by converting the
hThread parameter into a thread database pointer. Then, it calls the
X_ThreadContext_CopyRegs to copy the input register set into the ring 3
CONTEXT structure for the thread. (x_ThreadContext_CopyRegs is
described in the next section.) In addition to copying the register in the ring
3 CONTEXT structures, 1GetThreadContext also callsinto VWIN32.VXD
to get the ring O version of these register. The reasons why there are both ring 0
and ring 3 versions of the registers isn't entirely clear.

After filling in the input CONTEXT structure, GetThreadContext verifies
that the CS and flags registers contain valid values. (In this case, valid means
that the CSregister is set to the selector used to execute ring 3 code.) The flags
register test is a smple check to make sure the V86 mode flag isn't on.

Pseudocode for GetThreadContext

/] Paraneters:

I HANDLE hThr ead

11 LPCONTEXT | pCont ext
Set up structured exception handling frame
Touch the first and last bytes that |pContext point to.
If a fault occurs, it's considered a bad pointer, and the exception
handl er returns FALSE;

Remove structured exception handling frane

goto | Get ThreadContext;

Pseudocode for 1GetThreadContext

/1l Paraneters:

I HANDLE hThr ead

1 LPCONTEXT | pCont ext
/1 Locals:

/1 PTHREAD_DATABASE pt db;
I BOOL retVal ue

/1l DWORD err Code;
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retValue = TRUE;

Xx_CheckNot SysLevel "W n16_Krn32_mutexes();

Xx_LogSomeKernel Function( function number for GetThreadContext );

EnterSysLevel ( pKrn32Mutex );

ptdb = x_ConvertHandl eToK320bject( hThread, 0x20, O );

if ( !ptdb )
{
retValue = FALSE;
}
el se /1 Found a valid process database.
{

/1 Is there a valid ThreadContext field in the thread
if ( ptdb->ThreadContext )

dat abase?

x_ThreadCont ext _CopyRegs( |pContext->ContextFlags,

pdtb->ThreadContext, |pContext );

el se Il ThreadContext is 0 in the
{

thread database.

if ( ptdb->DebugContext && ptdb->DebugContext. SomeField )

Il Are floating point or debug regs specified?
if ( IpContext->ContextFlags
& (CONTEXT_FLOATI NG_POINT | CONTEXT_DEBUG_REGI STERS) )

ptdb- >DebugCont ext. ThreadCont ext. Cont ext Fl ags

= (CONTEXT_FLOATING_POINT | CONTEXT_DEBUG_REGI STERS)

/1 Call VWN32 to do the copying.
Il _VWN32_Get _Thread_Context == 0x002A0814
retValue = VxBCallO( _VWN32_Get_Thread_Context,
pt db- >Ri ng0Thr ead,
&pt db- >DebugCont ext. ThreadCont ext )

if ( retvValue == 0 )
goto error;

x_ThreadCont ext _CopyRegs( |pContext->ContextFlags,

&pt db- >DebugCont ext . ThreadCont ext,
I pContext );



USER AND GDI
SUBSYSTEMS

t's a bit strange to start out a chapter with an apology, but
that's exactly what 1'm about to do. Asthe chapter title
implies, I'm going to dig into and describe various facets of the
Windows 95 USER and GDI components. The USER module
contains all the code responsible for passing messages around
the system and for managing windows. GDI is the core of the

Windows graphics system. Putting a window on the screen
requires an intense amount of cooperation between USER and
GDI. Therefore, as you can probably imagine, describing just
the topmost layer of the USER and GDI modules could easily
encompass two books. That's why I'm going to beg off even
attempting to describe how USER and GDI do much of their
magic. Instead, this chapter focuses on how the Windows 95
USER and GDI modules have evolved from their 16-bit
Windows 3.1 roots and have drawn from the Windows NT
USER and GDI components.

Windows 95 features significant new USER and GDI-like
functionality (such asthe new common controls) that | can't
even hope to cover in this book. | even half-jokingly suggested
to my technical reviewer that there's probably a market for a
book titled something like WndProc Internals. In that (purely
hypothetical) book, there'd be detailed pseudocode listings for
all the standard system window procedures (for example, the



button window, the tooltips windows, and so on). The closest we'll cometo
that topic in this chapter isthe desktop window procedure, for which I'll
show pseudocode a bit later on.

So, given that you now know what's not going to be covered, what
exactly is there to talk about? Lots, as it turns out. Just reimplementing the
basic code of the Windows 3.1 USER and GDI to accommodate the demands
of the Win32 AF put these modules through gut-wrenching changes. If you're
basicaly comfortable in your understanding of the way things worked under
Windows 3.1, this chapter should help you make a transition in your mental
mode to the new way things work in Windows 95. I'm going to partition the
chapter into two major parts (yes, you guessed it: USER and GDI). The USER
portion of this chapter turned out to be much larger because USER'schanges
were more dramatic. Plus, once you understand Windows 95's changes to
USER, it's not much harder to grasp how GDI has changed.

THE WINDOWS 95 USER MCODULE

Throughout the writing of this book, I've struggled to categorize the changes
to USER into neat compartments. Asit turns out, the changes to the USER
subsystem can't easily be placed into one or two specific categories. The
Windows 95 USER component is neither fish nor fowl. The vast mgjority of
the code for the messaging system resides in the 16-bit USER.EXEfilg, yet there
is 32-bit code scattered throughout this 16-bit module. Some parts of the
16-bit USER.EXE are virtually identical to Windows 3.1, while other pieces
have been radically reworked and bear no resemblance to the 3.1 USER.

The USER component of Windows 95 also includes the 32-bit
USER32.DLL that Win32 EXEs and DL L s interface with. You may have
heard that USER32.DLL isjust a bunch of thunks down to the 16-bit
USER.EXE. Although the vast majority of functions in USER32 are just
thunks to 16-bit code, there are also nontrivial functions implemented in
USER32.DLL with nary a thunk in sight. Well see several examples of this
later on.

Trying to put neat boxes around the design and implementations of the
16-bit USER.EXE and 32-bit USER32.DLL just doesn't seem possible. The
best that | can say is that the Windows 95 coders did their best to balance
the twin goals of backward compatibility and adherence to the Win32
specification as set forth by Windows NT. In many cases, backward com-
patibility and Win32 AP adherence are at odds with one another. This
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resulted in the inevitable design compromises and decisions that nobody is
particularly happy with. ("Class, can you say Win1l6Mutex?") All things
considered, though, | think the Windows 95 USER team did an admirable
job of balancing the twin requirements of compatibility and the Win32 API.
I doubt many programmers would want to take on such atask for themselves,
nor would they do as good ajob.

To get afed for the Windows 95 USER component, it helps to look at
USER in Windows 95's Win32 siblings. The Windows NT USER is fully
32 bit, and its primary requirement isto properly implement the Win32
API. Backward compatibility is nice but not absolutely essential. The 16-bit
USER.EXE component in Windows NT is implemented by thunks up to
the real USER code in NT's USER32.DLL.

On the other side of Windows 95, the (mostly forgotten) Win32s attempts
to provide as much of the Win32 AF as possible while residing atop the relent-
lesdy 16-bit Windows 3.1 USER.EXE. No changes to the 16-bit USER.EXE
are allowed for Win32s. The poor Win32s coders had to live with the majority
of their base code being frozen a year before the initial version of Win32s
shipped. (Talk about requirements being cast in stonel)

So where does the Windows 95 USER system fall between these two
points? While the Win32 purists (mysalf included) would have liked to have
seen Windows 95 go the Windows NT route, it wasn't an option. Windows
95 isintended as the mass-market successor to Windows 3.1, and sacrificing
backward compatibility simply wasn't an option. There are just too many
existing programs out there that rely on the idiosyncrasies and quirks of the
16-bit USER.EXE. (A typical Microsoft comment at this point would be
"See, we told you not to use undocumented stuff!")

Besides introducing incompatibilities with existing programs, Microsoft
makes another case for keeping the core of USER's functionality in the 16-bit
USER.EXE. Specificaly, code size. In general, 32-bit code takes up more
space because of the increased size of the operands for many instructions.
(To befair, this particular issue has been hotly debated, and one can come
up with numerous examples where a particular operation can be imple-
mented in fewer bytes by using 32-bit instructions.) On the whole, however,
the Microsoft coders felt that reimplementing USER's functionality in pure
32-bit code would bloat the code size by something like 40 percent. Given
that Windows 95 is supposed to run just as badly on a 4MB machine as

Windows 3.1 (oops, the Microsoft marketeers would want me to say "just
as well"), redoing USER as pure Win32 code (as Windows NT did) wasn't

an option for Windows 95.
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So, given that areal Win32 USER subsystem was out, the Windows 95
team did the next best thing. They started with the Windows 3.1 USER.EXE
code and, unlike the Win32s team, were allowed to modify it. Since
Windows 95's design necessitates at least an 80386, the Windows 95 USER
team went hog wild with USER.EXE. There are 32-bit instructions all
throughout USER.EXE's 16-bit code segments. (That's why you find so many
size-override opcodes (66h) in the Windows 95 USER.EXE code segments.)

The fact that USER.EXE uses 32-bit data offsets throughout much of its
16-bit code bears a closer look. Much of USER's code iswritten in C, and,
as you probably know, C compilers for the PC use memory models when
generating their code. A regular 16-bit C compiler like Borland C++ emits
16-bit code instructions, which use segments and access data with 16-bit
offsets. Even if the 16-bit compiler is allowed to generate 32-bit instructions,
the generated code still won't generate instructions that index more than
64K into a segment.

In contrast, 32-bit compilers use the flat memory model. In the flat model,
PC C compilers forget that segments exists. The code they generate never
explicitly references the code selector, data selector, or stack selectors (the
CS, DS, and SSregisters). The code in Windows 95's USER.EXE looks like
a hybrid of the 16-bit and flat memory models. That is, USER.EXE's code
resides in 16-bit segments, and the code explicitly uses segment registers. On
the other hand, the USER code aso contains instructions that address more
than 64K into a segment. Consider the following code snippet from
USER.EXE:

1ACA NOV AX, SEG 0021: 0000

1AD NOV ES, AX
1ACE NV EAX, ES: [ 062E]

1AD: QWP WORD PTR ES: [ EAX+46] , BX
1AD9:  INE 1ADC

1ADB.  RET

The size of the instructions (such as the 3-byte first instruction) prove
that this is 16-bit code. The first two instructions explicitly set up a segment
register to grab a global variable at offset 062Eh in USER's DGROUP. But
then the fourth instruction uses the EAX register as part of an address
calculation. In actual execution of this code, EAX does in fact contain a
value greater than 128K. Never before have | seen a compiler that can generate
what is fundamentally 16-bit code at the same time it uses 32-bit offsetsto
data. It makes me wonder if the Windows 95 USER team used a special
compiler developed by the languages division of Microsoft. (Update: An
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unnamed source told me after | had already written this chapter that such a
compiler actually exists at Microsoft.)

Although many changes to the 16-bit USER.EXE were made simply to
provide increased capacity (since running out of heap space was a chronic
Windows 3.1 problem), many of the changes in the 16-bit USER.EXE were
made solely to support the demands of the Win32 API. (Put another way,
the Windows 95 team had to catch up to the NT team.) For example, the
Win32 AttachThreadlnput function, which associates the input state of one
thread with that of another thread, has no Win16 counterpart. There smply
wasn't anything even remotely like it in any prior 16-bit version of Windows.
Yet Windows 95's 16-bit USER.EXE dutifully contains code that implements
AttachThreadlnput. USER.EXE isa modest DLL and doesn't export
AttachThreadlnput, yet USER32.DL L does support it. If you look closdly,
though, the AttachThreadlnput code in USER32.DLL is little more than a
thunk down to USER.EXE. USER32.DLL gets all the glory for providing
its part of the Win32 AF, while the Cinderella 16-bit USER.EXE does all
the work.

Y et another example of where the 16-bit USER.EXE acts on behalf of its
Win32 counterpart iswith resources. As you'll seein Chapter 8, the resources
stored in a Win32 Portable Executable (PE) file are organized in a completely
different format than in the 16-bit New Executable (NE) file layout. Yet, as
Chapter 7 shows, the 16-bit NE module database that Windows 95 creates
for 32-bit modules contains a pointer to the base of the resources within the
Win32 module in memory. Here's why: The 16-bit USER.EXE has taken on
the burden of supporting both the old 16-bit NE format resources aswell as
the new Win32 PE format resources. The resources-related functions in
USER32.DLL are relegated to the role of thunking down to USER.EXE.

USER32 thunking example

Since I'm on the subject of thunking, now is a good time to explain how
thunking works in Windows 95. Windows 95 relies heavily on thunks
between 16- and 32-bit code, so to redly understand the Windows 95
architecture, there's no avoiding thunks. Let's look at an example of a
typical function that USER32 usesto thunk clown to the 16-bit USER.EXE.
The function I've chosen to show is SetFocus. SetFocustakes one parameter,
and this parameter (an HWND) doesn't require any trandation of its value
to be used by the 16-bit code. (In Windows NT, this is a different story
altogether, but that's a subject for some future book.)
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The SetFocus function

The SetFocus function in USER32 is similar to many other USER32 functions
that thunk down to USER.EXE. In the debug version of USER32, the code
starts out by calling a logging function. If a particular flag is set somewhere
in USER32's data area, this function emits the string "[F] SetFocus' to the
debug port. The important part of the USER32 SetFocus code is loading the
CL register with an index into what is essentially a jump table of 16:16
addresses. In the case of SetFocus, the index value is OX7E. That means that
the Ox7E'th entry in the table is a 16:16 pointer to the 16-bit version of
SetFocus.

After loading CL with Ox7E, SetFocus JMPs to a small routine that I've
named ThunkToUSER16 One Param. This small code is a common entry
point for USER32 routines that take one parameter and thunk down to the
16-bit USER.EXE. All that ThunkTOUSER16_One_ Param does is push the
calling function's parameters and thunk index onto the stack and then call
another routine that I've named CommonThunk (and described next).

Pseudocode for SetFocus (32 > 16)
LogW n16ThunkFunctionl( "[F] SetFocus" ):

CL = 0x7E  // Thunking index for SetFocus.

goto ThunkToUSER16_One_Param

Pseudocode for ThunkToOUSER16 One Param

/I Paranmeters:
/I DWORD  paraml
/I DWORD  thunklndex // Actually in GL register.

return CommonThunk( paraml, thunklndex );

The CommonThunk code is so simple that trying to expressitin C
pseudocode would actually obscure its operation. For some unknown rea-
son, the code for this routine resides in USER32's data area. Perhaps this
code is built on the fly during startup. In any event, the routine's operation
is extremely simple. Firgt, it takes the thunk index (for example, Ox7E for
the SetFocus function) and uses it as an array index into a table of 16:16
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array and places that into the EDX register. Finaly, CommonThunk JMPs
to the QT_Thunk routine in KERNEL32.DLL (which is described next).

Code for CommonThunk

/1 This code actually resides in USER32's data area.

XOR ECX, ECX ;0 out ECX
MOV CL, [EBP - 04] ;7 Grab the thunk index (pushed by
;i ThunkToUSER16_One_Param).

MOV EDX, [ 8014E264+4* ECX] ;0 Index into the array of 16:16 pointers
;; into the 16- hit DLLs. Put the appropriate
; 16:16 pointer (e.g., SetFocus) into EDX

MoV EAX, of f set KERNEL32! QT_Thunk ;o Junp to the QT_Thunk routine
JWP EAX 7 in KERNEL32. DLL.

The QT_Thunk function

The QT _Thunk function is exported from KERNEL32.DLL. QT_Thunk is
a general-purpose function that's used by Win32 code that needs to thunk
down to Winl16 code. In other words, its use isn't restricted to just KERNEL 32
or USER32. In fact, if you look at the assembler output from the Win32
SDK's thunk compiler (THUNK.EXE), you'll see that it references and uses
the QT_Thunk routine.

The QT_Thunk routine is quite obviously coded in assembler and is
optimized for both space and speed. | briefly debated showing the raw
assembler version of the function in this section. However, it quickly became
obvious that the code would be impenetrable except to a very small group of
assembler hackers. Therefore, what you'll seein the following pseudocode is
a mix of C pseudocode and assembler. | did my best to convey the intent of
a fairly complex routine. If you really want to see what goes on, by all
means, set a breakpoint on QT_Thunk in Softlce/W (or some other system
debugger) and step through it. | guarantee that you won't wait long for the
breakpoint to be hit.

Looking at the routine from orbit (as a certain Microsoft employee
would say), the job of QT_Thunk is simple: Take the 16:16 address passed
into it in the EDX register and transfer control to that address. Of course,

191
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nothing is ever that simple, and there are other issues that need to be taken
care of. For starters, saving away the address that execution should return
to after the 16-bit code finishes would be very helpful. Likewise, it's a very
good idea to switch the stack from a flat 32-bit stack selector to a 16-bit
selector.

Moving in a bit closer to the routine (a "helicopter view," if you will),
QT_Thunk is divided into five distinct phases. First, in the debug version,
the code calls a routine that logs the call (assuming the right logging flag is
set, which it usually isn't). This section of code also verifies that the Thread
Information Block (TIB) selector (see Chapter 3) isthe same as the FS register.
If not, the routine complains (in the debug version, that is).

Phase 2 of QT_Thunk pushes the 16:16 address that's the ultimate target
of the thunk onto the stack. (We'll come back to this in phase 5.) Phase 2 aso
handles the preservation of the return address and the 32-bit register variables.
The 32-bit return address that control returnsto after the 16-bit code completes
isstored in an area of the stack that won't be touched. The register variables
that are saved away are ESI, EDI, and EBX. These are the commonly used
register variables that Win32 compilers expect will be preserved (see Chapter 3).

Phase 3 of QT_Thunk relates to acquiring the Winl6Mutex. As almost
everybody knows by now, whenever 32-bit code thunks down to 16-bit
code, the operating system needs to acquire the Win16Mutex. The
Winl6Mutex isjust a run-of-the-mill mutex semaphore that happens to
reside in KRNL386.EXE's data segment. By forcing all Win32 code that
thunks down to 16-bit land to acquire the Win1l6Mutex, Windows 95 can
guarantee that only one thread at a time is executing through the Winl16
system DLLs (as well as other 16-bit bit DLLS).

This is how Microsoft got around the problem of the 16-bit system
DLLs being written without multithreading in mind. The whole subject of
the Win16Mutex has been highly controversial, and I could easily write an
entire chapter on just this topic. I'll talk a bit more about this in the
"Messaging System Changes" section, but here I'm simply going to say that
the QT_Thunk routine is one of the places where Windows 95 acquires the
Winl6Mutex.

Phase 4 of QT_Thunk iswhere the routine switches from the flat 32
stack used by the Win32 code to a 16:16 stack for use by the Win16 code.
Since Win32 threads typically have 1IMB stacks, and the ESP at the time of
the thunk could be anywhere within that 1IMB, you can see that switching
to a 16:16 stack could be tricky. It's not sufficient to just allocate a 16-bit
stack selector during the thread's startup and set its base address at that
time. Instead, during the thunk to 16 bits, the QT_Thunk routine may need
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to adjust the base address of the stack selector used by the thread when
executing in 16-bit code. The base address of the 16-bit selector is set so that
it points to the same general linear address region that the ESP register was
using prior to the thunk. After fiddling with the stack selector as necessary,
QT_Thunk figures out an appropriate 16-bit SS:SP combination and loads
those values into the SS and SP registers.

Phase 5, the final phase of QT_Thunk, isto transfer control to the
intended 16:16 address that's the target of the thunk. As | showed in phase 2,
the 16:16 target address was stored in EDX upon entry to QT_Thunk and
was subsequently pushed on the stack. QT Thunk jumps to the 16:16 address
viathe standard RETF trick. Before transferring control to that address,
though, the QT_Thunk code zeros out all the nonessential segment registers
(DS, ES, FS, and GS). It wouldn't do to hand the target 16:16 function a DS
register set up with a nice, juicy flat 32 selector for the function to scribble
on. It's expected that the 16:16 function will set up the segment registers
however it needs to.

Pseudocode for QT_Thunk
// On entry, EDX contains the i6:i6 address to transfer control to.
1/
/I Phase 1. logging and sanity checking
/1
if (bit 0 not set in FS:[TIBFlags] )
goto soneplace else; /I Not interested in that here.
PUSHAD /I Save all the registers.

SomeTracelLoggi ngFunction( "LS', EDX, 0 ); /I EDX is 16:16 target.

/I Make sure that the FS register agrees with the TIB register stored
[l in the current thread database.

if | (ppQurrentThread ->TIBSelector != F§)
& (ppCurrentThread != SomeKERNEL32Variable) )

{ _DebugQut( SLE_M NORERROR,

"32=>16 thunk:  thread=%4x, fs=%, should be %\n\r",
ppCurrent Threadld, FS, ppCurrentThread->Ti bSelector ); }

POPAD Il Restore all the registers.
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I
/I Phase 2. saving away the return address and register variable registers

/1
poP DWORD PTR [ EBP- 24] [l Grab return address off the stack
Il and store it away for later use.
PUSH DWORD PTR [soneVari abl e] 1 2?22
PUSH EDX /I Push 16:16 address on the stack. The RETF
/I at the end will effectively JW to it.
MoV DWORD PTR [EBP-04],EBX // Save away the common
MoV DWORD PTR [EBP-08],ESI  // conpiler register variables.
MoV DWORD PTR [EBP-0C], EDI
11
/I Phase 3. Acquiring the Wnl6Mitex
/1
PUSHAD,  PUSHFD Il Save all registers.
_CheckSysLevel ( pWnl6Mitex )
POPFD, POPAD Il Restore all registers.

FS: [W nl 6Mut exCount] ++;
if ( FS:[Wnl6MutexCount] == 0 )
GrabMutex( pWnl6Mitex );

PUSHAD, PUSHFD Il Save all registers.

_CheckSysLevel ( pWnl6Mitex )

POPFD, POPAD Il Restore all registers.

/1

/I Phase 4: Saving off the old SS:ESP and switching to the 16:16 stack
/1

Calculate the 16:16 stack ptr. Set EBX for the SUB EBP,EBX instruction below
MoV DX, WORD PTR [EDI->currentSS] /' Load DX with 16 bit SS

MoV DI, SS /I Save away the flat SS value into D.
[l (The callee is expected to preserve it.)

MoV SS, DX /I Load SS:(E)SP with the 16 bit stack ptr.
MoV ESP, ESI

SUB EBP, EBX /1 Adjust EBP for the thunk.

MoV S, FS [l Save away FS (TIB ptr) register into S.

[l (The callee is expected to preserve it.)
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/I Phase 5 Junping to the 16:16 bit code
11

G = FS =ES =DS =0, // Zero out the segment registers.

RETF Il Effectively does a JW 16:16 to the address
/I passed in the EDX register,

After the 16-bit code does its stuff, it needs to return to the 32-bit code.
There's a whole other section of code that goes through those motions.
Although | could go through it here, it's not terribly exciting. It's also
important to note that during this example of thunking to 16-bit code, there
weren't any flat 32 pointer parameters that would have needed conversion
to 16:16 addresses. The thunking code for that is understandably more
complex, and we won't get into it here.

32-bit heaps

Perhaps the biggest and most drastic change to the USER subsystem is the
addition of 32-bit heaps. You're probably aware that any Win32 program
can access and use 32-bit heap services provided via the Win32 HeapX XX
API (for example, HeapAlloc, HeapFree, and so on). What you may not
know is that the 16-bit USER.EXE and 16-bit GDI.EXE also use 32-bit
heaps to store certain items. You heard that right. The 16-bit USER.EXE
and GDI.EXE actually thunk up to 32-bit KERNEL32.DLL to allocate
memory from special 32-bit heaps set up especially for the use of the 16-bit
USER and GDI components. Although these particular heaps are intended
solely for USER's and GDI's use, they share the exact same format as a
Win32 program's GetProcessHeap heap. For instance, you can use the
WALKHEAP program from Chapter 5 to walk the USER or GDI 32-bit
heaps (although you would have to locate them first, which I'll show how
to do later).

Why go to al this trouble with 32-bit heaps? In versions of Windows prior
to Windows 95, all allocated memory used by USER and GDI came out of a
standard LocaAlloc style heap with a maximum size of 64K. Needless to
say, this put quite a crimp on how many windowing and graphics system
objects could be kept around at any given time. By moving these large objects
to 32-bit heaps, Windows 95 significantly improves the capacity of the system.
Each of these specidly created heaps is 2MB, so capacity shouldn't be a
problem for awhile.
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USER.EXE actually uses two separate 32-bit heaps. One of these heaps
stores WND structures. There's aWND structures for every window in the
system. (Well look at WND structures a bit later in this chapter.) The other
USER 32-bit heap is for storing menus. GDI.EXE has just one 32-bit heap,
which it usesto store fonts and regions. Like WNDs and MENUSs on the
USER side, fonts and regions are relatively large, so moving them out of the
16-bit heaps makes sense.

If the addition of 32-bit heapsto the 16-bit components of Windows 95 is
big news, then the location of those heaps is even more interesting. You see,
when accessing data in the 32-bit heaps, USER and GDI don't use the flat
mode linear addresses of theitems. Instead, USER and GDI continue to usethe
same DS selector that they use to access their regular 128K DGROUP. How do
they get away with that? By using a rather interesting arrangement, the 32-bit
WND heap and 32-bit GDI heaps start exactly 128K past the 16-bit DGROUP
area. If this sounds a bit weird, perhaps Figure4-1 will make it clearer.

As| mentioned earlier, USER and GDI don't use 32-bit flat pointers to
items in their 32-bit heaps. Rather, they store offsets relative to the base
address of the USER or GDI DGROUP selector. These offsets are, of course,
32 bits. For example, USER's 16-bit (128K) DGROUP area has a maximum
sizeof 64K. The 32-bit WND heap starts 128K past the end of the 16-bit
DGROUP area. That means that the lowest possible WND structure offset
that you would find in Windows 95 is 0x20000. In actual use (as you'll see
in Chapter 5), the first couple of paragraphs of a Win32 heap are used for
bookkeeping, so a more typical WND structure offset would be something
like 0x20924. Sincethis offset isn't aflat linear address, the offset is meaning-
less unless the selector (that is, USER or GDI's DGROUP) is also known. Of
course, if you know the linear address of USER's or GDI's DGROUP segment,
you can add that value to the offset of an object in a 32-bit heap and access
the data object with aflat linear address. The SHOWWND program introduced
later in this chapter does just that.

Let's prove that the 32-bit WND heap really starts 128K above the reg-
ular DGROUP and that it's really a standard Win32-style heap. To do this,
we'll use Softlce/W. To start out, we need to find the base address of USER's
DGROUP segment. And to find this information, we need to first find USER's
DGROUP handle/sdlector. As Chapter 7 will show, the DGROUP for a module
can be extracted from the 16-bit module database.

The Softlce/ W MOD command applied to USER yields the following:

:mod user

hMod  PEHeader Modul e Nane EXE File Name

17CF USER C: \ W NDOWE\ SYSTEM user . exe
1857 0147:81537DB8 USER32 C: \ W NDOWS\ SYSTEM USER32. DLL
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USER 32-bit WND heap rZMB

USER’s DGROUP selector
spans entire range

; Offset 0x20000

HWND pointer conversion table
(array of 32-bit USER DGROUP 64K
relative pointers)

Offset 0x10000

USER 16-bit DGROUP heap

(classes, QUEUEMSGs, etc.) L 64K

USER static data
(global variables, etc.)

Offset 0

Figure 4-1
USEREXEs 16 and 32 bit heap configuration.

We now know that USER's module handle is 17CE At offset 8 in a
module database is a near pointer to the 10-byte segment record for the
DGROUP segment, so let's dump that out:

tdw 17cf: 8
17CF: 08080088 0180 10D9 C341 0021 157C 0808 1F42 0815 oA LL.B.L.

Okay. At 17CF:180 is the 10-byte segment record for USER's DGROUP.
The last WORD of the segment record is the handle assigned to that segment.
Dumping that segment record gives us
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cdw 17cf: 180
17CF: 00000180 4042 0B02 0177 157C 16:C6 0005 800C 000F B2, | e

So, now we know that USER's DGROUP handle is 16C6 (and that the
corresponding selector is 16C7). Let's get the linear address of that selector
with the Softlce/W LDT command (also, note that the limit of the segment
is greater than 64K):

(ldt 16c¢6
16C7 Datal6 Base: 81D09000  Li mF0021FFFF DPL=3 P RW

Knowing that USER's DGROUP is at linear address 0x81D09000, we can
add 0x20000 to it to obtain the starting address of the USER32 window heap.
Let's test this out by feeding the address to the Softlce/W "*Heap 32" command:

~heap 32 81d29000
Heap: 81D29000 Max Size: 2048K Committed: 16K Segments: 1
Addr ess Size EIP TID  Owner
81D290E0 00000088 BFFA0A27 0001 hpWwal k+082D
81D29178 00000058 BFF71AA6 0001 | GetLocal Ti me+0942
81D291E0 00000058 BFF71AA6 0001 | GetLocal Ti me+0942
81D29248 0000005C BFF71AA6 0001 | GetLocal Ti me+0942
810292B4 00000058 BFF71AA6 0004 | GetLocal Ti me+0942
81D2931C 00000058 BFF71AA6 0007 | GetLocal Ti me+0942
81D29384 00000060 BFF71AA6 000A | GetLocal Ti me+0942
81D293F4 0000005C BFF71AA6 000A | GetLocal Ti me+0942
81D29460 00000058 BFF71AA6 000A | GetLocal Ti me+0942
81D294C8 0000005C BFF71AA6  000A | GetLocal Ti me+0942
81D29534 0000005C BFF71AA6  000A | GetLocal Ti me+0942
81D295A0 0000005C  BFF71AA6  000A | GetLocal Ti me+0942
81D2960C 0000005C BFF71AA6 000A | GetLocal Ti me+0942
81D29678 00000058 BFF71AA6 000A | GetLocal Ti me+0942
rest of output omtted...

As you can see, Softlce/W certainly didn't complain about the address we
fed it, and, in fact, it printed out results that look quite reasonable. In partic-
ular, notice how all the blocks are somewhere in the neighborhood of 0x58
bytes. As we'll see later, 0x58 is the minimum size of a WND structure. The
blocks that are slightly bigger can be explained by their use of window extra
words (see the cbwWndExtra field in the WNDCLASS structure, which is used
to register a class). By all accounts, it looks like there really is a Win32 heap
residing 128K above the start of USER's DGROUP segment.

At this point, you're probably wondering why the 32-bit heaps start
128K past the end of the USER or GDI DGROUP segments. (You were
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wondering, weren't you?) Why not start the heap right after the 16-bit
128K DGROUP area ends? Here's the answer in a nutshell: Handles!
Although the WND structures themselves are accessed using 32-bit offsets
from USER's DGROUP, this pesky backward compatibility thing means
that HWNDs must be 16 bits.

In Windows 3.x and earlier, an HWND was nothing more than an offset
into USER's DGROUP segment. Clearly that won't work when the WND
structures are at least 128K into USER's combined 16-/32-bit DGROUP. To
alow a 16-bit value (such as an HWND) to be mapped to a 32-bit offset,
USER and GDI use the 64K region between their 16-bit DGROUP and the
32-bit heaps as a handle table. Specifically, a handle value (like an HWND)
isjust an offset into the handle table region. As Figure 4-2 shows, at the
offset pointed to by a handle, you'll find the 32-bit offset (relative to the
appropriate DGROUP) of the actual data.

To prove this point about handle tables, let's again turn to Softlce/W.
Let's pick the desktop HWND and look it up through the handle table. The
Softlce/W WND command provides a hierarchical view of the window list,
with the desktop window at the top. In the following output, the desktop
window's HWND is 0x80:

> hwnd
W ndow Handl e hQueue SZ QOwner Class Nane W ndow Procedure
0080(0) 1437 32 MSGSRV32 #32769 17B7:571C
00B4( 1) 1A4F 32 EXPLORER Shell _TrayWhd 1457: 0140
00B8(2) 1AF 32  EXPLORER Button 1457: 01AE
00BC( 2) 1M4F 32 EXPLORER TrayNotifywhd 1457: 01C4

rest of windows onitted.,.

Now, if what | said earlier is true, we should be able to add the HWND
value to 0x10000 and, at that offset in USER's DGROUP, find a DWORD
with the WND struct's address. 0x10000 + 0x0080 =— 0x10080, so let's
dump memory at 16C7:10080:

:dd 16c¢7: 10080
16C7: 00010080 0002: 0178 0002: 01E0 0002: 0248 0002: 02B4 Xooooon,

Ignoring the ":" (colon) that Softlce/W stuck in (it's trying to show the
value as a 16:16 pointer), the offset of the WND struct appears to be at
0x20178. Since USER's DGROUP is at linear address 0x81d09000, this
would place the WND struct at linear address 81D29178. Looking back at
Softlce/W'swalk of the 32-bit user heap that | showed earlier, you can see
that 0x81D29178 isindeed the address of a block in the heap. Once again,
it looks like everything checks out.
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Converting an HWND into a 32-bit
USERS32 relative pointer

»| WND object \ USER 32-bit
(Offset 0x207c4) window heap

HWND handle table
> (64K past start of
USER DGROUP)

Offset 0x80 - 0x207c4

16-bit USER DGROUP

Figure 4-2
The 32 bit offset (relative to the appropriate DGROUP) of the actual data is found at the
offset pointed to by a handle.

When it comes to GDI's 32-bit heap, this same handle table mechanism
is essentially the same for objects that GDI keeps in the 32-bit heap. For
instance, regions are kept in a 32-bit heap and are referred to by an HRGN
structure. You could apply a similar set of steps to the HRGN to find the
actual linear address of the region structure.

If the handle table region is 64K and each handle isredlly a pointer to a
4-byte DWORD, that would make the maximum number of handles equal
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to 16384 (65,536/4 — 16,384). Microsoft claims that you can now have up
to 32,767 windows and 32,767 menus, 0 | don't know how they're coming
up with these numbers. Regardless, what's not mentioned isthat other system
limitations will most likely be hit before you manage to create 16 thousand
(or 32 thousand) windows.

Earlier, | mentioned that USER also has a 32-bit menu heap. The menu
heap area and the handle table region are operationally identical to the USER
window heap (although at a different address, obviously). The only thing
missing is a 64K 16-bit DGROUP sitting beneath the handle table. While
you might think it was nice of Microsoft to break menus out into their own
separate 32-bit heap, this isn't as big a change as you might imagine. In
Windows 3.1, menus were already broken out into their own 16-bit heap.
In Windows 95, the only change is that the size of the menu heap increased.
Incidentally, the selector to the base of the menu heap can be found by one
of the UserSeeUserDo subfunctions that I'll describe later in this chapter.

If the 32-bit heaps used by USER and GDI are functionally the same as the
heaps of Win32 applications, it makes sense that the KERNEL 32 functions
for operating on Win32 heaps would be used for the USER and GDI heaps
as well. Indeed, this turns out to be the case. When USER allocates memory
for aWND structure, the code that implements the HeapAlloc function in
KERNEL32.DLL iscalled viaathunk. However, USER and GDI don't thunk
up to KERNEL 32 directly. Rather, KRNL386.EXE provides a set of undoc-
umented exported functions that take care of calling the KERNEL 32 heap
code. The KRNL386 functions are the following:

KRNL386.209 -- Loca32Alloc
KRNL386.210 -- Loca32ReAlloc
KRNL386.211 -- Loca32Free

KRNL386.213 -- Locad32Trandate (Trandlate a handle into a
16:16 address)

KRNL386.214 -- Loca32FreeQuickly

Although the function names start with Local 32, they redly call into the
equivaent HeapX XX function (for instance, Local32Alloc calls HeapAlloc).
Chapter 5 shows that the Win32 local heap functions are just a thin wrapper
around the Win32 HeapX XX functions. Of specid note in the list of KRNL386
32-bit heap functions is function 214. This function appears to create the net
effect of marking a block as free, without actually thunking up to KERNEL 32.
However, certain key things aren't done by this routine, such as adding the
block to the free list.
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The mysterious
GetFreeSystemResources issue

Having covered 32-bit heaps, we now have enough background information
to look at the mysterioudy growing FreeSystemResources issue. | say myste
rious, because the average FreeSysemResource number seemsto have jumped
in Windows 95, athough under the hood there doesn't seem to be any reason
for it. Well look at free system resources early on in this chapter, sinceto
most nonprogrammers, the "free system resources' are the only notion they
have of USER and GDI. If the free system resources go up, it must be good,
right? Not so fast!

The free system resource number is really just a fancy term for the
amount of memory left in various systems heaps, specified as a percentage.
In Windows 3.1, the free system resources was the smallest value of severd
percentages. The percentages in question were the amount of free spacein
the USER DGROUP heap, the USER menu heap, the USER string heap
(which is apparently gone or not important in Windows 95), and the GDI
DGROUP heap. Out of those heaps, the heap with the smallest percentage
free became the free system resources.

In Windows 95, the calculation for FreeSystemResources starts out on a
somewhat similar track, but toward the end it takes an unexpected turn. In
a nutshell, the FreeSystemResources in Windows 95 starts out looking like
it's the lowest percentage free among five separate heaps:

1) The USER 16-bit DGROUP heap
2) The 32-bit window heap

3) The 32-bit menu heap

4) The 16-bit GDI heap

5) The 32-bit GDI heap

Since the three 32-bit heaps are dl 2MB in size, their percentage freeis
usually a ridiculously high value, like 99 percent. Therefore, for all intents
and purposes, they don't count toward the free system resource calculation.
That leaves only the 16-bit USER and GDI DGROUP heaps. Whichever one
has the smaller percentage will dictate the free system resource percentage.
Since there's till quite a few items floating around in the USER and GDI
DGROUPs, they shouldn't have values anywhere near 96 percent free
(which is a typical value you might see in the Explorer About box after
you first start Windows 95).



At this point, 1'd suggest you try a small experiment. Boot up Windows 95
and immediately start up CALC, or Explorer, or some standard application
that comes with the system. Choose Help|About to get the About dialog
that displays the free system resource value. Typicaly, under Windows 95
you'll have a value like 96 percent. If that sounds a little high, you're right.
Asyou'll sein the pseudocode for GetFreeSystemResources later on, neither
USER nor GDI have anywhere near 96 percent free in their heaps.

So just what exactly is going on here? To make a long story short,
Windows 95 is "cooking the books." Rather than simply report the lowest
percentage free among the heaps, the Windows 95 free system resources isa
relative number. You're no doubt asking, "Relative to what?" The Windows 95
free system resources value that is reported is a percentage relative to how
much was free after the system booted. Specificaly, after the system has
booted and Explorer has done its thing, Windows 95 takes a snapshot of what
the real percentage free is. Subsequently, when you query the system for the
free system resources, it reports the percentage free, relative to the original
snapshot value.

Let'slook at an example. Say that Windows 95 is up and running and the
true free system resource value (ala Windows 3.1) is 75 percent. Let's aso say
that, at some later point, you've started some applications, and there's now
only 50 percent free in one of the heaps. Windows 95 will report the free sys-
tem resources as 66 percent (50/75) rather than as the true 50 percent. If this
isn't an attempt to put a positive spin on things, | don't know what is. Perhaps
Microsoft feelsthe need for its customers to believe that Windows 95 really
has eliminated the free system resources problem. Sure, Windows 95 improves
the situation with its 32-bit heaps, but not that much.

Lest | be accused of Microsoft-bashing, here's an alternative explanation
for why Microsoft changed the way that the free system resource value is cal-
culated: There's a well-defined maximum amount of memory that's available
for system resources. The act of starting up and creating windows like the
desktop and the tray window consumes some of this memory. Since there's no
way to reclaim this memory, why report it to the unsuspecting end users? The
new free system resource value can be viewed as being more accurate from the
end users' perspective. If the end users have 50 percent resources free, then
they've used up about half of the available capacity. The end users don't know
(and probably don't care) that the system itself takes up some of the free
system resources.
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The GetFreeSystemResources function

Now that we know basically what's up (pun intended) with the new free
system resource calculation, let's look at the details of how Windows 95
comes up with that value. The GetFreeSystemResources is implemented in
the 16-bit USER.EXE (when necessary, SHELL 32.DLL thunks down to it
to get the value it displays in the system utility About boxes). The function
itself isjust a standard parameter-validation layer stub like | described in
Chapter 3. After checking that a correct argument was passed to it,
GetFreeSystemResources JMPs to the |GetFreeSystemResources code.

| GetFreeSystemResources has three distinct sections of code. The first
section consists of coming up with percentage-free values for the USER and
GDI components. The USER percentage free is the lowest percentage free of
the USER 16-bit DGROUP, the 32-bit window heap, and the 32-bit menu
heap. The GDI percentage free isdone by calling a 16-bit GDI.EXE function
called GDIFreeResources. At the end of this section of code, the function
has one free resource value for USER and another for GDI.

The second section of 1GetFreeSystemResources is where the function
does the adjustments that take into account how much USER and GDI heap
space was taken up by system components at startup. The key to this section
of code istwo USER.EXE global variables; 1've named the variables
base USER FSR percentage and base GDI_FSR_percentage. These two
values initially start out with a value of 0 in USER.EXE's data segment. If
they're 0 when 1GetFreeSystemResources is called, the function doesn't do
any adjustment to the USER and GDI percentage free values it calculated
earlier. However, if these two global variables are nonzero, they contain the
percentage free in the USER and GDI heaps after Windows 95 booted. If
they're nonzero, |GetFreeSystemResources divides the boot-up time version
of these values by the current USER and GDI percentage free values to get a
relative percentage.

When | first saw these global variables, my first question was, "Who the
heck sets them?' Would you believe the Explorer process? (Even if you don't
e the Explorer window on the screen, Explorer is still there as a running
process.) Now mind you, Explorer doesn't reach down into USER's DGROUP
segment and set the base USER_FSR_percentage and base GDI_FSR_
percentage values directly. Rather, it lets USER.EXE do it itself. How does it
do this? At some point when Explorer decides that it's sufficiently set up, it sends
a window message with a MSG number of 0x400 (WM_USER) to the desk-
top window procedure. Asyou'll see later, the desktop WNDPROC handler
for the WM_USER message sets these two global variables. The ramifications
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of this are mind boggling. If you have a process or a DLL that calls
GetFreeSystemResources before the desktop WM_USER message is sent,
you'll get a distinctly different value than after the message is sent.

The third section of 1GetFreeSystemResources is where the function uses
the parameter passed in. If you specifically request the USER or GDI free
resources (GFSR_USERRESOURCES or GFSR_GDIRESOURCES), the
code returns the appropriate value calculated earlier. If you ask for
GFSR_SYSTEMRESOURCES, the function returns the smaller of the
USER and GDI percentages.

Pseudocode for GetFreeSystemResources

/| Parameters:
/I UNT fuSysResource

/'l Is the input parameter within range?
if ( (fuSysResource < 0) || (fuSysResource > 2)

/I Calls LogParamError.
Handl eParamError( ERR_BAD_VALUE );

/I JMP to the real code.
return |GetFreeSystemResources( fuSysResource )

Pseudocode for IGetFreeSystemResources

/| Paranmeters:
Il UINT fuSysResource
/1" WORD gdi ResourcePercentage, userResourcePercentage

11

/I Phase 1. Getting USER and GDI's percentage free
11

if ( UserTraceFlags & Ox200 )
_DebugQut put (  DBF_USER, "Get FreeSystemResources" );

userResourcePercentage =
Get Percent Freel6Bit Heap(hlnstanceW n); Il Get 16 bit DGROUP % free.

[l Call GDI and let it do its heap free calculations.
gdi ResourcePercentage = GPlIFreeResources( 0 );
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/I Take the lesser of the USER's DGROUP and the 32 hit nenu heap.

Il (Gee, | wonder which one it will be???)
if (GetPercentFree32BitHeap(hMenuHeap) <

user Resour cePercentage )

user Resour cePercentage = GetPercentFree32BitHeap(hMenuHeap);

/' Now take the lesser value of the previous calculation and the
/I percentage free in the 32-bit window heap.

if (Get?ercentFree32BitHeap(hW ndowHeap)

< userResourcePercentage )

user Resour cePercentage = GetPercentFree32BitHeap( hW ndowHeap );

11

/'l Phase 2 Cooking the books
/1

/I Adjust the percentages so that they're
/I free after booting. This mght be an at
/I like it has nmore free system resources
if ( base_USER_FSR percentage )

relative to the percent
tenpt to make Wndows 95 |ook
than Wndows 3.1.

{ userResourcePercentage = Ml Div( userResourcePercentage, 0x100,

base_

gdi ResourcePercentage = MiIDiv( gdiRe
base_

if ( userResourcePercentage > 99 )
user ResourcePercentage = 99;

if ( gdiResourcePercentage > 99 )
gdi Resour cePercentage = 99;

11

Il Phase 3
Il

switch ( fuSysResources )

case GFSR_SYSTEMRESOURCES:
return mn( userResourcePercentage,

case GFSR_GDI RESOURCES:
return gdi ResourcePercentage;

case GFSR_USERRESOURCES:
return userResourcePercentage;

default: return fuSysResources; }

USER_FSR_percentage );

sour cePercentage, 0x100,
GDI _FSR_percentage )}

gdi Resour cePercentage );



The GetPercentFreel6BitHeap and
GetPercentFree32BitHeap functions

The GetPercentFreel6BitHeap and GetPercentFree32BitHeap functions are
two helper routines used by |1GetFreeSystemResources. Both functions expect a
parameter specifying the heap of interest. The GetPercentFreel6BitHeap func-
tion uses the undocumented GetHeapSpaces function described in Chapter 5
of Undocumented Windows (Schulman, Maxey, and Pietrek). It considers the
ratio of free space (in K) to total space (also in K) to be the percentage free.
The GetPercentFree32BitHeap is a little more sophisticated. It uses the same
basic code that the Windows 95 16-bit TOOLHELP function exports as the
Local32Info function. This code returns dwMemCommitted, dwTotalFree,
and dwMemReserved fields for the heap in question. The dwMemCommitted
and dwMemReserved fields seem to aways be the same, and the dwTotal Free
value is usually right up there in value. After subtracting the dwTotalFree
field from the dwMemCommitted field, the function divides the result by the
dwMemReserved field. Since these values are all nearly equal, the GetPercent-
Free32BitHeap function typically returns values such as 98 or 99 percent.

Pseudocode for GetPercentFreel6BitHeap

| | Paraneters:

/I HGLOBAL hHeap

/1 Locals:

/1 DWORD freeK, total K

/I DWORD  myDWORD

nyDWORD = Get HeapSpaces( hHeap ); // See Undocumented W ndows,
/I Chapter 5.
freeK = LOWORD(nyDWORD) [/ 1024:

total K = HIWORD(myDWORD) / 1024:

return (freeK * 100) / totalK

Pseudocode for GetPercentFree32BitHeap

/] Parameters:

/I HGLOBAL hHeap

/1 Locals:

/I LOCAL32I NFO |ocal 32Info;
/' WORD percent Used;
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/I Call the same function that TOOLHELP.DLL's Local 32Info uses.
local 321 nfo.dwSi ze = sizeof( LOCAL32INFO );
if ( KRNL386_Local 32Info( &l ocal 32Info, hHeap ) == 0 )

return 0;

if ( local32lnfo.dwMenmReserved = 0 ) /" Some problem here officer???
return 0;

percent Used =
Cal cul at ePercent age(
100 * (local 32Info.dwMemCommited - |ocal 321 nfo.dwTotal Free),

| ocal 321 nfo. dwMemReserved );

Il percentUsed is typically some ridiculously low value, like 1% Thus
/I this function wusually returns 99% free for 32 bit heaps.

return 100 - percentUsed;

Getting Free System Resources from 32-Bit Code:
Thunking Without the Thunk Compiler

Believe it or not, Windows 95 doesn't provide a way for 32-bit applications to get the Free
System Resources (FSR) value easily from a 32-bit program. Even when the standard
Windows 95 utilities display the FSR in their About box, they're getting the value from a 32-
to-16-bit thunk in SHELL32.DLL. If you're writing a 32-bit program and want to calf an
existing 16-bit system bit function (such as GetFreeSystemResources), you could spend a
couple of hours (or days)learning the Windows 95 thunk compiler, and then write a pair of
thunking DLLs. Ugh. There's got to be a better way.

As | discuss in "The SetFocus function" section, USER32.DLL thunks dawn to USER.EXE
all the time, yet it doesn't have separate 16- and 32-bit DLLs for thunking. Instead, the 32-bit
SetFocus code uses the QT _Thunk function, which | described earlier in "The QT_Thunk
routine” section. You can use this very same routine in your own programs, although it's a
bit trickier to use than your standard Win32 API function. It's an undocumented function
(although you'll see that the THUNK.EXE thunk compiler emits references to it), and it
requires that you use a bit of assembler to call it.

Calling QT_Thunk in your code requires you to do two things. First, you have to put
the 16:16 address to call into the EDX register. Second, you need to ensure that the code
you're calling QT _Thunk from has an EBP stack frame set up and has at least 0x3C bytes
of bcd storage that you're not relying on. This second requirement is because QT_Thunk
builds the convoluted slack frame for calling the 16-bit code in the region below where
your EBP register points at.
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To show calling QT_Thunk from your own program, | wrote the FSR32 program, which
uses QT_Thunk to get the free USER and GDI system resources. The code for FSR32 is a
single source file, FSR32.C, and is short enough to show here. To compile FSR32, use the
following Visual C++ command line:

c fsr32.c k32lib.lib thunk32.1ib
Alternatively, you can use the BUILDFSR.BAT file included on this book's source disk.

/.

/! FSR32 Matt Pietrek 1995
Il FILE: FSR32.C

#define WN32_LEAN AND MEAN
#include <w ndows. h>
#include <stdio.h>

#pragma hdrstop

typedef int (CALLBACK *GFSR PRQC)(int);

/1 Steal some #define's from the 16 bhit WNDOAS. H
#define GFSR_GDI RESOURCES 0x0001
#define GFSR_USERRESOURCES 0x0002

/I Prototype sonme undocumented KERNEL32 functions.
HI NSTANCE WNAPI  LoadLibrary16( PSTR );

void WNAPI FreelLibraryl6( H NSTANCE );

FARPROC WNAPI Get ProcAddress16( H NSTANCE, PSTR );
void __cdecl QT_Thunk(void);

GFSR_PROC pfnFreeSystenResources = 0;  // Ve don't want these as locals
in

HI NSTANCE i nst User 16; /I" main(), since QT_THUNK could
WORD user_fsr, gdi_fsr; /I trash them..
int main()

[
char buffer[0x40]

buffer[0] = 0, // Mke sure to use the local variable so that the
/I conpiler sets up an EBP frane.

Continued
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Continued from previous page

hinstUserl 6 = LoadLibraryl6("USER. EXE");
if ( hinstUser16 < (HI NSTANCE)32)

{
printf( "LoadLibraryl6( failed!\n" );
return 1;
}
FreelLibraryl6( hinstUser1§; /I Decrenment the reference count.

pf nFreeSyst emResources =
(GFSR_PROC)  Get ProcAddress16(hl nst User 16,
" Get FreeSyst enResour ces");
if ( !pfnFreeSystenResonrces )

{
printf("GetProcAddressl6() failed \n"
return 1

_asm |
push GFSR_USERRESOURCES
nmv edx, [pfnFreeSystenmResources]
call QT_Thunk
nmv [user_fsr], ax

push GFSR_GDI RESOURCES

nmv edx, [pfnFreeSystenmResources]
call QT_Thunk
nmv [gdi _fsr], ax

printf( "USER_FSR  %u%bt GD FSR %w%An", wuser_fsr, gdi_fsr );

return Q

The output from FSR32.C looks like this:

C: \ NEWBOOK\ USERGDI >FSR32. EXE
USER FSR 90% @ FSR 90%



A couple of things in the FSR32.C code need to be discussed. First, how is FSR32.C
getting the address of the 76-bit GelFreeSystemResources function from 32 bit code?
FSR32.C uses three undocumented KERNEL32 functions (LoadLibraryl6, FreeLibraryl6, and
GetProcAddress16) to work with the 16-bit system DLLs. Appendix A provides a fairly com

plete list of the undocumented functions in KERNEL32. In order far FSR32 to successfully link

to these undocumented functions, it needs the K32LIB.LIB import library that you first saw in
Chapter 3. (This library is discussed in Appendix A.)

To ensure that there's enough space on the stack for QT_Thunk to play its funny games
with, FSR32.C declares a local array of Ox40 characters that it doesn't use for anything.
The QT _Thunk code can bash this memory with impunity. Any variables that are important
lo FSR32.C are declared as globals, and so can't be trashed by QT_Thunk. (I learned this
lesson the hard way!)

FSR32.C makes the actual call to QT_Thunk using inline assembler code. The reason
FSR32.C doesn't make a regular C call to QT_Thunk is because EDX needs to be set up with
the ) 6:16 addresses to call beforehand. You could theoretically just load EDX with one line
of inline assembler before calling QT_Thunk normally. However, you'd be relying on the
compiler to not trash the EDX register before the CALL instruction executes.

As a final note, be advised that this code doesn't do anything tricky tike passing
pointers to 16-bit code. The Win32 API functions that thunk down lo 16 bit code, and that
pass pointers to 16-bit DLLs, have elaborate code for setting up alias selectors and so

forth. The main point here is that if you're going to do anything at all tricky, | suggest that

you use the thunk compiler, which really is the proper way of doing things. The above
example passes only one parameter, and thai parameter doesn't require any translation lo
be used by the ]6-bit code. Examples of parameters that would need to be translated
include pointers and window message values. In short, think carefully before you decide to
bypass the thunk compiler, and use Windows 95 thunks directly.

The mixed 16-/32-bit nature of the
windowing system
Earlier, | said that WND structs are stored in 32-bit heaps and that their

offsets, relative to USER's DGROUP, are therefore greater than 64K. | also

said that HWNDs are limited to 16-bit values, so that the region between

the 16-bit DGROUP and the window heap is used as a handle table to convert

HWNDs to usable pointers to WND structures.

At this point, it's important to stress the bi-modality of the windowing

system with regards to this mixing of 16- and 32-bit code/data. The first
thing that needs to be clarified is that the 16-bit HWND values are used
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throughout the system. It doesn't matter whether or not a Win16 or a
Win32 application is running; the HWNDs being passed around are | 6-bit
values and are offsets into the window heap handle table. Let me state this
again to make it perfectly clear: An HWND isan HWND isan HWND. It
doesn't matter whether you're in Winl16 or Win32 codes HWNDs are 16-bit
values, and they are not ssimply offsets into USER's DGROUP as they were
in Windows 3.1.

Now that you know that HWNDs are truly 16-bit handles everywhere,
I can tell you that internally, USER.EXE often converts these HWNDs into
32-bit pointers and passes those around. These 32-bit pointers are pointers
relative to the USER's DGROUP selector, not flat 32-bit pointers. A perfect
example of where USER uses these special 32-bit pointers is in the WND
struct itself. The first four fields of aWND structure are the window's parent,
owner, child, and sibling windows. In these four fields, USER stores 32-bit
pointers (not 16-bit HWND values) to the appropriate parent, owner, child,
and sibling windows. This is most likely for performance reasons, since USER
would need to convert the HWNDs to a pointer anyhow to traverse through
the window hierarchy. I'll come back to the window hierarchy later on.

Of course, while USER may internaly use 32-bit pointers to WND
structures, it still has to use 16-bit HWNDs when interfacing to the outside
world. Therefore, there has to be a quick and easy method to go from a
16-bit HWND to a 32-bit pointer, and vice versa. Indeed, there is. You'll see
this a bit later when we look at some pseudocode for selected windowing
functions (both 16- and 32-bit).

A tough issue that comes up when trying to support both Winl6 and
Win32 applications in the same system is the differences in the window
procedures. A Winl6 application has a window procedure that, when dl
the typedef names have been stripped away, looks like this:

WndProc16( unsigned short hWnd,
unsigned short wiMsg,
unsigned short wParam,
unsigned long IParam );

A Win32 application on the other hand, has a WNDPROC that looks
like this:

WndProc32(  unsigned [ong hWd,
unsigned long wMsg,
unsigned Tong wParam
unsigned long |Param ),
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So the $128,000 question is What happens when a Win32 applica-
tion does a SendMessage to a window in a 16-bit program? Obviously,
there's going to be some problem unless the parameters are rearranged
and/or truncated. Likewise, if a 16-bit application sends a message to a
Win32 application, most of the parameters pushed on the stack will
need to be widened (the hWnd, wMsg, and wParam parameters). Since
applications can't be expected to handle these details, the job falls to
USER.EXE.

Another related problem is window subclassing. Windows programs
have long subclassed the windows of other applications. The basic idea of
subclassing is that a program uses GetWindowL ong(GWL_WNDPROC) to
retrieve the current WNDPROC callback address for a window and store that
value away. Next, the program uses SetWindowL ong(GWL_WNDPROC)
to change the window's WNDPROC address to the application's subclass
procedure. Now, here's the problem: The WNDPROC of a window created
by a 32-bit application is a 32-bit linear address. If a 16-bit application
were to change the WNDPROC address of a 32-bit window to a 16:16
address, there's obviously going to be a sticky situation. The 32-bit code for
caling the WNDPROC is expecting a flat 32 linear address, and calling a
16:16 segmented address as a flat 32 linear address is certainly not going
to work.

To prevent these obvious problems, USER.EXE creates a small code
stub for each window that's created with a 32-bit WNDPROC. This stub is
16-bit code and contains the 32-bit linear address for the real WNDPROC
that the Win32 application uses as its WNDPROC. For example, here's the
stub for Explorer's tray window:

tu 1457:140

1457: 00000140 PUSH 00401DFA : A 32 bit WNDPROC address.
1457: 00000146 PUSH 00030000

1457:0000014C JMP 0127: 7555

And a bit later on in the segment:

‘u 1457:156

1457: 00000156 PUSH 0040180D ; A 32 bit WNDPROC address.
1457:0000015C PUSH 00030000

1457: 00000162 JMWP 0127: 7555

Asyou can imagine, the address 0127:7555 is some sort of thunk rou-
tine (in KRNL386.EXE) that converts the parameters for the Winlé WND-
PROC cadl into parameters of the form that a Win32 WNDPROC expects,
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and then callsthe address specified in the thunk. As for the segment that
these thunks reside in, the segment was allocated from the global heap by
USER.EXE, and a code segment alias selector (0x1457) was created for it.
So what does dl this mean? If you look in the WND structure of any
window, you'll always find a 16:16 address given for the WNDPROC.
However, if you look at the memory contents at that 16:16 address, you
can determine whether this is a regular Win1l6 WNDPROC or a thunk up
to a Win32 WNDPROC. Of course, this has ramifications for the
GetWindowL ong(GWL_WNDPROC) function: Depending on whether it's
caled from aWinl6 program or aWin32 program, it has to respond with
the appropriate address.

Messaging system changes

One of the more dramatic changes in the USER subsystem of Windows 95
(as compared to prior versions) is how window messages are passed around.
I call the code that posts, sends, and processes messages the messaging system.
The best news about the Windows 95 messaging system is that it eliminates
the synchronous nature of messaging for Win32 applications. In 16-bit
Windows, only onetask at atime can execute. That task hasto explicitly
give up control by caling one of the messaging APIs. Typically, a task yields
by calling GetM essage or PeekMessage in its main loop, athough SendMessage
can aso cause a task to yidd.

The problem with this model is that a task that doesn't regularly yield
(that is, pump messages) prevents other tasks from executing. This has the
effect of hanging the input system. As long as the Winl6 task isn't calling
GetMessage or PeekM essage, nobody else can execute. The task that takes a
krug time to finish some processing renders the rest of the system usdless.

When Windows NT came aong, the NT team reworked the USER com-
ponent so that yielding and scheduling weren't affected by whether a task
calls GetMessage or PeekMessage. A Win32 program can take its sweet
time processing a message without adversely affecting other processes. After
Windows NT had this functionality, there was no way that Windows 95
could go out the door without also having the same improved behavior.

Of course, if 16-bit applications are to continue to run correctly on
Windows 95, these messaging system changes couldn't be made to apply to
Winl6 applications. Too many Winl6 applications rely on the cooperative
multitasking model, where an application doesn't yield until it's ready to.
Therefore, only Win32 programs are allowed to process messages at their
own pace (or not process them at all) without affecting the rest of the system.
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One of the ways that Windows 95 creates this dual mode behavior (Winl16
applications cooperatively multitask, while Win32 applications pre-eruptively
multitask) is viathe Winl6Mutex and thread scheduling. At any given time,
the Windows 95 thread scheduler has scheduled the highest priority thread
that isready to run. One of the things that can make a thread not ready to
run is when it's waiting to acquire a mutex semaphore (such as the
Win16M utex).

Whenever a Winl6 task is executing, it owns the Win16Mutex (actualy,
to be more accurate, when any 16-bit code is executing, the Winl6Mutex is
owned). When there's a Winl6 task running, all the old-style rules about
requiring the task to cal GetMessage or PeekMessage still apply in order for
another 16-bit task to be able to run. However, just because a Winl6 task is
holding the Win16Mutex doesn't mean that the thread scheduler won't
switch away from it. When a Win32 thread is executing through regular
32-bit code, it doesn't need to own the Winl6Mutex. Therefore, even if a
Winl6 task isn't pumping messages in a timely manner, at least 32-bit
threads can continue to run. Other 16-bit applications are of course blocked.

Now, here's the problem with this setup. Since the messaging system
code isin the 16-bit USER.EXE, a 32-bit application that's using a message
processing loop needs to acquire the Win1l6Mutex before it can get down to
the Winl6 USER.EXE. Therefore, this pre-emptive multitasking is only
partial. If athread is doing calculations or other work that doesn't require
thunking down to 16-bit DLLs like USER.EXE, the thread is pretty much
impervious to badly behaved applications that don't pump messages.
However, if a Win32 thread needs to call down into USER, GDI, or some
other 16-bit component, it needs to acquire the Winl1l6Mutex, and that
thread is blocked until the Win16Mutex becomes available. Thus, a badly
behaved 16-bit application can still effectively block other applications from
executing (assuming those applications are using messaging system or
related functions).

What we have here in Windows 95 is a pre-emptive multitasking system
with a potential army of Achilles heels. That hedl isWin 16 applications that
don't pump messages in a timely manner. Although you can't get rid of the
Winl6Mutex altogether, you can work to eliminate as many Win16 tasks
from your system as possible. By minimizing the time spent with the
Winl6Mutex acquired, you're also minimizing the chance that a badly
behaved application will hang the input system.

One of the design improvements that Microsoft claims to have made in
Windows 95 isthe addition of a "Raw Input Thread" (a.k.a., the RIT). In all
the Microsoft diagrams that depict messaging coming into the system, inter-
rupt handlers are shown depositing messages into a central system queue.
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Then, a separate thread (the RIT) continually monitors that thread, retrieves
messages, and distributes the message to the appropriate thread's message
queue. (I'll get to the details of message queues in just the next section.)

Although the RIT sounds nice in theory (and is supposedly the way
Windows NT does things), I've been unable to conclusively verify its exis-
tence in Windows 95. | have found a function in KERNEL32.DLL called
DispatchRITInput. However, setting a breakpoint on this routine and
checking the current thread when the breakpoint is hit reveals that it's not
called by a single thread. Rather, a wide variety of application threads are
the current thread when DispatchRITInput is called. Ultimately,
DispatchRITInput thunks down to the Dispatchlnput routine in the 16-bit
USER.EXE. | tried setting a breakpoint there, and although the breakpoint
went off nearly constantly, it was still called in a variety of different thread
contexts. | tried similar experiments on other internal messaging system
functions in USER and was unable to find a particular routine that was
called only in the context of a single system thread. Eventually, | broke
down and asked one of the Windows 95 developers about the RIT, and he
had this to say:

There is a real RIT but if we can process common stuff on some random
thread, we do that for speed/efficiency instead of scheduling the RIT. That's
why you see Dispatchlnput being called in a variety of contexts. We only defer
things to the RIT as a last resort.

Unauthorized Windows 95 and the
Win 16Mutex Problem

On page 552 of Unauthorized He then goes on to say, "a Windows
Windows 95, Schulman takes some of my 95 system (at least Windows 95 Beta-l)
PC Magazine and Microsoft Systems always has two running Winl6 tasks,
Journal articles to task for being somewhat TIMER and MSGSRV32."
incorrect about the Winl6Mutex. He From Microsoft Systems Journal,
quotes several statements | made, including Schulman  quotes something | wrote in
this one fram PC Magazine: Microsoft Systems Journal:

... the sooner you move your applications to 32 bits, the The USER and GDI code wil execute quickly and release
better. If a system doesnt have any 16-4it programs ur the Winl6Mutex. No 32.bit thread will ever hold and hog




He then goes on to show a small
Win32 program (W16LOCK) that in fact
does acquire the Winl6Mutex and hold
on to it for as long as desired.

These are both valid points, and
deserve a response. The first point (where-
in a Windows 95 system always has at
least two Winl6 tasks) has changed
slightly. In more recent builds, Windows
95 really uses only one 16-bit task,
MSGSRV32. (You may have a 16-bit
MMTASK task on your system, but it's not
required, and | have terminated it without
adverse system effects.) The one important
Winl6 task (MSGSRV32) is the task that
allows you to start programs from the DOS
prompt. To see if MSGSRV32 could really
be a problem, | used Sofilce/W to set a
hardware write breakpoint on the CurTDB
variable in KRNL386.EXE. The breakpoint
was further qualified to go off only when
the HTASK of MSGSRV32 was written to it.
By doing this, whenever MSGSRV32 (the
lone 16-bit task in the system) became the
active task, the breakpoint would be hit. In
the majority of cases, the only way | was
able to get MSGSRV32 to consistently
become the current task was by starting
applications from a command prompt.
MSGSRV32 also became the current task
very sporadically at other times.

In looking at the code for
MSGSRV32, | didn't notice anything that
would indicate a desire for MSGSRV32 to
hang around and not process messages in

a timely manner. The only thing even close
to this that i saw was when MSGSRV32
fired up another program via WinExec. The
Winl6Mutex is held the entire time that the
WinExec call executes. The point here is
thai, yes, it's true that you can't entirely
eliminate  16-bit  applications  from
Windows 95. On the other hand,
MSGSRV32 looks like it can be trusted to
not acquire the Win16Mutex and hold on
to it for unduly long periods of time.

As for the second point (the
W16LOCK  program that holds and
acquires the Winl6Mutex from a Win32
program), my feeling is thai W16LOCK is
a perverse case. Yes, it does expose a
hole in the way that Windows 95 allows
access to system functions and synchro-
nization objects. However, W16LOCK
had to explicitty work to grab the
Win I6Mutex and hold onto it from a
Win32 program. This scenario isn't some-
thing that Win32 applications will just
happen to inadvertently do if they're not
careful. (If they thunk down to 16-bit DLLs,
that's another story.) | concede thai the
Winl6Mutex can be a source of trouble
and of system hangs. On the other hand, if
you eliminate nonsystem Win 16 applica-
tions and don't intentionally try to hack the
system, you'll probably never notice the
effect of the Win16Mutex. In other words,
be aware of the Winl6Mutex, but don't
lose any sleep over it.
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Per-thread message queues

In Windows 95, each thread can have its own message queue. In a nutshell,
a message queue isthe data structure that controls which messages a particular
thread's calls to GetMessage or PeekMessage will retrieve. In Windows 3.1
and earlier, each Winl6 task had its own message queue. The message queue
was created shortly after program startup. In Windows 95, each thread has
its own message queue, and the queues are created only when a thread actually
needs one for the first time. Since each Win16 task in Windows 95 has an asso-
ciated thread, each Winl6 task continues to have a single message queue.

Let's look at message queues a little more closely, since they're one of the
primary data structures that permeate the USER subsystem. When a thread
cals GetMessage or PeekMessage, it's looking for messages within the queue
of the current thread. The notion of the current thread isimplicit within the
GetMessage and PeekMessage code. You can't ask for messages from
another thread's queue. Message queues are also used as part of sending a
message to another program. From USER's perspective, the SendMessage call
is from one message queue to another message queue (although the source
and destination queues may be the same).

I'm not going to go into al the details of GetMessage, PeekMessage, or
SendMessage here. | covered those topics pretty thoroughly in Windows
Internals. While there are some changes in Windows 95 from Windows 3.1,

I didn't fed that repeating much of the same information here would be
beneficial. Instead, 1'm going to focus on what changed in Windows 95
from Windows 3.1.

Message queue format

For starters, let's look at what the format of a message queue |ooks like.
Each message queue is kept in a segment allocated from the 16-bit global
heap by USER.EXE. Each thread database (Chapter 3) and task database
(Chapter 7) contains the selector for the associated message queue. The
known fields of a message queue are given in the MSGQUEUE.H file
included with the SHOWWND program. The details of these fields follow
(note that the three items at the beginning of each entry are the offset, the
type, and the name):

00h  WORD nextQueue
This WORD contains the next queue in the list. All the message queues are
kept in a linked list, with the end indicated by a O in this field.
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02h  WORD hTask

This WORD holds the HTASK that this queue is associated with. As | show
in Chapter 7, even Win32 processes have a 16-bit task database associated
with them.

o4h  WORD headMsg

This WORD holds a near pointer (relative to USER's DGROUP) to the head
of alinked list of QUEUEMSGs. (QUEUEMSGs are described in the next
section.)

06h WORD tailMsg
This WORD holds a near pointer (relative to USER's DGROUP) to the end
of alinked list of QUEUEM SGs.

08h WORD lastMisg

This WORD holds a near pointer (relative to USER's DGROUP) to a
QUEUEMSG that has been retrieved by a cal to GetMessage or
PeekMessage. Exactly which message is undetermined at this time.

0Ah  WORD cMs

This WORD is the number of messagesin this queue waiting to be processed.
(That is, it's the number of QUEUEMSG structures in the linked list pointed
to by offset 04h.)

ODh BYTE sig[3]

For queues of Win32 application threads, these three bytes hold the ASCI|
representation for "MJT" (which perhaps stands for Jon Thomason, a
Microsoft programmer). For the queues of most Winl6 applications, these
three bytes are 0.

10h  WORD npPerQueue

This WORD is a near pointer (relative to USER's DGROUP) to a
PERQUEUEDATA structure. This structure holds the per-thread active,
focus, and capture windows. I'll describe these concepts and this structure
in the "Per-queue system windows" section.

16h  WORD npProcess

This WORD is a near pointer (relative to USER's DGROUP) to a QUEUE-
PROCESSDATA structure. If a process has multiple threads and queues,
this field in al the queues will point to the same QUEUEPROCESSDATA
structure. The QUEUEPROCESSDATA structure contains information such
as the process ID associated with this queue, and will be described later.
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22h  DWORD messageTime

This DWORD holds the value that will be retrieved by a call to GetMessage-
Time (that is, the time that the message was posted). This value is set by
copying it out of the QUEUEMSG structure as each message is retrieved by
GetM essage/PeekM essage.

28h DWORD messsgPos

This DWORD holds the value that will be retrieved by a cal to GetMessagePos
(that is, the X,Y coordinates of the cursor at the time of the message). This
value is set by copying it out of the QUEUEMSG structure as each message
is retrieved by GetM essage/PeekM essage.

2Fh  WORD lesiVis?
This field holds a near pointer (relative to USER's DGROUP) to the last
retrieved QUEUEMSG structure.

30h DWORD extralnfo

This DWORD holds the value that will be retrieved by a call to GetM essage-
Extralnfo. This value is set by copying it out of the QUEUEMSG structure
as each message is retrieved by GetM essage/PeekM essage.

3Ch DWORD threadid
This isthread ID of the thread that is associated with this queue. The relation-
ship between thread IDs and the thread database is described in Chapter 3.

42h  WORD epWinver

This is the version of Windows this application expects. This is usually either
0x300, 0x30A, or 0x400 to represent Windows 3.0, 3.1, or 4.0. This vaue is
extracted from the program's executable header at startup. It's used by USER
in certain cases to determine how messages should be processed or which
messages should be sent. In other words, it allows USER to be compatible
with the behavior of multiple versions of Windows.

48n  WORD ChangeBits

This value is comprised of various QS XXX flags representing the various types
of message events that have occurred since the last call to GetQueueStatus. The
following QS_xxx flags are given in WINUSER.H:

QS KEY 0x0001
Q5 MOUSEVOVE 0x0002
QS MOUSEBUTTON 0x0004

QS POSTMESSAGE 0x0008



QS TIMER 0x0010

QS_PAINT 0x0020
QS SENDMESSAGE 0x0040
QS HOTKEY 0x0080

The GetQueueStatus returns this field in the low-order word of its returned
DWORD. Chapter 7 of Windows Intermals contains much more information
about the QS xxx flags and their meaning.

4Ah WORD WalkeBits

This value is comprised of various QS XXX flags representing the various
types of messages that are in the queue. The QS xxx flags are listed in the
previous field's description. The GetQueueStatus returns this field in the
high-order word of its returned DWORD.

4Ch WORD WeakeMask

If athread is blocked, waiting for a message inside a call to GetMessage or
PeekMessage, this WORD hold the QS _XXX flags for the message types it's
waiting for. Typicaly, applications are blocked inside a call to GetMessage,
so this field would hold QS ALLINPUT, which isthe combination of al the
QS XXX flags.

50h WORD hQueteSed

If this thread is processing a message that was sent to it by another thread,
this WORD holds the queue handle of the sending thread.

56h  WORD SR

This WORD holds 0x5148, which isthe ASCII representation for HQ (which
perhaps stands for Handle Queue?). Each message queue is associated with a
particular thread. Each thread in turn is associated with a process. Therefore,
there can be a many-to-one relationship between message queues and a process.
The messaging system information that's common between dl queues in a
process is stored in a structure that | call a QUEUEPROCESSDATA structure.
The QUEUEPROCESSDATA structure is kept in a block allocated from the
16-bit USER heap. The pointer to the QUEUEPROCESSDATA structure is
kept at offset Ox16 in a message queue. In the Windows 95 16-bit TOOL -
HELP.H file, this data structure is marked with the LT_USER PROCESS
(0x1D) identifier. (Only the debug version of USER.EXE tags the blocks with
a type identifier.)

The known fields in the QUEUEPROCESSDATA structure can be found
in the MSGQUEUE.H file from the SHOWWND program written for this
chapter. The details of these fields follow (note that the three items at the
beginning of each entry are the offset, the type, and the name):
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0oh  WORD npNext
This field is a near pointer (relative to USER's DGROUP) to the next
QUEUEPROCESSDATA in the system.

02h  WORD un?
What this field points to is unknown. However, in the debug version of
Windows, its block is given the type of LT_USER_SUBSY STEM.

0dh  WORD flags
Some sort of flags WORD. The meanings are unknown.

08h DWORD processid
This DWORD holds the process ID associated with this queue.

0Eh WORD hQuewe

This WORD holds an hQueue value. Its exact significance is not known,
although it may be a back-pointer to the queue created for the thread in
the process.

The QUEUEMSG structure

In Windows 3.1 and earlier, a message queue actually contained the messages
that had been posted to it. A large area toward the end of the queue structure
was basically just an array of MSG structures. Two WORD fields near the
beginning of the queue structure acted as head and tail pointers. Because the
messages were stored in an array, there was a maximum number of messages
that could be stored at any given time in a queue. By default, this value was
eight messages, but it could be upped by calling SetMessageQueue with a
new message count.

Windows 95 totally changes the way messages are stored for a queue. In
aWindows 95 message queue, there's a near pointer to the head of a linked
list of structures, one structure per message. |'ve dubbed these structures
with the name QUEUEMSG. The QUEUEMSG structures are allocated out
of the 16-bit USER DGROUP. Thisis rather surprising, since alot of work
went into moving things out of USER's DGROUP in Windows 95, so
putting message structures in there seems counterproductive. Incidentally,
the Windows 95 16-bit TOOLHEL P.H refers to these structures by the
name LT_USER_QMSG (0x1A).

In case you find it hard to believe that the messages for a queue are no
longer kept in an array at the end of the queue, consider the following code
for Windows 95's SetM essageQueue function:
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SETMESSAGEQUEUE proc
COED: XCR AX; AX
COEF: INC AX
QOFO: RETF 3702

For those of you who don't read assembler (for shame!), the function
smply returns 1. That's because there's no longer an array of MSG structures
in a queue. In contrast, the Windows 3.1 SetMessageQueue calculated how
big the new queue would have to be (taking into account the number of
messages to be held) and allocated a new global heap block for the queue.

The layout of a QUEUEMSG structure is given in C-style format in the
MSGQUEUE.H file from the SHOWWND program. The details of the known
QUEUEMSG fields follow (note that the three items at the beginning of each
entry are the offset, the type, and the name):

oh  WORD HAMND
This WORD is the window handle (HWND) that this message will be
delivered to.

ah WORD nmeg

This WORD is the message number. Only the bottom 16 bits of a message
number are stored. This isn't a problem in Winl6, where messages are only
16 bits, but for a Win32 application, a message isa DWORD value, so the
top WORD of a Win32 program's message value is lost.

odh WORD WParamLow
For Win16 applications, thisfield holds the WPARAM value for the message.
For Win32 programs, thisfield holds the low WORD of the WPARAM vaue.

oGh DWORD IParam
This field contains the LPARAM of the message.

Ah DWORD mesegeTine

This DWORD is the time that the message was deposited into the queue.
According to the SDK documentation, the message time is the number of
milliseconds since the system started. This field's value is ultimately returned
by the GetMessageTime function. As part of retrieving this message,
GetMessage and/or PeekM essage copies this value into offset 24h of the
message queue, which iswhere GetMessageTime retrieves it from.
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OEh DWORD messagePos

This DWORD contains the X,Y coordinates of the cursor at the time the
message was generated. This field's value is ultimately returned by the
GetMessagePos function. As part of retrieving this message, GetM essage
and/or PeekMessage copies it into offset 28h of the message queue, which
iswhere GetM essagePos retrieves it from.

h  WORD wParamHigh
For Win32 applications, thisWORD holds the high WORD of the WPARAM.
For Winl16 programs, this WORD is ignored.

14h DWORD extralnfo

This DWORD contains the extra information that's sometimes associated with
a message. This field's value is ultimately returned by the GetM essageExtralnfo
function. As part of retrieving this message, GetMessage and/or PeekM essage

copies it into offset 30h of the message queue, which is where GetM essage-
Extralnfo retrieves it from.

18h WORD nextQueueMsgy
This isa near pointer (relative to USER's DGROUP) to the next QUEUEMSG
structure in the list. The end of the list is indicated by a 0 in this field.

Per-queue system windows

One of the desigh concepts espoused in Windows NT is that one process
shouldn't be able to adversely affect the behavior of another process (at
least not without the permission of the other process). Windows 3.1 and
earlier didn't follow this philosophy, especially when it came to the state of
the windowing system. At any given time in Windows 3.1 and earlier, there
was just one active window, one focus window, and one capture window.
Any application could steal the focus away from another by calling
SetFocus. Likewise, acall to SetActiveWindow could change the active
window out from underneath atask that thought it was the active window.
Windows NT solved this problem by giving each application its own
copy of the active, focus, and capture HWNDs. (Actualy, this isa bit of a
simplification, but it will suffice for now.) By making these system-state
windows per-application in scope, Win32 programs don't have to worry
about other programs (malicious or not) affecting their behavior. Aswith
the decoupled messaging system, the idea of per-application system state
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windows was such a good idea that it was brought over to Windows 95 as
well. (The fact that this behavior is prescribed by the Win32 APl didn't hurt
matters either.)

The per-queue information is kept in (yet another) structure allocated
from USER's DGROUP segment. (Hey! | thought Windows 95 was supposed
to move things out of USER's DGROUP, not add new items.) The pointer
to the per-queue data area is found at offset Ox10 in a message queue. |'ve
given the per-queue information structure the name PERQUEUEDATA.
The Windows 95 16-bit TOOLHELP.H refers to this structure as an
LT_USER_VWININFO (type ID = 0x1B).

Incidentally, during the final Windows 95 beta (M 8), the March 27th
Infoworld ran a story with the headline, "Win95 betalaysan egg." Much of
the ensuing controversy arising from that article ultimately ended up related
to the PERQUEUEDATA structure. At the time of the final Windows 95
beta, each PERQUEUEDATA was several hundred bytesin length. Asa
result, starting up alarge number of threads would quickly fill up USER's
64K DGROUP. Subsequently, Microsoft restructured the PERQUEUEDATA
structure to take up significantly less space, and the controversy died down.

A C-style structure definition for PERQUEUEDATA is given in the
MSGQUEUE.H filefrom the SHOWWND sample program. The details of
the known fields follow (note that the three items at the beginning of each
entry are the offset, the type, and the name):

0ch  WORD npNext
This field is a near pointer (relative to USER's DGROUP) to the next

PERQUEUEDATA structure in the system. Apparently, the PERQUEUE-
DATA are kept in alinked list.

o6h WORD npQMVisy

ThisWORD isa near pointer (rdativeto USER'sDGROUP) to a QUEUEMSG
structure. (QUEUEM SGsisdescribed in the preceding section.)

14h  WORD somehQueuel

This WORD is a message queue handle. Its exact significance is currently
unknown.

16h WORD somehQueue2

This WORD is a yet another message queue handle. Its exact significance is
currently unknown.
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18h DWORD hwWndCapture
This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current window with capture for this queue.

1Ch DWORD hwidFocus

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current focus window of this queue.

20h DWORD hWndActive

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
current active window of this queue.

Changes to (H)WND structures in
Windows 95

The WND structure is perhaps the most commonly used system data struc-
ture in Windows 95. For each window in the system (visible or not), there is
a corresponding WND structure. In Windows 3.1, an HWND was a near
pointer to aWND structure in USER's DGROUP. As| described earlier, a
Windows 95 HWND is an offset into an array of 32-bit USER32 relative
pointersto WND structures.

Because each WND structure contains a pointer to its parent window,
its sibling window, and its first child window, you can easily see that windows
are kept in atree hierarchy. Figure 4-3 shows the tree hierarchy and describes
a little about each "level." At theroot of the WND tree hierarchy isthe
desktop window. The first level of windows immediately below the desktop
window have styles of WS OVERLAPPED or WS _POPUP. These are what
what most developers think of as "top-level" or "main" windows. Windows
that are lower in the hierarchy have the WS _CHILD style. The prototypical
child window is a control window in a dialog box/for example, abutton).
Because of the window hierarchy, you can start at the desktop window and
enumerate through all the windows in the system, as the SHOWWND.C
program shows. (See "The SHOWWND Program" section later in this
chapter.)

Although this fact isn't commonly known, the Z-order of windows is
determined by their relative positions within the hierarchy. Within a given
group of sibling windows, the window that's first in the list is highest in the
Z-order. The second window in the list is next in the Z-order, and so forth.
For example, all top-level windows (WS _OVERLAPPED and WS _POPUP)



227

are siblings of one another, and are all children of the desktop window. The
desktop window's first child window (that is, the first WS OVERLAPPED
or WS_POPUP window) holds the highest rank in the Z-order.

DESKTOP
WINDOW
Top-Level Windows
WS_OVER- WS_OVER- WS_OVER-
WS_POPUP LAPPED LAPPED LAPPED WS_POPUP \A(V‘I’SS_POPUP and )
5> OVERLAPPED)
WS_CHILD WS_CHILD WS_CHILD WS_CHILD WS_CHILD
WS_CHILD WS_CHILD
KEY:
Child window \ Parent window Sibling window
relationship relationship relationship

The tree hierarchy of W N D structures lets you start at the desktop window and enumerate
through all the windows in the system.

WND structure details

Although there are definite changes to the WND structure in Windows 95
(relative to Windows 3.1), they're not very dramatic. For the most part, the
ordering of the fields didn't change (athough the sizes of certain fields cer-
tainly did). Also, the WND structure has a few new fields in Windows 95.
The primary new field isthe WORD that holds the 16-bit HWND value for
that window. This WORD iswhat alows windows to be easily referred to
by either a 16-bit HWND or a 32-bit USER DGROUP relative pointer.
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The HWND32.H file from the SHOWWND sources has a C-style defi-
nition for aWindows 95 WND structure. The details of the WND follow
(note that the three items at the beginning of each entry are the offset, the
type, and the name):

00h  struct WND32 * hwndNext

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
sibling of this window. The sibling window isthe next window at this level
of the hierarchy that has the same parent window as this window. You can
obtain the 16-bit HWND of the sibling window by calling GetWindow with
the GW_HWNDNEXT parameter.

04b  struct_WND32 * bwndCbild

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
first child window of this window. You can obtain the 16-bit HWND of the
first child window by calling GetWindow with the GW_CHILD parameter.
By calling GetWindow(GW_HWNDNEXT), you can obtain child windows
for each subsequent child window.

08h  struct_WND32 * hwndParent

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
parent window of this window. You can obtain the 16-bit HWND of the
parent window by calling GetParent. The only window that truly does not
have a parent window is the desktop window.

OCh struct_WND32 * hwndOwner

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the
owner window for this window. The owner window isthe window that
receives notification messages (for example, the BN_CLICKED message).
For WS_OVERLAPPED and WS _POPUP windows, the owning window
and the parent window don't have to be the same, although they often are.
For WS_CHILD windows, the parent window always also acts as the owner
window (that is, it receives all notification messages). By calling
GetWindow(GW_OWNER), you can obtain the 16-bit HWND of a
window's owning window.

10h RECTS rectwWindow
This field isa 16-bit RECT structure (four short integers) that define the
boundaries of the window (including the nonclient area).



229

18h RECTS rectClient

This field isa 16-bit RECT structure (four short integers) that defines the
boundaries of the client area of the window. The client area is the portion of
window that the application is alowed to draw in using a device context
obtained from BeginPaint or GetDC.

20h  WORD hQueue

This field contains the 16-bit global heap handle for the queue that handles
messages for this particular window. The existence of this field proves that
in Win32, windows are bound to a single queue and, hence, to a single
thread. Thus, there isa Win32 GetWindowThreadProcessid function.

22b  WORD brgnUpdate

If a portion of this window needs repainting, this field holds an HRGN that
describes the region needing to be updated. Regions are GDI data structures,
and are stored in a 32-bit heap in Windows 95.

24h  WORD wndClass

This WORD holds a near pointer (relative to USER's DGROUP) to a
USER _DGROUP_WNDCLASS structure. A USER_DGROUP_WNDCLASS
structure isjust the minimum amount of window-class-related information
that USER needs to access frequently. The less frequently accessed class
information is kept in another structure that's kept in a 32-bit heap. Well
look at the format of the USER_DGROUP_WNDCLASS and this other
structure in the "Changes to Windows 95 window classes' section. To sum
up, this field in the WND structure gives the class type of the window.

26h  WORD hinstance

In most cases, this WORD contains the 16-bit hinstance (DGROUP) for the
application that created the window. However, for edit controls that need to
contain very large buffers (up to 64K), this field holds the DS value that will
be used in the edit control's WNDPROC. Before calling a window procedure,
USER loads this field into the AX register. In some Winl16 exported function
prologues, the code expects that AX contains the DS value to be used by the
function. Normally, the DS that a program will want to use isthe DGROUP
segment, but in the case of an edit control holding significant amounts of
text, a separate segment can be used.

28h  WNDPROC IpfnvWWndProc
This DWORD holds the window procedure address associated with the
window. It appears to always be afar 16:16 address. If the window's
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declared window procedure isin Win32 code, this field holds a pointer to a
16:16 thunk up to the Win32 window procedure.

2Ch DWORD dwHlags
This DWORD holds flags specific to the internal state of the window. The
meanings of individual bits aren't documented.

30h DWORD awStyleFlags
ThisDWORD holdsthe WS XXX-gtyleflagsgivenin the 16-bit WINDOWS.H
and 32-bit WINUSER.H.

34b  DWORD dwExStyleFlags

This DWORD holds the WS _EX_XXX extended-style flagsgiven in the 16-bit
WINDOWS.H and 32-bit WINUSER.H. Windows 95 added several new
extended style flags, which I'll talk more about in the " Other windowing
system changes (or lack thereof)" section.

38h DWORD moreHags
This field appears to be used as flags. The meanings are unknown.

3Ch HANDLE ctrliD (or hMenu)

For top-level (WS _OVERLAPPED or WS _POPUP) windows, this field holds
the hMenu for the window. Its value is retrieved by the GetMenu function.
For WS_CHILD windows, this field holds the control ID. You're probably
most familiar with control IDs in the context of the controlsin a dialog

box. If this window isaWS_CHILD window, this field's value can be
retrieved by GetDIgCitrlld.

40h DWORD some32BitHandle

This WORD is a 32-bit handle for the window's text. The handle is similar
to an HWND, but applies a heap that is neither the window heap nor the
menu heap.

42h WORD scroliBar
This WORD holds information relating to the window's scrollbar attributes.

44h  WORD properties

This WORD isthe handle for the first window property in the linked list of
properties. Properties are really just atoms, and allow you to bind named
16-bit values to a window. Seethe GetProp and SetProp functions in the
SDK documentation for more information.
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46h  WORD hwWnd16

This WORD is one of the key fieldsin the WND structure. It contains the
16-bit HWND value for this window. When the USER code has a 32-bit
pointer to aWND structure, it can grab the contents of this field to return
to code that expects area 16-bit HWND. This allows USER to internally
pass around 32-bit pointers to WND structures without also passing around
the corresponding 16-bit HWND. Whenever it's needed, the HWND can be
looked up inthe WND structure.

48h  struct WND32 * lastActive

This DWORD holds a 32-bit pointer (relative to USER's DGROUP) to the last
active popup window associated with this window. The GetL astA ctivePopup
function grabs this value to get a pointer to aWND structure, and then
returns the 16-bit HWND stored at offset 46h in the structure.

4Ch HANDLE hiMenuSystem
This field is a handle to the system menu associated with this window. See
the GetSystemMenu function in the SDK documentation for details.

56h WORD classAtom

This WORD holds the atom associated with the class name for this window.
It can either be aregular atom (that is, > 0xC000), or it can be one of the
predefined window class types:

x8000  (PopupMenu)

0x8001  (Desktop)

0x8002  (Dial og)

0x8003 (W nSwitch) /1" The ALT TAB wi ndow.

0x8004  (lconTitle) Il In Wn 3.X, the title window below an icon.
X802A 2?2 /I The class associated with MJASK TSK

This field (offset 56h) is usually the same as the field at offset 2 in the struc-
ture pointed to by the wndClass pointer (offset field 24h of the WND class).

58h DWORD altermateHD
5Ch DWORD altemateTID
These two fields don't appear to actually contain a process ID or athread
ID. However, there is a path through the GetWindowThreadProcesslid code
which indicates that these fields could contain a PID and a TID.

As a final note on Windows and the WND structure, it often surprises
people when | tell them that creating a window takes absolutely no space
from USER's 64K DGROUP. If you're creating a window from an existing
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class, the only data that needs to be alocated isthe WND structure itsdlf.
Snce WND structures come from a 32-bit heap, there's absolutely no impact
on USER's 16-bit DGROUP from creating a window. To prove this to mysdf,
I've written programs that created severa thousand windows and checked
the free space in USER's DGROUP at various points during the creation of
the windows. In dl cases, no memory was alocated during USER's DGROUP
in the course of this process.

Other windowing system changes (or lack thereof)

For some users, one of the biggest disappointments in Windows 95 is that
the maximum of 64K of text in a standard window didn't go away. Given
Windows 95's design goals, this shouldn't be surprising. The code that
manipulates and displays the text for a window is resolutely 16 bit. A good
chunk of the 16-bit USER would have had to have been converted to 32-bit
code to break the 64K limit. Given the sizeand compatibility risks involved,
it's understandable that the Windows 95 team didn't jump to do this. On
the other hand, Windows NT, which has a fully 32-bit USER and GDI,
doesn't have this limitation. Thus, the limit of 64K of window text is one of
the major end-user discernible differences between NT and Windows 95.

On a positive note, Windows 95 defines numerous new window styles
to give Win32 applications that cool Windows 95 look. The new stylesin
WINUSER.H are:

#define WS_EX_MDI CHI LD 0x00000040L

#define WS_EX_TOOLW NDOW 0x00000080L

#define WS_EX_ W NDOWEDGE 0x00000100L

#define WS_EX_CLI ENTEDGE 0x00000200L

#define WS_EX_CONTEXTHELP 0x00000400L

#define WS_EX_RIGHT 0x00001000L

#define WS_EX LEFT 0x00000000L (The default in Wn 3.1)
#define WS_EX_RTLREADI NG 0x00002000L

#define WS_EX_LTRREADI NG 0x00000000L (The default in Wn 3.1)
#define WS _EX LEFTSCROLLBAR 0x00004000L

#define WS_EX_RI GHTSCROLLBAR 0x00000000L (The default in Wn 3.1)
#define WS_EX_CONTROLPARENT 0x00010000L

#define WS_EX_STATI CEDGE 0x00020000L

#define WS_EX_APPW NDOW 0x00040000L

I won't bore you by reciting the SDK documentation on what al these new
gtyles do. However, there's something quite interesting going on regarding
these new styles -- something that's not immediately obvious. If you dig
through the 16-bit WINDOWS.H for Windows 95, you won't find any of
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these new WS_EX_XXX styleslisted. The new WS_EX_ XXX styles appear
only in the 32-bit WINUSER.H file. Now, |'ve been stressing throughout
this chapter that almost al the USER subsystem functionality (including the
windowing system) is implemented in the 16-bit USER.EXE. Something
should be rattling around in the back of your mind here. If the 16-bit
USER.EXE iswhat implements the windowing system, the 16-bit USER.EXE
must implement these styles -- which are supposedly for 32-bit applications
only. Why the heck can't 16-bit applications use these same new WS_EX XXX
gyles? Asit turns out, there isn't a good reason. Infact, in some informal
testing, | turned up some 16-bit Windows 95 utilities that did in fact use
these new extended styles.

Changes to Windows 95 window classes

Before jumping into adiscussion of the changes made to Windows 95 window-
class management, a brief review of window classesisin order. A window
classisacallection of attributes used when creating a window. These attributes
include items such as the window procedure callback address, the window's
style bits, the number of extra data bytes the window needs for auxiliary
storage, and so on. While USER could theoretically get by without using
classes, it would be areal pain to have to specify dl those attributes each
time you wanted to create a window. This is especially true for windows
that programs create numerous instances of, such as buttons.

Window classes serve as templates from which specific instances of win-
dows can be created. After the window has been created, some of the class
attributes that were copied to the WND structure can be modified. The prime
example of this isthe window procedure address. All windows created from
the same class initidly have the same window procedure address. Later on,
a program can use SetWindowlL ong to change the window procedure of a
specific window. This is exactly what subclassing is.

When Windows starts up, it creates a small collection of a dozen standard
classes:

Button ListBox
ComboBox MDIClient
ComboL Box PopupM enu
Desktop ScrollBar
Dialog Stetic

Edit WinSwitch
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Most of these classes will be heavily used by various applications, so it
makes sense to make them common system classes. Additional application-
specific classes can be created by calling RegisterClass. Regardless of whether
you use a standard system class or your own class that you've created, you
must pass a class identifier (typically its name} to the CreateWindow or
CreateWindowEx functions.

In Windows 3.1 and earlier, USER kept all the registered window classes
in the system in a linked list. There were even TOOLHELP functions
(ClassFirst and ClassNext) for enumerating through all the registered
classes. In Windows 95, the linked list of all registered classes is no more.
Sure, there's still a small set of classes that you can get information on via
ClassFirst and ClassNext. However, these classes are only the standard set
of system classes (for example, buttons, listboxes, and so forth). These are
the standard system classes registered by USER during its startup phase (see
Chapter 1 of Windows Internals).

Asin Windows 3.x and earlier, the Windows 95 USER still allocates the
space for classes out of its 16-bit heap (so, yes, each new class uses up a
small amount of the available system resources). In the debug version of
USER, the memory allocated for a class structure is preceded by an
LT USER CLASS (1) signature.

As part of the move toward the Win32 philosophy of letting processes
know as little as possible about other processes, each Windows 95 32-bit
process now has its own private class list. This private class list includes
classes registered by system DLLs such as COMCTL32.DLL. Each timea
new process uses COMCTL32.DLL, roughly a dozen new classes are regis-
tered. These classes are application-private copies of the classes provided by
COMCTL32.DLL. If you're thinking that al these application-private
classes can quickly suck up space in USER's 64K heap, you're right!

Given that there are application-private class lists, it would be nice to be
able to enumerate them. Unfortunately, neither the 16- nor 32-bit TOOLHELP
APIs provide a method for walking the private class list of a process. To
date, the only way |I've been able to find the private class list isto enumerate
through all the windows in the system and retrieve the class pointers from the
WND structures. The class pointer isat offset 24h in each WND structure.
Using the SHOWWND program, you can walk a process's class list by hand
(that is, you have to find the head of the class list and then double-click on
the "next" field of each class in the list).

A C-style definition for a Windows 95 window class structure is given
in the WNDCLASS.H file from the SHOWWND program (see the follow-
ing section). I've named this structure a USER_DGROUP_WNDCLASS.
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to access frequently. The less frequently used fields of a window class have
moved off into a separate structure in a 32-bit heap. The known fields of a
USER_DGROUP_WNDCLASS follow (note that the three items at the
beginning of each entry are the offset, the type, and the name):

0oh DWORD IpInbWndClass

This field isafar (16:16) pointer into the window heap. The pointer points
to an INTWNDCLASS structure that I'll describe next. Basically, the
INTWNDCLASS contains the class information that USER doesn't need
immediate access to.

0dh WORD hcNext

This WORD holds a near pointer (in USER's DGROUP) to the next class.
The next class is either one of the system registered classes or the next
application private class.

0Bh ATOM dassNameAtom

This WORD holds the atom that describes the class name. It's either a regular
atom (for example, > OxC000) or a standard class atom (0x8000, 0x8001,
and so on). The GetClassNameFromAtom function in the SHOWWND.C
source file on the accompanying disk shows how to decode these atoms to
class names.

Bh DWORD style
This DWORD holds the CS_xxx styles (for example, CS_VREDRAW) for
the class. This fiedld is widened from Win 3.1, where it was only a WORD.

Summing up the fields in USER_DGROUP_WNDCLASS structure, you'll
find that it takes up about OxOC bytes in USER's DGROUP for each class.
In Windows 3.1, al the information about the WNDCLASS was stored in
USER's DGROUP. In an attempt to free up additional USER DGROUP mem-
ory, Microsoft moved most of the fields in a window class out into a sepa-
rate 32-bit heap. The first field of the USER_DGROUP WNDCLASS con-
tains a far pointer into this heap, and what it points at is a structure that |
cal an INTWNDCLASS (INTernal WNDCLASS). The INTWNDCLASS is
similar to, but not identical with, the WNDCLASS structure that you pass
to the RegisterClass function. The format of an INTWNDCLASS is also
given in the WNDCLASS.H header file; the details are as follows:

o0h WORD
This field contains the number of current windows that are of this class.

235
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0dh DWORD IpiWindProc
This WORD holds the window procedure address for windows of this class.
The act of superclassing involves using SetClassL ong to change this field.

08h WORD cbClsbxira

This WORD holds the number of extra bytes that are allocated at the end of
this INTWNDCLASS structure. Applications can use these bytes to store appli-
cation-specific data. These extra bytes are accessed with SetClassword/Long
and GetClassWord/Long.

0Ah  WORD biViodule

This WORD holds the 16-bit version of the HMODULE that registered the
class. Note that this differs from the SDK documentation, which refers to
this as an HINSTANCE. USER gets away with this because it routinely
converts HINSTANCE to HMODULEs using the 16-bit GetExePtr routine
described in Chapter 7.

oCh WORD hicon

This isthe icon associated with windows of this class.

1IEh WORD hCursor

This isthe cursor to be used when the mouse is over windows of this class.
Ith WORD hBrBadground

This is the brush to be used when refreshing the window's background.
12h DWORD lpszVienuName

This is the name of the menu to be used for windows of this class. This field
isusually 0, but it occasionally contains a valid 16:16 pointer.

6h DWORD hloonSm

The small icon associated with windows of this class. If nonzero, this is the
icon used for such things as representing the window on the Explorer
taskbar.

18&h WORD dWndExira

ThisWORD holds the number of extra bytes that are allocated at the end of
each window created from this class. Applications can use these bytes to store
per-window data. These extra bytes are accessed with SetWindowWord/Long
and GetWindowWord/Long.
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The SHOVWMWND program

To illuminate most of the data structures I've been talking about up to this
point, | wrote the SHOWWND program. (Of course, | used SHOWWND
myself when ferreting out certain details of the data structures I've described.)
The central focus of SHOWWND is the window hierarchy. You can click
on each window in the system to show the details of that window's various
fields. If afield isa link to another important data structure, you can double-
click on that line to switch to a detailed listing of that data structure. In this
way, the SHOWWND program on the accompanying disk shows the fields of
WND structures, window classes, and message queues. Since dl three of these
structures contain links (pointers) to other instances of their structure type,
you can easily follow linked lists of windows, classes, and message queues.

To demonstrate that the data structures really are as I've described them,
SHOWWND uses as few USER functions as possible. Wherever possible, it
directly accessesthe data structures. For example, SHOWWND could have
used the EnumWindows and EnumChildWindows to display the window
hierarchy. But that strategy wouldn't have proved that the WND struct looks
the way |'ve described it. Of course, going into system data structures and
poking around yourself isn't good programming practice, and it should be
avoided if possible. However, for the purpose of showing what's going on
under the hood in USER, it's the only way to prove that I'm not just hand-
waving here.

Like several of the other programs from this book, SHOWWND isa
diaog box with two listboxes. Asyou can seein Figure 4-4, the listbox on
the left contains a nested hierarchical view of the current windows in the
system. At any point, you can refresh the list by clicking the Refresh button.
The listbox on the right isa "details pane" -- when you select a window in
the left pane, the right listbox updates to show the contents of the selected
window's WND struct.

If you look closaly within the righthand listbox, you'll see that several
of the lines are preceded by a+ (aplus sign). The + indicates that the line
can be double-clicked to cause the details pane to show the details of
whaever you've clicked on. From within aWND details pane, you can go to
another WND, to the window's class, or to the window's queue. From the
class details pane, you can follow the hcNext pointer to the next classin the
list. The message queue pane works in a similar manner, and lets you walk
the list of message queues.
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hwhdChild: 00020688
00C4 Explorer (32)
00C8 Explarer (32)
00CC Explorer [32)
00D0 Explorer (32)
00DC Explorer (32)
00EQ Explarer [32)
00D8 Explorer [32)
00D4 E splorer [32)
0084 MSGSRV32 [16)
0868 Showwnd (32)
086C Showwnd (32) _|
0870 Showwnd (32) 4 WS_VISIBLE
0874 Showwnd (32) . WS_CLIPSIBLINGS
0878 Showwnd (32) @ WS_CLIPCHILDREN
087C Showwnd [32)
0880 Showwnd (32)
011C WINOLDAP (16}
0110 WINOLDAP [16)
0114 WINOLDAP (16)
0118 WINOLDAP (16)
0120 WINOLDAP (16)
0280 Mspaint [32]
0284 Mspaint [32) :
0860 Mspaint (32) % hMenuSystem: 00000000
i : 00000000

Figure 4-4
Tl‘g SHOWWND program is a dialog box containing two listboxes that show the
hierarchical structure of the current windows and details about each window.

For the most part, the SHOWWND.C code is pretty straightforward, so |
won't bore you with descriptions of the code or a code listing here. However,
there is one important detail in the code that bears mentioning. SHOWWND
isaWin32 program. And as you no doubt know by now, Win32 programs
can be pre-empted by other threads. As a result, SHOWWND could be in the
middle of its window hierarchy walk and another thread could come along
and change the window hierarchy. Although thiswould probably be arare
occurrence, it could happen.

To prevent this from happening, SHOWWND acquires and holds on to
the Winl16Mutex during its walk of the window hierarchy. SHOWWND.C
does this by using three undocumented functions: GetpWin16L ock,
EnterSysLevel, and LeaveSysLevd. The Getpwinl6Lock function fillsin a
DWORD with the address of the Winl6Mutex (which is actually in
KRNL386.EXE). By passing this address to EnterSysLevel, a program can
acquire the Winl6Mutex and release the mutex with LeaveSysl evel. This
technique is somewhat similar to what the W16L OCK program from
Unauthorized Windows 95 does. The key difference is that W16LOCK is
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using these functions to prove that the system can be deadlocked from a
Win32 application, while SHOWWND uses them to properly handle thread
synchronization issues.

Pseudocode for select 16-bit
USER.EXE functions

Now that we've looked at some of the key 16-bit USER data structures and
USER's use of the new Win32 heaps, let's look at some pseudocode for
some functions in USER.EXE. The following sections are practical in
nature, because | want to show you how these data structures and concepts

are actually put to use.

The IsWindow and IsWindow16 functions in USER.EXE

The IsWindow function takes a 16-bit HWND as a parameter and verifies
whether it's really avalid HWND. The IswWindow code in the debug
USER.EXE isjust logging code that emits the name of the function to the
debug port if a certain USER trace mode flag (not documented) is enabled.
The real verification of the HWND happens after IswWindow falls through
into the Iswindowl6 code.

IswWindowl6 starts out by quickly throwing out HWND values that
can't possibly be valid. As| described earlier, HWNDs in Windows 95 are
aways a multiple of four, so 1sWindow16 returns FALSE for any value that
has either of its lowest two bitsset. IsWindow16 also immediately throws
out values that are less than 0x80. Why 0x807? Because the first Ox80 bytes
of the handle table area (at USER's DGROUP base address + 0x10000) are
used for storing other information related to the 32-bit window heap. The
first available window pointer dot in the handle table area is at offset 0x80,
and this dlot appears to aways be taken by the desktop window. (This
makes sense, because the desktop window isthe first window created.)

IswWindow16 next throws out HWND values that are too high. At offset
0x70 in the handle table areaisa DWORD that contains the maximum
handle table offset in use. If the HWND passed into Iswindow is bigger
than that value, it can't be avalid HWND, so IsWindow16 returns FALSE.

The final part of 1sWindow16 isto use the 16-bit HWND value to ook
up the 32-bit pointer to the WND structure. (Remember, the 32-bit pointer
to the WND struct is relative to USER's DGROUP, and isn't a fiat 32
pointer.) 1sWindow16 does two checks with the pointer that the HWND
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value dereferences to. First, the pointer must be greater than 0x10000. (In
the USER32 version of IswWindow, the test is for 0x20000, which is more
accurate.) Second, the pointer that the HWND dereferences to must be
nonzero. If both conditions are met, IsWindow16 returns TRUE, indicating
that the 16-bit HWND is valid.

Pseudocode for IsWindow

/' In 16 bit USER. EXE

/I Parameters:

11 HWND hwhd /I The 16 bit version.
Push DS
Load DS with USER's DGROUP
Grab UserTraceFlags WORD from USER's DGROUP

restore USER s DGROUP

if ( UserTraceFlags & 0x2000 )
_DebugQut put ( DBF_USER, "IsW ndow' );

/1 Execution falls through to IsW ndowl6...

| sW ndowl6 proc
/1 Parameters:

11 HWND hwhd /" The 16-bit version.

Il Locals:

/1 PWND32 pWhd32 // 32 bit USER DGROUP relative pointer to HAND32.
/1 PVOID  USER_dgroup_base /1 Base address of USER's DGROUP.

Il Pops return address and HWND off the stack, then pushes them
Il back on. Supposedly saves space on stack franes.

if ( hwd & 3 ) /1 HWND16s nust be a nultiple of 4.
return 0;

if ( hWwhd < 0x80 ) // HWND16s are always >= O0x80.
return 0



/1 At offset 0x10070 in the USER DGROUP seg is a DWORD with the
/1" maxi mum HWND val ue.
if ( hwWwhd > *( PDWORD) (USER_dgroup_base + 0x10070) )

return 0;

Il Use the HAWND as an offset into the handle table area at
/I offset 0x10000 in USER's DGROUP. Grab the pointer stored there.
pWwhd32 = *(PDWORD) (USER dgroup_base + 0x10000 + hWwhd);

if ( pwhd32 <= 0x10000) /I Al HWND structs are above 0x1000e.
return 8; Il Actually, they're above 8x20000, Dut...

if ( pwd32 ) /I if the HAWND ptr table contains a nonzero
return TRUE; /I entry, we'll say it's a valid HWD.

The GetCapture, GetFocus, and
GetActiveWindow functions

As| mentioned earlier, in Windows 95 the capture, focus, and active windows
are stored on a per-queue basis. Thus, unlike in Windows 3, GetCapture,
GetFocus, and GetActiveWindow can't merely scoop the relevant value out
of USER's DGROUP segment. On the other hand, the three HWNDs (actu-
aly USER 32-bit pointers) are stored side by side in the PERQUEUEDATA
structure that | described earlier. This means that the code for retrieving the
three HWNDs can share common code.

The three functions each load a register (called perQueueOffset in the
pseudocode) with the offset of their desired window pointer within the
PERQUEUEDATA structure. The functions then al jump to acommon spot
(cdled Get_ XX X_common in the pseudocode). The common codefirst cals
into KRNL 386 to get a pointer to the current thread's message queue. Within
the queue is a pointer to the PERQUEUEDATA structure. With the pointer
to the PERQUEUEDATA in hand, the code adds in the appropriate offset
set earlier by the GetCapture, GetFocus, or GetActiveWindow functions. At
the calculated location is a 32-bit pointer (relative to USER's DGROUP) to
the desired window. All that remains for the common code to do isgo to
that WND struct and extract the 16-bit HWND value at offset 46h. This
work is represented in the pseudocode by the call to HWnd32ToHWnd16.



242

Pseudocode for GetCapture, GetFocus, GetActiveWindow

Il In 16 bit USER EXE
Il Locals:
/1 PMSGQUEUE pQueue;
/" WORD per QueueOf f set
/I BOOL flag
/1 PWND32 pWad
Get Capture proc
per QueueOf f set 0x0018 // O fset of the capture WND in the PERQUEUEDATA.
flag = FALSE
goto Get_XXX_common
Cet Focus proc
perQueueOf f set = 0x001C // Offset of the focus WND in the PERQUEUEDATA.
flag = FALSE
goto Get _XXX_common
Get ActiveW ndow proc
per QueueOf fset = 0x0020 // Offset of the active WND in the PERQUEUEDATA.
flag = TRUE
Get _XXX_conmon:
pQueue = GetCurrentThreadQueue(); Il KERNEL. 625
if ( !pQueue )
INT 3 /I Oops! No queue. Break into the debugger.
if ( pQueue ->npPerQueue == 0 )
INT 3; /I OCops! No per queue data. Break into the debugger.

/I Using the perQueueOffset value (in the BX register), index into the

/I per queue area and extract a USER relative pointer to the desired WD
p\Wid = *(PWND32 *)(pQueue->npPerQueue + perQueueCffset);

if ( Ipwd && flag ) /I 1f pWd is 0, but "flag" is set (which

{ /I only happens for GCetActiveW ndow)...

/I Try a second approach to getting the active window. If
/I the conditions are right, try calling GetForegroundW ndow.
[l npCurrentPerQueueData is a USER.EXE global variable.
if ( pQueue ->npPerQueue == npCurrentPerQueueData )
return GetForegroundW ndow();

/1 Convert from the 32-hit
HWhd32ToHWd16(

HMD form to the 16 bit form and return it.

return p\Wd ):



The GetWindowThreadProcessld and
IGetWindowThreadProcessld functions

The GetWindowThreadProcessld function isnew to the Win32 API. (The
closest equivalent in Windows 3.x was GetWindowTask.) Although the
GetWindowThreadProcessld function is exported by the 32-bit USER32.DLL,
it fallsto the 16-bit USER.EXE to implement it. (Will the indignity never end?)
The GetWindowThreadProcessld function is essentially just a parameter
validation layer. The real work isin the 1GetWindowThreadProcessid function.
However, before calling 1GetWindowThreadProcessld, the code first converts
the 16-bit HWND into a USER32-relative 32-bit pointer, and passes that along.

|GetWindowThreadProcessld has to extract the process ID and thread
ID from two different places. The thread ID that a window is associated
with is stored in the thread's message queue. Since queues are per-thread (and
not per-process as you might think), the process ID isn't stored in the message
queue. Instead, the process ID is stored in the QUEUEPROCESSDATA struc-
ture that | described earlier. |GetWindowThreadProcessld uses the message
queue to get a pointer to the QUEUEPROCESSDATA data, and extracts the
process ID from that structure.

The |GetWindowThreadProcessld code does have a strange bit of code
that I'm at a loss to explain. Apparently, if some flag is set in the QUEUE-
PROCESSDATA structure, the thread ID and processiD for the window are
actually stored at the end of the WND structure itself. | was never able find
an example where this was the case.

Pseudocode for GetWindowThreadProcessld

/'l In USER EXE (believe it or not)

[l Parameters:

11 HWND hwhd /I 16 bit version

11 LPDWORD | pdwPr ocessl d /I Pointer at which to store the process ID
Il Locals:

11 PWND32  pWhd32;

pWid32 = HWd16toHWd32( hWd ): // Convert the 16-bit HWD value into
/I the 32 bit pointer version.

/I Verify that a valid pointer to at least 4 bytes was passed.
VerifyPtr( |pdwProcessld, sizeof(DWORD) )

return |GetW ndowThreadProcessld( pWd32, |pdwProcesslid );



244

Pseudocode for 1GetWindowThreadProcessld

n  Parameters:

11 PWND32  pWd;

11 LPDWORD | pdwProcess!d
Il Local s

1 LPMSGQUEUE | pMsgQueue;
Il DWORD threadl d;

| pMsgQueue = MAKELP( pwd ->hQueue, 0 ); // Get a pointer to the windows
Il message queue.
if ( UserTraceFlags & 0x00042000 )
_DebugOut put ( DBF_USER, "GetW ndowThreadProcessld" );

if ( IpMsgQueue ->npProcess->flags & 2 ) // This is rarely the case.

{
processld = pwWwhd ->alternatePID, // Grab the PID/TID from the WND
threadld = pWhd ->alternateTID; |l struct.

}

el se Il Execution most often comes through here.

{

processld = |pMsgQueue ->npProcess ->processid;
threadld = |pMsgQueue ->threadld;
}

if (SELECTOROF(|pdwProcessld) )
*| pdwProcessld = processld,

return threadld;

The DesktopWndProc function

When deciding what functions were worth looking into for this chapter, |
quickly gravitated to the DesktopWndProc function. There were two reasons
for this. First, this function is relatively simple, and | wanted to show a
working system-provided window procedure. Second, DesktopWndProc
contains the code for enabling the free system resource fudging that | talked
about earlier in the chapter.

The first thing to notice about DesktopWndProc isthat it's a semi-32-bit
WNDPROC. That is, the hwnd and msg fields are 16 bits, but the WPARAM
is 32 hits (like aWNDPROC in aWin32 program would be). Another
important thing to notice is that the function immediately converts the 16-bit
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HWND into a USER32 relative 32-bit pointer. It usesthis 32-bit pointer for
al its accessesto the WND structure. All the other standard system
WNDPROCs do the same thing in this regard (that is, they use USER
DGROUP-relative 32-bit pointers).

The core of the DesktopWndProc code is a switch statement (no, the
Windows 95 team hasn't switched Windows over to use MFC yet). The
windows messages that DesktopWndProc handles are listed here:

+  The WM_USER message: The WM_USER message is the dark horse of
the messages handled by DesktopwWndProc. When the desktop receives
this message for the first time (and only for the first time), it calls
GetFreeSystemmResources to get the percentage free in both the USER
and GDI heaps. Subsequent callsto GetFreeSystemResources make their
return value relative to the percentage-free values determined here. Who
sends the WM _USER message to the desktop? The Explorer process
itsdlf, after it'sdone itsinitialization. The idea of this WM_USER message
is apparently to establish a baseline system resource usage, from which
subsequent callsto GetFreeSystemResources can be compared. While
this sounds reasonable enough, it isa big change from Windows 3.1,
and it would be nice if Microsoft were to describe the change to its
users. Asit stands now, the free system resources numbers for the typi-
ca system will look like they've jumped way up when the machine was
updated to Windows 95. Under the hood, though, the change isn't
really that dramatic.

* The WM_ERASEBKGND message: This messages erases the back-
ground and validates the specified rectangle. Nothing exciting here.

* The WM_CANCELMODE message: If there isn't asystem modal window,
this handler falls through to the default handler.

* The WM_NCCREATE message: This message handler seemsto be used
primarily as a sanity check. The code checks to make sure that there are
no other windows of classdesktop. It also verifiesthat the desktop window
doesn't have a parent window.

* The WM_LBUTTONDBLCLK message: This message handler changes
the message being processed into a WM_SY SCOMMAND message with
SC TASKLIST asthe high WORD of the WPARAM. In Windows 3.1,
a double-click on the desktop would bring up the task manager. In
Windows 95, when DefWindowProc receives the SC TASKLIST command,
it callsinto the shell, which in turn brings up Explorer's start menu.
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* The WM_QUERYNEWPALETTE and WM_PALETTECHANGED
messages: These two functions call some function in USER that (you
guessed it) probably has something to do with the palette. Any messages
that come through the DesktopWndProc and which aren't handled by the
above handlers fall through the switch statement, and call DefWindowProc.
(And the inner workings of DefWindowProc is probably a book unto itself.)

Pseudocode for DesktopWndProc

/I In 16 bit USER. EXE
/] Parameters:

Il HWND hwid

1l UINT nmsg

/1 WPARAM wPar am /1 32 bits, not 16.

/1 LPARAM | Param

/1 Locals:

/1 PWND32  pWhd32 /I 32 bit pointer, relative to USER DGROUP.

pWid32 = HWid16ToHMAd32( hwid )

if UserTraceFlags & 0x4 )
_DebugQut put ( DBF_USER, "DesktopWdProc" );

switch ( msg )
{
case WM ERASEBKGND:

/I Erase the desktop. The function calls:
/I FILLRECT, GETCLIPBOX, GETDCORG, ~ GETTEXTEXTENT, LOADSTRI NG
/I LSTRCATN, LSTRLEN, OFFSETRECT, SETBKMODE, SETBRUSHORG.
/I SETTEXTCOLOR,  SEI VI EWPORTORG, and TEXTOUT.
SomeFunction( wParam ); /I wParam := HDC to paint with.

Val i dateRect ( pWhd32 ->hWd16, 0 );
return 1,

case WM CANCELMODE:
if ( HwdSysMdal == SomeUser G obal Var )
return 0;
break;



case WM NCCREATE:
/I This is the first
if ( pwhd32 ->wndClass ->cClsWds !'= 1)

{
_DebugQut put (

DBF_FATAL | DBF_USER,

pWhd32 ->elassAtom =

if ( == Def W ndowProc32(
return 0;

pVhd32

/I The desktop window better not
if (0 == pWd32 ->hWdParent )
return 1

_DebugOut put ( DBF_FATAL | DBF USER, "USER:

return 1;

case WM_LBUTTONDBLCLK:
msg = WM _SYSCOMMVAND;
HIWORD( wParam ) =
break;

SC_TASKLI ST

case WM QUERYNEWPALETTE:

case WM PALETTECHANGED:
if ( wParam == hWhd )

SomeFunction();

/I wParam ==

Deskt opCl assAt om /1

->hWid16,

HWND t hat
/' Same basic actions as 3.1,
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message through the WND proc.

"USER: Assertion failed" );

USER gl obal variable.

msg, wParam |Param ) )

have a parent!!!

Assertion failed" ),

changed the palette.
including

/1 calling RedrawW ndow().

return 0

case WM USER: /1 0x0400 (sent by Explorer)
if ( base_USER_FSR_percentage == 0){

base_GDI - FSR_percent age
= GetFreeSystemResources(

base_USER_FSR_percentage
= GetFreeSystemResources(

return 0;

return DefW ndowProc32( bwhd32 ->hwd16, nsg,

wPar am

GSFR_GDI RESOURCES );

GSFR_USERRESOURCES );

| Param );
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USER32 isn't just thunks to USER.EXE

Throughout this chapter, 1've emphasized that the real work of the Windows 95
USER subsystem is handled by the 16-bit USER.EXE. It isindeed true that
large portions of USER32 are just thunks down to USER.EXE. However, it
would be wrong to think that USER32 consists of nothing but thunks. In
looking at the USER32 listings, it's readily apparent that Microsoft took
some time to determine which USER routines are heavily called and could
easily be implemented without thunking down to USER.EXE. In a few cases
(such as the ones I'll show next), the Windows 95 team decided that the
additional speed gain from eliminating a thunk warranted using a little extra
code in USER32.DLL. The functions I'll describe in the following sections
are by no means a complete list | rather, they're a representative sample of
the windowing system functions.

The IsWindow function in USER32.DLL

The USER32 version of I1sWindow is only dightly more complicated than
the USER.EXE version. Since USER32's IswWindow function could be called
by a Win32 thread that doesn't currently hold the Win16Mutex, the func-
tion usestwo helper functions (GrabWinl6Mutex and ReleaseWinMutex)
to bracket the call to the core of the routine. The GetWwndPtr32 function
(which is described next) is used throughout USER32.DLL. If GetWndPtr32
returns 0, Iswindow returns FALSE, indicating that the passed-in HWND
isn't valid. Otherwise, IsWindow returns TRUE on any nonzero return
value from GetWndPtr32.

Pseudocode for IsWindow

/1 in USER32.DLL

/I Parameters:

/I HAND hwd /I The 16 hit version.
/1 Locals:

/1 BOOL retVal ue;

G abW n16Mit ex();
retvalue = GetWhdPtr32( hwd ); /I Pass 16 bit HAWND version.

Rel easeW nl 6Mut ex() :
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Pseudocode for GrabWinl16Mutex

EnterSyslevel ( pWnléMitex ); /I Call KERNEL.97 to acquire the Wnl6.

Pseudocode for GrabWin 16Mutex

LeaveSysLevel ( pWnl 6Mitex ); /I Call KERNEL, 98 to release the Wnl6
/I nmutex semaphore.

The GetWndPtr32 function in USER32

The GetWndPtr32 function is a general-purpose USER32 internal routine.
Given a 16-bit HWND, it returns a USER32-relative 32-bit pointer to the
WND structure. In terms of how it verifies the 16-bit HWND and looks up the
WND struct, the GetWndPtr32 function is nearly identical to the IsWindow
function in the 16-bit USER.EXE. The only real difference is at the end of the
function: The 16-bit IsWindow returns TRUE or FALSE, while GetWndPtr32
returns a USER32 DGROUP relative pointer to the WND.

Pseudocode for GetWndPtr32

/| Parameters:

11 HWND hwad Il The 16 bit version.
Il Locals:
Il DWORD retVal ue;
ConfirnBysLevel ( pW nl6Mitex ); Il Make sure we already have acquired

/1 the W nl 6Mit ex.

if ( !'hwd ) Il Filter out the 0 HWD case.
return 0

if ( hwid & 3) /I HAWNDs are always multiples of 4
return 0

if ( hwad < 0x80 ) Il The |owest HWND value is 80.
return 0

/I At offset gx10070 in the USER DGROUP seg is a DWORD with the
/1 maxi mum HAND val ue.
if ( hwd > *(PDWORD) ( USER_dgroup_base + 0x00070) )

return 0
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Il Dereference the DWORD at 0x10080 + the HWND value to get a pointer.
retValue = *(PDWORD) (USER dgroup_base + 0x10000 + hWwhd);

if ( retValue < 0x20000 ) // The HWND(32) heap starts 0x20000 bytes
return 0; Il into USER's DGROUP. Note the different
/1 conparison than the one |sWndowl6 uses.

/I Return a flat PTR to the WND32 structure. The value in the HWD
Il table is a USER DGROUP 32 bhit relative offset.
return (PWND32) (retPtr + UserDgroupBase);

The GetCapture, GetFocus, and
GetActiveWindow functions in USER32.DLL

Earlier, 1 presented pseudocode for the GetCapture, GetFocus, and
GetActiveWindow functions as implemented in USER.EXE (see the
"Pseudocode for select 16-bit USER.EXE functions™ section). The 32-bit
versions in USER32 are essentially identical in their core implementation.
Two differences bear mentioning, though. The first difference is that the
USER32 versions all acquire and release the Winl6Mutex around their
access to the USER data structures. The 16-bit equivalents don't have to do
this, since they're in 16-bit code and, by definition, the Win16Mutex has
already been acquired. The second difference is the absence of error check-
ing in the USER32 versions. The 16-bit versions of these functions check to
make sure there's a queue present before they start rooting around in the
PERQUEUEDATA structure.

Pseudocode for GetCapture, GetFocus, GetActiveWindow

Il Locals:
/1 DWORD per QueueOf fset;

Get ActiveW ndow proc
perQueueOf fset = 0x20; // Offset of the active WND in the PERQUEUEDATA.
goto Get WhdXXX_common

Get Capture proc
perQueueOf fset = 0x18; // Offset of the capture WND in the PERQUEUEDATA.

goto GetWhdXXX_common

Get Focus proc
perQueueOf fset = 0x1C // Offset of the focus WND in the PERQUEUEDATA.

/1 Fall though...
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Get WhdXXX_common:

/I Locals:

/1 PMSGQUEUE pQueue;
/1 PWND32 pWd:

pQueue = GetCurrentQueuePtr();
GrabW nl6Mut ex();

if ( pQueue ->npPerQueue ==0)
goto SuckHWND16 release_ W nl6Mitex: // CQops! No per-queue data.

/' Extract the USER DGROUP relative 32 bit PWND32 pointer out of the
/I per queue data structure.
pWwhd = *(PWND32 *) (UserDgroupBase + pQueue->npPerQueue + perQueueOffset );

goto SuckHWND160ut Of User DGROUP;
SuckHWND160ut Of User DGROUP:
/1 Execution arrives here with a pointer to actual WND32 struct (in EAX).

if (pWwd)
{

pWwhd = (WORD)( UserDgroupBase + pwWwhd ->hWd16 );

/I pwhd is now really a 16 bit HAMD, not a pointer.
}

SuckHWND16 rel ease W nl6Mitex:

Rel easeW n16Mut ex():
return pwWd: /| Either 0, or a 16 hit HWWD.

The GetMessagePos, GetMessageTime, and
GetMessageExtralnfo functions in USER32.DLL

The GetMessagePos, GetMessageTime, and GetMessageExtralnfo functions
in USER32 are essentially identical to their 16-bit equivalents in USER.EXE.
Since the three functions each just grab a single variable from the current
thread's message queue, they all start with a small stub that loads the
desired offset into a register before jumping to a common location. At the
common location, the code gets a pointer to the current thread's queue and
extracts the relevant DWORD from it. Interestingly, these functions don't
bother to acquire the Win16Mutex like the USER GetCapture, GetFocus,
and GetActiveWindow functions do.
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Pseudocode for GetMessagePos, GetMessageTime, GetMessageExtralnfo

/I In USER32.DLL

Il Locals:

/" DWORD infoOffset

Get MessagePos proc
infoOffset = 0x28;
goto Get MsgXXX_common

Get MessageTi me proc
infoOffset = 0x24;
goto Get MsgXXX_common

Get MessageExtralnfo proc
infoOffset = 0x30;
/1 Fall through...

Get MsgXXX comon:
Il Locals:
/1 PMSGQUEUE pQueue;

/Il Note that this code doesn't grab the Wnl6Mitex |ike the Get WidXXX
/I functions do.

pQueue = GetCurrentQueuePtr():

/ Add the infoOffset to the base address of the queue, and return
/ the DWORD stored therein.
return *(PDWORD)( pQueue + infoOffset );

The SendMessage function in USER32.DLL

You might be somewhat surprised to discover that I1've provided pseudocode
for USER32's SendMessage routine. After all, SendMessage is one of the
most complicated routines in all of the USER subsystem, so it surely must
thunk down to the 16-bit USER.EXE, right? In many cases, that assumption
is correct. However, $endMessage is a heavily used routine, and if the right
conditions are met, it can do its work without ever thunking down to 16-bit
code. We're talking major performance improvement here.

The USER32 SendMessage starts out by acquiring the Winl6Mutex. The
code then goes through a long series of tests to see whether this particular
message can be sent safely without getting the real SendMessage (in USER.EXE)
involved. Among the conditions that can disqualify the attempt and force a
thunk down to USER.EXE are the following:



* The HWND is 0.

* The queue of the destination window is different from the current
thread's queue.

* Certain variables in USER.EXE's DGROUP are nonzero.

If the particular message being sent makes it through the gauntlet of tests
that would force it to thunk down, SendMessage begins setting things up for
the call to the destination WNDPROC. In particular, SendMessage needs the
address of the WNDPROC it'll be calling.

As I've mentioned earlier, the WND structures themselves don't ever store
an actual 32-bit flat pointer to a WNDPROC. Instead, if a WND structure is
a 32-bit window, the WNDPROC address in the WND structure points to a
16-bit code stub that ultimately transfers control up to 32-bit land. Part of that
code stub is the actual 32-bit WNDPROC. The SendMessage code knows
about these special stubs, and reads the 32-bit WNDPROC address out of the
stub itself. Finally, before JMP'ing to the target WNDPROC, SendMessage
releases the Win16Mutex. This whole sequence smacks of being a big kludge,
but if it works and improves performance, why not?

Pseudocode for SendMessage

/1 32-bit version in USER32.DLL
/] Parameters:

/I HWND hwd

I UNT uMsg

/1 WPARAM wPar am

/I LPARAM  1Param

/1 Locals:

/I PWND32 pWhd

/I PMSGQUEUE pQueue;

/I LPVOD |pvMsgProcThunk // A 16:16 pointer,
/1" WNDPROC wndProc32

GrabW nl 6Mut ex() ;
pWd = GetWdPtr32( hwd );
if (!pWd ) [/ No HWD... gotta thunk.

goto ThunkToSendMessagel 6;

if ( !pwd ->flags & 0x02000000 ) /] Some flag ain't set.., gotta thunk.
goto ThunkToSendMessagel6

253
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if ( pCurrentTIB ->pvQueue != pWhd->hQueue ) // Sending a message to a

goto ThunkToSendMessagel 6 /I different queue. Cotta
Il thunk.
if ( SomeVariablelnUserDgroup != 0 ) Il USER's in some funky state.
goto ThunkToSendMessagel6 Il Gotta thunk.

if ( SomeOtherVariablelnUserDgroup !'=0 )
goto ThunkToSendMessagel6

Il Get a flat pointer to the message queue.
/' MapSL takes a selector and an offset, and returns a linear address.
pQueue = MapSL( pCurrentTIB ->pvQueue, 0 );

if (pQueue->(Ox6A+OxA) !=10 ) Il 7?7 Gotta thunk.
goto ThunkToSendMessagel 6;

if (pQueue->(Ox6A+OxIA) !=0) [l 7?7 Gotta thunk.
goto ThunkToSendMessagels6;

Il CGet a pointer to the thunk code that USER EXE created for this
/I window. Index 2 bytes into the USER message thunk, and grab the
Il linear address of the window procedure.

| pvMsgProcThunk = pWhd ->| pf nWhdPr oc;

wndProc32 = *(LPWORD) (| pvMsgProcThunk+2)

Rel easeW n16Mit ex(); /I Don't need this no nore.

/I 1f all went well, junp to the 32-bit window procedure,

/I We've successfully avoided the intertask SendMessage contortions,
/I and have also avoided thunking down to 16 bit USER EXE.

goto wndProc32;

ThunkToSendMessagel 6: [/ Vell, it looks like we gotta thunk down to
Il USER. EXE.
Rel easeW n16Mit ex();

pop return address into EAX
pop hWd into ECX

push 0
push hwhd /I in BCX
push 0
push ret urnAddress /I in EAX

goto comon thunking code
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The GetDIgltem function in USER32.DLL

The GetDlgltem function is another of the heavily used functions in Win32,
especially with dialog-related code. Given an HWND and a child control 1D,
the function needs to return the HWND of the child control. If you remember
back when | was describing the WND structure, you can see how GetDlgltem
doesn't need to do anything more sophisticated than walk a section of the
WND hierarchy, looking for a window with the right control ID.

The USER GetDlgltem function begins by grabbing the Win16M utex
(after all, we don't want the WND hierarchy changing beneath us as we're
walkingit!). Dialog controls are ssimply child windows of the dialog window.
Therefore, all GetDlgltem has to do iswalk the list of child windows for the
specified dialog and compare the control ID of each window it finds to the
idControl input parameter. This is exactly what GetDlgltem does. When it
finds aWND structure with a controlID field that matches the input para-
meter, the code looks up and returns the 16-bit HWND value found else-
where in the WND structure. Of course, before returning, the function
remembers to release the Win 16Mutex.

Pseudocode for GetDlgltem

/1 32 bit version in USER32.DLL
/1 Parameters:

/I HWND hwndDI g

Il int i dControl

Il Locals:

/I PWND32 pWd

GrabW nl6Mut ex();
pWwhd = GetWhdPtr32( hwndCtl ) Il Get a flat pointer to the WND struct,
if ( pwd )

pwad = pwhd ->hWdChild; / Start at the first child w ndow.

while ( pWwd ) // Wile there are child windows...

{
pWwhd += UserDgroupBase; // convert USER DGROUP relative pointer

Il to a flat pointer.

Il 1s the control 1D of this window what we're |ooking for?
if ( idControl == pWd ->ctrlID )
{
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pWwhd = pwWhd ->hWdl 6;
break:

}

pWhd = pwhd ->hWidNext; // Advance to next child window.
}
Rel easeW n16Mut ex();

return pwWhd; /I This is always either 0 or a 16-bit HWD val ue.

The GetDIgCtrlID function in USER32.DLL

The GetDIgCtrlID function is the complement of the GetDIgltem function.
Given a 16-bit HWND value, it merely needs to return the control ID stored
in the corresponding windows WND struct. As with GetDIgltem, the code
does all its work while holding on to the Winl6Mutex.

The GetDIgCtrlID function couldn't be much simpler. It passes the 16-bit
HWND input parameter to GetWndPtr32 and gets back a USER32-relative
32-bit WND pointer. Assuming it gets back a non-null pointer, the function
retrieves the control ID value from the appropriate offset in the WND struct
and returns it. (And don't forget to free the Win16Mutex!)

Pseudocode for GetDIgCtrlID

/1 32 bit version in USER32.DLL
/] Parameters:

/I HWD hwndCt |

Il Locals:

/[l PWND32 pWd

/1 DWORD ret Val ue:

GrabW n16Mut ex();

pWwhd = GetWhdPtr32( hwndCtl ); // Get a flat pointer to the WND struct.

if (!pwd )
retValue = 0;
el se
retValue = pWhd ->ctrlID /I Grab the ctrlID field out of the W\g.

Rel easeW n16Mit ex();

return retVvalue;
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Unicode support in Windows 95 (Huh?)

Believe it or not, Windows 95 does have a smidgen of actual, usable Unicode
support. If you don't believe me, check out the following short program,
which I've titled WIN95UNI.C:

#define UNI CODE
#include <windows. h>

int main()

MessageBox( O,
TEXT("Yes! Really!"),
TEXT("Uni code in Wndows 95?"),
VB_| CONQUESTI ON );

return O

When compiled, this code produces a Unicode program. We can even
verify it by dumping out the EXE file using PEDUMP from Chapter 8:

Imports Table:
USER32. dI |
Hint/Name Table: 00006084
Ti meDat eSt anp: 00000000

For war der Chai n: 00000000
First thunk RVA: 000060D4
Odn  Name

395 MessagegoxW

KERNEL32. dI |
Hi nt/Name Table: 0000603C
Ti meDat eSt anp: 00000000

..... rest omtted....

There's definitely a call to the Unicode version of MessageBox in there.

What happens when we run it? Check out Figure 4-5.

Just what the heck's going on in Figure 4-5? Windows 95 supposedly
doesn't support Unicode, but as you can plainly see, the WIN95UNI pro-
gram proves that there's some form of Unicode support in there. Here's a
call chain for an invocation of the Unicode MessageBoxW in Windows 95:

MessageBoxW
MessageBoxExW
W deChar ToMul ti Byte // Convert the 2nd paranmeter to ASCII.
W deChar ToMul ti Byte // Convert the 3rd parameter to ASCII.
MessageBoxExA /I Invoke the ASCIl MessageBoxEx.
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Figure 4-5
The WIN95UNI program proves that Windows 95 supports Unicode.

So why does Windows 95 go to the trouble of supporting Unicode (at
least in this minimalist fashion)? One of Microsoft's requirements for its
Windows 95 logo isthat programs should degrade gracefully on a system
that doesn't support the full set of capabilities required by the program. One
of the things a program could do is throw up a MessageBox and say "Sorry,
| can't run." By providing a somewhat reasonable implementation of the
MessageBoxW function, Windows 95 lets programs compiled for Unicode at
least get the word out that they may not work (or may not work properly).

The UserSeeUserDo function (USER.EXE)

| couldn't finish this chapter's discussion of the USER subsystem without
describing UserSeeUserDo. This function was introduced in Windows 3.1 as
an undocumented back door to various USER variables and functions. In
Windows 95, the volume of things that can dip through that back door has
been increased. In a way, examining what UserSeeUserDo provides is a good
way to get a handle on the key things the USER architects feel are important.

UserSeeUserDo is implemented in the 16-bit USER.EXE, and takes four
input parameters. The first parameter indicates what UserSeeUserDo should
do, or what variable's value it should return. The interpretation of the remain-
ing three parameters depends on what the first parameter is requesting.

The first three subfunctions allow the caller to allocate, free, or compact
memory from USER's 16-bit DGROUP heap. The next five subfunctions are
for returning the values of various important USER global variables: the menu
heap handle, the head of the system class list, USER's DGROUP handle, the
head of the device context entry chain (see Chapter 6 of Undocumented
Windows), and a pointer to the desktop window. This last variable isn't the
16-bit HWND of the desktop window. Rather, it's a USER32-relative 32-bit
pointer to the desktop window's WND structure.

The final two subfunctions made available by UserSeeUserDo are for
allocating and freeing memory from the new 32-bit heaps that USER uses.
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Subfunction 10 allocates memory, while subfunction 11 frees it. If the sec-
ond parameter to UserSeeUserDo is nonzero, the code allocates memory
from the 32-bit menu heap. Otherwise, it allocates the memory from the

32-bit window heap.

Pseudocode for UserSeeUserDo

/I Paranmeters:

/1" WORD wReqType
/1" WORD param, paranm?, paranB
if User TraceFl ags & 0x1000 )

_DebugQut put (  DBF_USER,

switch ( wReqType )

"User SeeUser Do" ):

{
case L
/I Call Local Alloc. wusing USER s DGROUP.
return UserLocal Al'l oc(LT_USER_USEREEUSERDOALLCC, param, paranB):
case 2
/I Call Local Free. wusing USER s DGROUP.
return UserLocal Free( param );
case 3
/I Call Local Conpact, wusing USER's DGROUP.
return Local Conpact( paranB );
case 4
return hMenuHeap: /I Handle to the 32-bit nenu heap.
case 5
return PClsList; /' Near pointer to first class in list of
Il system classes registered by USER EXE.
case 6
return DS /1 USER s DGROUP.
case 8:
return POCEFirst: I/ Head of DCE (Device Context Entry) Ilist.
I/ See "DCE" in Chapter 5 of Undocumented
/1" W ndows.
case 9
return HwdDesktop: // The USER DGROUP relative 32 bit version.
case 10:

/I Al'locate memory from either

if ( paraml )

the 32 bit nmenu or window heaps.
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return Local 32AI1oc( MenuHeapHandl eTabl eBase, param3, 0, 0,0);
el se

return Local 32Al'l oc(W ndowHeapHandl eTabl eBase, paranB, 0,0,0)
]

case 1L
/I Free memory from either the 32 bit menu or window heaps,
if ( paraml )

return Local 32Free( MenuHeapHandl eTabl eBase, param3, 0 );
]
el se

{
return Local 32Free(W ndowHeapHandl eTabl eBase, param3, 0 );

case T:
defaul t:
return 1

THE WINDOWS 95 GDI MODULE

After dl the new things I've described in Windows 95's USER subsystem, my
coverage of Windows 95's GDI side will probably be anticlimactic if you're
one of those pixel pushers who love GDI. It's not that GDI isn't important.
There are actually many new and exciting things on the graphics side of
Windows 95. Rather, it's just the plain and ssmple truth that I'm first and
foremost a KERNEL person who doesn't mind digging into USER. Graphics
and the GDI smply aren't as interesting to me. Now that I've provided full
disclosure on my GDI experience, let's move on.

If I could impart only one piece of information about Windows 95's
GDI.EXE and GDI32.DLL, it would be this: Thesetwo subsystems are pardle
to the equivaent USER subsystems. Both GDI and USER manage objects
alocated from their heaps. In the case of USER, the primary objects are
windows, menus, and classes. For GDI, the equivalent objects are pens,
brushes, bitmaps, and so on. In Windows 3.1, both USER and GDI were
constrained by their respective 64K heap (although USER.EXE did break
out menus into a separate 64K heap). In Windows 95, both USER and GDI
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are still heavily dependent on data structures allocated from their DGROUP
heaps. At the same time, though, both USER and GDI gained access to
Win32 heaps with 2MB of memory in which to stuff large data items. The
layout of the USER DGROUP, handle table area, and 32-bit window heap
translates exactly over to the GDI equivaents, as shown in Figure 4-6.

32-bit GDI heap > 2MB

GDI DGROUP selector
spans entire range

Offset 0x20000

HGDIOBJ pointer conversion table
(array of 32-bit GDI DGROUP r 64K
relative pointers)

5 Offset 0x10000
GDI 16-bit DGROUP
> 64K
GDI static data
(global variables, etc.) v
J Offset 0 — 1

Figure 4-6
In Windows 95, GDI and USER have a generally parallel structure. Here, you can see
that the layout of the DGROUP and handle table area of GDI is similar to that of USER.

Just as you access USER's objects with handles (HWNDs and HMENUS),
you also use handles to access GDI objects (HPENs, HBRUSHSs, and so on).
Earlier, | described how 16 HWNDs are used to look up 32-bit pointers in
an array to find the actual offset to aWND structure. For GDI objects that
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are stored in the 32-bit GDI heap, the trandation from 16-bit handle to 32-bit
pointer works exactly as it does for HWNDs on the USER side. If the GDI
object that a handle references is allocated from GDI's DGROUP, then the
handle is a regular 16-bit heap local handle, and can easily be dereferenced
to an offset into GDI's 16-bit DGROUP.

The point of al this isto think of USER and GDI as being somewhat
parallel in operation, at least at the level where they manipulate data struc-
tures. If you really understand how the USER code works with regards to
handles and pointers, you can probably dive into GDI code and know
what's going on without too much difficulty.

So what items did the Windows 95 GDI feel compelled to move up into
its 32-bit heap? Well, according to the HEAPWALK program from the
Win32SDK, there are fonts and regions floating around up there. There
are also some additional objects that HEAPWALK (and I, being a relative
neophyte regarding GDI issues) are unable to identify.

Another area where USER and GDI are pardlel involves thunking. The
vast majority of the USER subsystem code is implemented in the 16-bit
USER.EXE, and USER32 serves primarily (but not entirely) as thunks down
to that code. The situation with the GDI subsystem is similar, but not identi-
cal. Vast portions of GDI remain implemented in the 16-bit GDI.EXE code.
However, Microsoft added many new GDI-related features having to do
with Win32 support to the GDI subsystem. Some of this new code was done
in the 16-bit GDI.EXE. However, Microsoft claims that some of GDI's new
functionality was put into GDI32.DLL and that GDI.EXE thunks up to it.
The areas that Microsoft says are in GDI32 are the TrueType rasterizer, the
spooler and printing subsystem, and the DIB engine. | haven't yet conclusively
proved that thisistrue. However, from looking at what goesin GDI32.DLL,
it appears that there is quite a bit of code in GDI32 that's unrelated to simply
thunking down to GDI.EXE.

One especialy noteworthy addition to the 16-bit GDI.EXE is 32-bit
code within the 16-bit module. In Chapter 7, | describe a bit in the segment
table entries of 16-bit New Executable (NE) files that tells the Windows 95
loader to make the selector for the segment a 32-bit code selector. That is,
when the CPU loads that selector into its CSregister, it's interpreting the
code as 32-bit code rather than as the 16-bit code used by most Win16
applications and DLLs. The 16-bit GDI.EXE uses four such 32-bit segments.
Although there were no exported functions in these 32-bit segments, |
examined the code around the calls to these 32-bit segments from
GDI.EXE, and came to the following conclusions:
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GDI.EXE Segment 0x20: Bezier stuff

GDI.EXE Segment 0x23: Paths, Enhanced Metafile (EMF) support

GDI.EXE Segment 0x24: 77?2 (unknown)

GDI.EXE Segment 0x26: The string "engine font" appears in this
segment

Microsoft's description of the relationship between the 16- and 32-bit
components of Windows 95 states that Beziers, paths, and enhanced
metafiles are in the 16-bit GDI.EXE. This is consistent with what | found.

GDI objects

One of the keysto being a GDI expert is understanding GDI objects. The GDI
subsystem deals with a dozen or so0 different object types. Most of them have
their own unique handle name (which you're undoubtedly aready familiar
with). For example, a device context (DC) is one type of GDI object, and
you pass an HDC (handle to a DC) to various GDI functions. Likewise, a
pen isa GDI object, and you refer to a specific pen viaan HPEN (handle to
a PEN). Functions that accept any particular type of GDI object take HGDIOBJ
parameters. An HGDIOBJ can be considered a base class for more specific
GDI objects like HDCs, HBRUSHSs, and so forth. You can find the list of
GDI objects in Windows 3.1 from examining the LT_GDI_xxx #defines in
TOOLHELP.H. Unfortunately, those #defines don't appear to have been
updated for the new GDI object types in Windows 95.

You can tell that GDI triesto dea with its objects in a uniform manner
because it has functions like SelectObject and DeleteObject that don't need
to betold what they're being passed. GDI inspectsthe object, determines what
type it is, and acts accordingly. How does GDI know the type of a particular
object that's passed to it? Each GDI object starts out with a standard header
that includes a WORD that marks the object as a particular type. The
Windows 95 GDI object list (including the corresponding marker values) is
as follows:

PEN Ox4F47 (1)
BRUH Ox4F48 {2)
FONT Ox4F49 (3)
PAL OX4F4A (4)
BITMAP Ox4F4B (5)

REGION OX4FAC (6)
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DC 0x4F4D (7)
Ic O0X4FAE (8)

/I Beyond this point, the markers get a bit sketchy, but here's ny
Il best guess...

METADC Ox4F4F
METAFI LE 0x4F50
ENHVETADC 0x4F51
ENHVETAFI LE 0x4F52

The IsGDIObject function in GDI.LEXE

The 1sGDIObject function is documented as returning FALSE if the input
GDI object handle (an HGDIOBJ) isn't a valid handle. Interestingly, the
documentation says that if IsGDIObject returns TRUE, the input handle
may not actually be areal GDI object handle. Nonetheless, the documented
purpose of the function isto determine if an HGDIOBJ isinvalid. What the
documentation doesn't tell you isthat if the input HGDIOBJ parameter is
valid, the return value identifies what type of object was passed in. This can
come in handy for applications like Bounds-Checker/W that need to verify
handles such as HDCs, HBRUSHSs, and so forth.

As | mentioned earlier, GDI stores some objects in its 16-bit DGROUP
heap and other objects (fonts and regions) in its 32-bit heap. The first thing
IsGDIObject needs to do is figure out where it should look for the object so
that it can read in the object type WORD (for example, O0x4F47). Luckily,
this isn't hard for GDI to do. GDI objects that are allocated out of the 16-bit
DGROUP heap are allocated with the LMEM_MOVEABLE attribute. To
make a long story short, 16-bit LMEM_MOVEABLE handles always end in
2, 6, OxA, or OXE. Asyou may recall from earlier in the chapter, the handles
for objects in 32-bit USER or GDI heap are always multiples of 4.

Knowing this key distinction between the two types of objects, 1sGDIObject
merely needs to examine the second to last bit. If it's set, the handle ends in
2, 6, OXA, or OxE and the object was allocated from GDI's 16-bit DGROUP.
If the second to last bit is O, the handle value ends in O, 4, 8 or 0xC, so the
object was allocated in the 32-bit GDI heap. In either case, IsGDIObject cal-
culates the address where the object can be found and constructs a pointer
to the object. Using the pointer, ISGDIODbject extracts the block type WORD.

With the block type WORD in hand, IsGDIODbject then masks off a couple
of the bits, which apparently mean something elsewhere in GDI. The result
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the case, this isn't a valid GDI object, so IsGDIObject returns 0. If the block
type WORD is within range, 1sGDIObject subtracts 0x4F46 from the value
to make it a one-based value. This is the number that IsGDIObject returns.

Pseudocode for IsGDIObject

/I In 16-bit GDI.EXE

/] Parameters:

/I HGDIOBJ hbj

/I Locals:

/I PGDIOBJ pQbj;

/1" \WORD ret Val ue; /I The doc says a BOOL, but it's really an obj type.

/1 Note that the doc says that this function can return TRUE without
Il it really being a GDI object.

if ( hObj ==10) Il Check for the bonehead -case,

return 0;
if ((hObj & 2) == ) I/ Object handles in 32 bit heap are
{ Il multiples of 4.

Il Use the handle as an offset into the GDI object table that
/l starts 0x10000 from GDI's DGROUP. The DWORD there is a PGDI OBJ.
/1 Actually dereferences through ES. ES points to GDI's DGROUP.
plbj = *(PGDIOBJ)( 0x10000 + hQbj );

e}else /1 Object handles that end in 2, 6, A or E are G 16 hit

{ Il heap local handles,

/I Since the hChj is a moveable handle, it's a pointer to a 16 bhit
Il local heap handle table entry. The WORD at offset 2 in a
/1 handle table entry is OxFF if the block is free. Check for
Il this case, and bail out if so.
if (*(NPWORD)(hObj+2) == OXFF )
return 0;

/I 1f we get here, it's (theoretically) an in use handle.

/1 Dereference the first WORD of the handle table entry to get
/I a near pointer to the Gt object within the 16 bit GD heap,
plbj = *(NPWORD) (hObj);

/1 1f LMEM DI SCARDED (???) flag set in handle flags, then
Il the pObj is really a 32 bit heap handle. Go dereference it
/I in the table starting 64K into GDI's DGROUP.
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if (*(NPWORD)(hObj+2) & 0x40 )
pobj = *(PGDIOBJ)( 0x10900 + pObj );
}

retValue = pObj >ilObjType

retValue & Ox5FFF; /1 Mask off the 0x8000 and 0x2000 bhits.
retValue = 0x4F46 /'l Make the object type value 1 based.
if ( retvalue <= 0 )
return 0;
if ( retvalue > 13 ) Il Is the object type out of range?
return 0; Il Yes? Sorry, you lose. Do not pass GCo.
return retVal ue; /' Return value indicates the object type.

The GetObjectType function in GDI32.DLL

In the Win32 API, there isno 1sGDIObject function. Luckily, the Win32
API goes one step further and actually provides a function that returns the
type of an HGDIOBJ handle passed into it. The GetObjectType is quite a
bit more sophisticated than 1sGDIObject in its probing for the correct type
of the HGDIOBJ passed in.

GetObjectType starts out by probing the HGDIOBJ handle to seeif it's
realy a selector. The handle for metafile objects is apparently an actual selec-
tor for the data in the metafile. If the HGDIOBJ looks like a selector value,
GetObjectType gropes around inside the segment, and if it finds that certain
fields are what it thinks they should be, it returns the value OBJ METAFILE.

With this initial selector monkey business out of the way, GetObjectType
enters a section of code that looks remarkably similar to what 1sGDIObject
in GDI.EXE does. If the handle value endsin 2, 6, OxA, or OXE, GetObjectType
assumes that it's a 16-bit local heap handle for an object in USER's 16-bit
DGROUP. If this turns out to be the case, GetObjectType grabs the
Winl6Mutex to prevent athread from potentially changing the state of the
USER heap or the object being examined. If the HGDIOBJ doesn't end in 2,
6, OxA, or OXE, GetObjectType figures the object isa font or aregion in the
32-bit heap. In either case, the code creates a 32-bit pointer to the GDI object.

With the pointer to the object, GetObjectType extracts the object type
WORD and goes through the similar masking and subtraction process that
IsGDIObject performs on the object type value. GetObjectType then checks
the object type value to make sure it's within the allowable range, and if not,
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returns 0. If the object type at this point is 6 (an HDC), GetObjectType
probes further into the object's data to see if it might be an enhanced metafile
DC or a memory DC. If this is the case, the function returns the appropriate
OBJ_XXX value from WINGDI.H.

The final phase of GetObjectType is to convert the 16-bit object type
values (such as the LT_GDI_xxx values from TOOLHELP.H) into their 32-bit
OBJ XXX equivalents. For some strange reason, the OBJ_XXX values don't
map one-to-one to the object type values stored in the object itself. (This is
probably because the OBJ_XXX values were originally defined by the
Windows NT GDI team, which wasn't basing its code around the Windows
3.1 GDI.EXE.) In any event, the object types need to be converted from the
values that GDI.LEXE uses to the OBJ_XXX values that WINGDI.H defines.
This translation step is performed via a lookup array. The final section of
GetObjectType releases the Winl6Mutex if it was previously acquired.

Pseudocode for GetObjectType

[ in GDI32.DLL

/I Parameters:

/1 HGDI OBJ hbj;

Il Locals:

/I BYTE fHaveW nl 6Mut ex
/I DWORD retVal ue:

/I PGDI OBJ pObj:

fHaveW n16Mut ex = FALSE; /I We'll only grab the Wnl6Mitex if we
/1 absolutely have to.

Set up a structured exception handling frame in case all this nmonkey
business goes bad on us.

if ( LAR (load access rights) succeeds on hObj )
{

if ( access rights indicate a non system ring 3 descriptor )
WORD Met aFi | eType;

Use hbj as a selector, and grab the first WORD of the
segnent it points to. Call this value MetaFileType.

if ( MetaFileType < 1)

{
Grab the WORD at offset 2 in the segment,
if ( this WORD == OBJ_METAFILE )
{
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Grab the WORD at

it

retValue =

goto done;

/I Figure out where the object resides (in GDI.EXE's DGROUP? or n
/1 the 32 bit GD heap?).
if ( hObj & 2 ) // Object handles that end in 2, 6, A or E are GD
{ /1 16 bit heap local handles.
EnterSysLevel ( pWnl6Mitex );
f HaveW n16Mut ex = TRUE;
pObj = ConvertHGDI OBJToPtr32( hObj );
}
el se /I Object handles in a 32 hit heap are nmultiples of 4.
{
/I Index into the handle table and grab out the GDIOBJ pointer.
pCbj = *(PGDIOBJ) ( hGDI HeapHandl eTabl eBase + hCbj );
/I The GDIOBJ pointer is relative to GDI's DGROUP, so go add the
/1 offset of GDI's DGROUP to make it a flat pointer.
pObj += GDI DGroupBase;
}
retValue = pObj ->i|1CbjType; // Get the object type WORD.
retValue &= Ox5FFF /' Mask off the 0x8000 and 0x2000 bhits.
retValue == 0x4F47 /1 Make the value 0 based (so that we
/I can do an array based translation later).
if ( retvalue >= 1 /I Qut of range? You lose. Do not pass Co.

{
Set Last Error (
retValue = 0;
goto done:

(this WORD == 0x100) Il

offset 4 in the segnent.

(this WORD == 0x300) ){

OBJ_METAFI LE

ERROR | NVALID HANDLE );
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/1 1f the object is a DC, it could be one of several different subtypes.
Il Peek inside the DC structure and see if we can figure out what it is.
if ( retvalue == ) Il 6 == DC
\
if ( pObj[l02] !=10) /I I's WORD at offset 102 in DC != O ?
{ /1 Yes? Then it's an enhanced netafile,
retValue = OBJ_ENHVETADC;
goto done;
}
if ( pObj[OxE] & 1) /I 1s bit 1 in the BYTE at offset OxE turned
{ /I on? If so, it's a memory DC
retValue = OBJ_MEMDC;
goto done;
}
}
/1 Convert the 16 bit object type stored in the object into its
/1 equival ent OBJ_xxx value as given in WNGDI.H.
retValue = ObjectTypeConversionArray[ retValue ]
/I The array conversions are as follows:
Wn16 (TOOLHELP. H) Wn32 (W NUSER. H)
LT_GDI _PEN(1) OBJ_PEN
LT_GDI _BRUSH( 2) OBJ_BRUSH
LT_GDI _FONT(3) OBJ_FONT
LT_GDI _PALETTE( 4) OBJ_PAL
LT_GDI _BI TMAP(5) OBJ_BI TMAP
LT_GDI_RGN(6) OBJ_REGI ON
LT_GDI _DC(7) OBJ_DC
LT_GDI _DI SABLED_DC(8)  OBJ_DC
LT_GDI _METADC( 9) OBJ_DC
LT_GDI _METAFI LE( 10) 0
277 (11) OBJ_METADC
277 (12) OBJ_ENHMETAFI LE

if ( fHaveW nl6Mutex )

LeaveSysLevel (
remove structured

return retVvalue;

pW n16Mut ex

exception

11
11

If we grabbed the W nl6Mutex
release it now,

),

earlier,

handling frame
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New Win32 GDI functions available to
Win 16 applications

As afina note on GDI, | was curious to see how much of the new Win32 AF
GDI functionality bled over to the 16-bit side. (It'sonly natural to wonder
this, seeing as how so many GDI functions new for Win32 are implemented
in the 16-bit GDI.) To figure out if any supposedly Win32-only GDI functions
are available for caling by 16-bit code, all | had to do was dump the exports
from the Windows 95 GDI.EXE and compare it to the exports from the
Windows 3.1 GDI.EXE. After filtering out undocumented functions, what's
left over are GDI functions that were added to the Win32 specification, yet
are callable by Winl16 code. The task of comparing the two versions of
GDI.EXE was made almost effortless by the excelent EXEUTIL program
from Undocumented Windows. The command:

EXEUTIL -diff C\WN31\SYSTEM GDI . EXE C:\ W NDOAS\ SYSTEM GDI . EXE

gave me a nice delta of the exports between the two versions of GDI. (Only
three undocumented functions were removed from Windows 95's GDI.EXE.)
There were quite a few new exported 16-bit GDI functions that showed up
as being added in Windows 95's GDI.EXE. | filtered out al the undocumented
functions and other exports that don't have equivalents in the Win32 API.
After some rearranging and grouping, | came up with the 16-bit GDI func-
tions shown in Table 4-1. These functions are exported and presumably are
safe to be called from Winl6 code.

Table 4-1

New GDI functions that are callable from Winl16 code
Function Type Function Names
Printing ABORTPRINTER, CLOSEPRINTER, ENDDOCPRINTER,
(These functions are all ENDPAGEPRINTEROPENPRINTERA, STARTDOCPRINTERA,
thunks up to GDI32.DLL.) STARTPAGEPRINTERWRITEPRINTER
Device-IndependenBitmaps CREATEDIBSECTION,GETDIBCOLORTABLE,
(These functions appear to be SETDIBCOLORTABLE

implemented in GDI.EXE



271

Function Names

CLOSEENHMETAFILE, COPYENHMETAFILE,
CREATEENHMETAFILE, DELETEENHMETAFILE,
GDICOMMENT, GETENHMETABLE,
GETENHMETAFILEBITS, GETENHMETAFILEDESCRIPTION,
GETENHMETAFILEHEADER,
GETENHMETAFILEPALETIEENTRIES,
PIAYENHMETAFILERECORD,

SETENHMETAFILEBITS, SETMETARGN

GETARCDIRECTION, POLYBEZIER, POLYBEZIERTO,
SETARCDIRECTION

Function Type

Enhanced Metafiles

(These functions appear to be
implemented in GDI.EXE

with the aid of 32-bit

code segments.)

Line drawing

(These functions appear to be
implemented in GDI.EXE with the
aid of 32-hit code segments.)

Paths

(These functions appear

to be implemented in GDI.EXE
with the aid of 32-bit code
segments.)

Miscellaneous

(These functions appear to be
implemented in

GDILEXE.)

ABORTPATH, BEGINPATH, CLOSEFIGURE,
ENDPATH, FILLPATH, FLATTENPATH, GETMITERLIMIT,
GETPATH, PATHTOREGION, SELECTCLIPPATH,
SETMITERLIMIT, STROKEANDFILLPATH, STROKEPATH,
WIDENPATH

CREATEHALFTONE PALEAE, ENUMFONTFAMILIESEX,
EXTCREATEPEN, EXTCREATEREGION,
EXTSELECTCL/PRGN, GETCHARACTERPLACEMENT,
GETFONTLANGUAGEINFO, GETREGIONDATA

SUMMARY

Throughout this chapter, I've shown the strange, hybrid nature of the
Windows 95 USER and GDI components. While they are quite obvioudy
derived from their Windows 3.1 predecessors, the Windows 95 USER and
GDI have significant amounts of 32-bit code. The end result is many
improvements that programmers can take advantage of, both in 16- and
32-bit programs. In addition, moving many of the heavily used data
structures (such as WNDs) out of 16-bit heaps makes Windows 95 a
worthwhile upgrade from Windows 3.1, even if you're not interested in
the snazzy new features. While the Windows 95 USER and GDI components
aren't anywhere near as full-featured and robust as their Windows NT
equivalents, the improvements Windows 95 offers are a welcome relief to
frustrated Windows 3.1 programmers.



Chapter

MEMORY
MANAGEMENT

ust as programmers were beginning to get used to the idio-

syncracies and gotchas of memory management under
Windows 3.x, Microsoft rolled out the Win32 API, which
presents a different set of challenges for the overwhelmed
programmer.

Theoreticaly, Win32 memory management should be simi-
lar under the three incarnations of Win32: NT, Windows 95,
and Win32s. Given Microsoft's track record in this area, how-
ever, you would expect Windows 95 memory management to
have numerous differences (both subtle and not so subtle) from
NT and Win32s. This isindeed the case. In this chapter, | dis-
sect Windows 95's implementation of Win32 memory manage-
ment. To be fair to Microsoft, note that many of the general
concepts described here also apply to NT and Win32s.

I've divided the various subtopics of memory management
into two categories. The first set of topics relates to issues such
as the process address space, memory contexts, and paging
behaviors (for example, copy on write). Later, | move to the
other set of memory management subtopics: the APIs that the
operating system provides for allocation and manipulation of
memory.

If you're looking for information on 16-bit or DOS virtual
machine memory management, this chapter is not what you're
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looking for. I've chosen to keep this chapter resolutely 32-bit based with
only afew exceptions where absolutely necessary. If you're interested in
Windows 95's 16-bit memory management, see Chapter 2 of my previous
book, Windows Internals. Windows 95's 16-bit memory management is
almost completely unchanged (except for bug fixes) from Windows 3.1.
With these preliminaries out of the way, let's jump into...

WINDOWS 95 PAGE-BASED

MEMORY MANAGEMENT

If you want to have any hope of really understanding the memory architec-
ture of Windows 95, there's smply no way to avoid understanding memory
paging on the Intel 80386 class of CPUs. Although the technique of memory
paging far predates the 80386, we're interested only in how Windows 95
uses paging on the 80386, so I'll speak in 80386-specific terms. If you already
know paging cold, you can skip this section. If memory paging is mysterious
to you or if you need a quick refresher, read on.

Memory paging

The primary reason for paging isto provide a method for the operating
system to collaborate with the CPU to fake programs into thinking that there's
more memory available than is actually installed in the computer. When a
program reads or writes a byte of memory, it may or may not be accessing a
byte of physical RAM. If a program touches an address that doesn't map
directly to a byte of physical RAM, the CPU informs the operating system of
this event. The operating system in turn takes the steps necessary to associate
physical memory to the address that the program attempted to use.

If the total memory usage of dl the running programs exceeds the amount
of memory installed in the computer, the operating system may need to yank
a block of RAM away from some other program that's using the memory.
Blindly stealing memory out from underneath a program that's using it isa
recipe for disaster, 0 Windows 95 arranges for the original contents of RAM
to be saved esewhere before reassigning the block of RAM. The "esewhere'
in this caseis the computer's hard drive. At any given time, al memory in
use by the operating system and running programs is stored either in RAM
or on ahard drive. (Thisis a bit of simplification, but it will suffice for now.)
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Virtual memory isthe commonly used term to refer to this method of simu-
lating memory using paging and space on a secondary storage device such
as a hard drive. One of the fundamental jobs of the Virtual Machine Manager
in Windows 95 (the VMM module in VMM32.VXD) isto provide virtual
memory with a minimum of fussto application programs.

What confuses many people is that paging affects the CPU's memory
addressing. Without paging, the address that a program tells the CPU to use
will be the same address that goes out on the computer's memory bus. For
example, in a real mode program, you can easily calculate a physical address
from a segment:offset combination by multiplying the segment value by 16
and adding the offset. With paging enabled, a memory address that a program
uses may not be the same address that the CPU sends out to the memory bus.
Paging introduces alevel of indirection (actualy two levels) to all addresses.
When a program passes an address to the CPU to access, the CPU uses cer-
tain bits of the 32-bit address to look up the physica RAM address that it
should send out to the machine's bus. The tables that the CPU uses to trans-
late addresses are under the operating system's control. Putting the address
translation tables under the control of the operating system alows the oper-
ating system to tell a program to use addresses anywhere in the 4GB range
of memory addressable by a 32-bit address, even though there may not be
physical RAM at a given address.

The term paging comes into play because the CPU doesn't provide this
indirection for each address on a byte-by-byte basis. Rather, the translation
of memory addresses affects 4K chunks of memory. For example, if you use
paging to assign physical RAM address 0x1000 to program address 0x400000,
then RAM address 0x1001 will appear to the program to be at address
0x400001, and RAM address OxIFFF will be at program address 0x400FFE
However, the next program address (that is, 0x401000) isthe start of a new
4K page, so physical address 0x2000 does not necessarily have to be mapped
to program address 0x401000. Program address 0x401000 may be mapped
to a different physical RAM address (for example, 0x6000), or it may not
have any physical RAM mapped to it. All decisions about which pages will
have RAM mapped to them are made by the operating system's paging code.

Besides allowing the operating system to provide virtual memory, the
CPU's support for paging also allows the operating system a great dea of
flexibility in how it should arrange various objects in memory. By objects, |
mean things such as the operating system code, the program's code, the pro-
gram's data areas, and memory mapped files. The memory layout that an
operating system uses is known as its address space layout. I'll describe the
Windows 95 address space shortly.
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The benefit of paging is that the operating system can spread operating
system objects throughout the entire addressable range of the CPU (in the
case of Intel 386 class CPUs, a4 hillion byte range). The entire addressable
range of memory that the CPU can theoretically accessis known as its address
space. Addresses that the CPU will trandate because it has enabled paging
are called linear addresses. This differentiates them from the addresses after
the CPU has trandated them. These are actual addresses that will go out on
the CPU's bus to the physical RAM. These addresses are known as physical
addresses. The important thing to remember isthat in almost all cases,
program and APl calls deal with linear addresses, not physical addresses.

With paging support, the operating system can assign various sections
of the address space to particular items and leave room for those items to
grow or to be added to as necessary. For example, when a program starts
up, by default Windows 95 reserves a 1IMB range of the CPU's address
space for the program stack. This doesn't mean that Windows 95 will map
1MB of physical RAM to the stack's range of memory addresses. Rather, it
means that the maximum size of the stack is IMB. Windows 95 will only
map physical memory to those 4KB regions in the stack area that the
program uses.

Paging provides the operating system with the capability to reserve vast
ranges of memory addresses without having to pay for those addresses (with
physical RAM) until they're used. It's like reserving twelve seats for a con-
cert without knowing how many of your friends will show up. If only three
are in your group, you have to pay for only three seats.

At any given time, every 4KB section (page) in the CPU's 4GB address
space isin one of four possible states:

* State 1: Available. This page of memory hasn't been reserved for use by
anybody, and is theoretically available tobe allocated. An attempt to
access this memory by reading or writing to it will result in a page fault
exception (exception 14 (OEh)). I'll describe page faults shortly.

*  State 2: Reserved. The page is part of a range of memory that somebody
has requested. However, physical RAM is not currently mapped to this
address, nor isany hard drive space reserved to save a copy of its contents.
An attempt to access this memory by reading or writing to it will result
in a page fault exception (exception 14 (OEh)). Note, though, that the
operating system gives the owner of the page an opportunity to change
the page state to Committed and Present (state 3).



* State 3: Committed and present. This range of addresses has been allo-
cated by somone, and a program is using it to store information. The
CPU's paging mechanism has mapped a 4KB physical block of RAM to this
page's address. Reading or writing to this address will cause the physical
RAM mapped to the page to be read or written. A substate to the com-
mitted and present state is known as pagelocked. A pagelocked page is
committed, present, and guaranteed to never be swapped out. There will
aways be physical RAM associated with a pagelocked page until the
page is unpagel ocked.

* State 4. Committed and not-present. Thisis similar to the preceding
state (committed and present). The program has allocated the memory
and is using the memory to store information. The difference is that the
operating system has decided that the RAM mapped to the page was
needed more urgently elsewhere. Therefore, the CPU has copied the
contents of this memory to the hard disk drive and marked the page as
"Not Present."

Like states 1 and 2, a page fault will occur if a memory address within
the page is accessed. The difference is that when a program accesses this
memory, the operating system transparently handles the page fault
exception and remaps a 4KB block of physical RAM to the page. Next,
the operating system reads in the original contents of the page from the
hard disk, and then finally reexecutes the instruction that page faulted.
The result is that the program doesn't have any idea that a page fault
happened. This transparent ssimulation of RAM using space on a hard
drive is the essence of virtual memory.

Windows 95 provides applicationdevel APIsthat enable you to allocate
ranges of memory pages and to change them to have the attributes that |
just described. These are the Virtual XXX (VirtualAlloc, VirtualFree, and so
on) functions, which | describe later in the chapter.

Memory paging versus selectors

If you've programmed for Windows 3.x, you're probably wondering how
paging can be reconciled with selectors. Programs that run in 16-bit pro-
tected mode on the Intel CPU invariably must use selectorsto access a section
of memory in the CPU's address space. Each of a Winl6 program's code
segments is associated with a selector, as are its data segments and any
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memory blocks it allocates with the global heap functions (for example,
GlobalAlloc). It's impossible to do application-level Winl6 programming
without encountering selectors.

The most fundamental information associated with each selector is
where in memory it points to (that is, its base address). On a 386, the base
address of a selector can be anywhere between 0 and 4GB minus 1. In other
words, the selector can potentially point anywhere in the CPU's address
range. However, the base address of a selector is specified as a linear
address, not a physical address. Therefore, the paging mechanism of the
CPU operates underneath the selectors. In both Windows 3.1 and Windows
95, 16-bit code doesn't think about paging and virtual memory support.
Instead, it just assumes that there will be large regions of memory available
to it. The 16-bit global heap management code allocates large pieces of
memory from the ring O operating system components and then subdivides
the memory into smaller pieces that it makes accessible to programs
through selectors. The base addresses of selectors do not have to start on a
4K B page boundary, nor does every page beneath a given memory segment
need to be physically present.

/As mentioned, the selector/segment management code doesn't sweat the
details at the paging level. It lets the underlying paging system code provide
virtual memory and assumes that memory will be there when it needs to access
it. Chapter 2 of Windows Internals describes the 16-bit selector/segment
management code in Windows 3.1. This particular aspect of memory
management hasn't changed much in Windows 95.

If you're executing in protected mode, you can't avoid selectors. They're
absolutely required to access memory. The great thing about Windows 95 is
that it requires at least a 386 CPU, and one of the key features of the 386 is
that you can make segments that span the entire 4GB of the CPU's address
space. It's therefore possible to create selectors with base address of 0 and
limits of 4GB. If you load these selectors into the CS and DS registers, you can
effectively forget that segmentation exists. Programs can refer to addresses
in memory with just a 32-bit offset value. In this scenario, the 32-bit offset
is the same as a linear address. The mode of using selectors with a 0 base
address and a 4GB limit has been dubbed the flat memory model (as opposed
to the small, medium, compact, and huge memory models from 16-bit pro-
gramming). Remember, however, that although flat model programs make it
appear that segments no longer exist for Win32 programs, the CPU is till
using segmentation under the hood. This is especially important to remember
if you're going to mix 32-bit code with 16-bit code (which cannot hide the
ugly reality of segments).
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With wide open segments that let a program touch any address in the CPU's
address range, you might be wondering how the operating system protects its
internal data structures and other areas of memory that application code
shouldn't be mucking with. This wasn't hard to do in 16-bit programming
because a selector defined a specific starting and ending address that a pro-
gram could touch. Theoretically, the operating system would never hand out
a selector with a base address that would allow an application program to
get at memory that it shouldn't have access to. (However, Windows 3.1 and
Windows 95 don't prevent you from creating your own selectors and going
to town with them. I'll take advantage of this "hole" later in the chapter.)

If aWin32 program uses flat segments, how can the operating system
restrict access to areas that it doesn't want programs to touch? In this case,
instead of relying on segment limits, the operating system sets the attributes
of the pages as appropriate. For example, a program shouldn't be able to
blindly write to and corrupt its code areas. The operating system therefore
sets the page attributes of the code areas to read only. Programs can read
those pages, but attempts to write to them will cause a page fault. Likewise,
a program that gets hold of atrashed pointer will likely write to a page of
memory that's not allocated by anybody.

The operating system marks all pages that aren't specifically owned by
somebody as not-present. Trying to touch one of these addresses also results
in a page fault. In addition, the operating system can mark a range of pages
with the supervisor attribute. Pages with the supervisor attribute can be
accessed only by code running at a high privilege level (that is, certain parts
of the operating system and VxDs). An attempt to access a supervisor page
by a low-life application program results in a page fault. Asyou can see,
even without segments, Windows 95 can use paging to effectively protect
sensitive areas of memory. The only downside is that the granularity of
memory allocations at the lowest level isin 4KB pages rather than in single
bytes like 16-bit segments.

THE ADDRESS SPACE OF A WINDOWS 95
WIN32 PROCESS

In versions of Windows before Windows 95, al running programs ran in
the same address space. That is, any program could easily read the memory
of another program. More importantly, a program could modify another
program's memory, a potential ticket to a disaster if buggy programs are
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involved. For example, a 16-bit Windows program (even on Windows 95) can
get hold of the selector for the 16-bit USER's DGROUP and write random
garbage. Bye-bye windowing system.

Windows 95 is the first mass-market version of Windows that runs each
process (at least each Win32 process) in its own address space. By its own
address space, | mean that a program can see memory owned only by itsdlf.
Memory in use by other processes is not physically accessible. Specificaly,
the Windows 95 memory manager uses the CPU's page-based memory
management capabilities to ensure that only memory owned by the current
process is mapped somewhere in the 4GB address range of the CPU.
Physical RAM in use by other processes simply does not show up in the page
tables for the current process. The huge benefit of this is that theoretically a
buggy program can screw up only itself, and won't affect other programs.
Each program gets its own sandbox to play in; if it kicks sand, the only
harmful effect isto itself.

Lest you become too excited by this advance in Windows, this method
of isolating programs from one another for their mutual protection is nothing
new. Operating systems such as UNIX have been doing this for decades.
Windows NT also keeps each Win32 process in its own address space. It was
about time that the desktop operating system that Microsoft was pushing
on the masses obtained this most basic feature of a decent operating system.
(Win32s, the forgotten stepsister in the Win32 family, doesn't use separate
address spaces for each process.)

Although it's important to keep the memory of all programs separate,
certain ranges of memory need to be shared across all processes. That is,
certain pages in the linear address spaces of all processes should map to the
same physical page of RAM. Why would you want this? A perfect example
is for the systems DL Lsthat each process uses. For instance, every process
at the very minimum requires the use of KERNEL32.DLL. It would be
incredibly wasteful to load a fresh copy of KERNEL32.DLL into memory
for every running process. Therefore, KERNEL32.DLL (and other system
DL Lssuch as USER32) reside in shared memory. When the operating system
switches around the CPU's page tables because it's about to run a new
process, it leaves the page table mapping for the shared memory regions
aone. I'll describe other examples and needs for shared memory later.

Because Windows 95 keeps the memory for different processes separate
from one another, any discussion of how Windows 95 lays out the 4GB
address space must necessarily include the concept of memory contexts. A
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memory context is essentially alist of RAM pages and what linear address
they will be be mapped to when a given process isactive. Phrased another way,
a memory context isthe view of the CPU's linear address that the operating
system gives to a process.

Each process has its own memory context. When the Windows 95
scheduler suspends one process and lets another process execute, Windows
95 must also switch the memory contexts from the original process to that
of the newly scheduled process. Because memory contexts are maintained
on a per-process basis, they're sometimes referred to as a process context.
Memory contexts are also known as address contexts. Whatever you call
them, the important thing to remember isthat a memory address by itsdlf is
meaningless unless you specify which memory context it'sin.

At the topmost level, the memory layout Windows 95 uses for Win32
processes is smple. In the 4GB address range, Windows 95 reserves the
bottom 2GB (addresses Oh through 7FFFFFFFh) for the application's mem-
ory. Addresses above 2GB (addresses 80000000h through FFFFFFFFh) are
intended for use by the operating system. Within these two halves of the
address space are several subdivisions. Figure 5-1 shows the breakdown of
the various regions in the 4GB address space. If you have the Windows 95
DDK, you might also want to read the "Page Mapping and Address Spaces"
section under the "Arenas"' heading in the online help.

The first AMB of the address space is shared between al processesin the
system virtual machine (VM). Part of this region is the memory below 1MB,
which includes the memory image of MS-DOS that was loaded as part of
the Windows 95 bootstrap process. Also of interest below 1MB is the lower
portion of the 16-bit global heap. As| described in Chapter 2 of Windows
Internals, all 16-bit heap segments in Windows 3.1 have a linear address
that's either below 1MB or above 2GB. 16-bit heap allocations with the
GMEM_FIXED attribute are alocated from the lowest available address in
the global heap, so the allocated block often ends up with a linear address
below 1IMB. You'l find the memory for numerous 16-bit system DLLsin
this first AMB range of the address space because many of them (such as
KRNL386) need fixed and pagelocked memory. This is an important point
that I'll come back to shortly.

The next region in the 4GB address space is the range from 4MB to
2GB. This is the per-process address space that each Win32 process uses.
Each Win32 process has its code, data, and resources mapped into this
nearly 2GB region. When you switch memory contexts, the effect isto apply
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a different set of page mappings to this range of memory. Except in special
cases that the programmer specifies, the physical RAM pages mapped in
this region for use by one process are not accessible by any other processes.
Besides the executable's code and data, this region also contains the code
and data for any application-specific DLLs used by the process. Also in this
region, you'll find the application's heap and stacks for each of its threads.

4GB
Page Tables
VxDs
3GB r Shared
System DLLs
Memory mapped files
Top portion of Win16 giobal heap J
2GB
Per process area ;' Per process
4MB
Lower portion of Win16 global heap
Shared
MS-DOS
0
Figure 5-1

The Windows 95 linear address space.

The default load address for Win32 programs in the per-application
area is at the very bottom (4MB). Unless you realy understand paging, this
idea can be disconcerting. How can more than one program be loaded at
the same address in memory? The answer is that they share the same linear
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address, but not the same physical address. In general, a linear address in
one process will not be mapped to the same physical address in RAM.
Because of paging, each process can assume that it has the entire 4AMB to
2GB range of addresses al to itself. It can't see the memory of other
processes, nor can they see its memory, even though they may be sharing the
same linear addresses. The magic of paging keeps them physically distinct.

The exception to the preceding rule of keeping separate 4MB to 2GB
regions for each process is when Windows 95 has determined that it's safe
to share the same page of RAM between multiple copies of a program. A
prime example of this is program code because a program usually doesn't
modify its code. If you're running more than one copy of a program,
Windows 95 conserves available RAM by mapping the RAM containing
program code into the address space of al the instances of the processes.

From an operating system purist point of view, it would be ideal if each
16-bit process was kept in its own address space, similar to the way 32-bit
processes are. Unfortunately, a huge number of 16-bit programs rely on the
capability to see the memory of other programs. To remain compatible with
exigting 16-bit code, Windows 95 has to allow 16-bit programs to have
greater access to one another than it lets Win32 processes have. Windows
NT 3.5 introduced the capability of running each Win16 process in its own
address space, but it consumes more memory and introduces more complex-
ity. The designers of Windows 95 apparently felt the benefits weren't worth
the price.

A question that intrigued me from the first time | saw Windows 95 was
how 16-bit tasks were able to share their address space while still running
as separate processes. Asit turns out, the memory used by 16-bit tasks
always comes from the shared memory regions below 4MB and above 2GB.

Moving now to the the upper half of the 4GB address space, you can see
that Figure 5-1 shows it subdivided into two regions. The range of memory
between 2GB and 3GB is shared across al processes, and is intended for use
by the ring 3 (user level) operating system code. At the lowest addressesin this
range, you'll find the remainder of the 16-bit globa heap. Above the global
heap, you'll find the location for memory mapped files. This is interesting,
and bears a further look.

If memory mapped files are in a range of memory shared by al processes,
it would appear that any process can see the memory mapped file, even if
that process hasn't explicitly mapped a view for it. That assumption is
indeed correct. In Windows 95, the act of using a memory mapped file makes
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that file accessible to al processes. In this aspect, Windows 95 differs from
Windows NT. Windows NT uses a more sophisticated paging model, thereby
causing memory mapped filesto be visible only in the memory context of
processes that open up a view into the memory mapped file.

The uppermost portion of the 2GB to 3GB range is where you'll find
the 32-bit system DLL s (KERNEL 32, USER32, and so on). To free up as
much space as possible for memory mapped files before running into the
ring 3 system DLLs, Windows 95 adds DL L sto the system from the 3GB
line downward in memory. The following excerpt from the Softlce/W M OD
command shows this very clearly:

:mod
hMod Base PEHeader Modul e Nane EXE File Nane
019F BFF70000 0147:BFF70080 KERNEL32
C: \ W NDOWS\ SYSTEM KERNEL32. DLL

01A7 BFF20000 0147:81525AF4 @D 32 C: \ W NDOWS\ SYSTEM GDI 32. DLL

186F BFEF0000 0147:81525£98 ADVAPI 32
C: \ W NDOWS\ SYSTEM ADVAPI 32. DLL

1827 8FC00000 0147:815270F0 USER32 C: \ W NDOWS\ SYSTEM USER32. DLL

The number in the second column is the load address of the module.
KERNEL32.DLL isthe first 32-bit system DLL to load, and loads as close
to 3GB as possible (address BFF70000h) while keeping al of its contents in
the 2GB to 3GB range. Next lower in memory is GDI32.DLL at address
BFF20000, which butts up as close as possible to KERNEL32.DLL.
Although it might seem like these load address are calculated as the DLLs
load, they're not. Microsoft has a program (REBASE.EXE from the Win32
SDK) that determines how much address space each DLL requires, and then
figures out the load address that will cause the system DLL sto be packed
together as closaly as possible. After compiling and linking the system
DLLs, the Windows 95 build procedure modifies the DLL s so that they
have the preferred load address that was calculated by REBASE.EXE. The
effect is that these system DL L sload as fast as possible and don't need to
have any relocations applied by the Windows 95 |oader.

The final portion of the Windows 95 address space is the range from
3GB to 4GB (C0000000h to FFFFFFFFh). This final gigabyte is the domain
of the ring 0 system components of Windows 95 (that is, the VxDs). This
can be seen by looking at this abbreviated (believe it or not) output from the
Softlce/W VXD command:
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VxD Name
VMM
WINICE
NWLINK
VNetSup
CONFIGMG
VSHARE
VWIN3?
VFBACKUP
VCOMM
COMBUFF
[FSMgr
10S
SPOOLER
VFAT
VCACHE
VCOND
VCDFSD
VXDLDR
VDEF
VPICD
V7D
REBOOT
VDMAD
VSO
VB6MMGR
PAGESWAP
DOSMGR
VMPOLL
SHELL
PARITY
BIOSXLAT
YMCPD
VTDAPI
PERF
VREDIR
NDIS
VNETBIOS
EBICS
PAGEFILE
VCD

VPD
INT13
VKD

VDD
VFLATD
YMOUSE
MSMINI

Address

Co001000
C001A9C8
C0067ACA
COO6F73C
C0070958
C0@70050
C00725B4
C0074D30
0075200
0075634
0075898
C0@7C908
COO7EC3C
C007EDTC
C008918C
Co08A82C
C008ABCC
C008AAGS
C008AD6S
C008B254
€00e8DDIC
C008E744
CO08EA34
C0091364
0091584
0092888
0092990
0094350
0094630
€009530C
Ce0954F4
C0095590
C0095C30
Ce096190
0096200
C009BD20
COOAZEDC
CORAAASS
COOA4ACC
CORAABCA
CODALFF4
COOASA24
C00A641C
COBAT95C
C00A8934
COOABCH4
C00A9518

Length
00FDCO
04D0FC
007C78
00121C
0003F8
001864
00277¢C
000400
000434
000264
007140
002264
000140
00A410
0016A0
0000A0
00019C
0000F0
000AEC
202314
000570
0002F0
202164
000220
001334
000008
000324
00018C
000C24
000118
20009C
0006A0
0002F0
000140
005450
0071BC
001B78
000078
0000F8
000430
000A30
0009r8
001540
000FD8
000330
000884
00056C

Seg

0001
0001
0001
2001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001
2001
0001
0eol1
2001
0001
0001
0001
0001
0001
0001
gool
0001
0001
0001
0001
0001
0001
0001
2001
0001
0001
0001
0001
0001
0001
0001
0001
0001
0001

ID

0001
0202
0487
0480
0033
0483
002A
0036
0028
0000
0040
0010
002C
0486
0488
0038
0041
0027
0000
0003
0005
0009
0004
0008
0006
0007
0015
0018
0017
0008
0013
0011
0442
0048
0481
0028
0014
0012
0021
000t
000F
0020
000D
000A
011F
00eC
0000

D08

CO0REI90
C0042418
C006D1F4
C0070814
C0070CF4
C0071130
CO0B73DA0
Co075174
C00754F4
C0e75708
COR7A964
Co07£80C
Co07ED20D
C0089064
C0089A2C
C008A870
C008A938
CODBAAFS
C008B204
ceescccc
C008E238
COBBE9AC
C009083C
C0091524
C0092730
€0092938
Co092834
C0094470
COR94FED
C009545C
C009553C
C0095BC8
CO095EBS
C0096274
C0098188
C00A0190
C00A4818
CODALATC
CO0A4B6C
CoA4F2C
C00A5860
C00AG2D8
CORA7508
CODA/FO8
CO0ABBDC
CODAS2AD
C00A998C

Control

C00024F8
C001A9CD
C006C538
Co0eF798
C0070958
C0@71008
C00725B4
C0074D34
C0075200
C0075634
0075964
C007C908
C007EC3C
C0086FD8
C0OO8I93FA
C008A82C
CO8A8CC
COBBAAGS
COQBAFBS
C008B690
C0O8DEDL
C008E744
COOBEBF4
0091364
C0091813
C00928B8
0092990
C0094350
Co094cD2
€009530C
C00954F4
C0095590
C0095E71
0096190
C0099E8C
Co09CeE7
CO0A376F
CO0A4AS4
COQA4ACC
C00A4BDS
CODA4FF4
COBASASA
Co0AB41C
COOAT795C
C00AB934
C00A8CHA
C00AS518

z-<—<<—<z<-<—<z2<zz—<—<zz—<zzz—<zz—<<-<z—<z—<<zz<zz—<—<<—<-<<z<-<

V86 VxD Win32

Y
Y
N
Y
Y
Y
N
Y
Y
N
N
Y
N
N
Y
Y
N
Y
N
Y
Y
N
N
N
N
N
Y
N
Y
N
N
N
N
N
N
Y
N
N
N
N
N
N
N
Y
N
Y
N

402
2
7
7

91
1
29
6
35
0
117
17
17
0
25
2
4
18
0
25
11
4
34
4
25
10
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----- <s------------------- Qynamically Loaded VxDs ---------------"---"---------
LPTENU COFD70B8 0005C8 0001 0000 COFDB328 COFD7DB8
SERENUM ~ COFD616C 00007C 0001 0000 CO0FD6194 COFD616C
ESDI_506 C102AA7C 001388 0001 008D C(102BD94 C102AA7C
HSFLOP C1029CEC 000808 0001 0000 C102A4A4 C1029CFE
VSERVER  C1013A10 014C98 0001 0032 C10268E8 (101C8D0
NETBEUT ~ C1007CBG 0Q0@7E18 Q@01 0031 Cl@0E9FC C1007CBO
SPAP (1002880 001D74 0001 0000 C1002B4C (1002880
PPPMAC COFE8840 01961C 0001 0499 COFE910¢ COFEB928
voltrack COFE4088 Q005C8 0001 0090 COFE45C4 COFE4088
DiskTSD  COFD85F8 000280 0001 0000 CQFDB850 COFDBSFS
SB16 COFD8920 0092BC 0001 32A5 COFE10A4 COFEL794
VJoyYD COFD6240 0016EC 0001 0449 COFD/510 COFD7560
MMDEVLDR COFD5088 000090 0001 044A COFD50AQ COFD50F0
ATI COFD4EZ8 0QBO1AC 0001 @000 COFDAF54 COFDAE?8
ISAPNP COFD51AC 00007C 0001 @03C CQFB51CC COFDS5IAC

==z < < < 2= < < = <= = = =

Z < =< =Em=E <K <2 E=E ===
[

L= o A A IR S I S S B I =~ R~

LI S R S I SRR R I R RS

The full output from the Softlce/W VXD command ran over 360 lines.
On awhim, | totaled the sizes of dl the blocks to see roughly how much
memory is consumed by the VxD components. After subtracting the mem-
ory consumed by Softlce/W, the number of VXD components was in the
neighborhood of a megabyte. Although some of this memory most likely
was pageable, a good chunk of operating system code is hidden at ring O,
out of the reach of most programmers.

Y ou might think that Windows 95 would use the paging attributes to
protect the VD region of memory above address 0OxC0000000 from prying or
clumsy ring 3 system code. However, this is not the case. Many placesin
KERNEL 32 keep pointersto variablesin the ring O components. Likewisg,
many placesin the VxD code keep pointers to KERNEL 32 variables or, even
worse, KRNL 386 variables. The worst offender here may be VWIN32.VXD,
which, as Chapter 6 will show, even exports two Win32 VxD service functions
for this purpose. One service passes pointers to placesin VWIN32 down to
ring 3, and the other receivesring 3 addressesin KERNEL 32 and KRNL 386.

SHARING MEMORY

In Win16, the memory of all programs and DLLsis accessibleto dl other
programs and DLLs. (Win16 usesthe same local descriptor table for al
processes.) As aresult, it's very easy to share memory between multiple
processes: You simply arrange for two or more programs to get hold of the
same selector. Despite Microsoft's dire warnings, using the GMEM_SHARE
attribute when allocating memory isn't a requirement in Winl6.
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Now contrast this to Windows 95's Win32 memory management, which
keeps all the memory of a Win32 process separate from other processes unless
you specifically take stepsto share the memory. Unfortunately, these steps
aren't as ssimple as specifying GMEM_SHARE. Specifying GMEM_SHARE to
GlobalAlloc won't buy you memory that's shared across mulitiple memory
contexts. (Thisistypical of Microsoft. GMEM_SHARE has no effect on
memory sharing in Winl16 or in Win32. In the 16-bit case, it isn't necessary
because everything is shared, and in the 32-bit case, it'signored.)

You may have heard some Win32 pundits say that the only way to share
memory in Windows 95 (or NT for that matter) iswith memory mapped files.
Although you can share memory with memory mapped files, they're certainly
not the only solution. If all you want to share isa small amount of data
between a few instances of the same program, using memory mapped filesis
overkill. In this book, I'll focus on sharing readable/writeable data between
applications. Don't forget, however, that the entire upper half of the 4GB
address spaceis reserved for system usage and is always visible and shared
between all processes.

At the lowest level, sharing memory between memory contexts is nothing
more than including pages of RAM in the page table mappings of more than
one process. The shared memory pages can map to the same linear address in
each process, or they might map to different linear addresses.

In Windows 95, memory shared through memory mapped filesis always
at the same linear address in each process. (The PHY S program, presented
later in the chapter, shows that this is the case.) However, it's dangerous to
make this assumption in your code. One reason is that Windows NT doesn't
guarantee that memory mapped fileswill be at the same address in each con-
text. Since sharing with memory mapped filesis covered in many texts on
Win32 programming, | won't dwell on the details here.

The easiest way to share memory in Win32 programs is not mentioned
in many discussions on Win32 memory management. Specifically, giving the
SHARED attribute to your program's data sections when you link lets you
easily share memory between multiple copies of an EXE or between multiple
users of aDLL. Giving the SHARED attribute to a DLL's data section makes
it functionally the same as the data segment in aWinl6 DLL. Luckily,
Windows 95 gives you the flexibility to share some of your data, while till
having other data that is per-process. You can create multiple data sections
in your EXE or DLL. Put dl the data you want to share in one section and
give that section the SHARED attribute. The remainder of your data goes
into another section that you leave with the default attributes (nonshared).
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The PHY S program does exactly what |'ve described to show the difference
between shared and nonshared memory.

Normally, the Microsoft compiler puts all your initialized data into a
section of the executable called .data, and leaves the IMAGE_SCN_MEM _
SHARED attribute out of the section's attributes. This causes a new copy of
that data to be created for each process that uses the data. To share memory,
you'll tell the compiler to create a new section. This section can have any
name you want (although only the first 8 characters will be used in the EXE
section table.) For instance:

#pragma data seg(" SHAREDAT")

After the #pragma, declare any variables that you want to be shared.
The variables should be initialized; otherwise, the compiler puts them into
the uninitialized data section. You probably weren't intending to make your
uninitialized data shared, so just initialize them and bypass some of the hair-
pulling | went through.

After declaring the variables, if you want to go back to putting data into
the default data section, throw thisin at the end of your shared variable
declarations:

#pragnma data seg()

Once you've declared all the data you want to be shared, the final step
isto convey your desires to the linker. You can do this in two ways. The
traditional way isto put that section and its attributes into the .DEF file.
For instance:

SECTI ONS
SHAREDAT READ WRI TE SHARED

Another way isto specify the attributes on the linker command line:

LINK / SECTI ON: SHAREDAT, RWS <ot her linker options and files>

In this example, the RWS is interpreted as "Read, Write, and Shared."

I should mention a "buyer beware" warning about sharing your DLL's
data sections. If you initialize your data with the address of another code or
data symbol, you're in for an interesting time if the DLL loads at different
linear addresses in two or more processes. For example, consider this seem-
ingly innocent data declaration in a shared data section:



int i;
int* AddressOf_i = & ;

The problem isthat the AddressOf i can't be known until the DLL loads.
Therefore, the DLL contains a fixup record telling the loader to patch in the
correct value in the AddressOf_i variable. The first time the DLL loads, there's
no problem. Now, consider what happens if another process loads the DLL,
but the DLL can't load at the same linear address in the second process. Because
the AddressOf_i variable is already in use by the first process (it's shared,
remember?), the loader can't go in and patch in the correct value for the second
process. The value of AddressOf_i iswrong in the second process. When |
encountered this problem in my own code, | was able to work around it by
using pointers. In my per-process data variables, | included a pointer to the
shared memory area. Because the pointer was in the per-process area, the
loader always fixed up the pointer value so that it was correct for the current
process.

Beyond explicitly sharing your data, Windows 95 shares other regions of
memory. I've already mentioned that all the memory above a linear address of
2GB is shared between Windows processes. However, Windows 95 also
silently shares certain ranges of memory below 2GB. If you run multiple copies
of an EXE file, or use a DLL in more than one process, it would be wasteful to
load all the code sections for each user of the code. Although code sections
don't have the IMAGE_SCN_MEM_SHARED attribute, Windows 95 loads
only one copy of the code, and uses the CPU's page table to map the code into
the memory contexts of all users of the code.

An exception to this sharing of code sections between multiple processes
occurs when a DLL cannot load at the same base address in each process.
For example, suppose FOO.DLL is used by two different processes. When
process A loads the DLL, it is brought into memory at linear address X.
Process B may use a different group of DLLs (but including FOO.DLL).
When process B loads, some other DLL may be assigned to linear address X
before the loader gets around to loading FOO.DLL. Because address X isn't
available in process B's memory context, FOO.DLL has to be loaded else-
where. If you have control over programs that run into a situation like this,
you can usually solve it by rebasing the DLL to a base address that's not
used in either process.
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"COPY ON WRITE"™ INWINDOWS 95
(OR THE LACK THEREOF)

Knowing that Windows 95 shares code across processes (where possible), a
reasonable question concerns how debuggers handle this. Why isthis an
issue? Debuggers set breakpoints by writing breakpoint instructions (INT 3,
opcode OxCC} into the code. If a debugger writes a breakpoint into a code
page that's shared by two processes, there's a potential problem. The debugger
is debugging only one of the processes, and won't see the breakpoint interrupt
if another process hits the breakpoint instruction. When the operating system
seesthe INT 3 in the other process and determines that the processisn't being
debugged, it terminates the process because there was an unhandled exception.
If the memory management code in Windows 95 were to work the way |
described in the last section, you wouldn't be able to debug through DLLs
used by more than one process at the same time - - at least not without causing
al the other processes to terminate abruptly. Nor would you be able to debug
one copy of a program while another copy runs.

Advanced operating systems such as UNIX handle this problem with a
mechanism called "copy on write." In a system with copy on write (such as
Windows NT), the memory manager uses the CPU's paging to share memory
wherever possible, and duplicates a page of memory in RAM only when
necessary.

An example will make this much clearer. Suppose that two copies of a
program are executing and sharing the same code pages (which have the
read-only attribute). One of the processes is being debugged, and the user
tells the debugger to set a breakpoint somewhere in the code. When the
debugger attempts to write out the breakpoint instruction, it triggers a page
fault (the page is read-only). When the operating system sees the page fault,
it first determines that a debugger istrying to read the memory, and that the
request is legitimate. However, the operating system doesn't just let the
write go through to the shared code page. Instead, the system makes a copy
of the affected page, and changes the page table of the debuggee to use the
copy of the original page. Once the page has been copied and mapped, the
system lets the write go through. The write operation affects only the copied
page and leaves the original page alone.

Copy on write isn't limited to shared code. In Windows NT, writeable
data pages start out with the read-only attribute. When the program writes
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to one of these page, the CPU generates a page fault. The operating system
handler then marks those pages as read/write. Why go through this trouble?
When a second copy of the EXE or DLL is loaded, the memory manager
can share all the data pages that still have the read-only attribute. If these
shared pages are then written to, the copy on write mechanism kicks in and
provides separate RAM pagesto each process wherever necessary.

The benefit of copy on write is that memory is shared as efficiently as
possible. The system makes a new copy of a shared page only when necessary.
Unfortunately, copy on write requires a sophisticated memory and page table
management scheme. Apparently, Windows 95's memory manager isn't
sophisticated enough because Windows 95 doesn't directly support copy on
write through paging. This has caused a lot of anguish among the early
adopters of Windows 95. After all, Microsoft is pushing for al Win32 pro-
grams to run on Windows NT aswell as Windows 95. It'sa pain to do so
when major architectural features such as copy on write are missing from
Windows 95.

In defense of Windows 95, it isn't blindly stupid about the problem of
writing to shared memory. Because something had to be done to make
debuggers usable, Windows 95 supports a pseudo copy on write scheme. In
this scheme, the WriteProcessMemory function takes the place of a page fault
on a shared page. Way down insde WriteProcessMemory, the operating sys-
tem determines whether the address range you're attempting to writeliesin
shared memory. If so, the system copies the original page(s) to a new set,
maps the new page(s) to the same linear address in the current process, and
then does the write operation. The PHY S program proves that this pseudo
copy on writeis at work.

Although the WriteProcessMemory function is sufficient to allow debug-
gers to debug through most DLLSs, it unfortunately doesn't work on the shared
region above 2GB. (It's intentionally crippled.) Because the system DLLs such
as KERNEL 32 lie above 2GB in Windows 95, regular application debuggers
can't step through the system DL L slike they can in Windows NT. Go ahead
and try it. Fireup your favorite application debugger under Windows 95 and
try to step into an operating system call. Both the Visual C++ debugger and
Turbo Debugger silently step over these callseven if you're in the disassembly
pane and tell them to step into the call. If you want to step through the
system code in Windows 95, you'll need a debugger that doesn't rely on
WriteProcessMemory, for example, a system-level debugger such as
Softlce/W or WDEB386.
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THE PHYS PROGRAM

To demongtrate al the Windows 95 memory management details I've discussed,
I wrote the PHY S program. PHY S doesn't have afancy user interface, but it
effectively showsthe layout of memory, shared memory, and Windows 95's
pseudo copy on write support.

The concept behind PHY Sis simple. It finds and displays the linear
addresses of various items in memory (for example, a code section or a
memory mapped file). When just one copy of PHY Sisrun, it's a crude but
useful demonstration of the Windows 95 process memory layout. The pro-
gram's functionality doesn't stop there, however. Besides showing the linear
addresses of memory objects, it also shows the physical RAM address
mapped to the linear address as well as the page's protection attributes. By
running two or more copies of PHY S, you can see which memory regions
are shared by multiple processes. In addition, PHY S shows writes to a code
page in memory and shows the before and after addresses, proving that
WriteProcessMemory effectively performs a copy on write.

The complete source for PHY Sis included in the accompanying disk.
The main workhorse routine is shown in Listing 5-1. ShowPhysical Pages
calculates the linear and physical addresses of various memory objects and
prints them, one to aline. However, PHY S makes no attempt to show every
memory object in its address space. Rather, it shows selected items that |
consider important when indicating the memory layout of a process.

The ShowPbysicalPages functions from the PHYS.EXE program



/Inote fromreno: programtext inported via UtraEdit instead of OCRed
/1 => | ess errors, syntax highlighting, less tine correcting
voi d ShowPhysi cal Pages(voi d)
{
DWORD | i near Addr ;
VEMORY_BASI C_| NFORMATI ON i ;

/
/ Get the address of a 16 bit DLL that's bel ow 1MB (KRNL386' s DGROUP)
/
i

near Addr = Get _KRNL386_DGROUP_Li near Address();
rintf( "KRNL386 DGROUP - Linear: %8X Physical:%8X %\n",
|'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

/
/
/
|
p

Get the starting address of the code area. We'Il| pass Virtual Query
the address of a routine within the code area.

~~—~
~~—~

Vi rtual Query( ShowPhysi cal Pages, &nbi, sizeof (nbi) );

I'i near Addr = ( DWORD) nmbi . BaseAddr ess;

printf( "First code page - Linear:%8X Physical:%8X %\n",
|'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

Get the starting address of the data area. We'l| pass Virtual Query

/
/
/1l the address of a global variable within the data area.
/

~~—~

Virtual Query( &callgatel, &nmbi, sizeof(nbi) );

I'i near Addr = ( DWORD) nmbi . BaseAddr ess;

printf( "First data page - Linear:%8X Physical:%8X %\n",
|'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

/1
/'l Get the address of a data section with the SHARED attri bute
/1
MyShar edSecti onVari able = 1; /1 Touch it to force it present
| i near Addr = ( DWORD) &W Shar edSecti onVari abl e;
printf( "Shared section - Linear:%®8X Physical:%8X %\n",
|'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

/1
/] Get the address of a resource within the nodul e
/1
|

near Addr = ( DWORD)
Fi ndResour ce( Get Modul eHandl e(0), MAKEI NTATOM 1), RT_STRI NG ;
printf( "Resources - Linear:%8X Physical:%8X %\n",
|'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

/1

/1l Get the starting address of the process heap area.

/1

I i near Addr = ( DWORD) Get ProcessHeap();

printf( "Process Heap - Linear:%8X Physical:%8X %\n",

I'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

I
/1l Get the starting address of the process environnent area.
11

Virtual Query( GetEnvironmentStrings(), &rbi, sizeof(nbi) );



I'i near Addr = ( DWORD) nmbi . BaseAddr ess;

printf( "Environment area - Linear:%8X Physical:%8X %\n",

I'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

Get the starting address of the stack area. We'll pass

/
/
/'l the address of a stack variable to Virtual Query
/

~~—~

Virtual Query( & inearAddr, &nbi, sizeof(nbi) );
l'i near Addr = ( DWORD) nbi . BaseAddr ess;

printf( "Current Stack page - Linear:%8X Physical:%8X %\n",

I'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );
/1
/1 Show t he address of a menory mapped file
/1
I'i near Addr = ( DWORD) PMeniVapFi | eRegi on;
p
I'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );
/1
/1 Show the address of a routine in KERNEL32. DLL
/1
li

near Addr = ( DWORD)

rintf( "Menory Mapped file - Linear:%8X Physical:%8X 9%s\n",

Get ProcAddr ess( Cet Modul eHandl e( " KERNEL32. DLL"), "Virtual Query" );
printf( "KERNEL32. DLL - Linear: %8X Physical:%8X %\n",

I'i near Addr,
Get Physi cal Addr Fronli near (I i near Addr),
Get PageAttri butesAsString(linearAddr) );

The menory objects that PHYS shows are a routine in a 16-bit DLL,

a menory mapped

file, and a routine in a 32-bit DLL. In addition, the routine also displays the
address of PHYS. EXEs heap and its code, data, shared data, resource, and stack

regions. | choose DGROUP of KRNL32.386 to show that the



Winl6 DLLsarein fact mapped into the address space of a Win32 process.
(It would be hard to thunk down to them if they weren't.) By showing the
addresses of a memory mapped file and a routine in KERNEL32, | can
demonstrate that they're in the shared ring 3 region between 2GB and 3GB.

Figure 5-2 shows the output from running two copies of PHYS. To
show memory sharing between processes and have meaningful results, it's
important to use the correct sequence, as follows. Run the first instance of
PHY S. When it's paused at the Press any key.., prompt, start the second
copy of PHY S. This guarantees that the second instance will be running at
the same time as the first instance. Finaly, switch back to the first instance
and press a key to get the second half of the first instance's output.

For now, let's concentrate on the first set of addresses shown for the
first instance. The addresses are sorted by their linear addresses. Examinine
the correlation between physical and linear addresses. Can't find a corre-
spondence? Don't try too hard because there isn't one. Windows 95 keeps a
pool of available RAM pages, and doesn't try to match physical RAM pages
to any particular linear address.

The first item in the list of addresses isthe KRNL386 DGROUP. The
next four items are memory sections in the PHY SEEXE executable. Earlier, |
mentioned that in Windows 95, the default load address for a 32-bit process
is4MB (0x400000). If you dump out PHY S.EXE's header with PEDUMP
from Chapter 8, you'll find that the code section starts at a relative virtual
address (RVA) of 0x1000. Adding 0x1000 to 4MB yields 0x401000, which
is the address shown in PHY S's output. You can go a step further and
obtain the RVAsof the data section, the shared data section, and the
resource section and verify that adding their RVAsto 4MB gives the same
linear address shown in PHY S's information.

The next item in PHY S's sorted output is the default process heap. At
address 0x410000, it's not too far past the last linear address used by the
code and data sections in the PHY S.EXE module. It looks like KERNEL32
alocates linear memory in a bottom-up fashion. The default size for the ini-
tial process heap in Windows 95 is IMB+4K. This would make the next
available linear address in the address space appear to be somewhere
around 0x511000. Windows 95 starts each new virtual memory allocation
at a 64K boundary, however, so the next available region would be at
address 0x520000. Surprise, surprise -- that happens to be the address
where the process's environment area starts. It looks like the bottom-up
allocation theory isstill holding up.
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11

// First instance output:

11

xx%x%  FIRST | NSTANCE *****

KRNL386 DGROUP
First code page
First data page
Shared section
Resour ces

Process Heap
Environnent area
Current Stack page
Menory Mapped file
KERNEL32. DLL

Press any key...

Li near : 00036F60
Li near: 00401000
Li near : 00408000
Li near : 0040B000
Li near: 0040D088
Li near: 00410000
Li near : C0520000
Li near : 0063F000
Li near : 8233A000
Li near : BFFAF09C

Now nodi fying the code page

KRNL386 DGROUP
First code page
First data page
Shared section
Resour ces

Process Heap
Environnent area
Current Stack page
Menory Mapped file
KERNEL32. DLL

11

Li near: 00036F60
Li near: 00401000
Li near: 00408000
Li near: 0040B000
Li near: 0040D088
Li near: 00410000
Li near: 00520000
Li near: 0063F000
Li near: 8233A000
Li near : BFFAF09C

/1 Second instance output:

11

#x%x% SECONDARY | NSTANCE **#***

KRNL386 DGROUP
First code page
First data page
Shared section
Resour ces

Process Heap
Environnent area
Current Stack page
Menory Mapped file
KERNEL32. DLL

Press any key...

Figure 5-2

Combined output from two instances of PHYS.EXE running simultaneously.

Li near : 00036F60
Li near: 00401000
Li near : 00408000
Li near : 8040B000
Li near : 00400088
Li near: 00410000
Li near: 00520000
Li near : 0063F000
Li near : 8233A000
Li near : BFFAF09C

Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi

Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi

Physi

Physi cal :

Physi
Physi
Physi
Physi
Physi
Physi
Physi
Physi

cal :
cal :
cal :
cal :
cal :
cal :
cal :

cal :
cal :
cal :

cal :
cal :
cal :
cal :
cal :
cal :
cal :
cal :
cal :
cal :

cal :

cal :
cal :
cal :
cal :
cal :
cal :
cal :
cal :

00245F60
00BBE800
006E2000
0041D000
00B3F088
0082A000
00A2E000
00ADD000
0099D000
004F689C

00245F60
00CA1000
006E2000
0041D000
00805088
0082A000
00A2E000
00ADD000
0099D000
004F609C

00245F60

00BBEOO
002FF000
0041D000
00B3F088
00704000
00809000
00B95000
0099D000
004F609C

Read/ Wite USER
ReadOnly USER

Read/ Wite USER
Read/ Wite USER
ReadOnly USER

Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
ReadOnly USER

Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
ReadOnly USER

Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
ReadOnly USER

Read/ Wite USER
ReadOnly USER

Read/ Wite USER
Read/ Wite USER
ReadOnly USER

Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
Read/ Wite USER
ReadOnly USER



Most environments don't contain 64KB of strings, but arule'sarule, so
the next available address region should be 64KB after the start of the envi-
ronment (that is, at 0x530000.) Looking at the PHY S output, we see the
program's current stack page starts at Ox63F000. At first glance, this would
appear to shoot a hole in my bottom-up theory for address space allocation.
However, a bit more consideration shows that a bottom-up allocation
scheme could till be at work here. Remember, a stack grows from a higher
address to alower one, so we have to subtract the length of the stack area
from the top of the stack to get the starting address of the stack region. If
the current program stack page is at 0x63F000, and if we haven't used too
much stack space, the end of the stack region should be at 0x640000. The
default program stack size for PHY S.EXE is1MB, so subtracting 1IMB from
0x640000 gives us 0x540000. This is 64KB higher than the 0x530000 my
bottom-up alocation theory would suggest. However, if | call VirtualQuery
for an address within the stack, the AllocationBase value returned by
VirtualQuery is 0x530000. It appears that when the loader calculates the
size needed for the program stack, it is rounding up by 64KB; therefore, a
range of size IMB+64KB (rather than just 1MB) is alocated. From what |
can see, the bottom-up allocation theory still appears to hold.

After items directly related to program data areas, PHY S shows a memory
mapped filethat it creates. The base address of this memory mapped file at
offset 0x8233A000 iswell over 32MB into the shared ring 3 region between
2GB and 3GB. Because the 2GB to 3GB region is mapped by all processes,
any program can view (and potentially trash) any memory mapped files.
Yes, even memory mapped files that the process hasn't created a view of.
This is a potential source of bad pointer overwrites in Windows 95.
Windows NT has a more sophisticated memory manager and doesn't allow
this serious breach of address space privacy.

The remaining item in PHY S's output is the address of the Virtual Query
routine in KERNEL32.DLL. The address (OXBFFAFQ09C) is pretty close to
the end of the shared 2GB to 3GB region. Why so high an address?
Windows 95 sets the base address of the system DL L s so that they'll be as
high up and as close together as possible. The goal isto keep as much free
space as possible in the 2GB to 3GB region for use by memory mapped files.
You can see this yourself by examining the base address of some system
DLLs such as KERNEL32.DLL, USER32.DLL, and GDI32.DLL.

29.
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Examining shared memory with PHYS

To see what regions of memory that Windows 95 shares between processes,
we can run two copies of PHY S and compare their output. That's why
Figure 5-2 has output from two instances of PHY S. Let's compare the first
set of addresses from the first instance of PHY Sto the addresses given by the
second instance. In the two sets of addresses, memory blocks that have the
same physical address are shared between the two instances. To make things
eader, I've broken the items into the shared and unshared listsin Figure 5-3.

In shared memory In nonshared memory
KRNL386 DGROUP First data page
First code page Process heap
Shared section Environment area
Resources Current stack page
Memory mapped file
KERNEL32.DLL

Figure 5-3

Shared and nonshared regions of memory between two simultaneous instances of a
32-bit process.

The shared list shouldn't be too surprising. KRNL386's DGROUP and
KERNEL32.DLL are both part of system DL Ls, which you would certainly
hope to be shared. PHY S.EXE's code and resources are shared, which means
that Windows 95 istrying to be efficient about using memory. PHY S explicitly
created the two remaining shared items (the shared section and the memory
mapped file) to share memory with other instances. The itemsin the nonshared
list aren't too surprising either. All of the items are read/write program data. If
Windows 95 were to try and share these memory regions, running multiple
instances of PHY S would quickly cause a crash.

Examining copy on write with PHYS

The fina demonstration in PHY Sis the pseudo copy on write provided
by WriteProcessMemory. Look at the three lines for the first code page
(condensed in the following):
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sxxxx FIRST |NSTANGE *****
First code page Li near: 00481000 Physical : 00BBEOOO Readnly USER

Now nodi fyi ng the code page
First code page Li near: 00401000 Physical : 00CA1000 Read/Wite USER

*xxxx SECONDARY | NSTANCE *****
First code page Li near: 00401000 Physi cal : 00BBEOOO ReadOnly USER

To make sense of the output, it's vital to remember the sequence of
events while the two copies of PHY Sran. The first and third address lines
are from two different processes, and happened before the code page was
written to. The physical address of the code page in both processes is
0Ox00BBEOOQO, proving that the page is shared between the two instances.
The middle address line was output after the first instance wrote to the code
page with WriteProcessMemory. Notice how it now has a different physical
address? This shows that WriteProcessMemory changed the underlying
physical RAM page to a different page of memory. Although it's not shown
here, the physical address of the first code page remains at 0OxOOBBEQOO in
the second instance.

Cool stuff in the PHYS program
(for advanced readers)

Lurking under the surface of the PHY S program is some low-level system
code that Microsoft would probably prefer that you didn't know about. In
a well-designed operating system, programs shouldn't be able to access the
mappings between physical memory and linear addresses. Normally, there's
no need for a program to determine these mappings, but this capability is at
the heart of the PHY S program's functionality. Because Windows 95 doesn't
provide a supported way to get at the page mappings, PHY S has to circum-
vent the operating system. Part of PHY S's sidestepping around the operating
system involves executing code at ring O (the highest privilege level of the
CPU). Application programs run at ring 3 (the least privileged level), and
are generaly kept from getting up to ring O, except in a precise manner con-
trolled by the operating system. Because the ring O code that PHY S needs to
execute isn't sanctioned by the operating system, | had to write a general-
purpose mechanism to call into ring O code from aring 3 Win32 application.
You can easily modify the PHY S ring O-related code and drop it into your
own code.
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To map linear addresses to physical addresses, the GetPhysical Addr-
FromLinear function needsto party with the page tables. (Party is apparently
an official Microsoft term for doing something you're not supposed to.) Page
tables are a complicated topic, and | discuss them briefly in the following sec-
tion, "Memory Contexts." If you don't know what page tables are, for now
just think of them as data structures that describe the mapping between
physical RAM addresses and linear addresses used by programs. The page
tables are maintained by the operating system and used by the CPU. Turning
to the trusty CPU manual, you'll find that the page directory is pointed to by
the CR3 register. Unfortunately, the instruction that retrieves the value of the
CR3 register is privileged. Attempting to call it from ring 3 results in the
CPU generating a general protection fault (exception 0Dh). When Windows
95 seesthis fault, it analyzes the instruction and sees that it's a privileged
instruction. Rather than terminating the application, Windows 95 silently
returns control to the application without retrieving the CR3 register value.

What does this mean? Windows 95 is preventing a direct assault on the
page tables from application programs. Sure, | could write aVxD (which
runs at ring 0) to get the CR3 value, but | dislike lots of VxDs floating
around my system. Besides, even if | could get the CR3 value, there's still a
big problem. The CR3 register tells the physical address of the page tables.
There's no good way to convert a physical address into a linear address that
PHYS can use. Short of turning off paging while | use the physical address,
there's not much | can do with the CR3 value.

The next approach isto see whether Windows 95 maps the page tables
to a linear address that ring 3 code can see. Asit turns out, Windows 95
does. The full 4AMB range of page table entries is always mapped to linear
address OxFF800000 (8MB before the end of linear memory.) With that
little bit of information, we would seem to be all set. Simply create a pointer
to the page tables and start reading whatever information you want.
Because ring 3 Win32 programs use 32-bit linear addresses, you should
even be able to read the page tables from any arbitrary Win32 program,
right? Not so fast! Although the Windows 95 coders seemingly made the
page tables very susceptible to overwrites from wild pointers, the tables are
not as unprotected as they might appear. Both the page directory and each
page table entry keep a bit (the user/supervisor bit) that indicates whether
the page should be accessible to code at any privilege level or just at ring O.
The page directory entry that maps the 4MB region used by the page tables
has the user/supervisor bit cleared. This means that the entire 4AMB memory
range used for page tables is off-limits to ring 3 code.
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Because the Windows 95 page tables are off-limits to ring 3 applications,
we have to execute our code at ring 0 to access the page table. For my May
1993 Microsoft Systems Journal article on ring privilege levels, | wrote
RINGO.EXE. RINGO uses some holes in how Windows manages memory
to call 16-bit code at ring O from aring 3 Windows program. The gist of
how RINGO works iswith CPU call gates, which provide a method for less
privileged code to call into more privileged code (for instance, from ring 3
to ring 0). Because Windows won't hand you a call gate just for the asking,
RINGO goes into the LDT and creates a call gate itself. To get at the LDT,
RINGO uses the same INT 2Fh subfunction that KRNL386 calls to obtain a
selector pointing at the LDT. (Yes, even in Windows 95!)

After RINGO appeared, Alex Schmidt wrote an excellent article (in Dr.
Dobb's, March 1994) that extended the premise of RINGO to call 32-bit ring 0
code. Alex went so far asto write a method for dynamically loading VxDs
using these call gate tricks. (Luckily, Windows 95 now supports dynamically
loading VxDs without these horrible hacks that Alex and | use.) When | saw
that the PHY S program needed to call ring O code, | saw a chance to update
the original RINGO code to be usable from Win32 programs. Among other
things, this meant making a 32-bit call gate rather than a 16-bit cal gate. The
results of the effort are in the PHY S program on this book's disk.

Using this generic mechanism of calling ring O code from a Win32 applica
tion is a little tricky, but not overly so. The code in GetPhysical Address-
FromLinear in Figure 5-4 isa good example. First, you need to create a call
gate selector by calling the GetRing0Callgate function. This function is just
the front-end portion of a Windows 95 thunk down to 16-bit code. Down
in the 16-bit portion of GetRing0Callgate, the code creates the 32-bit call
gate that will be used later up in 32-bit land. There are two parameters to
GetRing0Callgate. The first isthe 32-bit linear address of the code that you
want executed at ring 0. The second parameter is the number of DWORD
parameters to pass on the stack to the code that executes at ring O.

Once you have the call gate selector, the next step isto store it into a
6-byte far pointer (ak.a. an FWORD). Six bytes? Yes. In 32-bit mode, a
far call is made through a 16-bit selector combined with a 32-bit offset.
Because the offset is 32 bits, it's implicit that the selector will be for a 32-
bit segment, much like the flat selectors used by Win32 programs. Getting
back to the subject at hand, we need to make a far call using the call gate
selector in order for the CPU to switch to ring 0. In Figure 5-4, the code
stores the call gate selector into the high WORD of a 6-byte array (3 WORDS).
The offset portion of the pointer isn't important because the CPU ignores it
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and instead loads EIP from the offset in the call gate descriptor. After cre-
ating the pointer, the code uses inline assembler to call through an fword
pointer (because the C compiler knows only about 32-bit near cals). |
bracketed the call gate call with cli and sti to prevent interrupts in the ring
0 code. This eliminates the problem of switching to a safe stack once we're
in ring O code.

DWORD Get Physi cal Addr FronLi near (DWORD | i near)
{
if ( !callgatel )
callgatel = GCetRing0Caltgate( (DWORD)_GetPhysical AddrFronLinear, 1

if ( callgatel )

WORD myFwordPtr[3];

myFwordPtr[2] = callgatel;
__asm push [linear]
__asm cli
_asm call fword ptr [nyFwordPtr]
__asm sti
Figure 5-4

PHYS. EXE calling through a callgate in 32-bit

Because of the contortions required to get to ring O from a Win32 program,
there are a few reasons why | wrote the ring 0 PAGETABL.ASM code in
assembler. First, the 16:32 far call to the ring O code caused the CPU to put
8 bytes on the stack, rather than the normal 4. Therefore, after setting up an
EBP frame, the first parameter is at EBP+0Ch rather than at EBP+08. More
importantly, when the code returns to ring 3, it needs to do a 16:32 RETF
rather than a 32-bit near return. Like a 16:32 far cal, a 16:32 RETF is
something that the compiler doesn't know how to generate.

To sum up calling ring 0 code from a Win32 application, first write the
ring O code (most likely in assembler), taking into account the caveats just
mentioned. Next, in your program, call GetRingOCallgate, passing it the
name of your ring O routine and the number of arguments. Then create a
16:32 far pointer with the call gate, and call through the pointer. Finally,
when you no longer need to call the ring O routine, delete the call gate by
calling FreeRing0Callgate. It's not elegant, but it's better than being at the
mercy of the operating system.



MEMORY CONTEXTS (ADVANCED STUFF)

Although it's fine to talk abstractly about memory contexts, at some point
the rubber must meet the road. Windows 95 needs to maintain data struc-
tures that keep track of which pages of RAM should be mapped to linear
addresses in a given process. To understand memory contexts in Windows 95,
you need to understand the CPU's paging mechanism at alow leve. I'll give
awarp speed overview of 80386 paging that omits some of the more advanced
details. If you're interested in a precise description of paging, refer to the Intel
manuals or other books on the 386 architecture.

The 80386 class of CPU usestwo levels of lookup tables to translate a
linear address to a physical address that goes out on the address bus. The
first lookup table is the page directory. It is 4KB and can be viewed as an
array of 1024 DWORDs. Each DWORD in the page directory array con-
tains the physical address of another 4KB block known as as apage table.
Like the page directory, the page table isan array of 1024 DWORDs. Each
DWORD in the page table array contains the physical address of a 4KB
block of memory.

To use the page directory and page tables, the CPU breaks up a 32-bit
linear address into the three components shown in Figure 5-5. The CPU
uses the top 10 bits of the address as an index into the page directory. The
next lower 10 bits of the address are an index into a 4KB page table. Which
page table do these bits index? None other than the page table pointed to by
the page directory that the CPU found in the previous step. The address in
the page table is a physical address aligned on a 4KB boundary. The final
part of the calculation isto take the bottom 12 bits of the linear address and
use them as an offset into the memory pointed to by the page table.

In smpler terms, the top 10 bits of the address index into an array that
contains 1024 pointers to other arrays. The second 10 bits of the address
index this secondary array to get a physical address. The low 12 bits of the
linear address are added to this physical address to get the final physica
address.

How does the CPU know where to find the page directory? The page
directory is pointed at by the CR3 register, one of the specia registers intro-
duced on the 80386. A brute force method of implementing memory con-
texts would be to simply create a page directory and 1024 associated page
tables for each processs, changing the CR3 register to point at each
process's page directory as needed.
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32-Bit Linear Address

31 21 11 0
10 bits 10 bits 12 bits
(page directory index) (page table index) (offset in page)
Page Directory Page Tables 4KB Pages

\

Y

T

CR3 |
register

~ Figure 5-5

How the CPU converts a linear address to a physical address.

The problem with this approach isthat to map the entire 4GB address
space would require 1024 page tables, each 4KB insize. This would take
up 4MB of memory per process, obvioudy not an effective use of RAM.
Therefore, to change memory contexts, Windows 95 sets up a single 4AMB
region of memory, and modifies the entries within the page directory to
quickly change the page mappings.

If you're concerned that 4MB still sounds like alot of memory to use just
for paging, don't be. At the page directory level, the operating system can tell
the CPU that an entire 4KB page table isn't present in memory, thereby eimi-
nating the need to map a 4KB block of physical memory to the page table.
Windows 95 doesn't use anywhere near 4AMB of memory to manage paging.
The Windows 95 page directory and page tables are mapped into a 4AMB



region of memory that's 8MB from the end of the 32-bit address space. Put
another way, they don't use the last 4AMB of the address space, but they do
use the 4AMB before that. This range of memory starts at FF800000h, and
can be viewed in Softlce/W. The page directory itself is stored in a page
within this 4AMB range.

You can easily find the linear address of the page directory by dumping
out the CR3 register with the Softlce/ W CR command. On my machine,
CR3 contains 6EEO00h. The CR3 register contains a physical address, so
you'll need to find the associated linear address if you want to view it. The
Softlce/W PHY S command is handy for this purpose. The PHY S command
searches the page tables to find dl linear addresses that correspond to a
given physical address. The command PHY S 6EEQQO yields two linear
addresses. The second of these addresses is FFBFEOOOh, which isin the
4MB range of memory reserved for page tables.

Given that we can find the page directory in Softlce/W, we should be
able to prove or disprove what | said about context switching by setting a
hardware write breakpoint in the page directory. If the breakpoint doesn't
go off, context switching is probably accomplished some other way. If it
does go off, it's a strong indicator that context switching is accomplished by
manipulating the page tables. Also, the location of the write should give us
aclue asto what's responsible for switching contexts.

Running this simple experiment in Softlce/W confirms that the page
directory is being written to on a regular basis. To see this, back up a few
instructions from where the write occurs, as shown in the following
Softlce/W code window output:

_Context Swi tch
0028: C0084856 MOV EAX, [ €001084C]
0028: C000485B MOV EDX, [ ESP+04]
0028: CO00485F CWP EAX, EDX
0028: C0004861 JZ C0004893

0028: C0004863  PUSH ES
0028: C0004864 PUSH =0

0028: C0004865 MWV EDI , FFBFEO0O
0028: CO00486A MWV ECX, [ EDX+04]
0028: C000486D MWV ESI, [ EDX]
0028: C800486F REPZ MVSD

0028: C0004871 MV ECX, [ EAX+04]
0028: C0004874 SUB ECX, [ EDX+04]
0028: C0004877 JBE C0004880

0028: C0004879 MV EAX, [ C00107EOQ]

0028: CO00487E REPZ STOSD
0028: C0004880  XCHG EDX, [ C001084(C]
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0028: C0004886 MV EAX, EDX

0028: C0004888 MV ECX, [ C0010CDC]
0028: CO00488E MV CR3, ECX

0028: C0004891  POP EDI

0028: C0004892 POP ESI

0028: C0004893 RET

The core of the _ContextSwitch routine isthe REPZ MOV SD and
REPZ STOSD instructions. The three MOV instructions leading up to the
REPZ MOV SD are setting up things to copy a region of memory from one
location to another. The fact that the destination address is FFBFEOOOh
(which as we saw earlier isin the page directory) is a tip-off that the routine
is blasting a new set of page table mappings into the page directory. Each
DWORD it copies corresponds to one of the 1024 possible page tables.

It's also interesting that the number of DWORDs moved isn't a hard-
coded number. Rather, the code loads ECX with the number of DWORDs
(page table mappings) each time. The effect of the second REPZ STOSD isn't
as obvious. It's comparing how many DWORDs were just copied with the
number of DWORDs copied the previous time ContextSwitch was called. If
the number of DWORDSs just copied isless than the previous time, there will
be extra page table entries for the previous memory context, which the new
context shouldn't be alowed to see. Therefore, if necessary, the REPZ STOSD
blast over these remaining page directory entries with a value indicating a
non-present page table.

Softice’/W helpfully put the label _ContextSwitch at the top of the code list-
ing. It turns out that the _ContextSwitch routine is one of the VMM servicesin
the VMM VxD. Its address appears in the table of VMM services that are
pointed to by a field in VMM's Device Descriptor Block. So where did
Softlce/W come up with this name? See the VMM.INC file from the
Windows 95 DDK. Each linethat startswith VMM _Serviceis service routine
provided by the VMM VxD. Near the end of the list you'll find the routine
_ContextSwitch. Also of interest in the vicinity of _ContextSwitch in
VMM.INC are the _PageModify and _PageModifyPermissions functions.

Having found the _ContextSwitch routine in VMM, we can see that
Windows 95 must be keeping a set of page mappings for each memory context,
as well as a count of the number of pages. As luck would have it, we can
verify this with the Softlce/W Addr command:
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saddr

Handle PGTPTR Tables Min Addr Max Addr Mutex Owner
COFESD@4  C103C6F8 0004 00400000 7FFFFO00 COFD83B4 KERNEL32
C103C9B0 C103E274 0200 00400000 7FFFFOOO C103C9E4 MSGSRY32
1040854 (10416D0 0200 00400000 7FFFFOQQ 1040898 Explorer
1045808 (1046190 0200 00400000 7FFFFOO0 C104584C Winword
£10483C4 C10402F4 0002 00400000 7FFFFOO@ C104A220 HEAPWALK
C1048BEC COFE38E4 0002 00400000 7FFFFOQ0 C1048C20 WINMINE
(1048850 (104921C 0002 00400000 JFFFFQQ0 (1048884 FREECELL
C1040304 C1042534 0200 00400000 7FFFFQQ0 C10406BC Systray
(1041398 C104031C 0002 00400000 7FFFFRO0 C10413CC MMTASK
C1Q3EA78 C103EF2C 0200 00400000 7FFFFOQ2 C1Q3EAAC Mprexe
C103CE70 C103D344 0200 00400000 7FFFFR00 CI103CEB4  Spool3?
C10CDheeC C10CDo24 0002 00400000 /FFFFOOQ C1QCDOS0

In this list, the FREECELL, WINMINE, MMTASK, and HEAPWALK
programs are dl Win16 programs. Interestingly, even though Win16 programs
can always see one another, Windows 95 treats them as separate processes
and memory contexts. However, this is academic because the code and data
segments in Winl6 programs are always loaded in the shared memory areas
© - 4MB and above 2GB). Thus, Winl6 programs can always see each other,
even though they technically have different address contexts.

All the remaining processesin the ADDR list are either 32-bit or unknown.
The column labeled "Tables" ismideading becauseit's the number of page
directory entries that make up the memory context. Each page directory maps
1024 page tables, each of which maps a4K region. Thus, each page directory
entry corresponds to 4MB of linear address space. Notice how the 16-bit pro-
grams use only two page table entries. This is because 16-bit programs have no
need for memory in the Win32 per-process data area (0x00400000 -
OX7FFFFFFF). Win32 processes, on the other hand, need separate page map-
pings for that entire range, even if most of the pages are marked not-present.

The "handles" for each memory context looks suspiciously like a linear
address. Let's dump out memory at the location given by a handle value.
For this test, | arbitrarily chose the first context (handle COFE5D04 for
KERNEL 32):

:dd cOf e5d04
0030: COFE5D04 C103C6F8 00000004 COFD4D1C C103C9BO M



308

Hmmm... We can easily match up the first and second DWORDSs to the
Softlce’WW ADDR output. The first DWORD (C103C6F8) iswhat the ADDR
command reports for the PGTPTR (Page Table Pointer) value. The second
DWORD (00000004) matches up with the value in the Tables column. If you
go back and study the_ContextSwitch code, you can sse that _ContextSwitchis
expecting a pointer to a data structurein the format we're seeing here: a pointer
to the page directory entriesto copy, followed by the number of entriesto copy.

The fourth DWORD found when dumping out our memory context
handle (in the preceding example, C103C9B0) can also be found easily in
the ADDR output. It happensto be the context handle of the next context
in the ADDRIist. (Further exploration confirms that the contexts are kept
inalinked list.) What about the third DWORD (COFD4D1C)? It looks like
it could be a pointer, so let's dump it:

1dd cOf d4d1C
0030: COFD4D1C 00000400 0007FFFF COEOE310 COEOE31C

Interesting! If you multiply the first and second DWORDs by 0x1000
(the size of a page), you get the values that the ADDR command reports as
the minimum and maximum address for the memory context. It looks like
we've found the core of Windows 95's context management.

If you're interested in digging deeper into Windows 95 memory contexts,
the DDK is indispensible. Unlike the SDK documentation, the DDK doesn't
try to hide much from the programmer. The DDK saysthat memory contexts
are created by _ContextCreate in VMM.VXD and destroyed by
_ContextDestroy. By writing VXD code, you can actually create, switch to,
and destroy your own memory contexts. Of course, hooking things up so
that the rest of Windows 95 knows what you're doing is a bit more work!

Some other cool VMM functions to check out are _CopyPageTable and
_PageAttach. _CopyPageTable lets you obtain the logica-to-physical mappings
for a memory context without going into the page tables as | did in the
PHYS program. The _PageAttach function documentation describes how
it's used to make memory in one context map to the same linear address in
another context. Thisisthe mechanism by which Windows 95 shares code
and data between multiple copies of a process.
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THE WINDOWS 95 MEMORY APIs

The Windows 95 memory management functions are built in layers. At
each leve (other than the bottom layer), the functions depend on the
functions in a lower layer. I've come to think of Windows 95's memory
management as consisting of four levels of code. At the lowest level, the
Virtual Machine Manager (VMM) provides functions for allocating
large regions of memory and manipulating pages within those regions.
Application programs don't call these APIsdirectly. Rather, KERNEL32.DLL
uses the VMM memory functions on behalf of the higher-level memory
APl functions.

The next layer up contains the Virtual XXX functions provided by
KERNEL32: VirtualAlloc, VirtualFree, and Virtual Protect. These functions
are implemented in terms of the lower-level VMM functions. The Virtual XXX
functions provide applications with the capability to manage large regions
of memory on the page granular level.

Moving up another notch, we come to the KERNEL 32 HeapX XX
functions. The HeapXXX functions include HeapAlloc, HeapFree, and
HeapCreate. They are roughly equivalent to the C runtime library mem-
ory functions (malloc, free, and so on). In fact, in the Windows NT SDK
runtime library DLL, malloc isjust a wrapper around the HeapAlloc func-
tion.The topmost layer of memory management functions contains the
Local XXX and Global XXX functions. Unlike in Winl6 programs, the
Local XXX and Global XXX functions are essentially identical. For
instance, GlobalAlloc and LocaAlloc are the same function; KERNEL32
exports both functions using the same address in its code. The Local XXX
and Global XXX functions are redlly just a layer atop the lower-level
HeapX XX functions. There's not much of a reason to keep GlobalAlloc
and LocaAlloc around in Win32. The memory functions no longer work
with selectors like the Winl6 GlobalAlloc does. Nor is memory allocated
out of the application's data segment as it is with the Winl6 LocaAlloc.
The main reason why the Global XXX and Local XXX functions are in
Win32 isto ease existing Win16 applications to Win32.The rest of this
chapter is mostly an in-depth look at the Windows 95 Win32 memory
management API, divided into four layers. With the exception of the low-
est level of functions in the VMM VxD, I'll give pseudocode for every
memory management function. In some cases, a Win32 function may not
be implemented in Windows 95 or may just map to another function. I'll
note these cases as well.
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THE VMM RUNCTIONS

The lowest level memory management code in Windows 95 liesin VMM.V XD.

Within VMM are VxD functi

ons that reserve, commit, decommit, and free

pages of the linear address space. VMM also contains VxD functions for
querying the status of pages, managing memory contexts, and installing
page fault handlers, and it provides heap functions for use by VxDs. Table
5-1 contains the DDK description for the mgjority of the VMM memory
management-rel ated functions.

Table 5-1

DDK Descriptions of VMM Memory Management Functions

VMM FunctionName

_PageReserve

_PageFree
_PageCommit

_PageDecommit

_PageAttach

_PageFlush

_PageModilyPermissions

_PageQuery

_PagerRegister
_PagerQuery

_ContextCreate

_ ContextDestroy

_ ContextSwitch

_GetCurrentContext
_HeapAJJocate

_HeapReAllocate

_HeapFree

Purpose

Reserves a range of linear addresses in the current context
without allocating any physical storage.

Frees the specified memory block.

Commits physical pages to a range of linear addresses.

Decommits physical storage from a specified range of
linear addresses.

Maps a range of linear pages in the current memory context to
the same physical storage that those pages are mapped to in a
specified context (the source context).

Writes a range of committed pages to the backing file by calling
the appropriate pager function. This service does not mark the
pages as not-present.

Modifies the permissions for pages in the specified range.

Retrieves information about a range of virtual pages. The
information is in the same format that VirtualQuery returns.

Informs the system of a new type of pager.
Retrieves information about a registered pager.

Creates a new memory context. The tasking and scheduling
components of Windows 95 use this service to create a private
linear address space for a new Win32 application.

Destroys a memory context created by the _ContextCreate

service.

Changes the current memory context. The current memory context
determines the mapping of pages in the private arena.

Determines the current memory context.
Allocates a block of memory from the system heap.

Reallocates or reinitializes a memory block in the system heap.

Frees an existing memory block in the system heap.
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If you're familiar with VxDs, you're probably thinking that this table of
VMM memory-related functions is nice, but what does it have to do with
ring 3 application code? After all, regular ring 3 programs can't just call any
VxD function that happens to come along. I've shown Table 5-1 for a good
reason: Each of the functions is callable by ring 3 applications, just not
directly.

It turns out that the Windows 95 coders felt that this set of functions
was vital to KERNEL32.DLL. As such, they implemented Win32 VxD ser-
vices for each of the functions. Win32 VxD services are a new mechanism in
Windows 95 that allows ring 3 application code to call into VxDs using a
C-style caling convention (no registers need apply). They are not related to
Windows NT services, which are redly just special-purpose processes.

Chapter 6 describes Windows 95 Win32 VXD services in more detail.
Here, it's sufficient to know that each Win32 VxD service provided by a
VXD such asVMM isidentified by a unique number. The high WORD is
the VXD device ID, and the low WORD is an index into the device's Win32
VXD service table. Figure 5-6 shows the Win32 VxD service IDs for the
VMM functions listed in Table 5-1. Chapter 6 describes Win32 VxD services,
and has a more complete list of service IDs.

0x00010000 _PageReserve
0x00010001 _PageCommit
0x00010002 _PageDecommit
0x00010003 _PagerRegister
0x00010004 _PagerQuery
0x00010005 _HeapAllocate
0x00010006 _ContextCreate
0x00010007 _ContextDestroy
0x00010008 _PageAttach
0x00010009 _PageFlush
0x0001000A _PageFree
0x0001000B _ContextSwitch
0x0001000C _HeapReAllocate
0x0001000D _PageModifyPermissions
0x0001000E _PageQuery
0x0001000F _GetCurrentContext
0x00010010 _HeapFree

Figure 5-6
VMM's Win32 VxD service IDs for calling ring 0 VMM functions.
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To call one of these VMM functions through a Win32 service, KERNEL 32
simply pushes the arguments on the stack, followed by the Win32 VxD ser-
vice number. It then calls the VxDCall function (referred to as VxDCallO in
Unauthorized Windows 95). For example, the _PageReserve function in
VMM.VXD is prototyped like this:

ULONG EXTERNAL _PageReserve(ULONG page, ULONG npages, ULONG flags);

The following KERNEL 32 loader code shows how _PageReserve would
be called from ring 3:

BFFAQOAG: PUSH 10 ;7 PR STATIC from VMM INC

BFFAQOA8: MoV EAX, DWORD PTR [EBP 000000F4]

BFFAQOAE: ADD EAX, OOO0OFFF

BFFAQOB3: SHR EAX, OC ;7 Round up to 4K boundary

BFFAQOBG: PUSH EAX

BFFAQOBT: PUSH 80000400 ;7 PR PRIVATE from VMM INC

BFFAQOBC: PUSH 00010000 ;7 VWAIN32 call 00010000 : _PageReserve
BFFA00C! : CALL VxDCal | O

I haven't provided pseudocode for these VMM functions, as | did for
the higher-level memory management APIs. Application programs don't call
them directly. Instead, think of them as the fundamental building blocks
that the ring 3 memory management functions are built upon. I've listed
them here because some readers don't have the Windows 95 DDK, which
lists and describes these functions. | also didn't want to ignore them entirely,
and handwave over the VxD functions in the following sections.

THE WIN32 VIRTUAL FUNCTIONS

At the lowest level of memory management in the Win32 AP, you'll find the
virtual functions (such as VirtualAlloc and Virtual Protect). The virtual func-
tions are for allocating and managing memory in large chunks. In Windows
95, the granularity of the virtual functions is4KB, making them unsuitable
for replacing malloc and new in the C/C++ runtime library. For the most
part, the virtual functions are a thin layer over the VMM functions. You'l
see this momentarily when | present pseudocode for the virtual functions.
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The closest equivalent to the virtual functions in Win16 is the global heap
functions (for instance, GlobalAlloc). Both the Win16 global heap functions
and the Win32 virtual functions let you allocate vast regions of memory that
you manage however you want. Unlike the global heap functions, though, the
virtual functions don't use selectors to reference memory. Instead, the virtual
functions deal with memory in 4KB chunks and don't use selectors. Also, the
Win16 global heap functions let you allocate memory regions as small as
20h bytes.

VirtualAlloc

VirtualAlloc is several functions in one. At any given time, the VMM memory
manager considers each page of linear memory to be either free, reserved, or
committed. The VirtualAlloc function enables you to change the state of a
range of pages in one direction (from free toward committed). VirtuaAlloc
can change pages from free to reserved, or from free to committed. In addition,
it can change previously reserved pages to the committed state.

The last state change - - from reserved to committed - -is particularly
valuable for implementing sparse memory and stacks. In this scenario, a
program first uses VirtualAlloc to reserve a block of memory sufficiently
large to meet any demands made on the program. The program then sets up
a structured exception handler that looks for page faults in the reserved mem-
ory range. As these page faults occur, the program calls VirtualAlloc a second
time. This time, the VirtualAlloc call changes the page that caused the fault
from the reserved state to the committed state. In this way, a program can
"allocate" huge amounts of memory without requiring physical RAM to
back it up at the time of the allocation. Only the memory pages that end up
being touched have physical RAM mapped to them.

Normally, VirtualAlloc is used by the operating system and programs to
allocate memory in the application's address space (that is, below 2GB).
However, VirtualAlloc has an undocumented flag (0x8000000) that allows
it to grab regions of memory above 2GB. Memory above 2GB is shared by
al applications, so this isan undocumented method of sharing memory
across processes. You can do the same thing with the documented memory
mapped file functions. In fact, from a cursory examination, it appears that
the address range used for memory mapped files is equivalent to what
VirtualAlloc returns with the 0x8000000 flag.

The Win32 VirtualAlloc rounds down to the nearest 64K boundary when
reserving memory. Indeed, memory blocks allocated from VirtualAlloc always
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appear to be aligned. However, VirtualAlloc's code doesn't do this rounding.
Instead, the rounding occurs in the _PageReserve function used by Virtua Alloc.

VirtualAlloc begins by checking whether the requested memory range istoo
large. Too large in this context means 2GB to 4MB. This is the size of the linear
address reserved for per-application memory. VirtualAlloc then calculates the
number of pages needed to span the memory region. When determining how
many pages are needed, VirtuaAlloc rounds the starting address down to the
nearest 4KB and the ending address up to the next 4KB. Thus, if you request a
2-byte region that covers the last byte of one page and the first byte of the next,
VirtualAlloc will try to reserve two pages.

Next up for VirtualAlloc isto handle the various flags it was passed in
the fdwProtect parameter. First, the code looks for the undocumented
0x8000000 flag, which tells it to allocate the memory in the shared region
above 2GB. VirtualAlloc ignores the MEM_TOP DOWN flag, and turns it
off if passed. Afterward, the function tests to see whether you passed only
the MEM_COMMIT or MEM_RESERVED flag. Any bits besides those two
flags trigger a debug version warning. Finally, the code calls the mmPAGEToPC
function, which isahelper function (described in the next section) that converts
the fdwProtect parameter flags to the flags used by VMM's _PageReserve.

At this point in the code, the function splits into two pieces. One section
executes if the user doesn't care at which address the memory is reserved. The
other section handles the case where the user specified a specific address to
reserve or commit to. In either case, if memory isto be reserved, VirtuaAlloc
calls Win32 service 00010000, which isawrapper around the VMM
_PageReserve function. After reserving the memory (if necessary), and if the
caller specified the MEM_COMMIT flag, VirtualAlloc calls Win32 service
00010001, which isawrapper around VMM's _PageCommit routine. If the
caller specified a specific address to commit memory to, VirtualAlloc checks to
make sure the address is below 0xC0000000, which is the start of VxD land.

Throughout all this code, VirtualAlloc conscientiously checks the return
values from _PageReserve and _PageCommit. If anything fails, the code emits
a debugging diagnostic, then falls through to a single exit point. This exit point
executes only in the failure case, and freesthe pages previoudy reserved.

Pseudocode for VirtualAlloc

/1 Paraneters: note fromreno: sorry for the ugly places of the brackets:
/I LPVO D |pvAddress PageGeni €2000 | ost nmost of them due to a bug and with
/1 DWORD chSi ze Acrobat 3 you sinply can't put them where you want.

/1 DWORD fdwAl | ocationType
/1 DWORD f dwPr ot ect



/1 Locals:

/I DWORD address, startPage

/I OWORD si zel nPages;

/I DWORD  pcFlags; Il Returned from mmPAGEToPC
/1 BOOL f Reserve;

if ( chSize > 0x7F000000 ){ // 2GB - 4MB
_DebugQut(  "Virtual Alloc: dwSize too bigXnXr",

SLE_WARNI NG + FStopOnRi ng3MenmoryError );
Internal Set LastError(  ERROR_NOT_ENOUGH_MEMORY );

return 0;
}
address = | pvAddress;
/1 Calculate how many pages will be spanned by this nmemory request.
si zelnPages = |pvAddress & OxOOOOOFFF;

si zel nPages += cbSi ze;
sizel nPages += OxOOOOOFFF;
sizel nPages = sizelnPages >> 12;

startPage = PR _PRIVATE; // 0x80000400h from VMMINC This value can
I/ be either an actual page number or a PR_ equate.

if ( fdwAllocationType & 0x8000000) /1 Undocumented shared nmem flag.
{

startPage = PR_SHARED, /1 0x80060000 in VMM INC.

fdwAl | ocationType &= ~0x8000000;} /I Don't need this flag anynore.
fdwAl | ocationType & ~MEM TOP_DOWN; /1 lgnore the MEM TOP_DOWN flag.

Il You can specify MEM COMM T and/or MEM RESERVE, but no other flags
/1 (the undocumented one above notw thstanding).
if ( (fdwAl | ocationType != MEM COWM T)

&& (fdwAllocationType != MEM RESERVE)

&& (fdwAllocationType != (MEM RESERVE | MEM COWMT)) )

_DebugOut ( "Virtual Alloc: bad flAllocationTypeNnNr"

SLE_WARNI NG + FStopOnRi ng3MenoryError )
Internal SetLastError( ERROR |INVALID PARAMETER );
return Q}

/1 Convert the fdwProtect flags into the PC flag values used by
/1" VMM VXD. Pseudocode follows this function.
pcFlags = nmPAGEToPC(f dwProtect);
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if ( pcFlags == -1) /1 Sonething wrong?

return 0;
if ( IpvAddress == 0 ) // Don't care where the nenory is allocated.
{

/I Reserve the memory block, startPage should be either
/1 PR_PRIVATE or PR_SHARED.
| pvAddress = VxDCall(  _PageReserve, startPage, sizelnPages, pcFlags );

if ( lpvAddress == -1 ) {

_DebugQut( "Virtual Alloc: reserve failed\n",

SLE_WARNI NG + FStopOnRi ng3MemoryError );
I nternal Set Last Error ( ERROR_NOT_ENOUGH_MEMORY );
return 0; }

I/ 1f caller is just reserving, we're finished.
if ( !(fdwAllocationType & MEM COWM T)
return | pvAddress;

/I Caller has specified MEM COW T.
if ( VvxDCall(_PageComnit,|pvAddress>>12 sizelnPages, 1, 0, pcFlags))
return | pvAddress; /1 Success!

/] Oops. Something went wong. Tell the user, then fall through
/I to the code to free the pages.
_DebugQut( "Virtual Alloc: commt failed\n",
SLE_WARNI NG + FStopOnRi ng3MemoryError );
I nternal Set Last Error ( ERROR_NOT_ENOUGH_MEMORY );

} else { /I Caller specified a particular address to allocate/commit at.
if ( address > OxBFFFFFFF ) {
_DebugQut( "Virtual Alloc: bad base address\n\r",
SLE_WARNI NG + FStopOnRi ng3MemoryError );

I nternal Set Last Error ( ERROR_I NVALI D_ADDRESS );
return 0; }

fReserve = fdwAllocationType & MEM RESERVE;
if ( fReserve ) {

I/ Call VMM _PageReserve to allocate the nenory. Note that
/1 the caller-specified |pvAddress is rounded down to the



Il nearest 4KB page. Note that it's not down to 64KB Iike
/I the doc says. However, PageReserve still rounds it down.

| pvAddress=VxDCal | (_PageReserve, address>>12, sizelnPages pcFlags)

if ( IpvAddress == -1) {

_DebugQut(  "Virtual Alloc: reserve failed\n",

SLE_WARNI NG + FStopOnRi ng3MemoryError )
Internal Set LastError(  ERROR_NOT_ENOUGH_MEMORY );
returnO; }

/I Hmm..It turns out that KERNEL32 will conplain if you
/1 didn't specify an address aligned on a 64KB boundary!
if ( lpvAddress != (address & OxFFFFO000) )
_DebugQut ("Virtual Alloc: reserve in wong place 1\n\r",
SLE_ERRCR) ;

} oif ( !(fdwAllocationType & MEM COMMT)
return |pvAddress;

| pvAddress &= OxFFFFF000;

if ( VxDCall( PageCommt,|pvAddress>>12, sizelnPages, 1 0, pcFlags)

return | pvAddress;
el se
{
_DebugQut(  "Virtual Alloc: commit failed\n",
SLE_WARNI NG + FStopOnRi ng3MemoryError )
Internal SetLastError( ~ ERROR_NOT_ENOUGH_MEMORY );
if ( !'fReserve )
return 0; }

I/ Unreserve the memory allocated earlier.
} VxDCal | ( PageFree, |pvAddress & OxFFFF0000, 0 );

return_0:
| pvAddress = 0;

return_| pvAddress:
return | pvAddress;
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MMPAGEToPC

The mmPageToPC function is used by VirtualAlloc, VirtuaProtectEx, and,
by extension, VirtualProtect. The function converts the PAGE _ flags from
WINNNT. H (such asPAGE READONLY) into the equivalent PC_ flags.
The PC_ (Page Commit) flags are defined in VMM.INC, and are used with
VMM's PageCommit function.

One of the flags used by Windows 95 indicates that a particular page is
a guard page. When the operating system receives a page fault when accessing
a guard pages, the operating system needs to commit additional memory at
the bottom of the stack to allow the stack to grow downward. However,
you apparently can't request a guard page with VirtualAlloc, because
mmPageToPC filters out the PAGEGUARD bit. The function aso ignores
the PAGE_NOCACHE flag by turning it off. The bulk of mmPageToPC is
a simple mapping of the various PAGE_ flags. In all cases except for
PAGE_NOACCESS, the converted flags contain the PC_USER bit, which
means the page will be accessible by ring 3 (user level) code. If the page should
be writeable, the PC_ WRITEABLE flag is OR'ed into the returned flags. Put
another way, with the exception of PAGE_NOACCESS, dl the PAGE_ flags
map to PC_USER or PC_USERIPC WRITEABLE. Any bits other than those
corresponding to the PAGE_ flags cause mmPageToPC to complain in the
debug version and cause the VirtualAlloc or Virtual Protect(Ex) cdl to fail.

Pseudocode for mmPAGEToPC

/] Parameters:

/I DWORD  PAGE_flags;
Il Locals:

/I DWORD retVal ue;

if ( PAGE_flags & PAGE_GUARD ) {
_DebugQut( "mmPAGEToPC: PAGE_GUARD flag not supported\n”,
SLE_WARNI NG + FStopOnRi ng3MemoryError );
Internal SetLast Error(  ERROR_CALL_NOT_| MPLEMENTED );
return -1, }
PAGE_flags &= ~PAGE_NOCACHE; /I Turn off the PAGE_NOCACHE flag.

if ( PAGE_flags == PAGE_NOACCESS )
return 0



if ( PAGE_flags == PAGE _READONLY )
return PC_USER;

if ( PAGE_flags == PAGE_READWRITE )
return PC_USER | PC_WRI TEABLE;

if ( PAGE_flags == PAGE_EXECUTE )
return PC_USER,;

if ( PAGE_flags == PAGE_EXECUTE _READ )
return PC_USER;

if ( PAGE_flags == PAGE_EXECUTE_READWRI TE )
return PC_USER | PC_WRI TEABLE;

if ( PAGE flags == PAGE_EXECUTE_WRI TECOPY )
return PC_USER;

DebugOut (  "mmPAGEToPC: extra fdwProtect flags\n",

SLE_WARNI NG + FStopOnRing3MemoryError );
I nternal SetLastError ( ERROR _I NVALI D _PARAMETER );
return -1;

VirtualFree

VirtualFree performs the mirrorimage functionality of VirtualAlloc. (No
kidding. Really?) It can change pages from committed to reserved, commited
to free, or reserved to free. The first portion of VirtualAlloc checks to ensure
that it was passed valid address and size parameters. The address must be
below 3GB, and the size must be smaller than the value 2GB minus 4MB
(the size of the private application area).

You can pass either the MEM RELEASE or MEM_DECOMMIT flag
to VirtualFree, but not both. MEM_RELEASE causes VirtualFree to call
VMM's _PageFree function to decommit (if necessary) and unreserve the
entire range of pages. In this mode, you must pass 0 as the size, which causes
_PageFree to free the entire block allocated earlier through VirtualAlloc.
Passing MEM_DECOMMIT makes VirtualFree call VMM's _PageDecommit
to decommit the specified block of pages.
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Pseudocode for VirtualFree

[l Parameters:

/I LPVOD | pvAddress

/I DWORD  chSize

/I DWORD  fdwFreeType

/I Locals:

/I DWORD  deconmm t PageSize

/I s range to free bigger than 2GB-4MB? Fail if so.
if ( chSize > Ox7FC00000 ) {

_DebugQut( "Virtual Free: dwSize too big\n\r",

SLE_WARNI NG + FStopOnRing3MemoryError );
Internal SetLastError(  ERROR_I NVALI D_ADDRESS );
return 0; }

/' Are pages in VxD land? If so, something's wrong.
if ( IpvAddress > OXBFFFFFFF ) {

_DebugQut( "Virtual Free: bad base address\n\r",
SLE_WARNI NG + FStopOnRi ng3MemoryError );
Internal Set LastError(  ERROR_I NVALI D_ADDRESS );

return 0; }
if (fdwFreeType == MEM_RELEASE ) {
if ( chSize =0 ) {
_DebugQut( "Virtual Free: dwSize nust be O for MEM_RELEASE\n\r",
SLE_WARNI NG + FStopOnRi ng3MenoryError );

Internal SetLastError(  ERROR_I NVALI D_PARAMETER );
return 0; }

/I Unreserve the range of nenory.
return VxDCall( _PageFree, |pvAddress, 0 );

if (fdwFreeType == MEM_DECOMMIT ) {

if ( cbSize == 0 ) {



_DebugQut ( "Virtual Free: dwSize == 0 not allowed wth MEM DECOMM T\n\r",

SLE_WARNI NG + FStopOnRi ng3MemoryError );

return 1,
/1 Calculate how many pages will be affected.
} decommi tPageSize = |pvAddress & OxOOOOSFFF;

decomm t PageSi ze += cbhSi ze;
decomm t PageSi ze += 0x00000FFF;
decomm t PageSi ze = deconmi t PageSi ze >> 12;

return VxDCall( _PageDeconmit, |pvAddress >> 12, deconm t?ageSize, 0);
} _DebugQut( "Virtual Free: bad dwFreeType\n\r",
SLE_WARNI NG + FStopOnRi ng3MemoryError );
I nternal Set Last Error ( ERROR_I NVALI D_PARAMETER )
return O

VirtualQueryEx

VirtualQueryEXx is perhaps one of the niftiest functions in Windows 95. It
provides a wealth of information about the type of memory at a particular
address. For instance, given an arbitrary address in a process's address
space, VirtualQueryEx can tell you which EXE or DLL owns that memory.
VirtualQueryEXx is at the heart of the Windows NT PWALK program,
which shows a memory layout map for a given process.

VirtualQueryEx wasn't originally slated to be in the Windows 95 Win32
subset. This came as a shock to developers of system-level programming tools
such as debuggers. Luckily, the Windows 95 developers took heart, perhaps in
part due to persistent whining by yours truly and others, and included
VirtualQueryEx in the Windows 95 API.

VirtualQueryEx fills in a MEMORY_BASIC_INFORMATION structure
with information about a particular address. The structure looks like this:

PVO D BaseAddress;

PVO D AllocationBase;
DWORD Al |l ocationProtect;
DWORD Regi onSi ze;

DWORD State;

DWORD Prot ect

DWORD Type;

321
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The fields of this structure are described in the Win32 documentation.
However, one field requires further explanation here. The AllocationBase
field sounds pretty dry, but it's usually the most important field of the lot.
Technically, it contains the base address of the original memory range allo-
cated by VirtualAlloc. More importantly, when the IpvAddress parameter to
Virtua QueryEx falls anywherewithin an EXE or a DLL module, AllocationBase
is the base address of the EXE or DLL. That is, AllocationBase is the same
as the EXE or DLL's HMODULE/HINSTANCE. The PWALK program
from the NT SDK uses this bit of knowledge to walk the address space of a
process and label the various regions with the name of their owning EXE or
DLL. Debuggers can use this capability to figure out which EXE or DLL is
associated with a fault address.

Virtual QueryEx is essentialy just acall to VWIN32.VXD's Win32 service
40h (VxDCall 0002A0040). This servicein turn callsthe VMM _PageQuery
function. In the DDK, _PageQuery is described as taking a parameter to a
MEMORY_BASIC_INFORMATION structure. Perhaps to prevent an inop-
portune thread switch from returning inconsistent values in the MEMORY _
BASIC_INFORMATION structure, VirtualQueryEx grabs the Krn32M utex
upon entry and releasesthe mutex on exit. It doesthiswith the undocumented
KERNEL32 EnterSysl evel and _L eaveSysl_eve functions.

The VWIN32 service 43h, which fillsthe MEMORY_BASIC_INFOR-
MATION structure, is more than just a wrapper around a_PageQuery call.
At this writing, | can't tell exactly what it's doing. However, it appears that
this wrapper code needs to know the address of the ring O stack for the cur-
rent thread in the process that's being queried. Therefore, before calling the
VWIN32 sarvice, Virtual QueryEx usesthe hProcess parameter to get a pointer
to the process structure (seethe section titled "The Process Database" in
Chapter 6). From there, VirtualQueryEx extracts the thread database of the
process's current thread to pass to the VWIN32 service. Interestingly, in
several step-throughs of VWIN32 service 43h, | never found a case where
the code did anything other than call _pageQuery.

Pseudocode for VirtualQueryEx

// Paraneters:
//  HANDLE hProcess;

//  LPCVO D |pvAddress; // Address of region.

/1 PMEMORY_BASI C_I| NFORMATI ON  pnbi Buf f er; /1 Address of information buffer.
/1l DWORD cbhLengt h; Il Size of buffer.

/1 Local s:

/1 DWORD pProcess: Il Pointer to process structure.

/1l DWORD pt db; Il Per thread database.

/1 DWORD ret Val ue:
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/1 Function that emits function names and paranmeters to the KERNEL
/1 debugger if a KERNEL32 global variable is TRUE (off by default).
Xx_LogKernel Function( nunber indicating the Virtual QueryEx function );

_EnterSysLevel ( Krn32Mutex );

retVal ue

0;
pProcess = x_CetObject( hProcess, 0x80000010, 0 );

if ( pProcess )
{
if ( ppCurrentProcessld == pProcess )
ptdb = ppCurrentThreadl d;
el se
ptdb = SoneFunction( pProcess->threadList, 0 );

if ( ptdb & (IpvAddress < OxC0000000) )

/1 Call into the VWN32 VxD to do the real work.
/I VWN32 ultimately calls the VMM PageQuery function.
retValue = VxDCall( OxOO2A0040, ptdb->ringO hThread,

| pvAddress, pmbiBufer, cbhLength );

x_UnuseObj ect Saf eW apper ( pProcess );

} _LeaveSysLevel ( Krn32Mutex );

return retVal ue;

VirtualQuery and IVirtualQuery

The VirtualQuery function is just a special case of the VirtualQueryEx function.
VirtualQuery retrieves information about a specific addresss in the current
process context, whereas VirtualQueryEx works on any process.

The VirtualQuery code does almost nothing of value; it's just a parameter
validation layer. VirtualQuery's code merely checks that a pointer to a
buffer large enough to hold a MEMORY_BASIC_INFORMATION was
passed in. Assuming the test succeeds, VirtualQuery jumps to the start of
the IVirtualQuery code. VirtualQuery's validation of the parameters before
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jumping to an internal routine that does the real work is typical of many
functions in the system DLLs (for instance, VirtualProtect, described later).

Other than some logging code in the debug version, 1VirtualQuery is
nothing more than a call to VirtualQueryEx with the current process's
pseudohandle as the first parameter. Note that in Windows 95,
IVirtualQuery calls VirtualQueryEx. Contrast this to Win32s, where
VirtualQueryEx is just a call to VirtualQuery. The key difference is that all
processes share the same address space in Win32s, so VirtualQuery should
be equivalent to VirtualQueryEx.

Pseudocode for VirtualQuery

11
11
11
11

Par anet er s:

LPCVO D | pvAddress; // Address of region.

PMEMORY_BASI C_I NFORMATI ON  pnbi Buffer; /1 Address of information buffer.
DWORD cbhLengt h; Il Size of buffer.

Set up structured exception handler frane

I/ Make sure that the beginning and end of the MEMORY BASIC | NFORMVATI ON
/1 structure is acccessible.

*(PBYTE) pmbi Buf fer += 0

