`

ConnectionPipe Classes

Version 1.0

User’s Guide

Table of Contents

31.
Purpose

32.
Main features

33.
Introduction

54.
Client-Server Architecture

5.1.
Schemes of connections

7.2.
Connection mechanism between Clients and Server

10.3.
Buffers

115.
Connection Classes library

11.1.
CConnectionPipe Class Members

13.2.
CConnectionPipeServer Class Members (abstract class)

16.3.
CConnectionPipeClient

18.4.
CWaitForConnectionPipe

19.5.
CConnectionPipeAgentClient

19.6.
CConnectionPipeAgentServer

20.7.
CConnectionPipeTracerClient

20.8.
CConnectionPipeTracerServer

226.
Events and Sinks

247.
Utilities

24.1.
RegsvrCP

24.2.
AgentCP

24.3.
TracerCP

25.4.
WizardCP

288.
Sample

1. Purpose

Simple and fast communication between all types of MFC Applications on a single or multiple computers in WindowsNT.

2. Main features

· Data transmission from Clients to Server, their processing and results return, if needed.

· Data transmission from Server to Clients informing them about any event.

· Different schemes of buffer allocations.

· Automatic Server loading.

· Automatic Server termination without Clients, if needed.

· Utilities for registration, automatic loading, tracing and Wizard.

3. Introduction

Several years ago I wrote classes by using Mailslots for communication between Clients and Server. According to the project requirements these classes must have worked in Windows95. In spite of numerous problems and limitations of Mailslots these classes work properly in Windows95 and WindowsNT.

The above-mentioned problems are the following: 8-bytes limitation for Mailslots names in Windows95 and numerous data transmission across Mailslots between Computers, if they have several identical installed communiciation protocols. Microsoft considers this as “by design”. In other words, it is not an error, but I don’t agree with it.

In these classes Server has the receiving thread and Clients send data with identificator of Client (Computer name and Client name) to this thread. It increases summary data that Clients transmit across Mailslots and it is the disadvantage of this method.

I took a course of COMs and ATL. After that it was evident that there were very many undocumented things in that technology. ATL is a convenient tool, but I have discovered several limitations, e.g. it is impossible to make ATL-Server from the existing MFC application.

DCOM implementation needs great efforts too. For example, I wrote my first program with DCOM almost 2 weeks and had to ask Microsoft for numerous consultations.

That’s why in spite of my wish to use COM/DCOM in my new project I had to give up this idea.

The new project that I have begun to work at had high requirements for the speed of data processing. This factor had to be taken into account in the design of the new communication tool. Fortunately, unlike COM, there were no requirements to the design of the universal tool and this made the development easier.

For the new project I have chosen the protocol Named Pipes working only in WindowsNT. In literature this protocol is defined as following:

An inter-process communication mechanism that allows one process to communicate with another local or remote process.

I have tried to implement the ideas that I used in my first project with Mailslots as well as the ideas of COM.

In the next chapter you’ll learn the Client-Server architecture, based on the Named Pipes protocol.

4. Client-Server Architecture

Schemes of connections

As seen from Figure 1 there are following variants of connections Client and Server.

· Client and Server are on a single computer.

· Client and Server are on multiple computers.

[image: image1.wmf]Computer 1

AgentCP

Registry

Server

Computer 2

AgentCP

Registry

Server

Computer 3

Registry

Client

Computer 4

Registry

Local

Server

Client

Computer 5

Registry

Local

Server

Client

Figure 1: Variants of connections between Clients and Servers

When Server is loaded, Client tries to get into connection with Server.

If Server is not loaded and Client and Server are on a single computer, Client gets information about Server from Registry of this computer (see Computer 4 on

Figure 1).

If Server is not loaded and Client and Server are on multiple computers, Client gets information about Server from Registry of the remote Server computer across utility AgentCP (see Computers 1 and 2 on Figure 1). This program searches Server information in Registry of Server Computer and loads it.

As seen from Figure 1, for successful functioning of the above-mentioned process it is necessary:

· To write information about Server in Registry of Server Computer.

· To run utility AgentCP on the remote computer previously.

Thus the Server automatic loading is carried out. Process-Server may be terminated automatically, if Clients are not connected.

Connection mechanism between Clients and Server

Detailed Connection mechanism between one Client and Server is shown on

Figure 2.

[image: image2.wmf]Process-Server

Creator

thread

Wait for

Client

Connection

Main Dataflow

Instance

thread

Read data

from Client 1

Implementation

Method 1

Implementation

Method 2

Implementation

Method 3

Creation Object-Server

Client list

Process-Client

Sink

thread

Read data

from Server

Implementation

Event 1

Implementation

Event 2

Implementation

Event 3

Main Dataflow

Call

Client1->Method1

Call

Client1->Method2

Creation object

Client-1

Call

Client1->Method3

Event1

Event2

Event3

To Sink Thread

1

Figure 2: Detailed connection mechanism between one Client and Server

Connection between Client and Server does not interfere in Main Dataflow.

Constructor of Server creates Creator thread that is waiting for connection with New Client continuously. Creator thread creates Instance thread for each New Connection and adds Client Information into Server Client List. The goal of Instance thread is to receive data from Client.

Constructor of Client, if needed, creates Sink thread to receive data from Server.

Server may send messages to all Clients (Events), or a group of clients. These messages are processed by corresponding procedures in Sink thread. Event-Sink mechanism are similar to COM Connected Points mechanism.

Client calls corresponding procedures across its own Instance thread.

Connection mechanism between several Clients and Server is shown on Figure 3.

[image: image3.wmf]Process-Server

Creator

thread

Wait for

Client

Connection

Main Dataflow

Client list

Process-Client 1

Sink

thread

Read data

from

Server

Main Dataflow

Creation

object

Client-1

Instance

thread

Read data

from Client 2

Instance

thread

Read data

from Client N

Process-Client 2

Sink

thread

Read data

from

Server

Main Dataflow

Creation

object

Client-2

Process-Client N

Sink

thread

Read data

from

Server

Main Dataflow

Creation

object

Client-N

Instance

thread

Read data

from Client 1

Creation Object-Server

3

2

1

Client list

Figure 3: Connection mechanism between several Clients and Server

Instance thread is created for each Client in Server, and information about each Client is saved in Server Client List.

Total number of threads in Process-Server is equal to number of Clients + 2 (Main Dataflow + Creator thread)

Total number of threads in Client-Server is equal to 2 (Main Dataflow + Sink thread) or 1 if Sink-mechanism is absent.

Buffers

Connection mechanism includes input and output buffers for Client and Server and for Event-Sink mechanism. Several buffers may be allocated once (constantly), when Server and Client are created or each time (temporary) within Clients and Servers procedures in accordance with the following table:

	Buffer
	Client
	Server

	Input
	Constantly/Temporary
	Constantly

	Output
	Constantly/Temporary
	Constantly/Temporary

	Sink-Event
	Constantly
	Constantly

Connection<Name>.h–file contains the following defition:

#define <SERVER_NAME>_BUFFER_ ALLOCATION =

ONE_TIME_BUFFER_ALLOCATION | EACH_TIME_BUFFER_ALLOCATION

 Example:

#define FIRST_BUFFER_ALLOCATION ONE_TIME_BUFFER_ALLOCATION

Type of buffer allocation is described in interface file (similar to idl-file).This file may be created by WizardCP-utility.

Structure of buffer:

· 4 bytes for ID-procedure

· Data

There is ID-procedure for each procedure and may be created by WizardCP-utility.

Example:

typedef enum ID_EVENT_FIRST

{

 ID_SENDFROMSERVERMESSAGE = CPIPE_EVENT,
 ID_TERMINATECLIENT

};

5. Connection Classes library

Connection Classes library includes System Connection Classes library and User Connection Classes library.

System Connection Classes library includes the following classes:

· CConnectionPipe

base class

· CConnectionPipeServer

based on CConnectionPipe class

· CConnectionPipeClient

based on CConnectionPipe class

· CWaitForConnectionPipe

template class (for client creation)

· CConnectionPipeAgentClient
based on CConnectionPipeClient class

· CConnectionPipeAgentServer
based on CConnectionPipeServer class

· CConnectionPipeTracerClient
based on CConnectionPipeClient class

· CConnectionPipeTracerServer
based on CConnectionPipeServer class.

4.1. CConnectionPipe Class Members

Data members

DWORD Error

see ERRORSCP.H

DWORD OutputBufferSize

DWORD InputBufferSize

DWORD SinkEventBufferSize

DWORD PipeTimeOut
DWORD BufferAllocation
ONE_TIME_BUFFER_ALLOCATION or EACH_TIME_BUFFER_ALLOCATION

CConnectionPipeTracerClient* pConnectionPipeTracerC
char OwnComputerName[MAX_COMPUTERNAME_LENGTH + 1]

Members

virtual void OutputConsole(char *fmt, ...)

By default this procedure sends data for debugging to OutputWindow across OutputDebugString(…).

DWORD LoadLocalServer(char* ServerName)

Server must be written in Registry by RegSvrCP previously.

Procedure returns TRUE if Error = ERROR_SUCCESS or

FALSE if not.

If Return FALSE see Error in Errors.h.

DWORD WriteToPipe(

HANDLE hPipe,

char* output_str,

DWORD nNumberOfBytesToWrite,

DWORD* cbWritten)

Procedure returns TRUE if Error = ERROR_SUCCESS or

FALSE if not.

If Return FALSE see Error in Errors.h.

If utility TracerCP are connected each call WriteToPipe is directed to TracerCP.

DWORD ReadFromPipe(

HANDLE hPipe,

char* inpbuffer,

DWORD nNumberOfBytesToRead,

DWORD* cbBytesRead)

Procedure returns TRUE if Error = ERROR_SUCCESS or

FALSE if not.

If Return FALSE see Error in Errors.h.

If utility TracerCP are connected each call ReadFromPipe is directed to TracerCP.

Construction/Destruction

CConnectionPipe(DWORD BufferAllocation_par,

 DWORD OutputBufferSize_par,

 DWORD InputBufferSize_par,

 DWORD SinkEventBufferSize_par,

 DWORD PipeTimeOut_par)

CConnectionPipeServer Class Members (abstract class)

Data members

typedef struct

{

 HANDLE hPipe;

 HANDLE hThread;

 HANDLE hPipeEvents;

 char* InputString;

 char* OutputString;

 CString ClientComputerName;

 CString Login;

// reserved for using in the future

 CString Password;

// reserved for using in the future

 CString SinkName;

} CONNECTION_PIPE_DATA
CArray <CONNECTION_PIPE_DATA,CONNECTION_PIPE_DATA> Clients

This array is Client List

CRITICAL_SECTION CritSectClients

For synchronization access to Client List

char PipeName[300]

char* EventOutputString

Members

 virtual void PostCreateStep(int index)

The latest step in connection with Client

Index – entry in Clients array

Example:

PostCreateStep(int index)

{

CONNECTION_PIPE_DATA cpd;

cpd = Clients.GetAt(index);

 …

}

 virtual void Disconnection(TMP_STRUCT1* ptmp1)

Example:

void CConnectionPipeFirstServerW::

Disconnection(TMP_STRUCT1* ptmp1)

{

CConnectionPipeServer::Disconnection(ptmp1);

…

// Add your code here

}

virtual void UserProcessing(TMP_STRUCT1* ptmp1) = 0

Example:

void CConnectionPipeFirstServerW::

UserProcessing(TMP_STRUCT1* ptmp1)

{

 DWORD* pid = (DWORD*)ptmp1->InputString;

 switch(*pid)

 {

 case ID_SENDTOSERVERMESSAGE:

SendToServerMessage(ptmp1);

 break;

 ……

 default:

OutputConsole("*** id is wrong\n",*pid);

 break;

 }

}

Construction/Destruction

 CConnectionPipeServer(

 char* PipeName_par,

 CConnectionPipeTracerClient* pConnectionPipeTracerCp = 0,

 DWORD BufferAllocation_par = ONE_TIME_BUFFER_ALLOCATION,

 DWORD OutputBufferSize_par = BUFFER_SIZE,

 DWORD InputBufferSize_par = BUFFER_SIZE,

 DWORD SinkEventBufferSize_par = BUFFER_SIZE,

 DWORD PipeTimeOut_par = PIPE_TIMEOUT)

 ~CConnectionPipeServer()

CConnectionPipeClient

Data members

char* InputString

char* OutputString

char* SinkInputString

HANDLE hPipe

HANDLE hPipeSink

HANDLE hThreadSink

Members

CConnectionPipeAgentClient* pConnectionPipeAgentC

virtual void SinkProcessing(char* chRequest,

 DWORD cbBytesRead,

 char* chReply,

 DWORD* cbReplyBytes)

Example:

void CConnectionPipeFirstClientW::

SinkProcessing(char* chRequest,

DWORD cbBytesRead,

char* chReply, DWORD* cbReplyBytes)

{

 DWORD* pid = (DWORD*)chRequest;

 switch(*pid)

 {

case ID_SENDFROMSERVERMESSAGE:

 Sink_SendFromServerMessage();

break;

default:

 OutputConsole("[SinkProcessing] *** id = %d is wrong\n", *pid);

 break;

 }

}
Construction/Destruction

CConnectionPipeClient(DWORD BufferAllocation_par = ONE_TIME_BUFFER_ALLOCATION,

 DWORD OutputBufferSize_par = BUFFER_SIZE,

 DWORD InputBufferSize_par = BUFFER_SIZE,

 DWORD SinkEventBufferSize_par = BUFFER_SIZE,

 DWORD PipeTimeOut_par = PIPE_TIMEOUT)

 ~CConnectionPipeClient()

CWaitForConnectionPipe

Construction/Destruction
CWaitForConnectionPipe(T*& pClient,

char* PipeNameServer,

char* SinkName = "",

char* CompNameServer = ".",

CConnectionPipeAgentClient* pConnectionPipeAgentC =

NULL,

CConnectionPipeTracerClient* pConnectionPipeTracerC =

NULL,

DWORD TimeOut = 20000,

DWORD BufferAllocation_par = ONE_TIME_BUFFER_ALLOCATION,
DWORD OutputBufferSize_par = BUFFER_SIZE,

DWORD InputBufferSize_par = BUFFER_SIZE,

DWORD SinkEventBufferSize_par = BUFFER_SIZE,

DWORD PipeTimeOut_par = PIPE_TIMEOUT)

CConnectionPipeAgentClient

Members

typedef struct

{

 DWORD LoadingResult;

 DWORD Error;

} ERR_STRUCT_AGENT;

DWORD RunServerFromRegistry(char*

ServerName,ERR_STRUCT_AGENT* pes)

Procedure returns TRUE if Error = ERROR_SUCCESS or

FALSE if not.

If Return FALSE see member of pes in Errors.h.

DWORD RunApplication(char* ApplName,DWORD* pLoadingResult)

Procedure returns TRUE, if the function succeeds or

FALSE if not.

If the function succeeds, the LoadingResult is TRUE.

If the function fails, the return value is FAIL:

Construction/Destruction

CConnectionPipeAgentClient(

DWORD BufferAllocation_par = ONE_TIME_BUFFER_ALLOCATION,

 DWORD OutputBufferSize_par = BUFFER_SIZE,

 DWORD InputBufferSize_par = BUFFER_SIZE,

 DWORD SinkEventBufferSize_par = BUFFER_SIZE,

 DWORD PipeTimeOut_par = PIPE_TIMEOUT)

CConnectionPipeAgentServer

For AgentCP using only.

CConnectionPipeTracerClient

Members

DWORD TracerMessage(char *fmt, ...)

Procedure returns TRUE if Error = ERROR_SUCCESS or

FALSE if not.

If Return FALSE see member of Error in Errors.h.

Construction/Destruction

 CConnectionPipeTracerClient(

DWORD BufferAllocation_par = ONE_TIME_BUFFER_ALLOCATION,

 DWORD OutputBufferSize_par = BUFFER_SIZE,

 DWORD InputBufferSize_par = BUFFER_SIZE,

 DWORD SinkEventBufferSize_par = BUFFER_SIZE,

 DWORD PipeTimeOut_par = PIPE_TIMEOUT)

CConnectionPipeTracerServer

For TracerCP using only.

System Connection Classes library includes the following files:
ConnectionPipe.h

ErrorsCP.h

ConnectionPipe.lib

ConnectionPipe.dll

User Connection Classes library includes the folowing classes:

UserClient class, based on CConnectionPipeClient class

User Server class, based on CConnectionPipeServer class.

User Connection Classes library includes the following files:
All below-mentioned files may be created by WisardCP.

Connection<Name>.h–file

You may change the following parameters, but they must be defined in any

 case:

Example:

#define FIRST_OUTPUT_BUFFER_SIZE
5120

#define FIRST_INPUT_BUFFER_SIZE
5120

#define FIRST_SINK_EVENT_BUFFER_SIZE 5120

#define FIRST_PIPE_TIMEOUT

5000

#define FIRST_BUFFER_ALLOCATION
ONE_TIME_BUFFER_ALLOCATION

Client procedures implementation .cpp-file

Server procedures implementation .cpp-file

Switch-processing for Client-Sink procedures .cpp-file

Switch-processing for Server procedures .cpp-file

There are several methods of work with User Connection Classes library.

· User Library for Client and Server support.

CConnectionPipeClient class and CConnectionPipeServer class are in one

 library (see in sample ConnectionPipeFirstW.lib).

· User DLL and Library for Client and Library for Server

CConnectionPipeClient class is dll and library.

CConnectionPipeServer class is library. This method is recommended if you want to use Server Window support in methods of CConnectionPipeServer class. (TracerCP-utility is a good sample).

· User DLL and Library for Client and Server

If you know how to get handlers on Server Windows in your dll use this method. Use SendMessage from SDK to work with Server Windows.

But you must to know how to get Window-tree for Server Application.

This method is recommended for experienced programmers.

6. Events and Sinks

You may see in this chapter how to send Event-messages from Server and how Client receives them across SinkProcessing – procedure. Full source code is in p.8 Sample.

Example:

For Server:

Here Server sends Messages to all Clients from Client-list across

corresponding Pipe. Access to Client-list is locked by Critical Section, because

Client-list may be updated by Connection or Disconnection.

void CConnectionPipeFirstServer::

Event_SendFromServerMessage()

{
 int i;

 CONNECTION_PIPE_DATA cpd;

 DWORD cbWritten = 0,fSuccess = 0;

 DWORD id = ID_SENDFROMSERVERMESSAGE;

 EnterCriticalSection(&CritSectClients);
 for (i = 0;i < Clients.GetSize();i++)
 {
 cpd = Clients.GetAt(i) ;
 fSuccess = WriteToPipe(
 cpd.hPipeEvents,
// handle to pipe
 (char*)&id,
// buffer to write from

 sizeof(id),
// number of bytes to write

 &cbWritten);
// number of bytes written

 }
 LeaveCriticalSection(&CritSectClients);
}

For Client:

void CConnectionPipeFirstClientW::

SinkProcessing(char* chRequest,

 DWORD cbBytesRead,

 char* chReply,

 DWORD* cbReplyBytes)

 {

 DWORD* pid = (DWORD*)chRequest;

 switch(*pid)

 {

 case ID_SENDFROMSERVERMESSAGE:

 Sink_SendFromServerMessage();

 break;

 default:

 OutputConsole("[SinkProcessing] *** id = %d is wrong\n", *pid);

 break;

 }

}

See source code SendFromServerMessage() in p. 8 Sample

7. Utilities

4.2. RegsvrCP

It is a service console program to read/write Server data from/to

Registry

HKEY_CURRENT_USER\

 Software\

 CommunicationPipe Servers\

 <Server Name>\

 Settings\

 Application Name

 Path

Usage:

RegSvrcp /l

List of registered

Servers

 RegSvrcp /a <server> <FullPathAppName>
Add to Registry

 RegSvrcp /acd <server> <AppName>
 Add to Registry

from current directory
 RegSvrcp /d <server>

Delete from

Registry

RegSvrcp /dall

Delete all entries

from CommunicationPipe Servers of Registry

4.3. AgentCP

It is service program installed on remote computer for Server loading on it. Server must be registrated previously by RegsvrCP.

Usage:

 AgentCP

Kill AgentCP by TaskManager.

4.4. TracerCP

Usage:

 Call as a Client from any program (see p.8 Sample).

4.5. WizardCP

[image: image4.png]
Input:

ServerName

FullPathInclude
FullPathSource
OutputBufferSize

InputBufferSize
SinkEventBufferSize
PipeTimeout
BufferAllocation
 List of Methods with parameters

 List of Methods with parameters for Event-Sink

mechanism.

Output:

 ConnectionPipe<ServerName>ClientMethods.cpp

 ConnectionPipe<ServerName>ServerMethods.cpp

 GConnectionPipe<ServerName>Client.cpp

 GConnectionPipe<ServerName>Server.cpp

 ConnectionPipe<ServerName>.h

 StdAfx.cpp

 StdAfx.h

 <ServerName>.pid

pipe interface file

 Connection<ServerName>.dsp
project file
Usage:

 WisardCP.

Utility WizardCP creates a full project.

TestCP is the sample, that includes ConnectionTest project, generated by WizardCP.

Pay attention to directory tree of TestCP workspace:

· ClientTest

· ConnectionTest

· Debug

· Include

· Lib

· ServerTest.

Follow the below-mentioned steps in creation workspace together with WizardCP:

· Create workspace TestCP of type Win32 Application.

· Create directory Include.

· Copy ConnectionPipe.h and Errors.h in it

· Create directory Lib.

· Copy ConnectionPipe in it.

· Copy ConnectionPipe.dll in directory Debug.

· Add project ClientTest of type Console Application with the following parameters:

· Using MFC

· Simple Application

· Settings:

· General - Use MFC in a shared DLL

· C/C++ Code Generation - Debug Multithreading DLL

· C/C++ Preprocessor

· Additional Include directories - ..\Include

· Link General

· Output file name - ..\Debug/ClientTest.exe

· Object/Library modules - ConnectionPipe.lib

ConnectionTest.lib

· Link input

· Additional library path - ..\Lib.

· Add project ServerTest of type Console Application with parameters same as ClientTest project.

· Add to StdAfx.h – files for projects ClientTest and ServerTest

#include <afxtempl.h>.

· Create directory ConnectionTest.

· Create by WizardCP project ConnectionTest for support server Test. File ConnectionPipeTest must be in directory Include.

· Add project ConnectionTest to TestCP workspace.

· See code in the following files:

· ServerTest.cpp

· ClientTest.cpp

· ConnectionTest

· ConnectionPipeTestClientMethods.cpp

· ConnectionPipeTestServerMethods.cpp.

· Set TestCP project as Active and compile it (it must be compile all above mentioned projects).

· Run RegSvrCP.exe to register Server Test.

· Run ClientCP.exe in directory Debug.

8. Samples

DemoConnectionPipe is the sample that contents the following:

Subprojects with source code:

ClientW,

ServerW,

ConnectionPipeFirstW.

DLL and Libraries:

ConnectionPipe.dll + ConnectionPipe.lib.

Utilities:

AgentCP,

RegSvrCP,

TracerCP.

Batch-files:

InstallDemoCP.bat,

RunDemoCP.bat,

UninstallDemoCP.bat.

DemoConnectionPipe is created without WizardCP.

*[image: image5.png]

 [image: image6.png]
See Readme.txt and follow its recommendations.

-27-

_1054821407.vsd

_1054823730.vsd

_1054319177.vsd

